JP2005149616A - Phase change optical information recording medium and manufacturing method therefor, and recording method for multi-valued mark - Google Patents

Phase change optical information recording medium and manufacturing method therefor, and recording method for multi-valued mark Download PDF

Info

Publication number
JP2005149616A
JP2005149616A JP2003385480A JP2003385480A JP2005149616A JP 2005149616 A JP2005149616 A JP 2005149616A JP 2003385480 A JP2003385480 A JP 2003385480A JP 2003385480 A JP2003385480 A JP 2003385480A JP 2005149616 A JP2005149616 A JP 2005149616A
Authority
JP
Japan
Prior art keywords
recording
layer
recording medium
phase change
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003385480A
Other languages
Japanese (ja)
Inventor
Kiyoto Shibata
清人 柴田
Yujiro Kaneko
裕治郎 金子
Katsunari Hanaoka
克成 花岡
Hajime Yuzurihara
肇 譲原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003385480A priority Critical patent/JP2005149616A/en
Publication of JP2005149616A publication Critical patent/JP2005149616A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a phase change optical information recording medium free from fluctuation in reflection of an Rf signal before recording, capable of maintaining a practically permissible error rate as an optical recording system, in an initial period, after repetitive recording and after preservation, and having high reliability, to provide the phase change optical information recording medium obtained by the manufacturing method, to provide its intermediate, and to provide a recording method for a multi-valued mark to the recording medium. <P>SOLUTION: The manufacturing method for the phase change optical information recording medium is disclosed which utilizes a phase change phenomenon between crystal and amorphous phases by optical irradiation, the recording medium in which a recording mark forming region is divided into areas equal to each other (the divided virtual region is called a cell), one recording mark is formed in one cell, and information to be recorded is modulated into a multi-valued information and recorded as information of the occupation ratio of the recording mark to the cell. The manufacturing method comprises at least a step of film-depositing a crystallization promoting layer, successively a recording layer containing Sb and Te as main component, a step of film-depositing an impurity layer in contact with the crystallization promoting layer and/or the recording layer and a step of mixing the crystallization promoting layer, the recording layer and the impurity layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、記録ピットの記録再生信号レベルが2値より多い相変化型の多値光情報記録媒体とその中間体およびその製造方法並びに多値マーク記録方法に関する。   The present invention relates to a phase change type multilevel optical information recording medium having a recording / reproducing signal level of a recording pit higher than binary, an intermediate thereof, a manufacturing method thereof, and a multilevel mark recording method.

現在実用化されている光情報記録媒体として、結晶状態と非晶質(アモルファス)状態の可逆的相変化を利用したいわゆる相変化型光情報記録媒体が知られている。記録材料としては、GeTe−SbTe擬似2元系組成を有していて、GeSbTeなどの化合物組成に代表されるGe−Sb−Te元合金材料、およびSb70Te30共晶組成近傍を主成分とし、Ag−In−Sb−Teに代表されるAgInSbTe系材料がある。前者のGeSbTe系材料はDVD−RAMとして、後者のAgInSbTe系材料は、CD−RW、DVD−RWおよびDVD+RWとして広く実用化されている。これらの相変化型光記録媒体は、いずれも螺旋状もしくは同心円状の溝を有するプラスチック基板上に、下部保護層、記録層、上部保護層、反射層などを積層した構造を有し、記録層の結晶とアモルファスにおける光学定数変化および前記積層構造の多重干渉を利用して反射率を制御し、2値情報の記録、再生を行うものである。 A so-called phase change type optical information recording medium using a reversible phase change between a crystalline state and an amorphous state is known as an optical information recording medium currently in practical use. As the recording material, have a GeTe-Sb 2 Te 3 pseudo binary composition, Ge 2 Sb 2 Te 5 Ge -Sb-Te 3 binary alloy material represented by compounds compositions such as, and Sb 70 Te There are AgInSbTe-based materials typified by Ag-In-Sb-Te, mainly composed of 30 eutectic compositions. The former GeSbTe-based material is widely used as DVD-RAM, and the latter AgInSbTe-based material is widely used as CD-RW, DVD-RW, and DVD + RW. Each of these phase change optical recording media has a structure in which a lower protective layer, a recording layer, an upper protective layer, a reflective layer, and the like are laminated on a plastic substrate having spiral or concentric grooves. In this case, the reflectance is controlled by using the optical constant change in the crystal and amorphous and the multiple interference of the laminated structure, and binary information is recorded and reproduced.

一方、近年、デジタル化の進展やブロードバンドの普及に伴って扱う情報量が増大し、高密度かつ高速でデータを記録、再生できる新たな記録媒体が求められている。このような背景から、上記相変化型光記録媒体においては、記録再生波長の短波長化や開口数NA(Numerical Aperture)の増大により、集光ビーム径を小さくして、記録されるマークのサイズを小さくし、高密度化および高速化を狙った技術開発が盛んに行われている。例えば、現状の記録型DVDは、記録再生波長λ=650nm、開口数NA=0.65、記録容量4.7GBであるが、記録再生波長をλ=400〜420nmと短波長化し、開口数NA=0.85とした記録容量20GB以上の光記録システムが提案されている(特開平10−326435号公報・・・特許文献1)。しかしながら、このシステムでは、高NA化によって、DVDとの互換が難しくなり、加えて指紋などの記録媒体面の汚れに弱いという致命的な問題を抱えていた。   On the other hand, in recent years, with the progress of digitalization and the spread of broadband, the amount of information handled has increased, and a new recording medium capable of recording and reproducing data at high density and high speed has been demanded. From such a background, in the phase change type optical recording medium, the size of the mark to be recorded is reduced by reducing the condensed beam diameter by shortening the recording / reproducing wavelength or increasing the numerical aperture NA (Numerical Aperture). Technology development aiming at high density and high speed has been actively conducted. For example, the current recordable DVD has a recording / reproducing wavelength λ = 650 nm, a numerical aperture NA = 0.65, and a recording capacity 4.7 GB, but the recording / reproducing wavelength is shortened to λ = 400 to 420 nm, and the numerical aperture NA An optical recording system having a recording capacity of 20 GB or more with 0.85 is proposed (Japanese Patent Laid-Open No. 10-326435 ... Patent Document 1). However, this system has a fatal problem that compatibility with DVD becomes difficult due to high NA, and in addition, it is vulnerable to dirt on the surface of the recording medium such as fingerprints.

これに対し、開口数NAを従来の記録型DVDシステムの0.65程度に保ったままで、高密度化および高速化を実現する技術として、多値記録方式が注目されている。本出願人らは、アモルファス記録マークの周辺結晶部に対する占有率の違いで多値情報を記録し、記録容量20GB以上を達成する方法について既に提案している(Data Detection using Pattern Recognition、International Symposium on Optical Memory 2001、Technical Digest 2001、Pd−27)。以下、この従来技術について説明する。   On the other hand, a multi-value recording method has attracted attention as a technique for realizing higher density and higher speed while keeping the numerical aperture NA at about 0.65 of the conventional recordable DVD system. The present applicants have already proposed a method for recording multi-value information with a difference in the occupation ratio of the amorphous recording mark with respect to the peripheral crystal part and achieving a recording capacity of 20 GB or more (Data Detection using Pattern Recognition, International Symposium on). Optical Memory 2001, Technical Digest 2001, Pd-27). Hereinafter, this prior art will be described.

図1に、マーク占有率とRf信号の概念図を示す。記録マークは各セルの略中心に位置している。記録マークが、書換え可能な相変化材料あるいは基板の凹凸形状として記録された位相ピットでも同じ関係となる。記録マークが、基板の凹凸形状として記録された位相ピットの場合は、Rf信号の信号利得が最大になるように、位相ピットの光学的溝深さがλ/4(λは記録再生レーザの波長)である必要がある。Rf信号値は、記録再生用の集光ビームがセルの中心に位置する場合の値で与えられ、1つのセルに占める記録マークの占有率の大小によって変化する。一般的に、Rf信号値は、記録マークが存在しないときに最大となり、記録マークの占有率が最も高いときに最小となる。   FIG. 1 is a conceptual diagram of mark occupancy and Rf signal. The recording mark is located at the approximate center of each cell. The same relationship applies to phase pits in which the recording marks are recorded as rewritable phase change materials or asperities on the substrate. When the recording mark is a phase pit recorded as an uneven shape on the substrate, the optical groove depth of the phase pit is λ / 4 (λ is the wavelength of the recording / reproducing laser) so that the signal gain of the Rf signal is maximized. ). The Rf signal value is given as a value when the recording / reproducing focused beam is located at the center of the cell, and changes depending on the occupation ratio of the recording mark in one cell. In general, the Rf signal value is maximum when no recording mark exists, and is minimum when the occupation ratio of the recording mark is the highest.

このような面積変調方式により、例えば、記録マークパタン数(多値レベル数)=6で多値記録を行うと、各記録マークパタンからのRf信号値は図2のような分布を示す。Rf信号値は、その最大値と最小値の幅(ダイナミックレンジDR)を1として正規化された数値で表記されている。記録再生は、λ=650nm、NA=0.65(集光ビーム径=約0.8μm)の光学系を用いて行い、セルの円周方向長さ(以下、セル長と記す)を約0.6μmとした。このような多値記録マークは、図3のような記録ストラテジで、Pw、Pe、Pbのパワーおよびその開始時間をパラメータとして、レーザ変調することで形成できる。   For example, when multi-value recording is performed with the number of recording mark patterns (number of multi-value levels) = 6 by such an area modulation method, Rf signal values from the respective recording mark patterns show a distribution as shown in FIG. The Rf signal value is represented by a numerical value normalized with the width (dynamic range DR) of the maximum value and the minimum value being 1. Recording / reproduction is performed using an optical system with λ = 650 nm and NA = 0.65 (condensed beam diameter = about 0.8 μm), and the circumferential length of the cell (hereinafter referred to as cell length) is about 0. .6 μm. Such a multi-valued recording mark can be formed by laser modulation using the recording strategy as shown in FIG. 3 with the Pw, Pe, and Pb powers and their start times as parameters.

上記のような多値記録方式においては、記録線密度を上げていく(=セル長を短くしていく)と、次第に集光ビーム径に対してセル長さの方が短くなり、対象となるセルを再生するとき、集光ビームが対象となる前後のセルにはみ出すようになる。このため、対象となるセルのマーク占有率が同じでも、前後セルのマーク占有率の組合せにより、対象となるセルから再生されるRf信号値が影響を受ける。すなわち、前後のマークとの符号間干渉が起こるようになる。この影響で、図2に示すように、各パタンにおけるRf信号値は偏差を持った分布になる。すなわち、対象となるセルがどの記録マークのパタンであるかを判定するためには、各記録マークから再生されるRf信号値の間隔が、前記偏差以上に離れている必要がある。図2の場合、各記録マークのRf信号値の間隔と偏差はほぼ同等であり、記録マークパタンの判定ができる限界になっている。   In the multi-value recording method as described above, when the recording linear density is increased (= the cell length is shortened), the cell length gradually becomes shorter with respect to the focused beam diameter, and is a target. When the cell is reproduced, the focused beam protrudes from the front and rear cells of interest. For this reason, even if the mark occupancy of the target cell is the same, the Rf signal value reproduced from the target cell is affected by the combination of the mark occupancy of the preceding and subsequent cells. That is, intersymbol interference occurs with the front and rear marks. Due to this influence, as shown in FIG. 2, the Rf signal value in each pattern has a distribution with a deviation. That is, in order to determine which recording mark pattern the target cell has, the interval between the Rf signal values reproduced from each recording mark needs to be larger than the deviation. In the case of FIG. 2, the intervals and deviations of the Rf signal values of the recording marks are almost equal, which is a limit for determining the recording mark pattern.

この限界を打破する技術として、連続する3つのデータセルを用いた多値判定技術DDPR(Data Detection using Pattern Recognition、International Symposium on Optical Memory2001、Technical Digest2001、Pd−27)が提案されている。この技術は、連続する3つのデータセルの組み合わせパタン(8値記録時、8=512通り)からなる多値信号分布を学習し、そのパターンテーブルを作成するステップと、未知データの再生信号結果から3連続マークパタンを予測した後、前記パタンテーブルを参照して再生対象となる未知信号を多値判定するステップとからなる。これにより、再生時に符号間干渉が生じるような従来のセル密度あるいはSDR値においても、多値信号判定のエラー率を低くすることが可能になった。ここで、SDR値とは、多値階調数をnとした時の各多値信号の標準偏差σiの平均値と、多値Rf信号のダイナミックレンジDRとの比=Σσi/(n×DR)で表され、2値記録におけるジッターに相当する信号品質である。一般に、多値階調数nを一定とすると、多値信号の標準偏差σiが小さいほど、且つダイナミックレンジDRが大きいほどSDR値は小さくなり、多値信号の分別性が良くなって、エラー率は低くなる。逆に、多値階調数nを大きくすると、SDR値は大きくなりエラー率は高くなる。
このような多値判定技術を用いると、例えば、多値階調数を8に増やして、各Rf信号値の分布が重なり合ってしまう図4のような場合でも、8値の多値判定が可能となる。
As a technology to overcome this limitation, a multi-value determination technology DDPR (Data Detection using Pattern Recognition, International Symposium on Optical Memory 2001, Technical Digest 2001, Pd-27) using three consecutive data cells has been proposed. In this technique, a step of learning a multi-value signal distribution composed of a combination pattern of three consecutive data cells (8 3 = 512 patterns at the time of 8-level recording) and creating a pattern table thereof, and a reproduction signal result of unknown data After the three consecutive mark patterns are predicted, the unknown signal to be reproduced is multi-valued with reference to the pattern table. This makes it possible to reduce the error rate of multilevel signal determination even in the conventional cell density or SDR value that causes intersymbol interference during reproduction. Here, the SDR value is the ratio of the average value of the standard deviation σi of each multilevel signal when the number of multilevel gradations is n to the dynamic range DR of the multilevel Rf signal = Σσi / (n × DR The signal quality is equivalent to jitter in binary recording. In general, if the number n of multi-value gradations is constant, the SDR value becomes smaller as the standard deviation σi of the multi-value signal is smaller and the dynamic range DR is larger, and the separability of the multi-value signal is improved. Becomes lower. On the contrary, when the multi-value gradation number n is increased, the SDR value is increased and the error rate is increased.
When such a multi-value determination technique is used, for example, even when the number of multi-value gradations is increased to 8 and the distributions of the Rf signal values overlap each other, an 8-value multi-value determination is possible. It becomes.

しかしながら、上記のような技術をもってしても、これまでエラー率を光記録システムとして実用的な値にまで低くすることが困難であった。この原因について、本発明者らが鋭意解析したところ、主たる原因は、記録前のRf信号に存在する微小な反射率変動であることを突き止めた。   However, even with the above technique, it has been difficult to reduce the error rate to a practical value for an optical recording system. As a result of an extensive analysis by the present inventors on this cause, it was found that the main cause was a minute reflectance fluctuation existing in the Rf signal before recording.

図5に、階段状の多値記録信号と、これをディスク1周内に繰り返し記録したアナログ信号波形を示す。階段波形は、00700の信号を挟んで、0から7の各多値レベルを10個ずつ順次記録したものである。記録前のRf信号波形には、反射率が不連続に変動する部分があるが、階段波形にもほぼ同じ位置に不連続な変動が残留している。各セル長は0.25μmなので、不連続部分の大きさは少なくとも8×15×0.25=30μm以上である。また、隣接トラックでも同じ位置に反射率変動が見られることから、不連続部分は明らかに複数トラックにまたがる大きさの欠陥である。   FIG. 5 shows a step-like multilevel recording signal and an analog signal waveform obtained by repeatedly recording the stepped multi-level recording signal within one circumference of the disk. The staircase waveform is obtained by sequentially recording ten multi-level levels from 0 to 7 with a 00700 signal interposed therebetween. The Rf signal waveform before recording includes a portion where the reflectance varies discontinuously, but the staircase waveform also includes a discontinuous variation at substantially the same position. Since each cell length is 0.25 μm, the size of the discontinuous portion is at least 8 × 15 × 0.25 = 30 μm or more. In addition, since the reflectance variation is observed at the same position in the adjacent tracks, the discontinuous portion is clearly a defect having a size extending over a plurality of tracks.

これらの不連続部分は、大口径レーザービームを用いた初期化工程における熱ダメージが原因と考えられる。初期化には、生産タクトを考慮して、半径方向に100μm幅、出力1W程度のレーザービームが用いられるが、面内の強度分布やフォーカスオフセット量の違いなどによって、光記録媒体に非可逆的な熱ダメージを与えることがある。特に、昨今、転送速度の高速化のため、結晶化速度の速い記録材料が用いられるため、高いパワーで高線速に初期化、すなわち、速い冷却速度で結晶化し、結晶粒の粗大化を防ぐ必要があるため、このような熱ダメージが発生しやすい状況にある。   These discontinuous portions are considered to be caused by thermal damage in the initialization process using a large-diameter laser beam. For initialization, a laser beam having a width of 100 μm and an output of about 1 W is used in consideration of production tact. However, the optical recording medium is irreversible due to differences in in-plane intensity distribution and focus offset amount. May cause serious heat damage. In particular, recently, a recording material having a high crystallization speed is used to increase the transfer speed. Therefore, initialization is performed with a high power and a high linear speed, that is, crystallization is performed at a high cooling speed, thereby preventing coarsening of crystal grains. Because it is necessary, such thermal damage is likely to occur.

これを避けるために、低いパワーで初期化を行うと、結晶性が不十分なため、繰り返し記録初期に反射率変動が起こりやすい。また、アモルファス部がスポット的に残留し、バースト的な欠陥源となることがあった。
このような反射率変動は、マークエッジからマーク長を判定する従来の2値記録ではあまり問題にならないが、マークの面積変調による多値記録方式では、訂正不可能なエラーを引き起こしてしまう。特に、高密度化にしたがい、記録再生波長が短波長化した場合、ビームスポット径および記録マークサイズが小さくなるため、例えば、記録型DVDで採用されている波長650nmのLDを用いた多値記録システムよりも、現在開発が進みつつある波長400nm付近のLDを用いた多値記録システムの方が、一層深刻な問題となってくる。
In order to avoid this, if initialization is performed with a low power, the crystallinity is insufficient, and therefore, the reflectance fluctuates easily at the beginning of repeated recording. In addition, the amorphous part remains spot-like, which sometimes becomes a burst-like defect source.
Such a change in reflectance is not a problem in the conventional binary recording in which the mark length is determined from the mark edge, but an error that cannot be corrected is caused in the multi-value recording method by the area modulation of the mark. In particular, when the recording / reproducing wavelength is shortened as the recording density is increased, the beam spot diameter and the recording mark size are reduced. For example, multi-level recording using an LD with a wavelength of 650 nm, which is employed in a recording DVD. The multilevel recording system using an LD having a wavelength of around 400 nm, which is currently under development, becomes a more serious problem than the system.

そこで本出願人は、このような初期化に伴う不具合を解消する技術として、いわゆる初期化不要光記録媒体を提案した。例えば、結晶化促進層と記録層および不純物層を有した初期化不要技術である(特開2002−304746号公報・・・特許文献2)。該技術では、記録によって前記3層を混合することにより、成膜直後の結晶化と記録マークの安定性とを両立しているが、繰り返し記録回数が少ない領域で前記3層の混合が不十分な場合、満足な保存特性が得られないことがあり、実用には更なる改良が必要であった。
また、結晶化促進層と従来初期化方法を併用した方法が特開平9−161316号公報に記載されている。該特開平9−161316号公報には、実質的にSbTe1-z(0.3≦z≦0.5)もしくはSbTeを結晶化促進層に用いた技術であり、記録再生波長780nmでの2値記録が可能であることが示されているが、多値記録方式においてのみ問題となるような上記反射率変動に関する課題は全く認識されておらず、これを解決するための媒体構造や製造方法等に関して、具体的な記載や示唆は全くない.また、本発明では、後述のように、不純物層を必須の構成要件とし、不純物層を結晶化促進層および/または記録層に接して設けるが、結晶化促進層と記録層が接しており、実質的に不純物層が結晶化促進層と記録層に挟まれた構造を取り得ない点で、組成補助層を有する特開平9−161316号公報のものとは構成が異なる。すなわち、特開平9−161316号公報により、本発明を想起することは不可能である。
Therefore, the present applicant has proposed a so-called initialization-free optical recording medium as a technique for solving the problems associated with such initialization. For example, it is a technique that does not require initialization, which includes a crystallization promoting layer, a recording layer, and an impurity layer (Japanese Patent Laid-Open No. 2002-304746). In this technique, the three layers are mixed by recording to achieve both crystallization immediately after film formation and stability of the recording mark, but the mixing of the three layers is insufficient in a region where the number of repeated recordings is small. In such a case, satisfactory storage characteristics may not be obtained, and further improvement is necessary for practical use.
Japanese Patent Application Laid-Open No. 9-161316 discloses a method in which a crystallization promoting layer and a conventional initialization method are used in combination. Japanese Patent Application Laid-Open No. 9-161316 discloses a technique in which Sb z Te 1-z (0.3 ≦ z ≦ 0.5) or Sb 2 Te 3 is used for the crystallization promoting layer. Although it has been shown that binary recording at a wavelength of 780 nm is possible, there has been no recognition of the above-described problem with respect to reflectance fluctuation that is problematic only in the multi-value recording method. There is no specific description or suggestion regarding the media structure or manufacturing method. In the present invention, as described later, the impurity layer is an essential constituent element, and the impurity layer is provided in contact with the crystallization promoting layer and / or the recording layer, but the crystallization promoting layer and the recording layer are in contact with each other. The structure is different from that of Japanese Patent Laid-Open No. 9-161316 having a composition auxiliary layer in that the impurity layer cannot substantially take a structure sandwiched between the crystallization promoting layer and the recording layer. That is, it is impossible to recall the present invention from Japanese Patent Application Laid-Open No. 9-161316.

また、多値記録方式の従来技術として、特開2001−84591号公報があるが、上記課題についての記載はなく、これを解決するための具体的な媒体構造や製造方法等についての示唆等も一切ない。   Japanese Patent Laid-Open No. 2001-84591 is known as a conventional multi-level recording method. However, there is no description about the above problem, and there is a suggestion about a specific medium structure and manufacturing method for solving this problem. Nothing at all.

特開平10−326435号公報JP-A-10-326435 特開2002−304767号公報JP 2002-304767 A

本発明は、上述のごとき実情に鑑みてなされたもので、その目的は、多値判定技術DDPRを用いた相変化型多値記録媒体において、記録前のRf信号の反射率変動を無くし、光記録システムとして実用上許容できるレベルのエラー率BER(Bit Error Rate)が得られる相変化型光情報記録媒体の製造方法、及び該製造方法により得られる相変化型光情報記録媒体とその中間体、並びに該記録媒体への多値マーク記録方法を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to eliminate reflectance fluctuation of an Rf signal before recording in a phase change type multi-value recording medium using a multi-value determination technique DDPR, and A method of manufacturing a phase change optical information recording medium capable of obtaining a practically acceptable error rate BER (Bit Error Rate) as a recording system, a phase change optical information recording medium obtained by the manufacturing method, and an intermediate thereof, Another object of the present invention is to provide a method for recording a multilevel mark on the recording medium.

本発明によれば、下記(1)〜(9)が提供される。
(1)光照射による結晶とアモルファスの相転移現象を利用した光記録媒体のうち、記録マークを形成する領域(以下、この分割された仮想領域をセルと称す)が互いに等しい面積に分割され、且つ前記セルに対して1つの記録マークが形成されていて、この記録マークが前記セルに対して占有する割合の情報として、記録すべき情報が多値情報に変調され記録される光情報記録媒体の製造方法であって、少なくとも、結晶化促進層に続き、SbおよびTeを主成分とする記録層を成膜する工程と、結晶化促進層および/または記録層に接して不純物層を成膜する工程と、該結晶化促進層、該記録層および該不純物層とを混合する工程とからなることを特徴とする相変化型光情報記録媒体の製造方法。
(2)成膜面に同心円または螺旋状の溝を有する第1の基板上に、少なくとも反射層と第1誘電体層をこの順に形成し、次に結晶化促進層に接して記録層、該記録層および/または該結晶化促進層に接して不純物層を形成し、次に第2誘電体層を形成し、次に樹脂層を介して溝を有さない第2の基板を配することを特徴とする前記(1)に記載の相変化型光情報記録媒体の製造方法。
(3)前記(1)又は(2)に記載の製造方法によって製造されることを特徴とする相変化型光情報記録媒体。
(4)結晶化促進層がBiを主成分とし、不純物層がGeを含むことを特徴とする前記(3)に記載の相変化型光情報記録媒体。
(5)不純物層がGeとSn、Inおよび/またはTeを含むことを特徴とする前記(3)又は(4)に記載の相変化型光情報記録媒体。
(6)混合処理後の記録層におけるBi濃度が1.5原子%以下であることを特徴とする前記(3)〜(5)のいずれかに記載の相変化型光情報記録媒体。
(7)基板の厚さが0.6mmであることを特徴とする前記(3)〜(6)のいずれかに記載の相変化型光情報記録媒体。
(8)結晶化促進層、記録層および不純物層を混合処理する前の前記(3)〜(7)のいずれかに記載の相変化型光情報記録媒体の中間体。
(9)消去パルスPeを一定として、記録パワーPwおよび冷却パルスPbの変調により、多値記録マークを形成する前記(3)〜(7)のいずれかに記載の相変化型光情報記録媒体への記録方法であって、波長400nmのレーザーと開口数0.65の光学系を用い、各セルに対して1パルスの記録パワーPwを照射し、且つ該記録パワーPwの照射パワーおよび照射時間を一定にすることを特徴とする多値マーク記録方法。
According to the present invention, the following (1) to (9) are provided.
(1) Of an optical recording medium that utilizes a phase transition phenomenon between crystal and amorphous due to light irradiation, a region for forming a recording mark (hereinafter, this divided virtual region is called a cell) is divided into equal areas, An optical information recording medium in which one recording mark is formed for the cell and information to be recorded is modulated and recorded as multi-value information as information of a ratio occupied by the recording mark with respect to the cell. And a step of forming a recording layer mainly comprising Sb and Te following the crystallization promoting layer, and an impurity layer being formed in contact with the crystallization promoting layer and / or the recording layer. And a step of mixing the crystallization promoting layer, the recording layer, and the impurity layer. A method of manufacturing a phase change optical information recording medium, comprising:
(2) At least a reflective layer and a first dielectric layer are formed in this order on a first substrate having a concentric or spiral groove on the film formation surface, and then in contact with the crystallization promoting layer, the recording layer, An impurity layer is formed in contact with the recording layer and / or the crystallization promoting layer, then a second dielectric layer is formed, and then a second substrate having no groove is disposed through the resin layer. The method for producing a phase-change optical information recording medium as described in (1) above.
(3) A phase change optical information recording medium manufactured by the manufacturing method according to (1) or (2).
(4) The phase change optical information recording medium according to (3), wherein the crystallization promoting layer contains Bi as a main component and the impurity layer contains Ge.
(5) The phase change optical information recording medium as described in (3) or (4) above, wherein the impurity layer contains Ge and Sn, In and / or Te.
(6) The phase change optical information recording medium as described in any one of (3) to (5) above, wherein the Bi concentration in the recording layer after the mixing treatment is 1.5 atomic% or less.
(7) The phase change optical information recording medium according to any one of (3) to (6), wherein the thickness of the substrate is 0.6 mm.
(8) The intermediate of the phase change optical information recording medium according to any one of (3) to (7), before mixing the crystallization promoting layer, the recording layer, and the impurity layer.
(9) To the phase change optical information recording medium according to any one of (3) to (7), wherein a multi-value recording mark is formed by modulating the recording power Pw and the cooling pulse Pb with the erase pulse Pe being constant. In this recording method, a laser with a wavelength of 400 nm and an optical system with a numerical aperture of 0.65 are used to irradiate each cell with one pulse of recording power Pw, and the irradiation power and irradiation time of the recording power Pw. A multi-value mark recording method characterized by being constant.

本発明により、記録前のRf信号の反射率変動を無くし、多値判定技術DDPRを用いたエラーレートBERが光記録システムとして実用上許容できるIE−4未満のエラーレートBERを有する相変化型光情報記録媒体の製造方法を提供することができる。
また本発明により、上記製造方法により製造される相変化型光情報記録媒体、その中間体、及び該記録媒体への多値マーク記録方法を提供することができる。
According to the present invention, phase change type light having an error rate BER of less than IE-4, which is practically acceptable as an optical recording system, can eliminate the reflectance fluctuation of the Rf signal before recording, and the error rate BER using the multi-value determination technique DDPR is practically acceptable as an optical recording system. A method for manufacturing an information recording medium can be provided.
Further, according to the present invention, it is possible to provide a phase change optical information recording medium manufactured by the above manufacturing method, an intermediate thereof, and a method for recording a multi-value mark on the recording medium.

前述のように、初期化工程による熱ダメージに起因するRf信号上の不連続な反射率変動がエラーの原因である。この熱ダメージは、上下の誘電体層の層質変化や記録層の熱的ダメージを含むものと考えられるが、その詳細についてはわかっていない。
本発明者らは、鋭意研究の結果、請求項1に記載の本発明1のように、少なくとも、結晶化促進層に続き、SbおよびTeを主成分とする記録層を成膜する工程と、結晶化促進層および/または記録層に接して不純物層を成膜する工程と、該結晶化促進層、該記録層および該不純物層を混合する工程とからなる製造方法により、上記のような熱ダメージが解決されることを見出した。
As described above, the discontinuous reflectance fluctuation on the Rf signal due to thermal damage due to the initialization process is the cause of the error. This thermal damage is considered to include a change in the layer quality of the upper and lower dielectric layers and a thermal damage of the recording layer, but the details are unknown.
As a result of intensive studies, the inventors have formed a step of forming at least a recording layer mainly composed of Sb and Te following the crystallization promoting layer, as in the first aspect of the present invention according to claim 1, According to the manufacturing method comprising the step of forming an impurity layer in contact with the crystallization promoting layer and / or the recording layer, and the step of mixing the crystallization promoting layer, the recording layer and the impurity layer, I found that the damage was resolved.

ここで、記録層がSbおよびTeを主成分とするとは、記録層に占めるSbとTeの総量が、全体の95原子%以上、好ましくは98原子%以上、最も好ましくはSbとTeのみで構成されることを示す。記録層の組成は、Sb70Te30共晶組成付近でのSb原子比=Sb/(Sb+Te)が、0.65以上0.85以下とするのが好ましい。また、記録層には、結晶化速度や感度、保存安定性等の調整の目的で、Ag、Au、Cu、Ca、Cr、Zn、B、Al、Ga、In、Si、Sn、Pb、Mg、Mn、N、P、Bi、La、Ce、Cd、Tb、Dy等から選ばれる少なくとも1種類の元素を含むことができる。 Here, the recording layer is mainly composed of Sb and Te. The total amount of Sb and Te occupying the recording layer is 95 atomic% or more, preferably 98 atomic% or more, and most preferably composed of only Sb and Te. Indicates that The composition of the recording layer is preferably such that the Sb atomic ratio = Sb / (Sb + Te) in the vicinity of the Sb 70 Te 30 eutectic composition is 0.65 or more and 0.85 or less. In addition, the recording layer has a purpose of adjusting crystallization speed, sensitivity, storage stability, etc., Ag, Au, Cu, Ca, Cr, Zn, B, Al, Ga, In, Si, Sn, Pb, Mg. , Mn, N, P, Bi, La, Ce, Cd, Tb, Dy, and the like.

本発明によれば、記録層の結晶化転移温度は120℃前後に下がっているので、成膜時の基板の自然加熱と結晶化促進層の作用により、該記録層は成膜終了直後でも十分に結晶化が進んでいる。したがって、従来のような成膜直後の極めて安定なアモルファスを初期化工程によって一気に結晶化するよりも低いエネルギー密度で、結晶化促進層、記録層および不純物層を混合、再結晶化させて、新たな記録層とすることができる。このため、光情報記録媒体に前記のような熱ダメージを発生させることがない。また、混合処理の際も、結晶化促進層は結晶核生成を促すので、結晶粒が粗大化することもない。
ここで不純物層とは、結晶化速度や感度、保存安定性等の調整の目的で、本来、記録層に含むことができるAg、Au、Cu、Ca、Cr、Zn、B、Al、Ga、In、Si、Sn、Pb、Mg、Mn、N、P、Bi、La、Ce、Cd、Tb、Dy等から選ばれる少なくとも1種類の元素を含む層から構成される。これらの元素は、SbおよびTeからなる2元系記録層に不純物として混合され、Sb−Te記録層に対して、前記作用を発現する。しかしながら、記録層にこれらの不純物元素が含まれると、一般に記録層の結晶化転移温度が上昇するため、成膜終了直後の結晶化が不十分になってしまう。このため、本発明では、記録層に占めるSbとTeの総量を、全体の95原子%以上、好ましくは98原子%以上、最も好ましくはSbとTeのみで記録層を構成し、必要な不純物元素を不純物層として供給する。
According to the present invention, the crystallization transition temperature of the recording layer is lowered to around 120 ° C., so that the recording layer is sufficient even immediately after completion of the film formation due to the natural heating of the substrate during film formation and the action of the crystallization promoting layer. Crystallization is progressing. Therefore, by mixing and recrystallizing the crystallization promoting layer, the recording layer, and the impurity layer at a lower energy density than when crystallizing a very stable amorphous material immediately after film formation as in the past by crystallization at a stretch, a new It can be set as a simple recording layer. For this reason, the thermal damage as described above does not occur in the optical information recording medium. Also during the mixing process, the crystallization promoting layer promotes the formation of crystal nuclei, so that the crystal grains are not coarsened.
Here, the impurity layer refers to Ag, Au, Cu, Ca, Cr, Zn, B, Al, Ga, which can be originally included in the recording layer for the purpose of adjusting the crystallization speed, sensitivity, storage stability, and the like. It is composed of a layer containing at least one element selected from In, Si, Sn, Pb, Mg, Mn, N, P, Bi, La, Ce, Cd, Tb, Dy and the like. These elements are mixed as impurities in the binary recording layer made of Sb and Te, and exhibit the above-described effect on the Sb—Te recording layer. However, when these impurity elements are contained in the recording layer, the crystallization transition temperature of the recording layer generally increases, so that crystallization immediately after the film formation is insufficient. Therefore, in the present invention, the total amount of Sb and Te occupying the recording layer is 95 atomic% or more of the whole, preferably 98 atomic% or more, and most preferably, the recording layer is composed of only Sb and Te. Is supplied as an impurity layer.

本発明において結晶化促進層、記録層および不純物層を混合する工程とは、これらの3層を再溶融し、これらの層の構成元素を一様に混合し、1層の記録層として再結晶化させる工程を指す。
混合工程は、従来の初期化工程同様、大口径レーザービームを用いて行うことができるが、使用するエネルギー密度は初期化工程の60〜70%以下でよい。
ここで、結晶化転移温度とは、スパッタ成膜されたアモルファス記録材料を10℃/minの昇温速度で加熱したときに固相結晶化する温度のことを言い、記録材料の結晶化のしやすさの目安になるものである。具体的には、膜厚200nm程度の記録材料薄膜をガラス基板上に成膜し、これを機械的に粉末状に削り落としたものを示差走査熱量分析法(DSC)によって測定したものである。
In the present invention, the step of mixing the crystallization promoting layer, the recording layer and the impurity layer is to remelt these three layers, uniformly mix the constituent elements of these layers, and recrystallize as one recording layer. It refers to the process of making it.
The mixing step can be performed using a large-diameter laser beam as in the conventional initialization step, but the energy density used may be 60 to 70% or less of the initialization step.
Here, the crystallization transition temperature refers to a temperature at which solid-phase crystallization occurs when an amorphous recording material formed by sputtering is heated at a rate of temperature increase of 10 ° C./min. It is a measure of ease. Specifically, a recording material thin film having a film thickness of about 200 nm is formed on a glass substrate and mechanically scraped off into a powder form and measured by differential scanning calorimetry (DSC).

また、請求項2に記載の本発明2のように、前記発明の光情報記録媒体の製造方法において、成膜面に同心円または螺旋状の溝を有する第1の基板上に、少なくとも反射層と第1誘電体層をこの順に形成し、更に結晶化促進層に接して該記録層と、該記録層および/または該結晶化促進層に接して不純物層を形成し、次に第2誘電体層を形成し、次に樹脂層を介して溝を有さない第2の基板を配することが好ましい。   Further, as in the second aspect of the present invention according to the second aspect, in the method for manufacturing an optical information recording medium according to the present invention, at least a reflective layer is formed on the first substrate having a concentric or spiral groove on the film formation surface. The first dielectric layer is formed in this order, and further, the recording layer and the impurity layer are formed in contact with the recording layer and / or the crystallization promoting layer in contact with the crystallization promoting layer, and then the second dielectric It is preferable to form a layer and then dispose a second substrate having no groove through the resin layer.

この好ましい例によれば、溝を有する基板上に放熱機能を備えた反射膜を有し、溝を有さない第2の基板、いわゆるカバー基板側から記録再生する光記録媒体となるため、基板の溝への熱ダメージが軽減されて、繰り返し記録特性が良好な光記録媒体を提供できる。また、第1の基板材料は透光性である必要はなく、耐熱性や溝転写性の観点から選択の自由度が広がる。   According to this preferred example, since the reflective film having a heat dissipation function is provided on the substrate having the groove, and the second substrate without the groove, that is, an optical recording medium for recording and reproducing from the so-called cover substrate side, Thus, the thermal damage to the grooves can be reduced, and an optical recording medium having good repeated recording characteristics can be provided. Further, the first substrate material does not need to be translucent, and the degree of freedom of selection is widened from the viewpoint of heat resistance and groove transferability.

また、請求項4に記載の本発明4のように、前記発明の製造方法による請求項3に記載の本発明3の相変化型光情報記録媒体においては、結晶化促進層がBiを主成分とし、不純物層がGeを含むことが好ましい。
ここで、結晶化促進層がBiを主成分とするとは、結晶化促進層に占めるBiの総量が、全体の70原子%以上、好ましくは90原子%以上、最も好ましくは95原子%以上で構成されることを示す。結晶化促進層および不純物層には、結晶化速度や感度、保存安定性等の調整の目的で、Ag、Au、Cu、Ca、Cr、Zn、B、Al、Ga、In、Si、Sn、Pb、Mg、Mn、N、P、La、Ce、Cd、Tb、Dy等から選ばれる少なくとも1種類の元素を含むことができる。
Further, in the phase change type optical information recording medium of the third aspect of the present invention according to the third aspect of the present invention as in the fourth aspect of the present invention according to the fourth aspect, the crystallization promoting layer is mainly composed of Bi. And the impurity layer preferably contains Ge.
Here, the crystallization promoting layer is mainly composed of Bi. The total amount of Bi in the crystallization promoting layer is 70 atomic% or more, preferably 90 atomic% or more, most preferably 95 atomic% or more of the whole. Indicates that The crystallization promoting layer and the impurity layer include Ag, Au, Cu, Ca, Cr, Zn, B, Al, Ga, In, Si, Sn, and the like for the purpose of adjusting the crystallization speed, sensitivity, storage stability, and the like. It can contain at least one element selected from Pb, Mg, Mn, N, P, La, Ce, Cd, Tb, Dy and the like.

不純物層には、混合後の記録層の保存安定性改善のためにGeを含むことが望ましい。記録マークの保存安定性を確保するために好適なGeの含有量は、好ましくは10原子%以下、より好ましくは3〜8原子%、さらに好ましくは4〜8原子%である。Ge量が10原子%を超えると、繰り返し記録において、相分離が起こりやすくなる。前述のようにGe量は4〜8原子%が最適である。混合後の記録層において、Ge濃度が前記好適な濃度になるように、不純物層の組成と膜厚を選択することが望ましい。   The impurity layer preferably contains Ge for improving the storage stability of the recording layer after mixing. The Ge content suitable for ensuring the storage stability of the recording mark is preferably 10 atomic% or less, more preferably 3 to 8 atomic%, and further preferably 4 to 8 atomic%. When the Ge amount exceeds 10 atomic%, phase separation is likely to occur in repeated recording. As described above, the optimum amount of Ge is 4 to 8 atomic%. In the recording layer after mixing, it is desirable to select the composition and film thickness of the impurity layer so that the Ge concentration becomes the above-mentioned preferable concentration.

この好ましい例によれば、高い結晶化促進作用を有するBiによって、成膜直後に結晶性の高い記録層が得られる。このため、従来のような極めて安定なアモルファスを初期化工程によって一気に結晶化するよりも低いエネルギー密度で、結晶化促進層、記録層および不純物層を混合して、結晶化した記録層とすることができる。このため、相変化型光情報記録媒体に前記のような熱ダメージを発生させることがない。また、混合操作によって、アモルファスの安定性を高めるGeが混合記録層中に導入されるため、記録マークの保存安定性が良好になる。   According to this preferred example, a recording layer having high crystallinity can be obtained immediately after film formation by Bi having a high crystallization promoting effect. For this reason, a crystallized recording layer is obtained by mixing the crystallization promoting layer, the recording layer, and the impurity layer at a lower energy density than when crystallizing an extremely stable amorphous material as in the prior art at a stretch. Can do. For this reason, the above-described thermal damage does not occur in the phase change optical information recording medium. In addition, Ge, which improves amorphous stability, is introduced into the mixed recording layer by the mixing operation, so that the storage stability of the recording mark is improved.

また、請求項5に記載の本発明5のように、前記発明の製造方法による相変化型光情報記録媒体においては、不純物層がGeとSn、Inおよび/またはTeを含むことが好ましい。
この好ましい例によれば、高融点のGeを低融点化合物の形で供給するので、均一に混合することが可能になる。これに加え、Sn、Inおよび/またはTeをSbに代替して、結晶化速度や結晶化転移温度の調整が行える。このほか、不純物層には、Ag、Au、Cu、Ca、Cr、Zn、B、Al、Ga、Si、Pb、Mg、Mn、N、P、Bi、La、Ce、Cd、Tb、Dy等から選ばれる少なくとも1種類の元素を含むことができる。
In the phase change type optical information recording medium according to the fifth aspect of the present invention, it is preferable that the impurity layer contains Ge and Sn, In, and / or Te.
According to this preferable example, since the high melting point Ge is supplied in the form of a low melting point compound, it is possible to mix uniformly. In addition, Sn, In and / or Te can be replaced with Sb to adjust the crystallization speed and the crystallization transition temperature. In addition, the impurity layer includes Ag, Au, Cu, Ca, Cr, Zn, B, Al, Ga, Si, Pb, Mg, Mn, N, P, Bi, La, Ce, Cd, Tb, Dy, etc. It can contain at least one element selected from

また、請求項6に記載の本発明6のように、前記発明の製造方法による相変化型光情報記録媒体においては、混合処理後の記録層におけるBi濃度が1.5原子%以下であることが望ましい。
この好ましい例によれば、混合処理後の記録層におけるBi濃度が十分に低いため、アモルファスマークの保存安定性や耐再生光劣化の良好な信頼性の高い相変化型光情報記録媒体が得られる。Bi濃度が1.5原子%、特に3原子%を越えると、保存試験後のエラー上昇が大きくなってしまい、再生光劣化も起こりやすくなるため好ましくない。
Further, as in the sixth aspect of the present invention according to the sixth aspect, in the phase change optical information recording medium according to the manufacturing method of the present invention, the Bi concentration in the recording layer after the mixing process is 1.5 atomic% or less. Is desirable.
According to this preferred example, since the Bi concentration in the recording layer after the mixing process is sufficiently low, a highly reliable phase change optical information recording medium having good storage stability of the amorphous mark and good reproduction light deterioration can be obtained. . If the Bi concentration exceeds 1.5 atomic%, particularly 3 atomic%, the error increase after the storage test is increased, and reproduction light deterioration is likely to occur.

また、請求項7に記載の本発明7のように、前記発明の製造方法による相変化型光情報記録媒体においては、該基板の厚さが0.6mmであることが望ましい。0.6mmとは、好ましく0.6±0.1mm、より好ましくは0.6±0.05mmである。
この好ましい例によれば、一般的な開口数0.60〜0.70の光学系を用いて記録再生を行う場合、基板入射面におけるビームスポット径がφ0.5mm程度になるので、基板表面の傷や汚れに対して記録再生エラーの少ない信頼性の高い記録媒体が得られる。また、多くの記録型DVDで採用されている基板の厚さと実質的に同一であるので、開口数0.65を有する光学系を有するドライブ装置で、記録型DVDとの下位互換を取りやすい媒体である。
In the phase change type optical information recording medium according to the seventh aspect of the present invention, it is desirable that the thickness of the substrate is 0.6 mm. 0.6 mm is preferably 0.6 ± 0.1 mm, more preferably 0.6 ± 0.05 mm.
According to this preferred example, when recording / reproduction is performed using a general optical system having a numerical aperture of 0.60 to 0.70, the beam spot diameter at the substrate incident surface is about φ0.5 mm. A highly reliable recording medium with few recording / reproducing errors against scratches and dirt can be obtained. In addition, since it is substantially the same as the thickness of the substrate used in many recordable DVDs, it is a drive device having an optical system having a numerical aperture of 0.65, and is a medium that is easily backward compatible with recordable DVDs. It is.

また、請求項9に記載の本発明9のように、前記発明の製造方法による光情報記録媒体に対して、消去パルスPeを一定として、記録パワーPwおよび冷却パルスPbの変調により、前記セルに多値記録マークを形成する際、波長400nmのレーザーと開口数0.65の光学系を用いて、各セルに対して1パルスの記録パワーPwを照射し、且つ該記録パワーPwの照射パワーおよび照射時間を一定にすることが好ましい。
ここで、波長400nmとは、現在実用化されつつある波長390〜410nm近傍の青色レーザーダイオードの波長を指す。また、開口数0.65とは、好ましくは開口数0.60〜0.68であり、多くの記録型DVDで採用されている開口数0.65と実質的に同一の開口数であることを意味する。
Further, as in the ninth aspect of the present invention according to the ninth aspect, with respect to the optical information recording medium according to the manufacturing method of the present invention, the erase pulse Pe is constant, and the modulation is performed on the recording power Pw and the cooling pulse Pb to the cell. When forming a multi-value recording mark, each cell is irradiated with one pulse of recording power Pw using a laser with a wavelength of 400 nm and an optical system with a numerical aperture of 0.65, and the irradiation power of the recording power Pw and It is preferable to make the irradiation time constant.
Here, the wavelength of 400 nm refers to the wavelength of a blue laser diode in the vicinity of a wavelength of 390 to 410 nm that is currently in practical use. The numerical aperture 0.65 is preferably a numerical aperture of 0.60 to 0.68, and is substantially the same as the numerical aperture of 0.65 used in many recordable DVDs. Means.

この好ましい記録方法の例によれば、各セルに対して1パルスの記録パワーPwを照射し、且つ該記録パルスPwの照射パワーおよび照射時間を一定にするので、すべてのマーク形成において記録に用いるエネルギーが一定となる。このため、隣接トラックへの熱干渉および熱拡散が実質上許容できる適当な溝形状とトラックピッチおよび層構成を設定してやれば、任意のマーク変調方式において、クロスイレースの無い相変化型光情報記録媒体の設計が容易になる。   According to this preferred recording method, each cell is irradiated with one pulse of recording power Pw, and the irradiation power and irradiation time of the recording pulse Pw are made constant, so that it is used for recording in all mark formation. Energy is constant. For this reason, if an appropriate groove shape, track pitch, and layer configuration capable of substantially allowing thermal interference and thermal diffusion to adjacent tracks are set, a phase-change optical information recording medium having no cross erase in any mark modulation method The design becomes easier.

次に本発明の製造方法において、混合処理を行う前の相変化型光情報記録媒体中間体の一例を図6および図7に示す。
図6の例では、案内溝を有する基板上に、ZnSとSiOの混合物からなる下部誘電体層、GeInTe不純物層、Bi結晶化促進層、SbおよびTeからなる記録層、ZnSとSiOの混合物からなる上部誘電体層、Ag合金からなる反射層を順次成膜し、樹脂接着層を介してカバー基板を貼り合わせた。この構成では、記録再生用レーザーは、混合処理後に案内溝を有する基板側から入射する。
Next, in the manufacturing method of the present invention, an example of the phase change optical information recording medium intermediate before the mixing treatment is shown in FIGS.
In the example of FIG. 6, a lower dielectric layer made of a mixture of ZnS and SiO 2 , a GeInTe impurity layer, a Bi crystallization promoting layer, a recording layer made of Sb and Te, and a ZnS and SiO 2 layer on a substrate having guide grooves. An upper dielectric layer made of a mixture and a reflective layer made of an Ag alloy were sequentially formed, and a cover substrate was bonded through a resin adhesive layer. In this configuration, the recording / reproducing laser is incident from the substrate side having the guide groove after the mixing process.

図7の例では、案内溝を有する第1の基板上に、Ag合金からなる反射層、ZnSとSiOの混合物からなる第1誘電体層、Bi結晶化促進層、SbおよびTeからなる記録層、GeInTe不純物層、ZnSとSiOの混合物からなる第2誘電体層を順次成膜し、樹脂接着層を介して第2の基板を貼り合わせた。この構成では、記録再生用レーザーは、混合処理後に第2の基板側から入射する。 In the example of FIG. 7, on a first substrate having guide grooves, a reflective layer made of an Ag alloy, a first dielectric layer made of a mixture of ZnS and SiO 2 , a Bi crystallization promoting layer, a recording made of Sb and Te. A layer, a GeInTe impurity layer, and a second dielectric layer made of a mixture of ZnS and SiO 2 were sequentially formed, and the second substrate was bonded via a resin adhesive layer. In this configuration, the recording / reproducing laser is incident from the second substrate side after the mixing process.

図6および図7の例において、樹脂接着層の下には、必要に応じて紫外線硬化保護層を別途配しても良い。上記構成例では、樹脂接着層が前記保護層の機能を兼ねている。基板の厚さは、いずれも0.6mmであることが望ましい。
記録層、結晶化促進層および不純物層は、結晶化促進層に接して記録層、記録層および/または結晶化促進層に接して不純物層が形成されていれば、上記構成例の成膜順序に限定されるものではない。すなわち、図7において、前記3層は、不純物層、結晶化促進層、記録層の順に成膜されても良いし、さらに不純物層、結晶化促進層、記録層、不純物層のように、不純物層を多層に分離して成膜しても良い。ただし、記録層の結晶性を高めるために、記録層は結晶化促進層形成直後に成膜することが必要である。
In the example of FIGS. 6 and 7, an ultraviolet curing protective layer may be separately provided below the resin adhesive layer as necessary. In the above configuration example, the resin adhesive layer also functions as the protective layer. As for the thickness of a board | substrate, it is desirable that all are 0.6 mm.
If the recording layer, the crystallization promoting layer, and the impurity layer are in contact with the crystallization promoting layer and the impurity layer is formed in contact with the recording layer, the recording layer, and / or the crystallization promoting layer, the film formation order of the above configuration example It is not limited to. That is, in FIG. 7, the three layers may be formed in the order of an impurity layer, a crystallization promoting layer, and a recording layer, and further, impurities such as an impurity layer, a crystallization promoting layer, a recording layer, and an impurity layer may be formed. The layers may be separated into multiple layers. However, in order to improve the crystallinity of the recording layer, it is necessary to form the recording layer immediately after the formation of the crystallization promoting layer.

混合工程は、従来の初期化工程同様、大口径レーザービームを用いて行うことができるが、使用するエネルギー密度は初期化工程の60〜70%以下でよい。混合処理用のレーザービームは、記録再生用レーザーと同じ基板面から入射される。混合処理によって、不純物層、結晶化促進層および記録層は再溶融し、これらの構成元素が一様に混合された1層の記録層として再結晶化する。   The mixing step can be performed using a large-diameter laser beam as in the conventional initialization step, but the energy density used may be 60 to 70% or less of the initialization step. The laser beam for mixing processing is incident from the same substrate surface as the recording / reproducing laser. By the mixing process, the impurity layer, the crystallization promoting layer, and the recording layer are remelted and recrystallized as a single recording layer in which these constituent elements are uniformly mixed.

図6および7の構成によれば、成膜時の基板の自然加熱と結晶化促進層の作用により、記録層は成膜終了直後でも十分に結晶化が進んでいる。したがって、従来のような成膜直後の極めて安定なアモルファスを初期化工程によって一気に結晶化するよりも低いエネルギー密度で、結晶化促進層、記録層および不純物層を混合して、再結晶化した記録層とすることができる。このため、相変化型光情報記録媒体に図5のような熱ダメージを与えることがない。また、混合処理の際も、結晶化促進層は結晶核生成を促すので、結晶粒が粗大化することもない。   6 and 7, the recording layer is sufficiently crystallized even immediately after the film formation, due to the natural heating of the substrate during film formation and the action of the crystallization promoting layer. Therefore, the recrystallized recording is performed by mixing the crystallization promoting layer, the recording layer, and the impurity layer at a lower energy density than when crystallizing an extremely stable amorphous material immediately after film formation as in the past by crystallization at once. It can be a layer. For this reason, the phase change type optical information recording medium is not thermally damaged as shown in FIG. Also during the mixing process, the crystallization promoting layer promotes the formation of crystal nuclei, so that the crystal grains are not coarsened.

図7の構成例は、案内溝を有する第1の基板上に放熱性の高いAg合金反射層が形成されているため、繰り返し記録によっても案内溝が熱ダメージを受けにくく、繰り返し記録の信頼性を高める上で好ましい構成である。   In the configuration example of FIG. 7, since the Ag alloy reflective layer with high heat dissipation is formed on the first substrate having the guide groove, the guide groove is not easily damaged by repeated recording, and the reliability of repeated recording is increased. This is a preferable configuration for increasing the height.

基板材料には、ポリカーボネート樹脂、アクリル系樹脂、ポリオレフィン樹脂などの透明樹脂を用いることができる。中でもポリカーボネート樹脂は、CDやDVDにおいて実績があり、安価でもあるので最も好ましい。ただし、図7の構成例においては、第1の基板は透明樹脂である必要はなく、耐熱性や溝転写性に応じて自由に選択できる。案内溝の深さは通常20〜45nm、溝ピッチは通常0.40〜0.60μmである。   As the substrate material, a transparent resin such as a polycarbonate resin, an acrylic resin, or a polyolefin resin can be used. Of these, polycarbonate resins are most preferred because they have a track record in CDs and DVDs and are inexpensive. However, in the configuration example of FIG. 7, the first substrate does not need to be a transparent resin, and can be freely selected according to heat resistance and groove transferability. The depth of the guide groove is usually 20 to 45 nm, and the groove pitch is usually 0.40 to 0.60 μm.

結晶化促進層、記録層、不純物層を合わせた望ましい膜厚は5〜25nmである。5nm未満では混合後記録層の反射率が低くなり過ぎ、十分なコントラストが得られない。一方、25nmよりも厚いと熱容量が大きくなり記録感度が悪くなる。また、結晶成長が3次元的になるため、非晶質マークのエッジが乱れ、SDRが高くなる傾向にある。   A desirable film thickness including the crystallization promoting layer, the recording layer, and the impurity layer is 5 to 25 nm. If the thickness is less than 5 nm, the reflectivity of the recording layer becomes too low after mixing, and sufficient contrast cannot be obtained. On the other hand, if it is thicker than 25 nm, the heat capacity is increased and the recording sensitivity is deteriorated. In addition, since the crystal growth becomes three-dimensional, the edge of the amorphous mark is disturbed and the SDR tends to increase.

誘電体材料には、金属や半導体の酸化物、硫化物、窒化物、炭化物等の透明性が高い高融点材料を用いることができる。具体的には、SiOx、ZnO、SnO、Al、TiO、In、MgO、ZrO、Ta等の金属酸化物、Si、AlN、TiN、BN、ZrN等の窒化物、ZnS、TaS等の硫化物、SiC、TaC、BC、WC、TiC、ZrC等の炭化物が挙げられ、単体もしくは混合物として用いることができる。 As the dielectric material, a high-melting-point material having high transparency such as an oxide, sulfide, nitride, or carbide of metal or semiconductor can be used. Specifically, SiOx, ZnO, SnO 2, Al 2 O 3, TiO 2, In 2 O 3, MgO, ZrO 2, Ta 2 O metal oxide such as 5, Si 3 N 4, AlN , TiN, BN And nitrides such as ZrN, sulfides such as ZnS and TaS 4 , and carbides such as SiC, TaC, B 4 C, WC, TiC, and ZrC, and can be used alone or as a mixture.

上記誘電体層に最適な材料は、屈折率、熱伝導率、化学的安定性、機械的強度、密着性等に留意して決定される。   The optimum material for the dielectric layer is determined in consideration of refractive index, thermal conductivity, chemical stability, mechanical strength, adhesion, and the like.

本発明者らは、種々の材料を検討した結果、誘電体材料としては、ZnSとSiOの混合物が最も好ましい。好適なSiOの混合量は10〜40mol%である。
上部誘電体層および第1誘電体層の膜厚は、5〜20nmであることが望ましい。膜厚が5nmより薄いと、レーザーエネルギーの大部分が反射層に伝熱してしまい、溶融領域が小さくなるに伴って、マーク幅が小さくなってしまうため、信号のダイナミックレンジが取れなくなってしまう。また、感度が低く、パワーマージンのない非実用的な媒体になってしまう。逆に、膜厚が20nmより厚いと放熱効果が薄れ、急冷構造が得られなくなり、マークの形成が困難になってしまう。
As a result of studying various materials by the present inventors, the dielectric material is most preferably a mixture of ZnS and SiO 2 . A suitable mixing amount of SiO 2 is 10 to 40 mol%.
The film thicknesses of the upper dielectric layer and the first dielectric layer are desirably 5 to 20 nm. If the film thickness is less than 5 nm, most of the laser energy is transferred to the reflective layer, and the mark width becomes smaller as the melting region becomes smaller, so that the dynamic range of the signal cannot be obtained. In addition, the sensitivity is low and the medium becomes impractical without a power margin. On the other hand, if the film thickness is greater than 20 nm, the heat dissipation effect is reduced, a quenching structure cannot be obtained, and mark formation becomes difficult.

下部誘電体層および第2誘電体層の膜厚は、30〜200nmの範囲が好ましい.30nmより薄くなると、耐環境性保護機能の低下、耐熱性低下、畜熱効果の低下となり好ましくない。一方200nmより厚くなると、スパッタ法等による成膜工程において、膜温度の上昇により膜剥離やクラックが生じたり、メディアの記録感度低下をもたらすので好ましくない。   The film thickness of the lower dielectric layer and the second dielectric layer is preferably in the range of 30 to 200 nm. If the thickness is less than 30 nm, the environmental resistance protection function is lowered, the heat resistance is lowered, and the livestock heat effect is lowered. On the other hand, if it is thicker than 200 nm, it is not preferable because film peeling or cracking occurs due to an increase in film temperature or a decrease in recording sensitivity of media in a film forming process such as sputtering.

反射層としては、Au、Ag、Cu、Alが好ましく、中でも熱伝導率の高いAgが最も好適である。Agは、反射層の結晶粒を細かくして、マイグレーションを抑え、耐食性を高めるために、Pd、Nd、Cu、Zn等の合金とすることが好ましい。反射膜の膜厚としては、80〜150nmが望ましい。膜厚が80nm以上であれば、透過光が殆どなくなるため、光を効率的に利用できる。反射膜の膜厚が厚いほど、冷却速度が速くなり結晶化速度の速い記録層が使用できるが、150nmより厚くしても記録特性には変化がなくなり、成膜に時間がかかるだけなので、150nm以下とすることが好ましい。   As the reflective layer, Au, Ag, Cu, and Al are preferable, and among them, Ag having a high thermal conductivity is most preferable. Ag is preferably an alloy of Pd, Nd, Cu, Zn, etc., in order to make the crystal grains of the reflective layer finer, suppress migration, and improve corrosion resistance. The thickness of the reflective film is preferably 80 to 150 nm. If the film thickness is 80 nm or more, the transmitted light is almost eliminated, so that the light can be used efficiently. The thicker the reflective film, the faster the cooling rate and the faster the crystallization speed can be used. However, even if it is thicker than 150 nm, the recording characteristics do not change and only the film formation takes time. The following is preferable.

次に、本発明による相変化型光情報記録媒体の実施例および比較例を示す。なお、以下に述べる実施の形態は、本発明の好適な実施の形態であるから、技術的に好ましい種々の限定が付されてはいるが、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。   Next, examples and comparative examples of the phase change optical information recording medium according to the present invention will be shown. The embodiments described below are preferred embodiments of the present invention, and various technically preferable limitations are given. However, in the following description, a description that the present invention is particularly limited is provided. As long as there is no, it is not limited to these embodiments.

(実施例1〜5、比較例1〜5)
射出成型法により、0.6mm厚、直径120mmのポリカーボネート基板を用意し、表1に示した不純物層、結晶化促進層および記録層を用い、図6構成の中間体を作製した。いずれも、誘電体層はZnS−20mol%SiO膜、反射膜はAg−1wt%Pd−1wt%Cuとした。情報基板には、トラックピッチ=0.45μmで、溝深さ=20nm、溝幅=0.25μmのグルーブが形成されている。次に、100μm幅、出力1Wの大口径レーザービームを用い、出力350mW、線速6m/sで混合処理を行い、実施例1〜5の相変化型光情報記録媒体を作製した。
次に、実施例1〜5の混合処理後の記録層組成に相当する記録層を用い、同じ情報基板上に、下部誘電体層、記録層、上部誘電体層、反射層を成膜し、実施例と同じ貼り合わせ構造としたものを、100μm幅、出力1Wの大口径レーザービームを用いて、出力650mW、線速3m/sで初期化を行い、比較例1〜5の相変化型光情報記録媒体を作製した。
(Examples 1-5, Comparative Examples 1-5)
A polycarbonate substrate having a thickness of 0.6 mm and a diameter of 120 mm was prepared by an injection molding method, and an intermediate having the structure shown in FIG. 6 was produced using the impurity layer, crystallization promoting layer, and recording layer shown in Table 1. In either case, the dielectric layer was a ZnS-20 mol% SiO 2 film, and the reflective film was Ag-1 wt% Pd-1 wt% Cu. On the information substrate, a groove having a track pitch = 0.45 μm, a groove depth = 20 nm, and a groove width = 0.25 μm is formed. Next, using a large-diameter laser beam having a width of 100 μm and an output of 1 W, a mixing process was performed at an output of 350 mW and a linear velocity of 6 m / s to produce phase change optical information recording media of Examples 1 to 5.
Next, using the recording layer corresponding to the recording layer composition after the mixing treatment of Examples 1 to 5, a lower dielectric layer, a recording layer, an upper dielectric layer, and a reflective layer are formed on the same information substrate, The same laminated structure as in the example was initialized using a large-diameter laser beam having a width of 100 μm and an output of 1 W at an output of 650 mW and a linear velocity of 3 m / s. An information recording medium was produced.

これらの媒体に、405nmの青色レーザとNA=0.65の光学系(収束直径=φ0。51μm)を用い、記録線速=6.0m/sで多値記録を行った。セル長は0.25μm(=セル周期42ns)とした。記録ストラテジーは、図3の模式図において、Pw=8.5mW、Pe=5mW、Pb=0.4mWとし、各セルに対して1パルスの記録パワーPwを4.5ns照射し、PwおよびPeの開始時間を最適化して行った。   For these media, a 405 nm blue laser and an NA = 0.65 optical system (converging diameter = φ0.51 μm) were used, and multi-value recording was performed at a recording linear velocity = 6.0 m / s. The cell length was 0.25 μm (= cell cycle 42 ns). In the schematic diagram of FIG. 3, the recording strategy is Pw = 8.5 mW, Pe = 5 mW, Pb = 0.4 mW, each pulse is irradiated with a recording power Pw of 1 pulse for 4.5 ns, and Pw and Pe The start time was optimized.

(評価)
(1)記録特性の再生評価は、多値判定技術DDPRを用いてエラーレートBERを求め、実用システムとして許容できるBER<1E−4かどうかを判定基準とした。評価は、(1)初回記録時のエラー率、(2)繰り返し記録(DOW:direct over write)10回、100回、1000回におけるエラー率の最大値、(3)初回記録した媒体の80℃、85%RH、100時間保存試験後のエラー率で行った。
(2)総合評価は、初回記録のエラーレートが良好で、かつ繰り返し記録および保存試験において、顕著なエラーレート上昇が見られなかったものを○(良好)、システムとして許容できる1E−4未満の上昇のものを△(可)、初回記録のエラーレートが1E−4を超えるものを×(実用不可)と判断した。
評価結果を表2に示す。
(Evaluation)
(1) Reproduction evaluation of recording characteristics was performed by obtaining an error rate BER using a multi-value determination technique DDPR and determining whether BER <1E-4 which is acceptable as a practical system. The evaluation is (1) error rate at the time of initial recording, (2) maximum value of error rate at 10 times, 100 times, and 1000 times of DOW (direct over write), and (3) 80 ° C. of the first recorded medium. , 85% RH, with an error rate after 100 hours storage test.
(2) Comprehensive evaluation indicates that the error rate of the initial recording was good and the error rate was not significantly increased in the repeated recording and storage tests (good), less than 1E-4 acceptable as a system A rise was evaluated as Δ (possible), and an error rate of initial recording exceeding 1E-4 was judged as × (impractical).
The evaluation results are shown in Table 2.

表2の結果から、下記のことが明らかである。
実施例1〜5は、図6構成の記録媒体中間体において、記録層の結晶化転移温度が120℃前後に下がっているので、成膜時の基板の自然加熱と結晶化促進層の作用により、記録層が成膜終了直後でも十分に結晶化が進んでいる。したがって、比較例1〜5のような成膜直後の極めて安定なアモルファスを初期化工程によって一気に結晶化するよりも低いエネルギー密度で、結晶化促進層、記録層および不純物層を混合、再結晶化させて、新たな記録層とすることができる。これにより、相変化型光情報記録媒体に前記のような熱ダメージを発生させることがなく、初回記録時のエラーレートは8E−5よりも小さくいずれも良好である。
さらに、実施例1、2および4においては、混合後の記録層におけるBi濃度が1.5原子%以下なので、保存後も顕著なエラー上昇がない。実施例3および5は、Bi濃度がやや高く、保存後にややエラーレートが上昇したが、システムとして許容できる1E−4未満であった。繰り返し記録(DOW)においては、いずれもややエラーレートが上昇したが、システムとして許容できる1E−4未満であった。
これに対し、比較例1〜5は、いずれも初回記録のエラーレートが1E−4を超えてしまい、実用不可(×)であった。このため、繰り返し記録および保存試験は実施しなかった(表中−印)。
From the results in Table 2, the following is clear.
In Examples 1 to 5, in the recording medium intermediate shown in FIG. 6, the crystallization transition temperature of the recording layer is lowered to about 120 ° C., so that the substrate is naturally heated during film formation and the action of the crystallization promoting layer. The crystallization is sufficiently advanced even immediately after the recording layer is formed. Therefore, the crystallization promoting layer, the recording layer, and the impurity layer are mixed and recrystallized at a lower energy density than the case where the extremely stable amorphous immediately after film formation as in Comparative Examples 1 to 5 is crystallized all at once by the initialization process. Thus, a new recording layer can be obtained. As a result, the above-described thermal damage is not generated in the phase-change optical information recording medium, and the error rate at the first recording is smaller than 8E-5 and both are good.
Furthermore, in Examples 1, 2, and 4, since the Bi concentration in the recording layer after mixing is 1.5 atomic% or less, there is no significant increase in error even after storage. In Examples 3 and 5, the Bi concentration was slightly high and the error rate slightly increased after storage, but it was less than 1E-4 acceptable for the system. In repeated recording (DOW), the error rate slightly increased, but it was less than 1E-4 acceptable for the system.
On the other hand, in all of Comparative Examples 1 to 5, the error rate of the initial recording exceeded 1E-4, which was not practical (x). For this reason, repeated recording and storage tests were not carried out (-mark in the table).

(実施例6〜8)
実施例1、2および4の不純物層、結晶化促進層および記録層を用い、図7構成の中間体を作製した。誘電体層および反射膜も同じ材料を用いた。同様に、100μm幅、出力1Wの大口径レーザービームを用い、出力350mW、線速6m/sで混合処理を行い、それぞれ実施例6、7および8の相変化型光情報記録媒体を作製した。
(Examples 6 to 8)
Using the impurity layer, the crystallization promoting layer, and the recording layer of Examples 1, 2, and 4, an intermediate having the structure shown in FIG. 7 was produced. The same material was used for the dielectric layer and the reflective film. Similarly, using a large-diameter laser beam having a width of 100 μm and an output of 1 W, a mixing process was performed at an output of 350 mW and a linear velocity of 6 m / s to produce phase change optical information recording media of Examples 6, 7 and 8, respectively.

これらの媒体に、実施例1〜5と同様の記録を行い、同様の記録特性の再生評価及び総合評価を行なった。この結果を表3に示す。尚、実施例6、7および8は、初回記録のエラーレートが良好で、かつ繰り返し記録および保存試験においても顕著なエラーレートの増大が起こらず、極めて良好な信頼性の高い媒体であったので総合評価を◎とした。実施例6、7および8では、溝を有する基板上に放熱機能を備えた反射膜を有し、溝を有さない第2の基板、いわゆるカバー基板側から記録再生するため、基板の溝への熱ダメージが軽減され、繰り返し記録時のエラー上昇が防げるものと考えられる。   Recording was performed on these media in the same manner as in Examples 1 to 5, and reproduction evaluation and overall evaluation of the same recording characteristics were performed. The results are shown in Table 3. In Examples 6, 7 and 8, the error rate of the initial recording was good, and the error rate was not significantly increased even in the repeated recording and storage test, so that they were extremely good and reliable media. The overall evaluation is ◎. In Examples 6, 7 and 8, a reflective film having a heat dissipation function is provided on a substrate having a groove, and recording and reproduction are performed from the second substrate having no groove, that is, a so-called cover substrate side. It is considered that the heat damage is reduced and the error rise during repeated recording can be prevented.

従来の相変化型光情報記録媒体のマーク占有率とRf信号の概略図である。It is the schematic of the mark occupation rate and Rf signal of the conventional phase change type optical information recording medium. 従来の相変化型光情報記録媒体に対して面積変調方式により記録マークパタン数6で多値記録を行なった場合の多記録マークパタンからのRf信号値分布を示す図である。It is a figure which shows Rf signal value distribution from a multi-recording mark pattern at the time of performing multi-value recording with the recording mark pattern number of 6 with the area modulation system with respect to the conventional phase change type optical information recording medium. 従来の多値記録マークの記録ストラテジの例を示す図である。It is a figure which shows the example of the recording strategy of the conventional multi-value recording mark. 従来の図2おける多値記録を多値階調数8にした場合のRf信号値分布を示す図である。It is a figure which shows Rf signal value distribution at the time of setting the multi-value gradation number to 8 in the conventional multi-value recording in FIG. 従来の記録前のRf信号波形と、これを8値のマークをそれぞれ15個ずつ1周内に連続して記録したときの階段波形を示した図である。It is the figure which showed the Rf signal waveform before the conventional recording, and the staircase waveform when this was continuously recorded in the circumference of 15 8-valued marks each. 本発明の混合処理前の相変化型光情報記録媒体中間体の層構成の例を示す図である。It is a figure which shows the example of a layer structure of the phase change type optical information recording medium intermediate body before the mixing process of this invention. 本発明の混合処理前の相変化型光情報記録媒体中間体の層構成の別の例を示す図である。It is a figure which shows another example of the layer structure of the phase change type | mold optical information recording medium intermediate body before the mixing process of this invention.

Claims (9)

光照射による結晶とアモルファスの相転移現象を利用した光記録媒体のうち、記録マークを形成する領域(以下、この分割された仮想領域をセルと称す)が互いに等しい面積に分割され、且つ前記セルに対して1つの記録マークが形成されていて、この記録マークが前記セルに対して占有する割合の情報として、記録すべき情報が多値情報に変調され記録される光情報記録媒体の製造方法であって、少なくとも、結晶化促進層に続き、SbおよびTeを主成分とする記録層を成膜する工程と、結晶化促進層および/または記録層に接して不純物層を成膜する工程と、該結晶化促進層、該記録層および該不純物層とを混合する工程とからなることを特徴とする相変化型光情報記録媒体の製造方法。   Of the optical recording medium using the phase transition phenomenon between crystal and amorphous due to light irradiation, a region for forming a recording mark (hereinafter, this divided virtual region is referred to as a cell) is divided into equal areas, and the cell Manufacturing method of an optical information recording medium in which information to be recorded is modulated into multi-value information and recorded as information on the ratio of the recording mark to the cell. And at least a step of forming a recording layer mainly composed of Sb and Te after the crystallization promoting layer, and a step of forming an impurity layer in contact with the crystallization promoting layer and / or the recording layer. And a step of mixing the crystallization promoting layer, the recording layer, and the impurity layer. A method for producing a phase change optical information recording medium, comprising: 成膜面に同心円または螺旋状の溝を有する第1の基板上に、少なくとも反射層と第1誘電体層をこの順に形成し、次に結晶化促進層に接して記録層、該記録層および/または該結晶化促進層に接して不純物層を形成し、次に第2誘電体層を形成し、次に樹脂層を介して溝を有さない第2の基板を配することを特徴とする請求項1に記載の相変化型光情報記録媒体の製造方法。   At least a reflective layer and a first dielectric layer are formed in this order on a first substrate having a concentric or spiral groove on the film formation surface, and then in contact with the crystallization promoting layer, the recording layer, the recording layer, and / Or forming an impurity layer in contact with the crystallization promoting layer, then forming a second dielectric layer, and then disposing a second substrate having no groove through the resin layer A method of manufacturing a phase change optical information recording medium according to claim 1. 請求項1又は2に記載の製造方法によって製造されることを特徴とする相変化型光情報記録媒体。   A phase change optical information recording medium manufactured by the manufacturing method according to claim 1. 結晶化促進層がBiを主成分とし、不純物層がGeを含むことを特徴とする請求項3に記載の相変化型光情報記録媒体。   4. The phase change optical information recording medium according to claim 3, wherein the crystallization promoting layer contains Bi as a main component and the impurity layer contains Ge. 不純物層がGeとSn、Inおよび/またはTeを含むことを特徴とする請求項3又は4に記載の相変化型光情報記録媒体。   5. The phase change optical information recording medium according to claim 3, wherein the impurity layer contains Ge and Sn, In and / or Te. 混合処理後の記録層におけるBi濃度が1.5原子%以下であることを特徴とする請求項3〜5のいずれかに記載の相変化型光情報記録媒体。   6. The phase change optical information recording medium according to claim 3, wherein the Bi concentration in the recording layer after the mixing treatment is 1.5 atomic% or less. 基板の厚さが0.6mmであることを特徴とする請求項3〜6のいずれかに記載の相変化型光情報記録媒体。   7. The phase change optical information recording medium according to claim 3, wherein the thickness of the substrate is 0.6 mm. 結晶化促進層、記録層および不純物層を混合処理する前の請求項3〜7のいずれかに記載の相変化型光情報記録媒体の中間体。   The intermediate of the phase change optical information recording medium according to any one of claims 3 to 7, wherein the crystallization promoting layer, the recording layer, and the impurity layer are mixed. 消去パルスPeを一定として、記録パワーPwおよび冷却パルスPbの変調により、多値記録マークを形成する請求項3〜7のいずれかに記載の相変化型光情報記録媒体への記録方法であって、波長400nmのレーザーと開口数0.65の光学系を用い、各セルに対して1パルスの記録パワーPwを照射し、且つ該記録パワーPwの照射パワーおよび照射時間を一定にすることを特徴とする多値マーク記録方法。
8. The method for recording on a phase change optical information recording medium according to claim 3, wherein the multi-value recording mark is formed by modulating the recording power Pw and the cooling pulse Pb with the erasing pulse Pe being constant. Using a laser with a wavelength of 400 nm and an optical system with a numerical aperture of 0.65, each cell is irradiated with one pulse of recording power Pw, and the irradiation power and irradiation time of the recording power Pw are constant. Multi-value mark recording method.
JP2003385480A 2003-11-14 2003-11-14 Phase change optical information recording medium and manufacturing method therefor, and recording method for multi-valued mark Pending JP2005149616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003385480A JP2005149616A (en) 2003-11-14 2003-11-14 Phase change optical information recording medium and manufacturing method therefor, and recording method for multi-valued mark

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385480A JP2005149616A (en) 2003-11-14 2003-11-14 Phase change optical information recording medium and manufacturing method therefor, and recording method for multi-valued mark

Publications (1)

Publication Number Publication Date
JP2005149616A true JP2005149616A (en) 2005-06-09

Family

ID=34693528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385480A Pending JP2005149616A (en) 2003-11-14 2003-11-14 Phase change optical information recording medium and manufacturing method therefor, and recording method for multi-valued mark

Country Status (1)

Country Link
JP (1) JP2005149616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120817A1 (en) * 2011-03-08 2012-09-13 パナソニック株式会社 Information recording medium and method for producing same
US8580368B2 (en) 2011-03-08 2013-11-12 Panasonic Corporation Information recording medium and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120817A1 (en) * 2011-03-08 2012-09-13 パナソニック株式会社 Information recording medium and method for producing same
US8580368B2 (en) 2011-03-08 2013-11-12 Panasonic Corporation Information recording medium and method for manufacturing the same
US8685518B2 (en) 2011-03-08 2014-04-01 Panasonic Corporation Information recording medium and method for producing same
JP5870318B2 (en) * 2011-03-08 2016-02-24 パナソニックIpマネジメント株式会社 Information recording medium and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR20010099753A (en) Multivalue recording and reproducing method and phase change multivalue recording medium
JP4012934B1 (en) Optical recording medium and optical recording method and optical recording apparatus using multilayer optical recording medium
JP4354733B2 (en) Optical recording medium
JP2006044215A (en) Optical recording medium and its manufacturing method, sputtering target, usage for optical recording medium, and optical recording apparatus
JP4078237B2 (en) Optical recording medium, optical recording method, and optical recording apparatus
JP3679107B2 (en) Two-layer phase change information recording medium and recording method therefor
JP2004220699A (en) Optical recording medium
JP4073581B2 (en) Optical information recording medium and optical recording method
JP2002074741A (en) Optical information recording medium
JP2005149616A (en) Phase change optical information recording medium and manufacturing method therefor, and recording method for multi-valued mark
JP2006099927A (en) Phase transition type optical recording medium
JP4322927B2 (en) Optical recording method, optical recording medium, and multilayer optical recording medium optical recording apparatus
JP2006221712A (en) Phase change type optical recording medium and recording method thereto, and evaluation method of transition linear speed
JP2006289940A (en) Phase change-type optical information recording medium
JP2006212880A (en) Phase change type optical recording medium
JP2005174423A (en) Phase-variable multi-level information recording medium and its recording method
JP2007157258A (en) Optical recording medium
JP2006351080A (en) Optical information recording medium, its manufacturing method, and its recording method
JP2006079696A (en) Optical information recording medium
JP2005182863A (en) Phase change optical information recording medium and optical information recording method
JP2007185776A (en) Information recording medium
JP2006018982A (en) Recording method for phase change information recording medium and its recording device
JP2004276583A (en) Optical recording medium and initialization method therefor
JP2004246942A (en) Optical information recording medium, its manufacturing method, and recording method
JP2005093027A (en) Recording medium and recording method of optical data

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050225