JP2005152404A - Gaseous iodine discharge tool, and method and apparatus for preparing iodine-containing solution - Google Patents
Gaseous iodine discharge tool, and method and apparatus for preparing iodine-containing solution Download PDFInfo
- Publication number
- JP2005152404A JP2005152404A JP2003396976A JP2003396976A JP2005152404A JP 2005152404 A JP2005152404 A JP 2005152404A JP 2003396976 A JP2003396976 A JP 2003396976A JP 2003396976 A JP2003396976 A JP 2003396976A JP 2005152404 A JP2005152404 A JP 2005152404A
- Authority
- JP
- Japan
- Prior art keywords
- iodine
- water
- gas
- film
- organic solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
Abstract
Description
本発明は、ヨウ素を吸着した高分子化合物をガス透過性の無孔フィルムで被覆したヨウ素ガス放出具とそれを用いたヨウ素含有液剤製造方法並びにヨウ素含有液剤製造装置に関するものである。 The present invention relates to an iodine gas releasing device in which a polymer compound adsorbing iodine is covered with a gas-permeable non-porous film, an iodine-containing liquid preparation method and an iodine-containing liquid preparation device using the same.
ヨウ素は殺菌力が強くしかも人体に対する害が比較的低いため病院その他で広く用いられている。その多くはポビドンヨードのような錯体の形で用いられるが、その他に高分子化合物等に吸着させ、これからヨウ素を徐放せしめることも可能である(特開昭57−51725、特開昭59−193189、特開昭60−232288、特開平9−67216、特開平9−122655、特表平9−509876、特開2003−213022)。 Iodine is widely used in hospitals and other places because of its strong bactericidal activity and relatively low harm to the human body. Most of them are used in the form of a complex such as povidone iodine, but they can also be adsorbed on a polymer compound or the like, and iodine can be released gradually therefrom (Japanese Patent Laid-Open Nos. 57-51725 and 59-193189). JP-A-60-232288, JP-A-9-67216, JP-A-9-122655, JP-T-9-509876, JP-A-2003-213022).
このようなヨウ素を吸着した高分子化合物から放出されるヨウ素を水に溶解させることにより、殺菌性のあるヨウ素水を製造したり、上記ヨウ素を吸着した高分子周辺の器物を消毒することが出来る(特開平10−165960)。また上記ヨウ素を吸着した高分子化合物から徐放されるヨウ素ガスを消毒に利用することも可能である(特開2003−213022)。しかし上記ヨウ素を吸着した高分子化合物と水を長期間接触させておくと水中のヨウ素濃度が過大となり、着色をおこしたり、不必要にヨウ素を浪費してヨウ素を吸着した高分子化合物の寿命を短くしたりする問題がある。 Dissolving iodine released from such a polymer compound adsorbing iodine in water can produce bactericidal iodine water, or disinfect the surroundings of the polymer adsorbing iodine. (Japanese Patent Laid-Open No. 10-165960). It is also possible to use iodine gas that is gradually released from the polymer compound adsorbing iodine for disinfection (Japanese Patent Laid-Open No. 2003-213022). However, if the polymer compound adsorbed with iodine is kept in contact with water for a long period of time, the iodine concentration in the water becomes excessive, causing coloring, and unnecessary life wasted on the polymer compound adsorbing iodine by wasting iodine. There is a problem of shortening.
一方多孔質部材等を用いて固体ヨウ素からのヨウ素の昇華を制御しようとする提案がある(特表平10−503698)。しかし固体ヨウ素は触れると危険であり、また昇華速度が大であるため取り扱いがきわめて難しいという問題がある。 On the other hand, there is a proposal to control the sublimation of iodine from solid iodine using a porous member or the like (Japanese Patent Publication No. 10-503698). However, there is a problem that solid iodine is dangerous when touched and is extremely difficult to handle due to its high sublimation rate.
ここにおいて、本発明は、上述した事情を背景にして為されたものであって、その解決課題とするところは、ヨウ素を吸着した高分子化合物からのヨウ素の放出を制御したヨウ素ガス放出具の提供およびそれを用いたヨウ素含有液剤の製造方法の提供にある。また他の解決課題としては、簡単で使い勝手のよいヨウ素含有液剤の製造装置の提供にある。 Here, the present invention has been made in the background of the above-mentioned circumstances, and the problem to be solved thereof is an iodine gas release tool that controls the release of iodine from a polymer compound that has adsorbed iodine. And providing a method for producing an iodine-containing liquid using the same. Another problem to be solved is to provide an iodine-containing liquid preparation apparatus that is simple and easy to use.
本発明にあっては上記課題を解決するため種々検討した結果、ヨウ素を吸着した高分子化合物をガス透過性の無孔フィルムで被覆することにより、上記課題の中ヨウ素の放出制御に成功した。さらにヨウ素を吸着した高分子化合物に水及び/又はヨウ素と相互作用を有する有機溶媒を共存せしめることにより、有利にヨウ素ガス放出速度を制御することに成功し、これを用いたヨウ素含有液剤を得る見通しを得た。 In the present invention, as a result of various investigations to solve the above-mentioned problems, the release of medium-iodine was successfully controlled by coating a polymer compound adsorbing iodine with a gas-permeable non-porous film. Furthermore, by allowing water and / or an organic solvent that interacts with iodine to coexist with the polymer compound that has adsorbed iodine, it succeeded in controlling the iodine gas release rate advantageously, and an iodine-containing liquid using the same is obtained. Got a prospect.
すなわち第1の発明はヨウ素を吸着した高分子化合物に水及び/又はヨウ素と相互作用を有する有機溶媒を共存せしめ、これをガス透過性の無孔フィルムで被覆したことを特徴とするヨウ素ガス放出具をその要旨とする。 That is, the first invention is characterized in that water and / or an organic solvent that interacts with iodine coexists in a polymer compound that adsorbs iodine, and this is covered with a gas-permeable nonporous film. The gazette is the gist.
また第2の発明はヨウ素を吸着した高分子化合物またはヨウ素を吸着した高分子化合物と水および/またはヨウ素と相互作用を有する有機溶媒を共存せしめたものをガス透過性の無孔フィルムで被覆したヨウ素ガス放出具から放出されるヨウ素ガスを、水及び/又は有機溶媒に溶解させてヨウ素含有液剤を製造する方法をその要旨とする。 In the second invention, a polymer compound adsorbing iodine or a polymer compound adsorbing iodine and an organic solvent having an interaction with water and / or iodine is coated with a gas-permeable non-porous film. The gist is a method for producing an iodine-containing liquid by dissolving iodine gas released from an iodine gas release tool in water and / or an organic solvent.
さらに第3の発明は上記ヨウ素を吸着した高分子化合物もしくは当該高分子と水及び/又は有機溶媒を共存させ、これをガス透過性の無孔フィルムで被覆したヨウ素ガス放出具を備え、開閉可能な装置内に水及び/又は有機溶媒とともに内臓したヨウ素含有液剤製造装置をその要旨とする。 Furthermore, the third invention is equipped with an iodine gas releasing device in which the polymer compound adsorbing iodine or the polymer and water and / or an organic solvent coexisted with a gas-permeable non-porous film, and can be opened and closed. The gist of the apparatus for producing an iodine-containing liquid preparation incorporated in the apparatus together with water and / or an organic solvent.
本発明において用いるヨウ素を吸着した高分子化合物としては、ヨウ素吸着性を有する高分子化合物にヨウ素を吸着せしめたものを用いる。ヨウ素吸着性高分子化合物としては、ABS樹脂、AS樹脂、エチレン・ビニルアルコール共重合体(EVOH樹脂)、エチレン・酢酸ビニル共重合体、ポリアミド、ポリアクリロニトリル、アクリロニトリル・塩化ビニル共重合体、ポリウレタン樹脂、酢酸セルロース樹脂、ポリビニルアルコール、部分ホルマール化ポリビニルアルコール、ポリエステル、ポリエチレンオキサイド樹脂、デンプン、ポリビニルピロリドン共重合体(例えばビニルピロリドン・メタクリル酸メチル共重合体)等が用いられる。またヨウ素吸着性に乏しい樹脂であっても、上記のヨウ素吸着性樹脂と混合して成型することにより使用可能である。 As the polymer compound adsorbed with iodine used in the present invention, a compound obtained by adsorbing iodine to a polymer compound having iodine adsorptivity is used. Examples of iodine adsorbing polymer compounds include ABS resin, AS resin, ethylene / vinyl alcohol copolymer (EVOH resin), ethylene / vinyl acetate copolymer, polyamide, polyacrylonitrile, acrylonitrile / vinyl chloride copolymer, polyurethane resin. Cellulose acetate resin, polyvinyl alcohol, partially formalized polyvinyl alcohol, polyester, polyethylene oxide resin, starch, polyvinylpyrrolidone copolymer (for example, vinylpyrrolidone / methyl methacrylate copolymer) and the like are used. Moreover, even if it is resin with poor iodine adsorption property, it can be used by mixing with said iodine adsorption resin and shape | molding.
上記高分子化合物の中で特に望ましいのはABS樹脂、AS樹脂、エチレン・ビニルアルコール共重合体(EVOH樹脂)である。一般にABS樹脂として市販されているのは、アクリロニトリル成分が20〜30重量%、スチレン成分が40〜70重量%、ブタジエン成分が10〜30重量%程度であるが、本発明においては何れも使用可能である。市販品としては例えばサイコラックABS(三菱レイヨン(株))がある。EVOH系樹脂としては、その共重合体中のエチレン含有量が20〜50モル%のものを用いるのが好ましい。市販品としては日本合成化学(株)製のソアノールと(株)クラレ製のエバールの中で何れの品種も使用することができる。 Of the above polymer compounds, ABS resin, AS resin, and ethylene / vinyl alcohol copolymer (EVOH resin) are particularly desirable. In general, commercially available ABS resins are 20 to 30% by weight of acrylonitrile component, 40 to 70% by weight of styrene component, and 10 to 30% by weight of butadiene component, but any of them can be used in the present invention. It is. Commercially available products include, for example, Psycholac ABS (Mitsubishi Rayon Co., Ltd.). As the EVOH resin, one having an ethylene content of 20 to 50 mol% in the copolymer is preferably used. As commercial products, any varieties can be used among Soarnol manufactured by Nippon Synthetic Chemical Co., Ltd. and Eval manufactured by Kuraray Co., Ltd.
ヨウ素を吸着した高分子化合物の形態としてはビーズ、粉末、繊維、織物又は不織布、フィルムまたはゲル等種々の形態で使用できる。また射出成型、押し出し成型、圧縮成型等の熱成型による成型品も使用可能である。特に好ましい形態としてはビーズ状であり、市販の射出成型用ペレットをそのまま用いることもできる。 The polymer compound adsorbed with iodine can be used in various forms such as beads, powder, fiber, woven fabric or nonwoven fabric, film or gel. Also, a molded product by thermoforming such as injection molding, extrusion molding, compression molding or the like can be used. A particularly preferred form is beads, and commercially available pellets for injection molding can be used as they are.
ヨウ素吸着性高分子化合物材料(以下高分子材料と略称する)にヨウ素を吸着せしめるには高分子材料をヨウ素溶液に浸漬する液相法でもよいが、気相で行う方が吸着量を高くすることが容易であり、また廃液が出ることがないので有利である。高分子材料へのヨウ素の吸着方法については、特開平10−165960号等に詳細に記述されている。すなわちヨウ素の気相吸着は、高分子材料と吸着させるべき所定重量の固体ヨウ素を密閉容器に入れ、50℃以上、好ましくは60℃以上に加熱し、固体ヨウ素の全量を高分子材料に吸着せしめることにより行われる。 In order to adsorb iodine to an iodine adsorbing polymer compound material (hereinafter abbreviated as a polymer material), a liquid phase method in which the polymer material is immersed in an iodine solution may be used. However, the adsorption amount is increased in the gas phase. This is advantageous because it is easy and waste liquid does not come out. The method for adsorbing iodine to a polymer material is described in detail in JP-A-10-165960. That is, in the vapor phase adsorption of iodine, a polymer material and a predetermined weight of solid iodine to be adsorbed are placed in a sealed container and heated to 50 ° C. or higher, preferably 60 ° C. or higher, so that the total amount of solid iodine is adsorbed to the polymer material. Is done.
上記高分子材料に対するヨウ素の吸着量は5〜200重量%が望ましい。高分子材料がビーズ状の場合、好ましい吸着量は30〜180重量%(対プラスチック重量)である。 The amount of iodine adsorbed on the polymer material is preferably 5 to 200% by weight. When the polymer material is in the form of beads, the preferred adsorption amount is 30 to 180% by weight (vs. plastic weight).
固体ヨウ素の全量を高分子材料に吸着させた後、吸着時の温度より高い温度で処理することにより、吸着したヨウ素を高分子材料の、より内部まで侵入せしめることができる。この熱処理により高分子材料からのヨウ素の放出速度を調節することが可能である。熱処理温度は90〜110℃が好ましい。 After the total amount of solid iodine is adsorbed on the polymer material, the adsorbed iodine can be penetrated further into the polymer material by processing at a temperature higher than the temperature at the time of adsorption. By this heat treatment, it is possible to adjust the release rate of iodine from the polymer material. The heat treatment temperature is preferably 90 to 110 ° C.
本発明においては上記ヨウ素を吸着した高分子化合物をガス透過性の無孔フィルムで被覆する。ガス透過性の無孔フィルムとしてはヨウ素ガスを透過するものが必要であるが、酸素、炭酸ガス等のガスを透過するフィルムはヨウ素ガスも透過する。フィルムの材質としてはヨウ素により著しく劣化するものでないことが必要である。ガス透過性としては、配向ポリプロピレン、高密度ポリエチレンのようなガス透過性の低いものは不適当である。本発明で好ましいのは低密度ポリエチレン、リニアーローデンシティーポリエチレン(LLDPE)、ポリ4メチルペンテン−1、無延伸ポリプロピレン、エチレン・酢酸ビニル共重合体(EVA)、エチルセルロース等である。またこれらのガス透過性フィルムをラミネート、共押し出し等により複合したフィルムも用いることができる。例えばポリ4メチルペンテン−1とポリエチレンを複合した「OTフィルム」(大塚テクノ(株))が使用可能である。この他ポリプロピレン系フィルムのガス透過性を高めた「ポロフレッシュ」(二村化学工業(株)も好ましく使用可能である。エチレン・酢酸ビニル共重合体フィルムとしてはアイセロ化学(株)の「スズロンL、Eシリーズ」が好ましく用いられる。 In the present invention, the polymer compound adsorbing iodine is coated with a gas-permeable non-porous film. The gas permeable non-porous film needs to be permeable to iodine gas, but the film permeable to gases such as oxygen and carbon dioxide gas also transmits iodine gas. The material of the film should not be significantly degraded by iodine. As gas permeability, those having low gas permeability such as oriented polypropylene and high density polyethylene are not suitable. Preferred in the present invention are low density polyethylene, linear low density polyethylene (LLDPE), poly-4-methylpentene-1, unstretched polypropylene, ethylene / vinyl acetate copolymer (EVA), ethyl cellulose and the like. A film obtained by combining these gas permeable films by lamination, coextrusion, or the like can also be used. For example, “OT film” (Otsuka Techno Co., Ltd.) in which poly-4-methylpentene-1 and polyethylene are combined can be used. In addition, “Polo Fresh” (Futamura Chemical Industry Co., Ltd.) with improved gas permeability of polypropylene film can be preferably used. As the ethylene / vinyl acetate copolymer film, “Tsulon L, "E series" is preferably used.
本発明の被覆用フィルムは無孔フィルムである必要がある。多孔質フィルムは疎水性で水を透過しないものであっても用いることはできない。多孔質フィルムはヨウ素を吸着した高分子化合物からのヨウ素の放出を若干遅らせる効果はあるが、その効果は不十分であり、本発明の目的を達成することはできない。また後述する密閉系での使用においては多孔フィルムはヨウ素蒸気圧の平衡が成立しないので使用できない。 The coating film of the present invention needs to be a nonporous film. Even if the porous film is hydrophobic and does not transmit water, it cannot be used. The porous film has an effect of slightly delaying the release of iodine from the polymer compound adsorbed with iodine, but the effect is insufficient and the object of the present invention cannot be achieved. In addition, the porous film cannot be used for use in a closed system, which will be described later, because the equilibrium of iodine vapor pressure is not established.
上記無孔フィルムの酸素ガス透過性が高いとそのフィルムで被覆したヨウ素ガス放出具のヨウ素ガス透過性も高くなる傾向となる。ただし酸素ガス透過性とヨウ素ガス透過性は完全に一致するとは限らず、例えば4-メチルペンテン-1フィルムの酸素ガス透過性はLLDPEより高いが、ヨウ素透過性は同程度である。本発明において特に好ましいフィルムは低密度ポリエチレン、LLDPE、エチレン・酢酸ビニル共重合体フィルムである。エチレン・酢酸ビニル共重合体フィルムにおいては、酢酸ビニル含量の多い方がヨウ素ガス透過性は高くなる。またヨウ素ガス透過性はフィルムの厚さに依存し、薄いほど透過性は高くなる。本発明においては好ましい厚さは10〜180ミクロンであり、特に好ましくは20〜150ミクロンである。 When the oxygen gas permeability of the non-porous film is high, the iodine gas permeability of the iodine gas release tool covered with the film tends to be high. However, oxygen gas permeability and iodine gas permeability do not always coincide completely. For example, 4-methylpentene-1 film has higher oxygen gas permeability than LLDPE, but iodine permeability is comparable. Particularly preferred films in the present invention are low density polyethylene, LLDPE, and ethylene / vinyl acetate copolymer films. In the ethylene / vinyl acetate copolymer film, the iodine gas permeability increases as the vinyl acetate content increases. The iodine gas permeability depends on the thickness of the film, and the thinner the film, the higher the permeability. In the present invention, the preferred thickness is 10 to 180 microns, and particularly preferably 20 to 150 microns.
特開2003−213022号記載のヨウ素を吸着した高分子化合物を無孔フィルムで被覆したヨウ素ガス放出具(以下ヨウ素ガス放出具と略称する)においては上記のごとく被覆に用いるフィルムの材質及びフィルムの厚さによりヨウ素ガス放出を調節することが可能である。しかしヨウ素ガス放出具を密閉系で使用する場合、フィルムの材質及び/又はフィルムの厚さによりヨウ素ガスの放出を調節することは困難であるという制約があることがわかった。すなわち密閉された容器の中に水と本発明のヨウ素ガス放出具を収めた時、水は上記ヨウ素ガス放出具から放出されるヨウ素ガスを溶解してヨウ素水となるが、一定時間を経過し、そのヨウ素濃度がある高さに達するとヨウ素濃度は平衡に達し、それ以上上昇することがなくなる。この原因はすべて明らかとは言えないが、その主な理由としてヨウ素を吸着した高分子化合物から昇華するヨウ素による上記無孔フィルム被覆内のヨウ素飽和蒸気圧と、ヨウ素水側のヨウ素蒸気圧が平衡に達し、ヨウ素ガス放出具から水側にヨウ素が拡散することがなくなるためと推察される。この平衡濃度はフィルムの材質に実質的に依存せず、またフィルムの厚さに依存しない。上記ヨウ素ガス放出具と水の接触時間が短い場合は未だヨウ素蒸気圧が平衡に達しないため、ヨウ素水のヨウ素濃度はフィルムの材質及び厚みに依存するが、平衡に達した後はヨウ素濃度をフィルムにより調節することは困難となる。この場合無孔フィルム被覆内のヨウ素を吸着した高分子化合物の量を変えてもヨウ素の平衡濃度は変わらない。唯一の手段としてはヨウ素を吸着した高分子化合物のヨウ素吸着状態を変えて、ヨウ素を吸着した高分子化合物のヨウ素蒸気圧を変化せしめた場合はヨウ素平衡濃度をそれにつれて変化せしめることは可能である。 In the iodine gas releasing device (hereinafter abbreviated as iodine gas releasing device) in which a polymer compound adsorbing iodine described in JP-A-2003-213022 is coated with a nonporous film, the material of the film used for coating and the film It is possible to adjust iodine gas release by the thickness. However, it has been found that when the iodine gas release tool is used in a closed system, it is difficult to adjust the release of iodine gas depending on the material of the film and / or the thickness of the film. That is, when water and the iodine gas release tool of the present invention are stored in a sealed container, the water dissolves iodine gas released from the iodine gas release tool to become iodine water, but after a certain period of time has passed. When the iodine concentration reaches a certain height, the iodine concentration reaches an equilibrium, and no further increase occurs. The reason for this is not clear, but the main reason is that the iodine saturated vapor pressure in the nonporous film coating by iodine sublimated from the polymer compound adsorbed with iodine and the iodine vapor pressure on the iodine water side are balanced. It is assumed that iodine does not diffuse from the iodine gas releasing device to the water side. This equilibrium concentration does not substantially depend on the material of the film and does not depend on the thickness of the film. When the contact time of the iodine gas release tool and water is short, the iodine vapor pressure does not yet reach equilibrium, so the iodine concentration of iodine water depends on the material and thickness of the film, but after reaching equilibrium, the iodine concentration is reduced. It becomes difficult to adjust by the film. In this case, even if the amount of the polymer compound adsorbing iodine in the nonporous film coating is changed, the equilibrium concentration of iodine does not change. The only means is to change the iodine adsorption state of the polymer compound that has adsorbed iodine and to change the iodine vapor pressure of the polymer compound that has adsorbed iodine, it is possible to change the iodine equilibrium concentration accordingly. .
第1の発明はかかる密閉系において、平衡ヨウ素濃度を容易に調節可能とすることを目的としたもので、上記ヨウ素を吸着した高分子化合物をガス透過性の無孔フィルムで被覆する際に、ヨウ素を吸着した高分子化合物に水及び/又はヨウ素と相互作用を有する有機溶媒を共存せしめることによりヨウ素ガス放出具からのヨウ素放出を増減せしめるものである。 The first invention is intended to make it possible to easily adjust the equilibrium iodine concentration in such a closed system. When the polymer compound adsorbing iodine is covered with a gas-permeable non-porous film, The release of iodine from the iodine gas release tool is increased or decreased by causing water and / or an organic solvent that interacts with iodine to coexist with the polymer compound that has adsorbed iodine.
ヨウ素を吸着した高分子化合物に水を共存せしめた場合、ヨウ素ガス放出具から放出されるヨウ素ガスは、水が共存しない場合より増大する。この原因は未だ明らかではないが、その一つの理由はヨウ素を吸着した高分子化合物から放出されるヨウ素は水に溶解し、このヨウ素水から無孔フィルムの被覆内に揮発するヨウ素の蒸気圧が、水が共存しない場合にヨウ素を吸着した高分子化合物から昇華するヨウ素による蒸気圧より高くなるため、無孔フィルムの被覆から放出されるヨウ素ガスが増大するものと推察される。 When water is allowed to coexist with a polymer compound that has adsorbed iodine, the iodine gas released from the iodine gas releasing device increases as compared with the case where water does not coexist. The reason for this is not yet clear, but one reason is that iodine released from the polymer compound that adsorbs iodine dissolves in water, and the vapor pressure of iodine that volatilizes in the coating of the nonporous film from this iodine water. When water does not coexist, it becomes higher than the vapor pressure of iodine sublimated from the polymer compound adsorbed with iodine, so that it is presumed that iodine gas released from the coating of the nonporous film increases.
一方、ヨウ素を吸着した高分子化合物にヨウ素と相互作用を有する有機溶媒またはその水との混合物を共存せしめると、ヨウ素を吸着した高分子化合物を無孔フィルムで被覆したヨウ素ガス放出具から放出されるヨウ素ガスを減少せしめる効果があることがわかった。ヨウ素と相互作用を有する有機溶媒として適当なのはエチレングリコール、エタノール、イソプロパノール、ポリエチレングリコール、ジアリルフタレート等である。これらは水と混合して使用することも出来る。水と混合する場合は水40容量%以下とするのが好ましい。水の量が多いとヨウ素濃度を低める効果がなくなり、ヨウ素を吸着した高分子化合物単独の場合と大差がなくなる。なおヨウ素と相互作用を有する有機溶剤の中でN-ビニルピロリドンはヨウ素の放出を過度に抑制し、その水溶液においてもヨウ素の放出をほとんどゼロとしてしまうので、本発明での使用は好ましくない。これらの有機溶剤がヨウ素ガス放出具からのヨウ素の放出を抑制する原因の一つは、これら有機溶剤がヨウ素を吸着した高分子化合物から昇華するヨウ素を溶解し、そのヨウ素との相互作用により溶液のヨウ素蒸気圧を低下させるためと考えられる。なおヨウ素ガス放出具からのヨウ素放出を穏やかに低下させるにはエチレングリコールが好ましく、著しく低下せしめるにはポリエチレングリコールおよびエタノールが好ましい。 On the other hand, when an organic solvent that interacts with iodine or a mixture of water coexists with a polymer compound that has adsorbed iodine, the polymer compound that adsorbs iodine is released from an iodine gas release device that is covered with a nonporous film. It has been found that there is an effect of reducing the iodine gas. Suitable organic solvents that interact with iodine include ethylene glycol, ethanol, isopropanol, polyethylene glycol, diallyl phthalate, and the like. These can also be used by mixing with water. When mixed with water, the water content is preferably 40% by volume or less. If the amount of water is large, the effect of lowering the iodine concentration is lost, and there is no significant difference from the case of the polymer compound adsorbing iodine alone. Among organic solvents that interact with iodine, N-vinylpyrrolidone excessively suppresses the release of iodine, and even in an aqueous solution thereof, the release of iodine is almost zero, so use in the present invention is not preferable. One of the causes of these organic solvents suppressing the release of iodine from iodine gas releasing devices is that these organic solvents dissolve iodine sublimated from the polymer compound that has adsorbed iodine, and the solution by the interaction with the iodine This is thought to reduce the iodine vapor pressure. It should be noted that ethylene glycol is preferable for moderately reducing iodine release from the iodine gas release tool, and polyethylene glycol and ethanol are preferable for significantly reducing iodine release.
このような水あるいはヨウ素と相互作用を有する有機溶媒またはその水との混合物の共存によるヨウ素ガス放出具のヨウ素ガス放出の調整は、密閉系において上記ヨウ素ガス放出具を消毒に利用する際きわめて有利となるが、開放系においてもヨウ素ガス放出の調整は有利に応用できる。水の共存によりヨウ素ガス放出具からのヨウ素の放出を高めるのは各種消毒システムおよび後で詳述するヨウ素水の製造などに有利であるし、ヨウ素の放出の抑制は微量のヨウ素を放出して半永久的に清潔な表面あるいは環境を保つ場合などに有効である。また水の共存は、ヨウ素を吸着した高分子化合物の使用量を少なくしてもヨウ素ガス放出具からのヨウ素の放出があまり低下しないという効果もある。 Adjustment of iodine gas release of iodine gas release tool by coexistence of water or an organic solvent that interacts with iodine or a mixture thereof with water is extremely advantageous when the iodine gas release tool is used for disinfection in a closed system. However, adjustment of iodine gas release can be advantageously applied even in an open system. Increasing iodine release from iodine gas releasing devices through the coexistence of water is advantageous for various disinfection systems and the production of iodine water to be described in detail later. This is effective for maintaining a semi-permanently clean surface or environment. The coexistence of water also has an effect that the release of iodine from the iodine gas releasing device does not decrease much even if the amount of the polymer compound adsorbed with iodine is reduced.
なお水及び/又はヨウ素と相互作用を有する有機溶媒の量は、ヨウ素を吸着した高分子化合物がちょうど浸る程度が好ましいが、ヨウ素を吸着した高分子化合物に付着する程度の微量でも効果がある。また過剰の水でも差し支えない。ヨウ素を吸着した高分子化合物がビーズまたはペレット状の場合、水及び/又はヨウ素と相互作用を有する有機溶媒の量はヨウ素を吸着した高分子化合物10グラムに対して0.1〜20ミリリットル、好ましくは0.5〜10ミリリットルである。 The amount of the organic solvent that interacts with water and / or iodine is preferably just soaked by the polymer compound that has adsorbed iodine, but it can be effective even in a trace amount that adheres to the polymer compound that has adsorbed iodine. Excess water can also be used. When the polymer compound adsorbed with iodine is in the form of beads or pellets, the amount of water and / or the organic solvent having an interaction with iodine is preferably 0.1 to 20 ml with respect to 10 g of the polymer compound adsorbed with iodine. Is 0.5 to 10 milliliters.
このシステムの一つの有利な応用例として病院の手術室、ICU等で手洗い等に用いられる無菌水蛇口の微生物逆汚染防止がある。かかる無菌水蛇口は、無菌水装置の不使用時に蛇口側から付着した微生物が増殖し、無菌水に混入するおそれがある。このため蛇口の微生物汚染防止のため熱、紫外線、薬品等を用いる種々の予防策が講じられている。病院の無菌水蛇口は通常温無菌水がシャワー状に出るシャワー蛇口が採用されているが、シャワー蛇口面には微細な多数の孔が存在し、この孔から無菌水がシャワー状に放出される。蛇口内の水は不使用時、孔が小さいため表面張力により支えられ、蛇口内に保持される。そこで蛇口内に本発明のヨウ素ガス放出具を収めておくと、蛇口不使用時に蛇口内の水にヨウ素が放出され、蛇口内を消毒する。無菌水の蛇口への通路には、通常蛇口近傍に電磁弁が備えられ、蛇口不使用時は閉じられている。蛇口面には小孔が存在するため完全な密閉系にはなっていないが、全くの開放系のように水に溶解したヨウ素が自由に大気中に揮散することはない。また蛇口の不使用時に蛇口面にキャップをかぶせるようにするとシステムは完全密閉系となる。蛇口使用時は通常40℃程度の温水が流れるので蛇口内に収められたヨウ素ガス放出具から放出されるヨウ素は40℃の流水により持ち去られる。この流水の温度が高いため、ヨウ素ガス放出具の内部の温度も上昇し、このため蛇口使用中に無駄に持ち去られるヨウ素の量が無視出来ないものとなる。 One advantageous application of this system is the prevention of microbial back-contamination of sterile water faucets used for hand-washing in hospital operating rooms, ICUs and the like. In such a sterile water faucet, there is a risk that microorganisms adhering from the faucet side will grow and be mixed into the sterile water when the sterile water apparatus is not used. For this reason, various preventive measures using heat, ultraviolet rays, chemicals and the like have been taken in order to prevent microbial contamination of the faucet. Aseptic water faucets in hospitals usually have shower faucets where warm aseptic water comes out in a shower shape, but there are many fine holes on the surface of the shower faucet, and sterile water is discharged from these holes in a shower shape. . When not in use, the water in the faucet is supported by the surface tension because it has a small hole and is held in the faucet. Therefore, when the iodine gas release tool of the present invention is stored in the faucet, iodine is released into the water in the faucet when the faucet is not used, and the faucet is disinfected. The passage to the sterile water faucet is usually provided with an electromagnetic valve near the faucet and is closed when the faucet is not used. Although there is a small hole on the faucet surface, it is not a complete closed system, but iodine dissolved in water does not volatilize freely into the atmosphere unlike a completely open system. If the faucet is covered with a cap when the faucet is not in use, the system becomes a completely sealed system. When the faucet is used, warm water of about 40 ° C. normally flows. Therefore, iodine released from the iodine gas discharger stored in the faucet is carried away by the 40 ° C. running water. Since the temperature of this flowing water is high, the temperature inside the iodine gas discharger also rises, and therefore the amount of iodine that is wasted away while using the faucet cannot be ignored.
ここで、蛇口不使用時のシステムが密閉系とされた場合、蛇口不使用時の時間が20時間程度ある場合は、蛇口内の水のヨウ素濃度は平衡に近づくため、ヨウ素ガス放出具の被覆フィルムの厚さがある程度厚くなっても薄い場合と比較してあまり低下しない。一方、蛇口使用時には流水側のヨウ素濃度は実質的にゼロであるため、持ち去られるヨウ素の量は被覆フィルムの厚さにほぼ反比例する。すなわち蛇口不使用時に密閉系となるシステムではヨウ素ガス放出具を厚いフィルムで被覆すれば、蛇口使用時のヨウ素の損失を少なくし、蛇口不使用時の蛇口内のヨウ素濃度はフィルムの厚さが薄い場合と大差なく保つことが可能となるのである。例えばフィルムとしてLLDPEフィルムを用いた場合、厚さ20ミクロンのフィルムと60ミクロンのフィルムを比較すると、蛇口不使用時の蛇口内のヨウ素濃度は大差なく、蛇口使用時のヨウ素の損失を凡そ3分の1とすることが出来る。この場合蛇口不使用時のシステムを密閉系とすることが望ましいが、密閉系でなくてもある程度フィルムの厚さにより蛇口使用時のヨウ素の損失を減らすことが可能である。なおこのような流水時と停滞時を繰り返すシステムにおいて、停滞時の水の消毒を目的とする場合、フィルムの厚さは好ましくは30〜150ミクロンであり、特に好ましくは40〜100ミクロンである。 Here, when the system when the faucet is not used is a closed system, when the time when the faucet is not used is about 20 hours, the iodine concentration of water in the faucet approaches the equilibrium, so the iodine gas releasing device is covered. Even if the thickness of the film is increased to some extent, it does not decrease much compared to the case where it is thin. On the other hand, since the iodine concentration on the running water side is substantially zero when the faucet is used, the amount of iodine removed is almost inversely proportional to the thickness of the coating film. That is, in a system that is closed when the faucet is not used, if the iodine gas release tool is covered with a thick film, the loss of iodine when the faucet is used is reduced, and the iodine concentration in the faucet when the faucet is not used is the thickness of the film. It is possible to keep the same as when it is thin. For example, when an LLDPE film is used as the film, comparing the film with a thickness of 20 microns and the film with a thickness of 60 microns, the iodine concentration in the faucet when the faucet is not used is not much different, and the loss of iodine when the faucet is used is approximately 3 minutes. It can be set to 1. In this case, it is desirable that the system when the faucet is not used be a closed system, but even if it is not a closed system, it is possible to reduce iodine loss when the faucet is used depending on the thickness of the film. In such a system that repeats running and stagnant water, the thickness of the film is preferably 30 to 150 microns, particularly preferably 40 to 100 microns, for the purpose of disinfecting water when stagnant.
また密閉された、水の存在しない容器内に本発明のヨウ素ガス放出具を収めることにより容器内の器物をヨウ素ガス放出具から放出されるヨウ素ガスにより消毒することができる。この時ヨウ素を吸着した高分子化合物に水を共存せしめることによりヨウ素濃度を調節することができる。 Further, by storing the iodine gas release tool of the present invention in a sealed container free of water, the contents in the container can be sterilized by iodine gas released from the iodine gas release tool. At this time, the iodine concentration can be adjusted by allowing water to coexist with the polymer compound adsorbing iodine.
またトレー状の容器にヨウ素を吸着した高分子化合物を収め、トレーの上面をガス透過性無孔フィルムで被覆すると、フィルム表面はフィルムを透過するヨウ素ガスにより常に消毒される状態に保たれる。またフィルムの上に器物を置くとそれらの器物は自動的に消毒される。このトレー状の容器の上面を密閉系とすれば、フィルム上においた器物の消毒にはさらに有利となる。ここでヨウ素を吸着した高分子化合物に水及び/又はヨウ素と相互作用を有する有機溶媒を共存させると、容器の上面を被覆したガス透過性の無孔フィルムから放出されるヨウ素ガス量を調節することができる。また水を共存させると用いるヨウ素を吸着した高分子化合物の量を減らすことができる。 When a polymer compound that adsorbs iodine is placed in a tray-like container and the upper surface of the tray is covered with a gas-permeable nonporous film, the film surface is always kept in a state of being sterilized by iodine gas that permeates the film. Also, if you place the items on the film, they will be automatically disinfected. If the upper surface of the tray-like container is a closed system, it is more advantageous for disinfection of the container placed on the film. Here, when water and / or an organic solvent that interacts with iodine coexist in the polymer compound that has adsorbed iodine, the amount of iodine gas released from the gas-permeable non-porous film covering the upper surface of the container is adjusted. be able to. Further, when water is allowed to coexist, the amount of the polymer compound adsorbing iodine used can be reduced.
次にヨウ素を吸着した高分子化合物をガス透過性の無孔フィルムで被覆したヨウ素ガス放出具を密閉容器に収め、容器に水を入れておくことにより簡単にヨウ素水を製造することができる。 Next, iodine water can be easily produced by placing an iodine gas releasing tool in which a polymer compound adsorbing iodine is covered with a gas-permeable non-porous film in a sealed container and putting water in the container.
密閉容器中に収められた上記ヨウ素ガス放出具からはヨウ素ガスが放出され、容器内の水に溶解しヨウ素水となる。容器は密閉されているためヨウ素水のヨウ素濃度は一定時間後平衡に達し、以後その濃度は実質的に不変となる。ヨウ素を吸着した高分子化合物に水及び/又はヨウ素と相互作用を有する有機溶媒を共存させることによりヨウ素水の平衡濃度を調節することが出来る。 Iodine gas is released from the iodine gas release tool housed in the sealed container, and is dissolved in water in the container to become iodine water. Since the container is sealed, the iodine concentration of iodine water reaches an equilibrium after a certain time, and thereafter the concentration becomes substantially unchanged. The equilibrium concentration of iodine water can be adjusted by allowing water and / or an organic solvent having an interaction with iodine to coexist with the polymer compound adsorbing iodine.
上記密閉容器はヨウ素水使用後水を補給し、繰り返し使用するため開閉自在の口を有することが望ましい。上記容器のひとつの態様はワンタッチ式で開閉可能な液体出口を備えたスクイーズボトルである。これは例えば台所用洗剤の容器として用いられている弾力性のあるプラスチック容器でネジ式のキャップを有する。該キャップは小孔を有するがキャップを押し付けた状態では密閉状態となる。キャップを引っ張ると液体の通過する間隙が生じ、容器を手で押すことにより、キャップの小孔から液体が噴出する。使用後キャップを押し付けることにより密閉状態となる。容器のキャップをはずして本発明のヨウ素ガス放出具を容器内に収め、水を満たして1〜2日おくとヨウ素水が出来ている。ヨウ素水の濃度は数日で平衡に達し、その後濃度は一定となる。ヨウ素水を使用して後使用分だけ水を補給しておくと常時ヨウ素水が使用可能な状態となっている。容器内のヨウ素ガス放出具は半永久的に使用可能である。ヨウ素水の濃度変化がないので数年間以上そのまま保管することも出来る。 It is desirable that the closed container has an openable / closable port for replenishing water after using iodine water and using it repeatedly. One aspect of the container is a squeeze bottle having a liquid outlet that can be opened and closed in a one-touch manner. This is an elastic plastic container, for example used as a container for kitchen detergents, with a screw-type cap. The cap has a small hole, but is in a sealed state when the cap is pressed. When the cap is pulled, a gap through which the liquid passes is generated, and the liquid is ejected from the small hole of the cap by pushing the container by hand. After use, the cap is sealed by pressing the cap. When the cap of the container is removed and the iodine gas releasing device of the present invention is placed in the container, the container is filled with water and left for 1-2 days, iodine water is produced. The concentration of iodine water reaches equilibrium in a few days, after which the concentration becomes constant. If iodine water is used to replenish water for later use, iodine water is always available. The iodine gas release tool in the container can be used semipermanently. Since there is no change in the concentration of iodine water, it can be stored as it is for several years.
また上記容器の他の態様はポンプ式のスプレーボトルである。これは住まいの洗剤、風呂場の洗剤等として市販されている洗剤の容器として用いられている。容器のキャツプに液体の吸い上げポンプが固定されており、ポンプのピストンを操作することにより容器内の液が吸い上げられ、ノズルからスプレーされる。ノズルの操作によりワンタッチで容器は密閉状態とすることが出来る。キャップをあけて本発明のヨウ素ガス放出具を容器内に収め、水を満たしてノズルを密閉状態としておけばヨウ素水が得られる。ヨウ素水使用後キャップをあけて水を補給すれば半永久的にヨウ素水が使用可能である。ヨウ素水の濃度は平衡後一定となり、過度に高濃度となることはない。 Another aspect of the container is a pump-type spray bottle. This is used as a container for a detergent marketed as a household detergent or a bathroom detergent. A liquid suction pump is fixed to the cap of the container, and the liquid in the container is sucked up and sprayed from the nozzle by operating the piston of the pump. By operating the nozzle, the container can be sealed with a single touch. Iodine water can be obtained by opening the cap and storing the iodine gas release tool of the present invention in a container, filling the water and keeping the nozzle sealed. Iodine water can be used semi-permanently by opening the cap and supplying water after using iodine water. The concentration of iodine water is constant after equilibration and does not become excessively high.
また容器の他の態様として空気加圧式のスプレーボトルがある。これは図1に示すように、容器本体1に付属したポンプ2により手動で容器内を加圧し、押しボタン5を押して容器を開放すると、容器に取り付けられたノズル4から液が噴射されるものである。容器の底にあるネジ式のキャップ3を外し、本発明のヨウ素ガス放出具を収め、水を満たす。ヨウ素水使用後はキャップから水を補給し、半永久的に使用することが出来る。
Moreover, there exists an air pressurization type spray bottle as another aspect of a container. As shown in FIG. 1, when the inside of the container is manually pressurized by a
本発明のヨウ素水製造装置においては得られるヨウ素水の濃度は自動的に一定濃度となり、過度の高濃度となる心配がない。このため一般家庭でも安全に使用することが出来る。また多くの場合ヨウ素の平衡濃度が低めとなるため、ヨウ素を吸着した高分子化合物に水を共存させることにより、平衡ヨウ素濃度を高めるのが有利である。 In the iodine water production apparatus of the present invention, the concentration of iodine water obtained automatically becomes a constant concentration, and there is no fear that the concentration is excessively high. For this reason, it can be safely used even in ordinary households. In many cases, since the equilibrium concentration of iodine is low, it is advantageous to increase the equilibrium iodine concentration by allowing water to coexist with the polymer compound adsorbing iodine.
本発明のヨウ素水製造装置は病院、老人ホーム、食品関係施設等における消毒用等の用途のほか、家庭における除菌、介護用、動物、ペット関係等に有用である。またヨウ素ガス放出具と水を長期間接触させておくことが出来るため災害用としても有用である。
以下本発明をより具体的に明らかにするために、本発明の幾つかの実施例を示しながら説明する。
The iodine water production apparatus of the present invention is useful not only for disinfection in hospitals, nursing homes, food-related facilities, etc., but also for sterilization at home, nursing care, animals, pets, and the like. In addition, the iodine gas release tool and water can be kept in contact with each other for a long time, so that it is useful for disasters.
Hereinafter, in order to clarify the present invention more specifically, some examples of the present invention will be described.
(実験例1)
ダイヤペットABS(品種PS−505)の成型用ペレット(三菱レイヨン(株)製)200g及びヨウ素フレーク(日本天然ガス(株)製)260gをポリプロピレン製のボトルに入れ、密封して65℃で7時間オーブン中で時々振とうしながら加熱してヨウ素を完全に吸着せしめた。ついで80℃で12時間、105℃で24時間熱処理した。ペレットの重量増加からペレットはABS樹脂重量に対して130重量%のヨウ素が吸着したことがわかった。
(Experimental example 1)
200 g of pellets for Diapet ABS (variety PS-505) (Mitsubishi Rayon Co., Ltd.) and 260 g of iodine flakes (Japan Natural Gas Co., Ltd.) were placed in a polypropylene bottle, sealed, and sealed at 65 ° C. Iodine was completely adsorbed by heating with occasional shaking in the oven. Then, heat treatment was performed at 80 ° C. for 12 hours and at 105 ° C. for 24 hours. From the weight increase of the pellet, it was found that the pellet adsorbed 130% by weight of iodine with respect to the weight of the ABS resin.
実験例1で調製したヨウ素を吸着したABS樹脂ビーズ12gを厚さの異なるLLV−MTVフィルム(LLDPE、二村化学工業(株)製)の小袋に入れヒートシールした。このヨウ素ガス放出具を容量100mlのバイアル瓶に入れて水道水をみたし、キャップを締めて密封した。水を交換することなく室温で放置して1,4,14日後にヨウ素ガス放出具外側の水中のヨウ素濃度を測定した。ここで、A群はフィルム小袋内にビーズのみを入れ、B群にはビーズに水4mlを添加、共存した状態でヒートシールした。ヨウ素濃度の測定結果を表1に示した。ヨウ素を吸着した高分子化合物に水を共存させることにより、ヨウ素吸着具の外側の水に溶解したヨウ素の濃度が顕著に高くなった。また4日以降はヨウ素濃度は被覆フィルムの厚さによりほとんど差がなかった。 12 g of ABS resin beads adsorbed with iodine prepared in Experimental Example 1 were put in a small bag of LLV-MTV film (LLDPE, manufactured by Futamura Chemical Co., Ltd.) having different thicknesses and heat sealed. The iodine gas releasing tool was put in a vial having a capacity of 100 ml, and tap water was observed, and the cap was sealed to seal. The sample was left at room temperature without changing water, and the iodine concentration in the water outside the iodine gas releasing device was measured after 1, 4 and 14 days. Here, in group A, only beads were placed in a film sachet, and in group B, 4 ml of water was added to the beads and heat sealed in a coexisting state. The measurement results of iodine concentration are shown in Table 1. By making water coexist with the polymer compound which adsorbed iodine, the density | concentration of the iodine melt | dissolved in the water of the outer side of an iodine adsorption tool became high remarkably. Further, after 4 days, the iodine concentration hardly changed depending on the thickness of the coating film.
実験例1で調製したヨウ素を吸着したABS樹脂ビーズ12gを厚さ50ミクロンのLLV−MTVフィルムの小袋に入れてヒートシールし、実施例1と同様にして水道水と共にバイアル瓶に入れて密封し、水を交換することなく、外側の水中に溶出したヨウ素濃度を測定した。ここで、ビーズにはそれぞれ4mlのエチレングリコール、エタノール、ポリエチレングリコール200およびエタノール80容量部/水20容量部の有機溶媒を共存せしめた。また比較として有機溶媒を共存せしめず、ビーズのみを用いた実験を行った。結果を表2に示した。有機溶媒をビーズに共存させることにより、ヨウ素ガス放出具の外側の水に溶出したヨウ素濃度が顕著に低くなった。
実験例1で調製したヨウ素を吸着したABS樹脂ビーズを、実施例1のB群と同様にして水を共存せしめて厚さ50ミクロンのLLV−MTVフィルム小袋に入れヒートシールした。ここで、ビーズと共存せしめる水の量を3mlおよび6mlとした。ここで、3mlの場合はビーズが完全に水に漬かるにはやや不十分な水量であり、6mlの場合はビーズが十分に水に漬かる水量であった。実施例1と同様にして水を交換することなく、1,4,14日後の水中のヨウ素濃度を測定した結果を表3に示した。また比較として水を共存させなかったときの結果を表3に併記した。ビーズに水を共存させることにより、ヨウ素ガス放出具の外側の水に溶出したヨウ素の濃度は顕著の高くなったが、共存させた水の量の影響は3mlと6mlではほとんど差がなかった。 The ABS resin beads adsorbed with iodine prepared in Experimental Example 1 were placed in a 50 micron thick LLV-MTV film sachet in the presence of water in the same manner as in Group B of Example 1, and heat sealed. Here, the amount of water coexisting with the beads was 3 ml and 6 ml. Here, in the case of 3 ml, the amount of water was slightly insufficient for the beads to be completely immersed in water, and in the case of 6 ml, the amount of water was sufficient for the beads to be immersed in water. The results of measuring the iodine concentration in the water after 1, 4 and 14 days without changing the water in the same manner as in Example 1 are shown in Table 3. For comparison, the results when water was not coexisted are also shown in Table 3. By allowing water to coexist with the beads, the concentration of iodine eluted in the water outside the iodine gas releasing device was remarkably increased, but the effect of the amount of coexisting water had little difference between 3 ml and 6 ml.
実験例1で調製したヨウ素を吸着したABS樹脂ビーズ12gを、それぞれ(A)LLV−MTVフィルム(LLDPE、二村化学工業(株)製)厚さ40ミクロン、(B)EVASB−5、厚さ40ミクロン、(C)EVASB-10、厚さ40ミクロン(タマポリ(株)製)の小袋に入れてヒートシールし、容量100mlのバイアル瓶に入れ、水道水をみたし、キャップを締めて密封した。これを40℃のオーブン中に静置した。4日の間隔で水のヨウ素濃度を測定し、測定後水を更新した。浸漬実験開始後10日、50日、100日、150日および300日後のヨウ素濃度を表4に示した。比較例1として、実験例1で調整したヨウ素を吸着したABS樹脂ビーズ12gをテイーバッグ用の袋に詰めたものを100mlのバイアル瓶に入れ、水道水に浸漬してヨウ素濃度を測定した結果を表4に併記した。ヨウ素ガスが抵抗なく透過するテイーバッグ用不織布で被覆した比較例1の場合、初期には外側の水中へのヨウ素溶出が著しく高い一方、後期にはヨウ素の溶出が極端に低下し、長期間の使用には問題がある。これに対し、LLDPEフィルムあるいはEVAフィルムでビーズを被覆した場合は長期にわたりほぼ一定したヨウ素の溶出が可能となっている。またフィルムの種類によって溶出ヨウ素濃度にはほとんど差が認められなかった。 12 g of ABS resin beads adsorbed with iodine prepared in Experimental Example 1 were each (A) LLV-MTV film (LLDPE, manufactured by Futamura Chemical Co., Ltd.) thickness 40 microns, (B) EVASB-5, thickness 40 A micron, (C) EVASB-10, 40 micron thick (manufactured by Tamapoly Co., Ltd.) pouch was heat sealed, placed in a 100 ml vial, tap water was squeezed, the cap was tightened and sealed. This was left still in 40 degreeC oven. The iodine concentration of water was measured at intervals of 4 days, and the water was updated after the measurement. Table 4 shows iodine concentrations 10 days, 50 days, 100 days, 150 days and 300 days after the start of the immersion experiment. As Comparative Example 1, 12 g of ABS resin beads adsorbed with iodine prepared in Experimental Example 1 packed in a bag for a tee bag were placed in a 100 ml vial and immersed in tap water to measure the iodine concentration. This is also shown in 4. In the case of Comparative Example 1 coated with a nonwoven fabric for a Tae bag that allows iodine gas to pass through without resistance, the elution of iodine into the outside water is extremely high in the initial stage, while the elution of iodine is extremely reduced in the latter stage, and it is used for a long time. Has a problem. On the other hand, when the beads are coated with an LLDPE film or EVA film, iodine can be eluted almost constantly over a long period of time. There was almost no difference in the dissolved iodine concentration depending on the type of film.
実験例1で調製したヨウ素を吸着したABS樹脂ビーズ12gを、(A)LLV−MTVフィルム、厚さ40ミクロン、(B)EVASB−5、厚さ40ミクロンの小袋に入れ、実施例1と同様のバイアル瓶に入れ、水道水を満たし、密封し、これを室温で放置した。水は更新することなく、1日、3日、5日、7日及び300日後の水中のヨウ素濃度を測定した。また比較例2として、比較例1と同様にしてテイーバッグに入れたものを室温放置し、同様にして水中のヨウ素濃度を測定した。結果を表5に示した。ビーズをテイーバッグ用不織布で被覆した比較例2においては経時的に外側の水中のヨウ素濃度が増大し、過大な濃度に達している。これに対し、LLDPEおよびEVAフィルムでビーズを被覆した場合は5日以降は一定値を示し、これ以上上昇することがない。すなわち容器内の水のヨウ素濃度は自動的に一定値を保つことが出来ることがわかる。また外側の水に溶出したヨウ素濃度はフィルムの材質によりほとんど差がなかった。 12 g of ABS resin beads adsorbed with iodine prepared in Experimental Example 1 were placed in a sachet of (A) LLV-MTV film, thickness 40 microns, (B) EVASB-5, thickness 40 microns, and the same as in Example 1. The bottle was filled with tap water, sealed and left at room temperature. Without renewing the water, the iodine concentration in the water was measured after 1, 3, 5, 7, and 300 days. Moreover, as Comparative Example 2, the sample put in the bag as in Comparative Example 1 was allowed to stand at room temperature, and the iodine concentration in water was measured in the same manner. The results are shown in Table 5. In Comparative Example 2 in which the beads were coated with the nonwoven fabric for the tay bag, the iodine concentration in the outside water increased with time, and reached an excessive concentration. On the other hand, when the beads are coated with LLDPE and EVA film, a constant value is exhibited after 5 days and does not increase any further. That is, it can be seen that the iodine concentration of water in the container can automatically maintain a constant value. Moreover, the iodine concentration eluted in the outer water was almost the same depending on the material of the film.
実験例1で調製したヨウ素を吸着したABS樹脂ビーズ12gを厚さの異なる30,60および100ミクロンのLLV−MTVフィルム小袋に入れてヒートシールし、バイアル瓶に入れて水道水を満たした。バイアル瓶のキャップは締めずに室温で放置した。水を交換することなく、1,4および14日後にヨウ素濃度を測定した。ここでA群はビーズのみを入れ、B群には水4mlを共存せしめた。水中のヨウ素濃度測定結果を表6に示した。密閉系の場合(実施例1)にはフィルムの厚さに関係なく一定であったが、本実施例のように容器が密閉系になっていない場合、ヨウ素ガス溶出具外側の水中のヨウ素濃度は、ビーズを被覆したフィルムの厚さが薄いほど高くなる傾向がある。一方、密閉系でなくともビーズに水を共存させると外側の水中のヨウ素濃度は高くなる。 12 g of ABS resin beads adsorbed with iodine prepared in Experimental Example 1 were placed in 30, 60 and 100 micron LLV-MTV film sachets of different thicknesses, heat sealed, and placed in vials to fill tap water. The vial cap was not tightened but left at room temperature. The iodine concentration was measured after 1, 4 and 14 days without changing the water. Here, group A was charged with only beads, and group B was allowed to coexist with 4 ml of water. The measurement results of iodine concentration in water are shown in Table 6. In the case of a closed system (Example 1), it was constant regardless of the thickness of the film, but when the container was not in a closed system as in this example, the iodine concentration in the water outside the iodine gas elution tool Tends to increase as the thickness of the bead-coated film decreases. On the other hand, if water is allowed to coexist in the beads even if it is not a closed system, the iodine concentration in the outside water increases.
無菌水用蛇口の微生物逆汚染防止システムにおいて、無菌水使用時に流水中に溶出し、損失となるヨウ素の量を近似するモデルとして次の実験を行った。流水使用時はヨウ素ガス放出具から放出されるヨウ素は直ちに流水により運び去られるので、流水中のヨウ素濃度は実質的にゼロである。したがってヨウ素ガス溶出具の内外のヨウ素の蒸気圧の差は水が停滞しているときより大きいと考えられる。このためヨウ素ガス放出具から放出されるヨウ素の量は停滞時より大きいと考えられる。 The following experiment was conducted as a model that approximates the amount of iodine that is lost and lost in running water when using sterile water in a sterile water faucet microbial anti-pollution control system. When running water is used, iodine released from the iodine gas release tool is immediately carried away by running water, so the iodine concentration in running water is substantially zero. Therefore, the difference in the vapor pressure of iodine inside and outside the iodine gas elution tool is considered to be larger when water is stagnant. For this reason, it is considered that the amount of iodine released from the iodine gas releasing device is larger than that at the time of stagnation.
外側の液として、水のかわりにポリビニルピロリドン水溶液を用いると、ポリビニルピロリドンはヨウ素とコンプレックスを形成するため、溶液中の遊離ヨウ素の量は微量となる。このため溶液のヨウ素蒸気圧はきわめて低いと考えられる。したがって実施例1あるいは5と同様の実験で水道水の代わりにポリビニルピロリドン水溶液を用いれば、ポリビニルピロリドンによるコンプレックスの形成が、ヨウ素を流水が持ち去るのに対応するとみることができる。 When an aqueous polyvinyl pyrrolidone solution is used as the outer liquid instead of water, polyvinyl pyrrolidone forms a complex with iodine, so the amount of free iodine in the solution is very small. For this reason, the iodine vapor pressure of the solution is considered to be very low. Therefore, if a polyvinylpyrrolidone aqueous solution is used instead of tap water in the same experiment as in Example 1 or 5, it can be considered that the formation of a complex with polyvinylpyrrolidone corresponds to the removal of iodine by running water.
そこで、3重量%ポリビニルピロリドン水溶液に溶出したヨウ素量を比色法により相対値を求めた(結合ヨウ素を含む)。測定はヨウ素ガス放出具を該水溶液に浸漬開始してから5日後に行った。厚さ30,60および120ミクロンのLLV−MTVフィルムについての測定結果を比較すると、120ミクロンフィルムを被覆に用いた場合を1とすると、60ミクロンの場合1.8、30ミクロンの場合3.1であった。すなわち流水中にヨウ素が流出することによる損失は、フィルムの厚さにほぼ反比例することがわかる。 Accordingly, the relative value of the amount of iodine eluted in the 3% by weight polyvinylpyrrolidone aqueous solution was determined by a colorimetric method (including bound iodine). The measurement was performed 5 days after the iodine gas releasing tool was immersed in the aqueous solution. Comparing the measurement results for LLV-MTV films with a thickness of 30, 60 and 120 microns, if the 120-micron film was used for coating, it was 1.8 for 60 microns and 3.1 for 30 microns. Met. That is, it can be seen that the loss due to the outflow of iodine into the running water is almost inversely proportional to the thickness of the film.
またエチレン・酢酸ビニル共重合体フィルム(EVA SB−5 厚さ40ミクロン)については相対値7.5で、ポリエチレン120ミクロンフィルムの7.5倍であることがわかった。 It was also found that the ethylene / vinyl acetate copolymer film (EVA SB-5 thickness 40 microns) had a relative value of 7.5 and 7.5 times that of a polyethylene 120 micron film.
したがって、水が停滞している場合、実施例4あるいは5で明らかなように、系が密閉系であればヨウ素ガス溶出具の外側の水中に溶出するヨウ素の量は、ある範囲であれば被覆フィルムの厚さ、材質に依存しない。一方、流水中に溶出するヨウ素の量は、被覆フィルムの材質に依存し、またフィルムの厚さが厚いほど少なくなる。 Therefore, when the water is stagnant, as is clear in Example 4 or 5, if the system is a closed system, the amount of iodine eluted into the water outside the iodine gas elution tool is within a certain range. Independent of film thickness and material. On the other hand, the amount of iodine that elutes in the running water depends on the material of the covering film, and decreases as the film thickness increases.
このことから、無菌水蛇口の汚染防止のようなシステムにおいて、ヨウ素を吸着した高分子化合物を被覆する無孔フィルムの厚さを厚くすることにより、流水使用時のヨウ素の損失を少なくし、且つ水の停滞時には十分なヨウ素を溶出せしめ、微生物汚染を防止できることになる。 From this, in systems such as prevention of contamination of sterile water faucets, by increasing the thickness of the non-porous film covering the polymer compound adsorbed with iodine, the loss of iodine when using running water is reduced, and When the water is stagnant, sufficient iodine can be eluted to prevent microbial contamination.
1 容器本体
2 空気加圧式ポンプ
3 キャップ
4 ノズル
5 押しボタン
1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003396976A JP4441650B2 (en) | 2003-11-27 | 2003-11-27 | Iodine gas releasing device, iodine-containing liquid preparation method, and iodine-containing liquid preparation apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003396976A JP4441650B2 (en) | 2003-11-27 | 2003-11-27 | Iodine gas releasing device, iodine-containing liquid preparation method, and iodine-containing liquid preparation apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005152404A true JP2005152404A (en) | 2005-06-16 |
JP4441650B2 JP4441650B2 (en) | 2010-03-31 |
Family
ID=34722266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003396976A Expired - Fee Related JP4441650B2 (en) | 2003-11-27 | 2003-11-27 | Iodine gas releasing device, iodine-containing liquid preparation method, and iodine-containing liquid preparation apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4441650B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009039525A (en) * | 2007-07-19 | 2009-02-26 | Tomey Corp | Iodine quick release material and its manufacturing method |
CN103285413A (en) * | 2013-06-28 | 2013-09-11 | 苏州大学 | Device for sterilizing medical pipe joint |
EP3206698A4 (en) * | 2014-10-15 | 2018-06-27 | Biocide Pharma Inc. | Methods and apparatus for treating sites of infection |
WO2023017834A1 (en) * | 2021-08-13 | 2023-02-16 | 国立大学法人山形大学 | Disinfectant, disinfectant film, and disinfectant beads |
-
2003
- 2003-11-27 JP JP2003396976A patent/JP4441650B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009039525A (en) * | 2007-07-19 | 2009-02-26 | Tomey Corp | Iodine quick release material and its manufacturing method |
CN103285413A (en) * | 2013-06-28 | 2013-09-11 | 苏州大学 | Device for sterilizing medical pipe joint |
EP3206698A4 (en) * | 2014-10-15 | 2018-06-27 | Biocide Pharma Inc. | Methods and apparatus for treating sites of infection |
WO2023017834A1 (en) * | 2021-08-13 | 2023-02-16 | 国立大学法人山形大学 | Disinfectant, disinfectant film, and disinfectant beads |
Also Published As
Publication number | Publication date |
---|---|
JP4441650B2 (en) | 2010-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7922984B2 (en) | Apparatus and method for controlled delivery of a gas | |
US6602466B2 (en) | Apparatus and method for controlled delivery of a gas | |
TW201201874A (en) | Compositions with reactive ingredients, and wound dressings, apparatuses, and methods | |
US20080003171A1 (en) | Microbial Control Using Hypochlorous Acid Vapor | |
CN101428149A (en) | Disinfecting, deodorizing and fresh-keeping apparatus, method for preparing chlorine dioxide antistaling agent | |
JP4441650B2 (en) | Iodine gas releasing device, iodine-containing liquid preparation method, and iodine-containing liquid preparation apparatus | |
JP6475903B2 (en) | Chlorine sustained release device, method for producing weakly acidic hypochlorous acid water using the same, and simple deodorizing and disinfecting apparatus | |
CN212854145U (en) | Chlorine dioxide gel ventilation box and multifunctional disinfection box | |
JP2003213022A (en) | Simple method for producing iodine-including article and iodine gas sustained releaser having resistance to water and disinfection system using the same | |
US20230120891A1 (en) | Scent dispensers/absorbers and scent cartridges therefor | |
JP4598659B2 (en) | Chlorine sustained release device and disinfection method using the same | |
JP2000247808A (en) | Tool and sheet for disinfection | |
JP2982176B2 (en) | Polymer molded article containing isothiocyanate | |
JPH02107266A (en) | Container lid having laminate of deodorant for food | |
JP3100971U (en) | Double container | |
JP2007236245A (en) | Alcohol volatile agent | |
JP2006167714A5 (en) | ||
US20240269335A1 (en) | Scent dispensers/absorbers and scent carrtidges therefor | |
JPS60232288A (en) | Sterilization material for water treatment | |
JPH03178902A (en) | Vapor producing agent of isothiocyanic acid ester, sterilizing treatment using vapor of isothiocyanic acid ester and apparatus therefor | |
US11957805B2 (en) | Light-activated chlorine dioxide-releasing powder and method of manufacture | |
US20100147709A1 (en) | Release agent for scented additives | |
WO2004073755A1 (en) | Gas delivery apparatus and methods of use | |
KR20210113783A (en) | Sterilization stick | |
JPH01131663A (en) | Aromatic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091112 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091211 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20091211 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |