JP2005147847A - Method and instrument for measuring ash level in ash fusion furnace hopper - Google Patents

Method and instrument for measuring ash level in ash fusion furnace hopper Download PDF

Info

Publication number
JP2005147847A
JP2005147847A JP2003385654A JP2003385654A JP2005147847A JP 2005147847 A JP2005147847 A JP 2005147847A JP 2003385654 A JP2003385654 A JP 2003385654A JP 2003385654 A JP2003385654 A JP 2003385654A JP 2005147847 A JP2005147847 A JP 2005147847A
Authority
JP
Japan
Prior art keywords
ash
hopper
radiation
microwave
reception device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003385654A
Other languages
Japanese (ja)
Inventor
Akira Noma
野間  彰
Keita Inoue
敬太 井上
Tetsuo Sato
鉄雄 佐藤
Masahiro Yoshida
雅弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003385654A priority Critical patent/JP2005147847A/en
Publication of JP2005147847A publication Critical patent/JP2005147847A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and instrument for measuring an ash level in an ash fusion furnace hopper capable of grasping correctly an actual holding amount or a holding condition. <P>SOLUTION: In this method, a microwave is emitted from a microwave emission/reception device provided in a ceiling of the ash fusion furnace hopper, the emitted wave reaches an ash level face in the hopper, a reflected wave reflected on the ash level face is received by the ash fusion furnace hopper, a travel time from the emission to the reach is analyzed to measure a height of the ash level face, and an emission angle of the microwave is brought within a range expressed by θ(°) in Expression (1). Expression (1): 2tan<SP>-1</SP>(S/H)≤θ≤2tan<SP>-1</SP>(D/2H), where H: a distance (mm) from the highest ash level in the hopper to the microwave emission/reception device, S: the maximum diameter of particles in a particle distribution of ashes, and D: a diameter (mm) of the hopper. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、重油焚きボイラ飛灰、石炭焚きボイラ火炉排出灰、各種廃棄物焼却炉排出灰などを、プラズマ溶融炉などの高温炉で溶融して、再資源化を図るための溶融炉に付帯するホッパの、灰レベルをマイクロ波を用いて計測する方法及びその装置に関する。更に詳しくはマイクロ波を用いて、安息角の大きな灰が、灰溶融炉に付帯するホッパ内部に堆積・保有される状態を、定量的に把握する方法及び装置に関する。   The present invention relates to a melting furnace for recycling heavy oil-fired boiler fly ash, coal-fired boiler furnace ash, various waste incinerator ash, etc. in a high-temperature furnace such as a plasma melting furnace. The present invention relates to a method and an apparatus for measuring an ash level of a hopper using a microwave. More specifically, the present invention relates to a method and apparatus for quantitatively grasping the state in which ash having a large angle of repose is accumulated and held inside a hopper attached to an ash melting furnace using microwaves.

従来この種の原料(灰)供給用ホッパ中の、原料(灰)保有量を把握するには、原料(灰)を当該ホッパコンベアなどで投入する際に計量するとともに、搬送する方法(例えば特許文献1参照)、ホッパ全体をロードセル上にのせ、投入された総重量を直接計量する方法などがある。ホッパに一時保有された灰は、ホッパの底部からは、プッシャなどで、溶融炉へ供給されるので、前記のホッパ前投入時計量法では、ホッパ中の灰保有量は、ホッパへの投入とホッパから溶融炉への供給がバランスすれば一定に保たれるが、後者が変動すれば、前者が定量的に進行していても、ホッパ保有量は変動して、その現在値が分からない。逆に言えば、真のホッパ保有量をコンスタントに保てなければ、又は把握できなければ、溶融炉への供給速度を調節できないことになる。また、総重量計量法では、スクリューフィーダなどのホッパへの灰の投入手段或いはプッシャなどのホッパから炉への灰の供給手段由来の応力変動を絶縁した状態で、ホッパをロードセル上に搭載しなけらばならず、必ずしも容易ではない。   Conventionally, in order to grasp the amount of raw material (ash) held in this kind of raw material (ash) supply hopper, the raw material (ash) is weighed when it is introduced by the hopper conveyor or the like (for example, patent) There is a method of placing the entire hopper on a load cell and directly weighing the total weight charged. Since the ash temporarily held in the hopper is supplied from the bottom of the hopper to the melting furnace by a pusher or the like, the ash holding amount in the hopper is determined as If the supply from the hopper to the melting furnace is balanced, it is kept constant, but if the latter fluctuates, even if the former progresses quantitatively, the hopper holding amount fluctuates and its current value is unknown. In other words, the supply rate to the melting furnace cannot be adjusted unless the true hopper holding amount can be kept constant or grasped. In addition, in the gross weight measurement method, the hopper is not mounted on the load cell in a state where stress fluctuations derived from ash charging means such as a screw feeder or ash supply means from the hopper such as a pusher to the furnace are insulated. It has to be done and it is not always easy.

これら問題点を避けるために、図4に示すようにパドル式レベル検出器でホッパ内に灰のレベルを計測する方法も行われる。これを以下に説明する。ホッパ1にはスクリューフィーダ4で灰を投入する。ホッパに一時保有された灰5は底部に設けられたプッシャ3により灰溶融炉6内に供給される。ホッパ内にはパドル式レベル検出器10がH、M及びLの位置に設けられ、灰の粉粒体面高さを検出する。しかし灰は安息角が大きいので、底から排出すると真中が凹んだ、図示のようなレベル7の面を形成する。従って、パドル式レベル検出器から検出される粉粒体面高さから推定されるホッパ中の灰の保有量は、誤差が著しく大きい。   In order to avoid these problems, a method of measuring the level of ash in the hopper with a paddle type level detector as shown in FIG. 4 is also performed. This will be described below. Ash is put into the hopper 1 with a screw feeder 4. The ash 5 temporarily held in the hopper is supplied into the ash melting furnace 6 by the pusher 3 provided at the bottom. In the hopper, a paddle type level detector 10 is provided at positions H, M, and L to detect the height of the ash particles. However, ash has a large angle of repose, so when it is discharged from the bottom, it forms a level 7 surface that is recessed in the middle. Therefore, the amount of ash retained in the hopper estimated from the particle surface height detected from the paddle type level detector has a significantly large error.

一方、熱や粉塵、環境ガスその他の媒体などの影響を受けないで、粉粒体、流体のレベルを、非接触で測定する方法として、マイクロ波を利用するものが特許文献2に開示されている。この技術はレベル面が比較的水平に近い安定な面を形成している場合には、前記した悪環境の影響を受けない面で有用であり、適用可能であるが、本発明の意識にあるような、著しく変化したプロファイルを形成するレベル面では依然として、誤差が甚だしくなる。   On the other hand, Patent Document 2 discloses a method using a microwave as a method for measuring the level of a granular material and a fluid in a non-contact manner without being affected by heat, dust, environmental gas, and other media. Yes. This technique is useful and applicable to the aspect that is not affected by the adverse environment described above when the level surface forms a stable surface that is relatively close to horizontal, but is within the consciousness of the present invention. Such a level surface that forms a significantly changed profile still has a significant error.

また、特許文献3には反射波による層高測定方法として、やはり、マイクロ波を応用した測定方法が開示されている。この技術は、流動層の層高を計測するもので、流動層のレベル面は本来的に変動の激しいものであるから、その測定値はばらつきが甚だしい。そこで、層高を運転の管理指標として用いる場合、ばらつきの大きい測定値の頻度分布として捉えたものである。この問題は測定値の時間的ばらつきの問題であって、本発明の問題にする、レベル面の幾何学的形状の問題とは別である。   Patent Document 3 also discloses a measurement method using microwaves as a method for measuring the layer height using reflected waves. This technique measures the bed height of the fluidized bed, and the level surface of the fluidized bed is inherently fluctuating, so the measured values are highly variable. Therefore, when the bed height is used as an operation management index, it is regarded as a frequency distribution of measured values having large variations. This problem is a problem of temporal variation of measured values, and is different from the problem of the geometrical shape of the level surface, which is a problem of the present invention.

特開2000−65334号公報JP 2000-65334 A 特開平10−185147号公報JP-A-10-185147 特開平9−89632号公報JP-A-9-89632

本発明は上記従来の技術の問題点に鑑みなされたもので、実際の保有量若しくは保有状態を正しく把握可能な、灰溶融炉ホッパの灰レベルの計測方法及び装置の提供を目標とする。更に詳しくは、灰溶融炉ホッパの灰レベルの平均化された値を計測若しくはレベル面の断面プロファイルを計測して実際の保有量若しくは保有状態を正しく把握する方法及び装置を提供することを目標とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a method and apparatus for measuring the ash level of an ash melting furnace hopper capable of correctly grasping the actual holding amount or holding state. More specifically, the aim is to provide a method and apparatus for measuring the average value of the ash level of the ash melting furnace hopper or measuring the cross-sectional profile of the level surface to correctly grasp the actual holding amount or holding state. To do.

従って、本発明の灰溶融炉ホッパの灰レベル計測法は、灰溶融炉ホッパの天井に設けられたマイクロ波放射・受信装置からマイクロ波を放射し、該放射波が前記ホッパ中の灰レベル面に到達し、該灰レベル面で反射する反射波を前記マイクロ波放射・受信装置で受信し、放射から到達までの行程時間を解析して、前記灰レベル面の高さを計測する方法であって、前記マイクロ波の放射角度を式(1)のθ(°)で示す範囲としたことを特徴とする。
2tan−1(S/H)≦θ≦2tan−1(D/2H) (1)
H:ホッパ中の最も高い灰レベルからマイクロ波放射・受信装置までの距離(mm)
S:アッシュの粒度分布中の粒子のmax径
D:ホッパの直径(mm)
Therefore, the ash level measuring method of the ash melting furnace hopper according to the present invention radiates microwaves from the microwave radiation / reception device provided on the ceiling of the ash melting furnace hopper, and the radiated waves are ash level surfaces in the hopper. The reflected wave reflected by the ash level surface is received by the microwave radiation / reception device, the process time from radiation to arrival is analyzed, and the height of the ash level surface is measured. The microwave radiation angle is in a range indicated by θ (°) in the equation (1).
2 tan −1 (S / H) ≦ θ ≦ 2 tan −1 (D / 2H) (1)
H: Distance (mm) from the highest ash level in the hopper to the microwave radiation / reception device
S: Max diameter of particles in ash particle size distribution D: Diameter of hopper (mm)

ここで用いるマイクロ波の周波数は、ホッパ内の發塵粒子の影響を受けるほどに短い波長でない限り特に限定する必要はないが、長波長の方が放射ビームが広がり易いという一般的性質は考慮されてもよい。不等式(1)の根拠は、図2を参照して説明すると、放射波が、高さH、直径Dのホッパ底面全体をカバーする範囲にビームが広がる放射角θを最大値とし(a)、底面にあるアッシュ粒子の最大の物の2倍の大きさの範囲を最小値とした(b)。この範囲の放射角θを有するマイクロ波が、灰5のレベル7で反射して、その反射波を受信して得られる信号は、図2の前記θがカバーする範囲のレベル面の変化した距離情報を有したものである。従って、この信号を解析して、θがカバーする範囲のレベル面の例えば平均的高さを算出することができる。   The frequency of the microwave used here is not particularly limited unless the wavelength is short enough to be affected by the dust particles in the hopper, but the general property that the radiation beam is likely to spread at longer wavelengths is considered. May be. The basis of the inequality (1) will be described with reference to FIG. 2. The maximum value is the radiation angle θ at which the beam spreads in a range covering the entire bottom surface of the hopper having the height H and the diameter D (a), A range having a size twice as large as the largest ash particle on the bottom surface was defined as the minimum value (b). A microwave having a radiation angle θ in this range is reflected at the level 7 of the ash 5 and the reflected wave is received. The signal obtained by changing the level plane in the range covered by θ in FIG. It has information. Therefore, by analyzing this signal, for example, the average height of the level surface in the range covered by θ can be calculated.

更に本発明の灰溶融炉ホッパの灰レベル計測法は、灰溶融炉ホッパの天井に設けられたマイクロ波放射・受信装置からマイクロ波を放射し、該放射波が前記ホッパ中の灰レベル面に到達し、該灰レベル面で反射する反射波を前記マイクロ波放射・受信装置で受信し、放射から到達までの行程時間を解析して、前記灰レベル面の高さを計測する方法であって、前記マイクロ波の放射をホッパ直径方向にスキャニングして、直径上の複数の位置に対応する前記灰レベル面の高さを計測し、前記直径上の位置を横軸に、前記灰レベル面の高さを縦軸に採った直交座標に前記計測値を対応させて、レベル面の断面プロファイルを得ることを特徴とする。   Further, according to the ash level measuring method of the ash melting furnace hopper of the present invention, a microwave is radiated from a microwave radiation / reception device provided on the ceiling of the ash melting furnace hopper, and the radiated wave is applied to the ash level surface in the hopper. A method of measuring the height of the ash level surface by receiving a reflected wave that reaches and reflects on the ash level surface with the microwave radiation / reception device, analyzes a process time from radiation to arrival, and The microwave radiation is scanned in the hopper diameter direction, and the height of the ash level surface corresponding to a plurality of positions on the diameter is measured. A cross-sectional profile of a level surface is obtained by associating the measurement value with an orthogonal coordinate whose height is taken on the vertical axis.

スキャニングの方法はマイクロ波放射・受信装置の取り付け位置付近を軸芯として回転し、角度を変化させる方法も可能である。また、マイクロ波放射・受信装置を直径上にスライドさせて、水平移動させる方法も可能である。   As the scanning method, it is possible to rotate the vicinity of the attachment position of the microwave radiation / reception device as an axis and change the angle. Further, it is possible to horizontally move the microwave radiation / reception apparatus by sliding it on the diameter.

更に本発明の他の側面である灰溶融炉ホッパの灰レベル計測装置は、灰溶融炉ホッパの天井に設けられたマイクロ波放射・受信装置と、該マイクロ波放射・受信装置からマイクロ波を放射し、該放射波が前記ホッパ中の灰レベル面に到達し、該灰レベル面で反射する反射波を前記マイクロ波放射・受信装置で受信し、放射から到達までの行程時間を解析して、前記灰レベル面の高さを算出する解析・算出手段とを有し、更に前記マイクロ波放射・受信装置が放射角形成手段を備え、前記放射マイクロ波の放射角度を式(1)のθ(°)で示す範囲とすることを特徴とする。
2tan−1(S/H)≦θ≦2tan−1(D/2H) (1)
H:ホッパ中の最も高い灰レベルからマイクロ波放射・受信装置までの距離(mm)
S:アッシュの粒度分布中の粒子のmax径
D:ホッパの直径(mm)
Furthermore, an ash melting furnace hopper ash level measuring apparatus according to another aspect of the present invention includes a microwave radiation / reception device provided on a ceiling of the ash melting furnace hopper, and a microwave radiation from the microwave radiation / reception device. Then, the radiation wave reaches the ash level surface in the hopper, the reflected wave reflected by the ash level surface is received by the microwave radiation / reception device, and the process time from radiation to arrival is analyzed, Analysis / calculation means for calculating the height of the ash level surface, the microwave radiation / reception device further comprising radiation angle forming means, and the radiation angle of the radiation microwave is expressed by θ ( °) in the range indicated.
2 tan −1 (S / H) ≦ θ ≦ 2 tan −1 (D / 2H) (1)
H: Distance (mm) from the highest ash level in the hopper to the microwave radiation / reception device
S: Max diameter of particles in ash particle size distribution D: Diameter of hopper (mm)

前記放射角形成手段は例えば、電磁ホーンをアンテナとして用いることによって行う事ができる。また、適当な誘電率の物質からなる電磁レンズによっても可能である。   The radiation angle forming means can be performed, for example, by using an electromagnetic horn as an antenna. It is also possible to use an electromagnetic lens made of a substance having an appropriate dielectric constant.

更に本発明の灰溶融炉ホッパの灰レベル計測装置は、灰溶融炉ホッパの天井に設けられたマイクロ波放射・受信装置と、該マイクロ波放射・受信装置からマイクロ波を放射し、該放射波が前記ホッパ中の灰レベル面に到達し、該灰レベル面で反射する反射波を前記マイクロ波放射・受信装置で受信し、放射から到達までの行程時間を解析して、前記灰レベル面の高さを算出する解析・算出手段とを有し、更に前記マイクロ波放射・受信装置がホッパ直径方向のスキャニング手段を備え、マイクロ波の放射をホッパ直径方向にスキャニングし、直径上の複数の位置に対応する前記灰レベル面の高さを計測し、前記直径上の位置を横軸に、前記灰レベル面の高さを縦軸に採った直交座標に前記計測値を対応させて、レベル面の断面プロファイルの取得を可能としたことを特徴とする。   Furthermore, an ash level measuring apparatus for an ash melting furnace hopper according to the present invention includes a microwave radiation / reception device provided on the ceiling of the ash melting furnace hopper, and a microwave radiated from the microwave radiation / reception device. Reaches the ash level surface in the hopper, the reflected wave reflected by the ash level surface is received by the microwave radiation / reception device, and the travel time from radiation to arrival is analyzed, and the ash level surface of the hopper is analyzed. Analyzing and calculating means for calculating the height, and the microwave radiation / reception device further comprises a scanning means in the hopper diameter direction, and the microwave radiation is scanned in the hopper diameter direction, and a plurality of positions on the diameter are provided. The height of the ash level surface corresponding to the level surface is measured, the position on the diameter is plotted on the horizontal axis, and the measured value is made to correspond to the orthogonal coordinates where the height of the ash level surface is plotted on the vertical axis. Of cross-sectional profile Wherein the resulting allowed the.

以上説明したように、本発明の効果は、以下のようにまとめることができる。
(1)マイクロ波を使用して、粉塵、温度、圧力、媒体物質、などの環境要素に影響を受けずに、レベル面を計測できる。
(2)放射角を広げて、その反射波を受信解析すれば、水平でないレベル面の平均的高さを算出することができる。
(3)もしくは、レベル面をマイクロ波でスキャニングしながら、反射波を受信して、高さを測れば、レベル面の断面プロファイルが描画できて、レベル状態を把握できる。
これらにより、従来精度のよい計測ができず、灰溶融炉の制御に支障をきたしていたが、改善される。
As described above, the effects of the present invention can be summarized as follows.
(1) The level surface can be measured using microwaves without being affected by environmental factors such as dust, temperature, pressure, and medium material.
(2) If the radiation angle is widened and the reflected wave is received and analyzed, the average height of the level surface that is not horizontal can be calculated.
(3) Alternatively, if the reflected wave is received and the height is measured while scanning the level surface with microwaves, a cross-sectional profile of the level surface can be drawn and the level state can be grasped.
As a result, measurement with high accuracy cannot be performed in the past, which has hindered control of the ash melting furnace, but is improved.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は本発明の灰溶融炉ホッパの灰レベル計測法の実施態様を示す略図である。図1において、灰5をスクリューフィーダ4で投入し、プッシャ3で灰溶融炉6内に供給すると、ホッパ1内の灰5は、図示のように平坦でない凹状を呈したレベル7の面になる。ホッパの高さは3000mm、径は1000mmであるので、(1)式の2tan−1(D/2H)は18.9°となる。マイクロ波放射受信装置2に、ホーン状アンテナを付け、マイクロ波の放射角を18.9°になるようにする。 FIG. 1 is a schematic diagram showing an embodiment of an ash level measuring method for an ash melting furnace hopper according to the present invention. In FIG. 1, when the ash 5 is introduced by the screw feeder 4 and supplied into the ash melting furnace 6 by the pusher 3, the ash 5 in the hopper 1 becomes a level 7 surface having a non-flat concave shape as shown in the figure. . Since the height of the hopper is 3000 mm and the diameter is 1000 mm, 2tan −1 (D / 2H) in the formula (1) is 18.9 °. A horn antenna is attached to the microwave radiation receiving apparatus 2 so that the microwave radiation angle is 18.9 °.

放射するマイクロ波は9ギガヘルツから10ギガヘルツの間で時間軸に対してリニアに周波数変調し、図3(a)Frdの直線に沿って、鋸状の変化をするように放射すると、図中Frfのような反射波が受信される。上側の反射波が凹状のレベル面のうち最も近い(レベルの高い)面から反射されるものであり、下側の反射波が凹状のレベル面のうち最も遠い(レベルの低い)面から反射されるものである。凹状のレベル面はほぼ連続的に変化しているので、図3の点線で示した折れ線の内部はほぼ連続的に同様な折れ線で埋められている。同時刻における放射波と反射波の周波数の差ΔFが、レベル面までの距離に比例するので、これにより、距離が算出可能である。ΔFを時間に関して図示すると(b)のようになり、ΔFmaxが最も遠い(レベルの低い)面までの距離、ΔFminが最も近い(レベルの高い)面までの距離に比例する値である。これらの信号もしくはこれらの信号から得られる数値を用いて、ホッパ内灰レベルとして一義的な指標、例えば平均レベル、中央値レベル、積分計算によって算出できる定義値などを算出すればよい。 Microwave radiation is frequency modulated linearly with respect to the time axis between 10 GHz from 9 GHz, along a straight line in FIG. 3 (a) F rd, when radiation to a saw-like change, in the drawing A reflected wave such as F rf is received. The upper reflected wave is reflected from the nearest (higher level) surface of the concave level surface, and the lower reflected wave is reflected from the farthest (lower level) surface of the concave level surface. Is. Since the concave level surface changes substantially continuously, the inside of the broken line shown by the dotted line in FIG. 3 is almost continuously filled with the same broken line. Since the difference ΔF between the frequency of the radiated wave and the reflected wave at the same time is proportional to the distance to the level surface, the distance can be calculated. When ΔF is illustrated in terms of time, it is as shown in (b), where ΔF max is a value proportional to the distance to the farthest (low level) surface and ΔF min is proportional to the distance to the nearest (high level) surface. Using these signals or numerical values obtained from these signals, a unique index such as an average level, a median level, or a definition value that can be calculated by integral calculation may be calculated as the hopper ash level.

本発明は、灰溶融炉に付帯するホッパに保有される灰のレベル測定法を改善することで、その保有量を精度よく把握できる。これにより各種産業から排出する灰の溶融反応工程の制御が適切にできるので、産業廃棄物の資源化に有用である。   This invention can grasp | ascertain the holding amount accurately by improving the ash level measuring method held in the hopper attached to an ash melting furnace. As a result, it is possible to appropriately control the melting reaction process of ash discharged from various industries, which is useful for recycling industrial waste.

本発明の灰溶融炉ホッパの灰レベル計測法の実施態様を示す略図である。1 is a schematic diagram showing an embodiment of an ash level measuring method for an ash melting furnace hopper according to the present invention. 本発明のマイクロ波の放射角の範囲を限定する根拠を示す略図である。It is the schematic which shows the basis which limits the range of the radiation angle of the microwave of this invention. 本発明の実施態様で、高低のあるレベル面を所定の放射角で照射したマイクロ波の反射波を示したグラフである。6 is a graph showing a reflected wave of a microwave irradiated with a predetermined radiation angle on a certain level surface according to an embodiment of the present invention. 従来のレベル計の実施態様を示す略図である。It is a schematic diagram showing an embodiment of a conventional level meter.

Claims (4)

灰溶融炉ホッパの天井に設けられたマイクロ波放射・受信装置からマイクロ波を放射し、該放射波が前記ホッパ中の灰レベル面に到達し、該灰レベル面で反射する反射波を前記マイクロ波放射・受信装置で受信し、放射から到達までの行程時間を解析して、前記灰レベル面の高さを計測する方法であって、前記マイクロ波の放射角度を式(1)のθ(°)で示す範囲としたことを特徴とする灰溶融炉ホッパの灰レベル計測法。
2tan−1(S/H)≦θ≦2tan−1(D/2H) (1)
H:ホッパ中の最も高い灰レベルからマイクロ波放射・受信装置までの距離(mm)
S:アッシュの粒度分布中の粒子のmax径
D:ホッパの直径(mm)
A microwave is radiated from a microwave radiation / reception device provided on the ceiling of the ash melting furnace hopper, the radiated wave reaches an ash level surface in the hopper, and a reflected wave reflected by the ash level surface is reflected by the microwave. A method of measuring the height of the ash level surface by analyzing a process time from radiation to arrival by receiving with a wave radiation / reception device, wherein the microwave radiation angle is expressed by θ ( A method for measuring the ash level of an ash melting furnace hopper, characterized in that it falls within the range indicated by °).
2 tan −1 (S / H) ≦ θ ≦ 2 tan −1 (D / 2H) (1)
H: Distance (mm) from the highest ash level in the hopper to the microwave radiation / reception device
S: Max diameter of particles in ash particle size distribution D: Diameter of hopper (mm)
灰溶融炉ホッパの天井に設けられたマイクロ波放射・受信装置からマイクロ波を放射し、該放射波が前記ホッパ中の灰レベル面に到達し、該灰レベル面で反射する反射波を前記マイクロ波放射・受信装置で受信し、放射から到達までの行程時間を解析して、前記灰レベル面の高さを計測する方法であって、前記マイクロ波の放射をホッパ直径方向にスキャニングして、直径上の複数の位置に対応する前記灰レベル面の高さを計測し、前記直径上の位置を横軸に、前記灰レベル面の高さを縦軸に採った直交座標に前記計測値を対応させて、レベル面の断面プロファイルを得ることを特徴とする灰溶融炉ホッパの灰レベル計測法。   A microwave is radiated from a microwave radiation / reception device provided on the ceiling of the ash melting furnace hopper, the radiated wave reaches an ash level surface in the hopper, and a reflected wave reflected by the ash level surface is reflected by the microwave. A method of measuring the height of the ash level surface by scanning the microwave radiation in the hopper diameter direction, receiving the wave radiation and receiving device, analyzing the process time from radiation to arrival, The height of the ash level surface corresponding to a plurality of positions on the diameter is measured, and the measured value is set to orthogonal coordinates where the position on the diameter is taken on the horizontal axis and the height of the ash level surface is taken on the vertical axis. A method for measuring the ash level of an ash melting furnace hopper, characterized by obtaining a cross-sectional profile of the level surface in correspondence. 灰溶融炉ホッパの天井に設けられたマイクロ波放射・受信装置と、該マイクロ波放射・受信装置からマイクロ波を放射し、該放射波が前記ホッパ中の灰レベル面に到達し、該灰レベル面で反射する反射波を前記マイクロ波放射・受信装置で受信し、放射から到達までの行程時間を解析して、前記灰レベル面の高さを算出する解析・算出手段とを有し、更に前記マイクロ波放射・受信装置が放射角形成手段を備え、前記放射マイクロ波の放射角度を式(1)のθ(°)で示す範囲とすることを特徴とする灰溶融炉ホッパの灰レベル計測装置。
2tan−1(S/H)≦θ≦2tan−1(D/2H) (1)
H:ホッパ中の最も高い灰レベルからマイクロ波放射・受信装置までの距離(mm)
S:アッシュの粒度分布中の粒子のmax径
D:ホッパの直径(mm)
A microwave radiation / reception device provided on the ceiling of the ash melting furnace hopper, and a microwave is radiated from the microwave radiation / reception device, the radiation wave reaches an ash level surface in the hopper, and the ash level Analysis / calculation means for receiving a reflected wave reflected by a surface by the microwave radiation / reception device, analyzing a process time from radiation to arrival, and calculating a height of the ash level surface; Ash level measurement of an ash melting furnace hopper characterized in that the microwave radiation / reception device includes radiation angle forming means, and the radiation angle of the radiation microwave is in a range indicated by θ (°) in the equation (1). apparatus.
2 tan −1 (S / H) ≦ θ ≦ 2 tan −1 (D / 2H) (1)
H: Distance (mm) from the highest ash level in the hopper to the microwave radiation / reception device
S: Max diameter of particles in ash particle size distribution D: Diameter of hopper (mm)
灰溶融炉ホッパの天井に設けられたマイクロ波放射・受信装置と、該マイクロ波放射・受信装置からマイクロ波を放射し、該放射波が前記ホッパ中の灰レベル面に到達し、該灰レベル面で反射する反射波を前記マイクロ波放射・受信装置で受信し、放射から到達までの行程時間を解析して、前記灰レベル面の高さを算出する解析・算出手段とを有し、更に前記マイクロ波放射・受信装置がホッパ直径方向のスキャニング手段を備え、マイクロ波の放射をホッパ直径方向にスキャニングし、直径上の複数の位置に対応する前記灰レベル面の高さを計測し、前記直径上の位置を横軸に、前記灰レベル面の高さを縦軸に採った直交座標に前記計測値を対応させて、レベル面の断面プロファイルの取得を可能としたことを特徴とする灰溶融炉ホッパの灰レベル計測装置。   A microwave radiation / reception device provided on the ceiling of the ash melting furnace hopper, and a microwave is radiated from the microwave radiation / reception device, the radiation wave reaches an ash level surface in the hopper, and the ash level Analysis / calculation means for receiving a reflected wave reflected by a surface by the microwave radiation / reception device, analyzing a process time from radiation to arrival, and calculating a height of the ash level surface; The microwave radiation / reception device includes scanning means in a hopper diameter direction, scans microwave radiation in the hopper diameter direction, measures heights of the ash level surface corresponding to a plurality of positions on the diameter, and The ash is characterized in that the cross-sectional profile of the level surface can be obtained by associating the measured value with the orthogonal coordinates with the position on the diameter on the horizontal axis and the height of the ash level surface on the vertical axis. Melting furnace hopper Level measuring device.
JP2003385654A 2003-11-14 2003-11-14 Method and instrument for measuring ash level in ash fusion furnace hopper Withdrawn JP2005147847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003385654A JP2005147847A (en) 2003-11-14 2003-11-14 Method and instrument for measuring ash level in ash fusion furnace hopper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385654A JP2005147847A (en) 2003-11-14 2003-11-14 Method and instrument for measuring ash level in ash fusion furnace hopper

Publications (1)

Publication Number Publication Date
JP2005147847A true JP2005147847A (en) 2005-06-09

Family

ID=34693643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385654A Withdrawn JP2005147847A (en) 2003-11-14 2003-11-14 Method and instrument for measuring ash level in ash fusion furnace hopper

Country Status (1)

Country Link
JP (1) JP2005147847A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145980A (en) * 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator
JP2017145979A (en) * 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator
JP2017145981A (en) * 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator
EP3913335A1 (en) * 2020-05-20 2021-11-24 Rosenberger Telematics GmbH Method for determining the amount of bulk material in a standing container
JP7026285B1 (en) * 2021-11-01 2022-02-25 株式会社Ye Digital Inventory amount calculation device and inventory amount calculation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145980A (en) * 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator
JP2017145979A (en) * 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator
JP2017145981A (en) * 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator
EP3913335A1 (en) * 2020-05-20 2021-11-24 Rosenberger Telematics GmbH Method for determining the amount of bulk material in a standing container
JP7026285B1 (en) * 2021-11-01 2022-02-25 株式会社Ye Digital Inventory amount calculation device and inventory amount calculation method
WO2023074497A1 (en) * 2021-11-01 2023-05-04 株式会社Ye Digital Inventory calculating device and inventory calculating method

Similar Documents

Publication Publication Date Title
JP2022081477A (en) Determining radiated thermal energy density for grid regions of build plane
CN1240998C (en) Device for determining density and level of filling material in container
EP1729101B1 (en) Method and apparatus for detecting the level of a molten metal in a container and the depth of slag floating on it
US7570372B2 (en) Optical device for measuring the thickness of an at least partially transparent medium
WO2016031181A1 (en) Inspection apparatus and inspection method for detecting foreign substances using terahertz radiation
EA031423B1 (en) Crack detection and measurement in metallurgical vessels
JP2010174371A (en) Apparatus and method for measuring profile of charged material in blast furnace
TW201534894A (en) Measuring device and method for detecting the characteristics of an object
JP2005147847A (en) Method and instrument for measuring ash level in ash fusion furnace hopper
Sivaprakasam et al. Design and demonstration of a RADAR gauge for in-situ level measurement in furnace
US20150323375A1 (en) Automatic z-Correction for Basis Weight Sensors
KR100395180B1 (en) Mold and molding quality inspection method and apparatus
KR101438591B1 (en) Device and method for coating a substrate
Kundu et al. Novel method for real-time burden profile measurement at blast furnace
US9267924B2 (en) Method for detecting gas and a gas detector therefor
KR101164523B1 (en) Laser processing apparatus having laser beam profiler
JP7374435B2 (en) Moisture measurement system
CN103675020A (en) System for detecting transmitting rate of electronic assembly
CA2122130A1 (en) Non-hydrogenous process level measurement
JP4969929B2 (en) Blast furnace interior entry behavior detection device
JP2003315037A (en) Noncontact range finder in high soot and dust environment
CN111256779B (en) System and method for detecting interface position of melt in melting furnace based on thermal radiation theory
SU1693465A1 (en) Method of determining particle size of flowing loose material
WO2024063082A1 (en) Bulk density detection method and device, water content calculation method and device, and method for producing coke
WO2024043062A1 (en) Material discharge control device and material charging device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206