JP2005147836A - Stacked-type gas sensor element - Google Patents

Stacked-type gas sensor element Download PDF

Info

Publication number
JP2005147836A
JP2005147836A JP2003385423A JP2003385423A JP2005147836A JP 2005147836 A JP2005147836 A JP 2005147836A JP 2003385423 A JP2003385423 A JP 2003385423A JP 2003385423 A JP2003385423 A JP 2003385423A JP 2005147836 A JP2005147836 A JP 2005147836A
Authority
JP
Japan
Prior art keywords
solid electrolyte
alumina
electrolyte layer
stress
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003385423A
Other languages
Japanese (ja)
Other versions
JP4503988B2 (en
Inventor
Yutaka Sekiguchi
豊 関口
Kenji Watanabe
憲治 渡辺
Yasuhiro Takagi
保宏 高木
Masaya Ito
正也 伊藤
Shigeki Mori
森  茂樹
Tomohiro Mabuchi
智裕 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003385423A priority Critical patent/JP4503988B2/en
Publication of JP2005147836A publication Critical patent/JP2005147836A/en
Application granted granted Critical
Publication of JP4503988B2 publication Critical patent/JP4503988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stacked-type gas sensor element having high durability and reliability. <P>SOLUTION: This stacked type gas sensor element 1 is formed by directly connecting a solid electrolyte layer 11 containing zirconia and alumina to the first and second insulating layers 21, 22 mainly composed of alumina by simultaneous baking. A portion MZ1 very close to an interference IF1 in the solid electrolyte layer 11 is irradiated with a laser beam, and stress σZ applied to the solid electrolyte layer 11 at the portion MZ1 is determined from the wave number value κpsz of an acquired fluorescence peak, by utilizing the fact that the wave number value of the fluorescence peak, emitted from Cr<SP>3+</SP>ions in alumina crystal particles, is changed by a stress when the laser light is irradiated. When the tensile stress applied to the solid electrolyte layer 11 is smaller than 300 MPa at the maximum, the durability is satisfactory. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体電解質層とアルミナ絶縁層とを備える積層型ガスセンサ素子に関する。   The present invention relates to a stacked gas sensor element including a solid electrolyte layer and an alumina insulating layer.

従来、アルミナ結晶粒子に不可避不純物として含まれるCr3+イオンが、レーザ光に照射されたときに生ずる蛍光のピークの絶対波数値(約14400cm-1)が、アルミナ結晶粒子に掛かる応力に応じて変化(シフト)する現象を用いて、ジルコニアとアルミナとの複合材において、アルミナ結晶粒子自身に生じた残留応力について解析した事例がある。
なお、絶対波数値とは、波長の逆数である。
この事例では、予め、その基準試料としてジルコニア等を含まないアルミナセラミック材からなる基準試料を用いて、この基準試料に外部から応力を加え、各外部応力値と蛍光ピークの絶対波数値または或る基準の絶対波数値からの相対波数値との関係を求めておく。その上で、この関係に基づいて、試料を実測して得た蛍光ピークの絶対波数値または相対波数値から、ジルコニアとアルミナとの複合材中のアルミナ結晶粒子に掛かる残留応力を求めるのである。
Conventionally, the absolute wave value (about 14400 cm −1 ) of the peak of fluorescence generated when Cr 3+ ions contained as inevitable impurities in alumina crystal particles are irradiated with laser light depends on the stress applied to the alumina crystal particles. There is an example in which the residual stress generated in the alumina crystal particle itself is analyzed in the composite material of zirconia and alumina using the phenomenon of changing (shifting).
The absolute wave value is the reciprocal of the wavelength.
In this case, a reference sample made of an alumina ceramic material not containing zirconia or the like is used as the reference sample in advance, and external stress is applied to the reference sample, and each external stress value and the absolute wave value of the fluorescence peak or a certain value The relationship with the relative wave value from the reference absolute wave value is obtained. Based on this relationship, the residual stress applied to the alumina crystal particles in the composite material of zirconia and alumina is obtained from the absolute wave value or relative wave value of the fluorescence peak obtained by actually measuring the sample.

Acta mater. Vol.46. No.5. pp.1701-1710. 1998Acta mater. Vol.46. No.5. Pp.1701-1710. 1998

ところで、ジルコニアを含む固体電解質層と、同時焼成によりこれに少なくとも一部で直接接して積層されたアルミナ絶縁層とを備える積層型ガスセンサ素子が知られている。この中には、固体電解質層として、ジルコニアを含むほか、アルミナを含むもの、即ち、ジルコニア結晶粒子とアルミナ結晶粒子が互いに分散して含まれているものを用いた積層型ガスセンサ素子がある。   By the way, a multilayer gas sensor element is known which includes a solid electrolyte layer containing zirconia and an alumina insulating layer laminated in direct contact with at least a part thereof by simultaneous firing. Among them, as a solid electrolyte layer, there is a multilayer gas sensor element using not only zirconia but also alumina, that is, a zirconia crystal particle and an alumina crystal particle dispersed in each other.

しかしながら、積層型ガスセンサ素子では、その製造工程中、具体的には焼成後の積層型ガスセンサ素子において、固体電解質層とアルミナ絶縁層との界面近傍にクラックが生じている場合がある。また、ガスセンサ素子の使用中や耐久試験中に、固体電解質層と
アルミナ絶縁層との界面近傍にクラックが発生する場合がある。
However, in the multilayer gas sensor element, cracks may occur in the vicinity of the interface between the solid electrolyte layer and the alumina insulating layer during the manufacturing process, specifically, in the fired multilayer gas sensor element. Further, cracks may occur near the interface between the solid electrolyte layer and the alumina insulating layer during use of the gas sensor element or during a durability test.

これは以下の理由によると考えられる。即ち、積層型ガスセンサ素子では、固体電解質層の熱膨張率とアルミナ絶縁層の熱膨張率との違いによって、相対的に熱膨張率の大きい固体電解質層には引張応力が、相対的に熱膨張率の小さいアルミナ絶縁層には圧縮応力が掛かり、両者間に応力差が生じると考えられる。
そして、この応力差が大きくなりすぎると、両者の界面付近において、製造工程中、使用中、あるいは耐久試験中に固体電解質層を含む界面近傍にクラックが生じると考えられる。あるいは、一般にセラミック材は、圧縮応力に対しては強いが、引張応力に対しては弱いことを考慮すると、固体電解質層に掛かる引張応力が大きくなりすぎると、両者の界面付近において、製造工程中、使用中、あるいは耐久試験中に固体電解質層を含む界面近傍にクラックが生じると考えられる。
This is considered to be due to the following reason. That is, in the multilayer gas sensor element, due to the difference between the coefficient of thermal expansion of the solid electrolyte layer and the coefficient of thermal expansion of the alumina insulating layer, the solid electrolyte layer having a relatively large coefficient of thermal expansion has a tensile stress. It is considered that the alumina insulating layer having a small rate is subjected to compressive stress, and a stress difference is generated between the two.
And if this stress difference becomes too large, it is considered that cracks occur near the interface including the solid electrolyte layer during the manufacturing process, during use, or during the durability test in the vicinity of the interface between the two. Or, considering that ceramic materials are generally strong against compressive stress but weak against tensile stress, if the tensile stress applied to the solid electrolyte layer becomes too large, the manufacturing process will be performed near the interface between the two. It is considered that cracks occur in the vicinity of the interface including the solid electrolyte layer during use or during the durability test.

本発明はかかる問題点に鑑みてなされたものであって、耐久性、信頼性の高い積層型ガスセンサ素子を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide a stacked gas sensor element having high durability and reliability.

その解決手段は、ジルコニア結晶粒子とCr3+イオンを含有するアルミナ結晶粒子とが互いに分散されてなる固体電解質層と、上記固体電解質層と同時焼成により少なくとも一部で直接接して積層され、Cr3+イオンを含有するアルミナ結晶粒子を主成分とするアルミナ絶縁層と、を備える積層型ガスセンサ素子であって、上記アルミナ絶縁層との界面直近において上記固体電解質層が受けている引張応力が最大でも300MPa以下である積層型ガスセンサ素子である。 The solution includes a solid electrolyte layer in which zirconia crystal particles and alumina crystal particles containing Cr 3+ ions are dispersed with each other, and is laminated in direct contact with the solid electrolyte layer at least partially by co-firing. A laminated gas sensor element comprising an alumina insulating layer containing alumina crystal particles containing 3+ ions as a main component, wherein the solid electrolyte layer receives a maximum tensile stress in the immediate vicinity of the interface with the alumina insulating layer. However, it is a laminated gas sensor element of 300 MPa or less.

本発明の積層型ガスセンサ素子では、材質、従って、熱膨張率の異なる固体電解質層とアルミナ絶縁層とが直接接して積層されている。前述したように、相対的に熱膨張率の大きい固体電解質層には引張応力が掛かると考えられる。そしてその応力は界面の直近で最大となると考えられる。また、一般にセラミック材は、圧縮応力に対しては強いが、引張応力に対しては弱い。従って、固体電解質層が受けている引張応力が過大である場合には、固体電解質層、特にその界面直近を基点とする破壊が生じ、クラックの原因となると解される。
これに対して、本発明の積層型ガスセンサ素子では、アルミナ絶縁層との界面直近において固体電解質層が受けている引張応力が最大でも300MPa以下である。このため、固体電解質層が引張応力によって破壊することが防止され、耐久性、信頼性の高い積層型ガスセンサ素子となし得る。
In the multilayer gas sensor element of the present invention, the solid electrolyte layer and the alumina insulating layer having different materials and, therefore, different thermal expansion coefficients are laminated in direct contact with each other. As described above, it is considered that tensile stress is applied to the solid electrolyte layer having a relatively large coefficient of thermal expansion. And the stress is considered to become the maximum in the immediate vicinity of the interface. In general, ceramic materials are strong against compressive stress but weak against tensile stress. Accordingly, it is understood that when the tensile stress applied to the solid electrolyte layer is excessive, the solid electrolyte layer, particularly, the breakage based on the immediate vicinity of the interface occurs and causes a crack.
On the other hand, in the multilayer gas sensor element of the present invention, the tensile stress received by the solid electrolyte layer in the vicinity of the interface with the alumina insulating layer is 300 MPa or less at the maximum. For this reason, the solid electrolyte layer is prevented from being broken by tensile stress, and a laminated gas sensor element with high durability and reliability can be obtained.

また、ジルコニア結晶粒子とCr3+イオンを含有するアルミナ結晶粒子とが互いに分散されてなる固体電解質層と、上記固体電解質層と同時焼成により少なくとも一部で直接接して積層され、Cr3+イオンを含有するアルミナ結晶粒子を主成分とするアルミナ絶縁層と、を備える積層型ガスセンサ素子であって、上記固体電解質層と同じ組成を有する第1基準試料を用意して、この第1基準試料に応力を掛け、既知の応力が掛かった部分に所定波長のレーザ光を照射して、上記第1基準試料に含まれる上記Cr3+イオンが発する蛍光のうち、絶対波数値14400cm-1付近に位置する蛍光のピークの波数値を測定して、各応力値と上記蛍光ピークの波数値との第1関係を求めておく一方、上記固体電解質層のうち上記アルミナ絶縁層との界面直近の部位に上記所定波長のレーザ光を照射して、上記蛍光ピークの波数値を測定し、測定した蛍光ピークの波数値から、上記第1関係に基づいて得た、界面直近において上記固体電解質層が受けている応力値が、最大でも300MPa以下の引張応力である積層型ガスセンサ素子とするのが好ましい。 In addition, a solid electrolyte layer in which zirconia crystal particles and alumina crystal particles containing Cr 3+ ions are dispersed with each other, and at least partly in direct contact with the solid electrolyte layer and laminated, Cr 3+ ions A laminated gas sensor element comprising an alumina insulating layer containing alumina crystal particles containing as a main component, and a first reference sample having the same composition as the solid electrolyte layer is prepared. A portion with a known stress is irradiated with a laser beam having a predetermined wavelength, and the fluorescence emitted by the Cr 3+ ions contained in the first reference sample is positioned near an absolute wave value of 14400 cm −1. And measuring the wave value of the fluorescent peak to obtain a first relationship between each stress value and the wave value of the fluorescent peak, while the boundary between the solid electrolyte layer and the alumina insulating layer. The closest portion is irradiated with the laser beam of the predetermined wavelength, the wave value of the fluorescence peak is measured, and the solid electrolyte is obtained near the interface from the measured wave value of the fluorescence peak based on the first relationship. It is preferable that the laminated gas sensor element has a tensile stress of 300 MPa or less at the maximum.

この積層型ガスセンサ素子でも、アルミナ絶縁層との界面直近において固体電解質層が受けている引張応力が最大でも300MPa以下である。このため、固体電解質層が引張応力によって破壊することが防止され、耐久性、信頼性の高い積層型ガスセンサ素子となし得る。   Also in this laminated gas sensor element, the tensile stress received by the solid electrolyte layer in the vicinity of the interface with the alumina insulating layer is 300 MPa or less at the maximum. For this reason, the solid electrolyte layer is prevented from being broken by tensile stress, and a laminated gas sensor element with high durability and reliability can be obtained.

また、固体電解質層が受けている応力値を得るのに、固体電解質層と同じ組成の第1基準試料を用意し、この第1基準試料を用いて各応力値と蛍光ピークの波数値との第1関係を求めておく。さらに、固体電解質層内の各部位にレーザ光を照射し、測定した蛍光ピークの波数値から、第1関係に基づいて固体電解質層内の各部で受けている応力値を得る。
このようにレーザを照射し、Cr3+イオンの発する蛍光を用いることにより、固体電解質層が実際に受けている応力を、積層型ガスセンサ素子の形態において測定することができる。
なお、蛍光ピークの波数値としては、絶対波数値を用いることができるほか、基準とする所定絶対波数値(たとえば照射したレーザ光の絶対波数値)に対する蛍光ピークの相対波数値を用いることもできる。
Further, in order to obtain the stress value applied to the solid electrolyte layer, a first reference sample having the same composition as that of the solid electrolyte layer is prepared, and the stress value and the wave value of the fluorescence peak are calculated using the first reference sample. Find the first relationship. Further, each part in the solid electrolyte layer is irradiated with laser light, and the stress value received at each part in the solid electrolyte layer is obtained from the measured wave value of the fluorescence peak based on the first relationship.
By irradiating the laser in this way and using the fluorescence emitted by Cr 3+ ions, the stress actually applied to the solid electrolyte layer can be measured in the form of the stacked gas sensor element.
As the wave value of the fluorescence peak, an absolute wave value can be used, or a relative wave value of the fluorescence peak with respect to a predetermined absolute wave value (for example, the absolute wave value of the irradiated laser beam) can be used. .

他の解決手段は、ジルコニア結晶粒子とCr3+イオンを含有するアルミナ結晶粒子とが互いに分散されてなる固体電解質層と、上記固体電解質層と同時焼成により少なくとも一部で直接接して積層され、Cr3+イオンを含有するアルミナ結晶粒子を主成分とするアルミナ絶縁層と、を備える積層型ガスセンサ素子であって、上記固体電解質層とアルミナ絶縁層との界面を介して、上記固体電解質層が受けている応力と、上記アルミナ絶縁層が受けている応力との差が400MPa以下である積層型ガスセンサ素子である。 Another solution is a solid electrolyte layer in which zirconia crystal particles and alumina crystal particles containing Cr 3+ ions are dispersed with each other, and the solid electrolyte layer is laminated in direct contact with at least part of the solid electrolyte layer by co-firing. A laminated gas sensor element comprising an alumina insulating layer mainly composed of alumina crystal particles containing Cr 3+ ions, wherein the solid electrolyte layer is interposed through an interface between the solid electrolyte layer and the alumina insulating layer. In the multilayer gas sensor element, a difference between the stress received and the stress received by the alumina insulating layer is 400 MPa or less.

前述したように、積層型ガスセンサ素子では、固体電解質層の熱膨張率とアルミナ絶縁層の熱膨張率との違いによって、相対的に熱膨張率の大きい固体電解質層には引張応力が、相対的に熱膨張率の小さいアルミナ絶縁層には圧縮応力が掛かり、両者間にその界面を介して応力差が生じると考えられる。従って、固体電解質層とアルミナ絶縁層との間の応力差が過大である場合には、この界面近傍において、破壊が生じ、クラックの原因となると解される。
これに対して、本発明の積層型ガスセンサ素子では、固体電解質層とアルミナ絶縁層との界面を介して、固体電解質層が受けている応力と、アルミナ絶縁層が受けている応力との差が400MPa以下である。このため、この界面近傍で固体電解質層やアルミナ絶縁層が破壊することが防止され、耐久性、信頼性の高い積層型ガスセンサ素子となし得る。
As described above, in the stacked gas sensor element, due to the difference between the thermal expansion coefficient of the solid electrolyte layer and the thermal expansion coefficient of the alumina insulating layer, a tensile stress is relatively applied to the solid electrolyte layer having a relatively large thermal expansion coefficient. In addition, it is considered that the alumina insulating layer having a small coefficient of thermal expansion is subjected to compressive stress and a stress difference is generated between the two through the interface. Accordingly, it is understood that when the stress difference between the solid electrolyte layer and the alumina insulating layer is excessive, the breakage occurs near the interface, causing cracks.
On the other hand, in the multilayer gas sensor element of the present invention, the difference between the stress received by the solid electrolyte layer and the stress received by the alumina insulating layer via the interface between the solid electrolyte layer and the alumina insulating layer is as follows. 400 MPa or less. For this reason, the solid electrolyte layer and the alumina insulating layer are prevented from being destroyed in the vicinity of the interface, and a laminated gas sensor element with high durability and reliability can be obtained.

また、ジルコニア結晶粒子とCr3+イオンを含有するアルミナ結晶粒子とが互いに分散されてなる固体電解質層と、上記固体電解質層と同時焼成により少なくとも一部で直接接して積層され、Cr3+イオンを含有するアルミナ結晶粒子を主成分とするアルミナ絶縁層と、を備える積層型ガスセンサ素子であって、上記固体電解質層と同じ組成を有する第1基準試料を用意して、この第1基準試料に応力を掛け、既知の応力が掛かった部分に所定波長のレーザ光を照射して、上記第1基準試料に含まれる上記Cr3+イオンが発する蛍光のうち、絶対波数値14400cm-1付近に位置する蛍光のピークの波数値を測定して、各応力値と上記蛍光ピークの波数値との第1関係を求めると共に、上記アルミナ絶縁層と同じ組成を有する第2基準試料を用意して、この第2基準試料に応力を掛け、既知の応力が掛かった部分に上記所定波長のレーザ光を照射して、上記第2基準試料に含まれる上記Cr3+イオンが発する上記蛍光のピークの波数値を測定して、各応力値と上記蛍光ピークの波数値との第2関係を求めておく一方、上記固体電解質層のうち上記界面直近の部位及びアルミナ絶縁層のうち上記界面直近の部位それぞれに、または上記界面上に、上記所定波長のレーザ光を照射して上記蛍光のピークの波数値を測定し、測定した蛍光ピークの波数値から、上記第1関係に基づいて得た、上記界面直近において固体電解質層が受けている応力値と、上記第2関係に基づいて得た、上記界面直近においてアルミナ絶縁層が受けている応力値との差が400MPa以下である積層型ガスセンサ素子とするのが好ましい。 In addition, a solid electrolyte layer in which zirconia crystal particles and alumina crystal particles containing Cr 3+ ions are dispersed with each other, and at least partly in direct contact with the solid electrolyte layer and laminated, Cr 3+ ions A laminated gas sensor element comprising an alumina insulating layer containing alumina crystal particles containing as a main component, and a first reference sample having the same composition as the solid electrolyte layer is prepared. A portion with a known stress is irradiated with a laser beam having a predetermined wavelength, and the fluorescence emitted by the Cr 3+ ions contained in the first reference sample is positioned near an absolute wave value of 14400 cm −1. A second reference sample having the same composition as that of the alumina insulating layer, by measuring the wave number of the fluorescent peak to obtain a first relationship between each stress value and the wave number of the fluorescent peak Prepared, the second applying stress to the reference sample, the portion known stressed irradiated with laser light of the predetermined wavelength, the fluorescence the Cr 3+ ions contained in the second reference sample emits While measuring the wave value of the peak of each of the two to obtain a second relationship between each stress value and the wave value of the fluorescent peak, the portion of the solid electrolyte layer closest to the interface and the interface of the alumina insulating layer Each of the nearest sites or on the interface is irradiated with the laser beam of the predetermined wavelength to measure the wave value of the fluorescence peak, and is obtained from the measured wave value of the fluorescence peak based on the first relationship. In addition, the laminate type in which the difference between the stress value received by the solid electrolyte layer in the immediate vicinity of the interface and the stress value received by the alumina insulating layer in the immediate vicinity of the interface is 400 MPa or less. Gas Preferably in the support element.

この積層型ガスセンサ素子でも、界面直近においてアルミナ絶縁層が受けている応力値との差が400MPa以下である。このため、界面近傍において固体電解質層やアルミナ絶縁層が破壊することが防止され、耐久性、信頼性の高い積層型ガスセンサ素子となし得る。   In this laminated gas sensor element, the difference from the stress value applied to the alumina insulating layer in the vicinity of the interface is 400 MPa or less. For this reason, the solid electrolyte layer and the alumina insulating layer are prevented from being broken near the interface, and a laminated gas sensor element with high durability and reliability can be obtained.

また、界面直近において固体電解質層の受けている応力値を得るのに、固体電解質層と同じ組成の第1基準試料を用意し、この第1基準試料を用いて各応力値と蛍光ピークの波数値との第1関係を求めておく。さらに、固体電解質層の界面直近の部位にレーザ光を照射し、測定した蛍光ピークの波数値から、第1関係に基づいて界面直近で固体電解質層が受けている応力値を得る。同様に、界面直近においてアルミナ絶縁層の受けている応力値を得るのに、アルミナ絶縁層と同じ組成の第2基準試料を用意し、この第2基準試料を用いて各応力値と蛍光ピークの波数値との第2関係を求めておく。さらに、アルミナ絶縁層の界面直近の部位にレーザ光を照射し、測定した蛍光ピークの波数値から、第2関係に基づいて界面直近でアルミナ絶縁層が受けている応力値を得る。
このようにレーザを照射し、Cr3+イオンの発する蛍光を用いることにより、固体電解質層及びアルミナ絶縁層が実際に受けている応力を、さらにはこれらの間の応力差を、積層型ガスセンサ素子の形態において測定することができる。
なお、蛍光ピークの波数値としては、絶対波数値を用いることができるほか、基準とする所定絶対波数値(たとえば照射したレーザ光の絶対波数値)に対する蛍光ピークの相対波数値を用いることもできる。
In addition, in order to obtain the stress value received by the solid electrolyte layer in the immediate vicinity of the interface, a first reference sample having the same composition as that of the solid electrolyte layer is prepared, and the stress value and the fluorescence peak wave are prepared using the first reference sample. The first relationship with the numerical value is obtained. Further, a portion of the solid electrolyte layer near the interface is irradiated with laser light, and the stress value received by the solid electrolyte layer in the vicinity of the interface is obtained from the measured wave value of the fluorescence peak based on the first relationship. Similarly, in order to obtain the stress value received by the alumina insulating layer in the immediate vicinity of the interface, a second reference sample having the same composition as that of the alumina insulating layer is prepared, and each stress value and fluorescence peak are obtained using this second reference sample. A second relationship with the wave value is obtained. Further, a portion of the alumina insulating layer in the vicinity of the interface is irradiated with laser light, and the stress value received by the alumina insulating layer in the vicinity of the interface is obtained from the measured wave value of the fluorescence peak based on the second relationship.
By irradiating the laser in this way and using the fluorescence emitted by Cr 3+ ions, the stress actually received by the solid electrolyte layer and the alumina insulating layer, and further, the difference in stress between them is obtained. Can be measured.
As the wave value of the fluorescence peak, an absolute wave value can be used, or a relative wave value of the fluorescence peak with respect to a predetermined absolute wave value (for example, the absolute wave value of the irradiated laser beam) can be used. .

本発明の実施の形態を、図1〜図7を参照して、以下に説明する。まず、本実施形態にかかる積層型ガスセンサ素子1について、図1,図2を参照して説明する。このうち、図1は、積層型ガスセンサ素子1の分解斜視図である。また、図2は、積層型ガスセンサ素子1をその長手方向(図1中、左右方向)に直交し、かつ、次述する検知電極12,基準電極13及び発熱部24が含まれる断面で切断した断面図である。   Embodiments of the present invention will be described below with reference to FIGS. First, the laminated gas sensor element 1 according to the present embodiment will be described with reference to FIGS. Among these, FIG. 1 is an exploded perspective view of the multilayer gas sensor element 1. FIG. 2 is a cross-sectional view of the laminated gas sensor element 1 that is orthogonal to the longitudinal direction (left and right direction in FIG. 1) and includes a detection electrode 12, a reference electrode 13, and a heating portion 24 described below. It is sectional drawing.

この積層型ガスセンサ素子1は、図1に示すように、複数のセラミック層を積層して成る素子である。この積層型ガスセンサ素子1は、酸素濃淡電池素子10と基体20とに大別される。
このうち、酸素濃淡電池素子10は、酸素濃淡電池用固体電解質層(以下、固体電解質層ということもある)11と、これを挟む検知電極12及び基準電極13と、検知電極12を挟んで固体電解質層11と積層されてなる電極保護層18及び強化保護層19を有する。固体電解質層11は、イットリアを所定量(5mol%)添加した部分安定化ジルコニア及びアルミナ(ジルコニア結晶粒子及びアルミナ結晶粒子)を含み、ジルコニアによって固体電解質としての性質を備える。この固体電解質層11は、その上面11u(図中上方)に、Ptからなる検知電極12を備えている。この検知電極12は、延出リード14によって基端側(図中右方)に引き出されている。また、固体電解質層11は、その下面11d(図中下方)にも、Ptからなる基準電極13を備えている。この基準電極13も、延出リード15によって基端側(図中右方)に延ばされ、固体電解質層11を貫通するスルーホール導電体16によって、固体電解質層11の上面11uの基端側に形成された端子パッド17に接続している。
The multilayer gas sensor element 1 is an element formed by laminating a plurality of ceramic layers as shown in FIG. The stacked gas sensor element 1 is roughly divided into an oxygen concentration cell element 10 and a base body 20.
Among these, the oxygen concentration cell element 10 is a solid electrolyte layer for oxygen concentration cell (hereinafter also referred to as a solid electrolyte layer) 11, a detection electrode 12 and a reference electrode 13 sandwiching the solid electrolyte layer, and a detection electrode 12. It has an electrode protective layer 18 and a reinforced protective layer 19 which are laminated with the electrolyte layer 11. The solid electrolyte layer 11 includes partially stabilized zirconia and alumina (zirconia crystal particles and alumina crystal particles) to which a predetermined amount (5 mol%) of yttria is added, and has a property as a solid electrolyte by zirconia. The solid electrolyte layer 11 includes a detection electrode 12 made of Pt on the upper surface 11u (upward in the drawing). The detection electrode 12 is drawn out to the base end side (right side in the figure) by the extension lead 14. The solid electrolyte layer 11 also includes a reference electrode 13 made of Pt on the lower surface 11d (lower side in the figure). The reference electrode 13 is also extended to the base end side (right side in the drawing) by the extension lead 15, and the base end side of the upper surface 11 u of the solid electrolyte layer 11 by the through-hole conductor 16 penetrating the solid electrolyte layer 11. It is connected to the terminal pad 17 formed in.

さらに、この固体電解質層11の上面11u上(図中上方)には、検知電極12を覆うように配置され、この検知電極12を被毒から防護するための多孔質の電極保護層18と、固体電解質層11を保護するため、第1,第2絶縁層21,22と同じアルミナを主体とする強化保護層19とが形成されている。なお、図1より容易に理解できるように、延出リード14の基端部14bと端子パッド17とが外部に露出するように、強化保護層19は配置形成されている。   Furthermore, on the upper surface 11u of this solid electrolyte layer 11 (upper side in the figure), a porous electrode protection layer 18 is disposed so as to cover the detection electrode 12, and protects the detection electrode 12 from poisoning, In order to protect the solid electrolyte layer 11, a reinforced protective layer 19 mainly composed of the same alumina as the first and second insulating layers 21 and 22 is formed. As can be easily understood from FIG. 1, the reinforced protective layer 19 is arranged and formed so that the base end portion 14b of the extended lead 14 and the terminal pad 17 are exposed to the outside.

また、基体20は、2層の第1,第2絶縁層21,22と、これらに挟まれた抵抗発熱体23とを有する。このうち、第1,第2絶縁層21,22は、いずれもアルミナを主成分とする絶縁層である。また、抵抗発熱体23は、Ptからなり、上述の検知電極12及び基準電極13の直下に位置し、ジグザグ形態とされ、通電により発熱する発熱部24と、基端側(図中右方)に配置されたスルーホールパッド部26と、発熱部24の両端からスルーホールパッド部26までそれぞれ延びるリード部25と、を有する。さらに、端子パッド28と、第2絶縁層22を貫通してこの端子パッド28とスルーホールパッド部26とをそれぞれ接続するスルーホール導電体27とを有する。   The base body 20 includes two layers of first and second insulating layers 21 and 22 and a resistance heating element 23 sandwiched therebetween. Of these, the first and second insulating layers 21 and 22 are both insulating layers mainly composed of alumina. Further, the resistance heating element 23 is made of Pt, is located immediately below the detection electrode 12 and the reference electrode 13 and has a zigzag shape, and a heat generating portion 24 that generates heat by energization, and a base end side (right side in the figure). Through hole pad portions 26 and lead portions 25 extending from both ends of the heat generating portion 24 to the through hole pad portions 26, respectively. Furthermore, it has a terminal pad 28 and a through-hole conductor 27 that penetrates through the second insulating layer 22 and connects the terminal pad 28 and the through-hole pad portion 26.

この積層型ガスセンサ素子1は、以下のようにして作製する。まず、固体電解質層用の未焼成シートを作成する。具体的には、イットリアを所定量(5mol%)固溶させたジルコニア粉末と、アルミナ粉末と、バインダ(ポリビニルブチラール)と、溶剤と混ぜて混練してスラリーとし、これを公知のキャスティング法によって未焼成シートに加工する。この未焼成シートを所定形状に切断する。   The laminated gas sensor element 1 is manufactured as follows. First, an unfired sheet for a solid electrolyte layer is created. Specifically, a zirconia powder in which a predetermined amount (5 mol%) of yttria is dissolved, an alumina powder, a binder (polyvinyl butyral), and a solvent are mixed and kneaded to obtain a slurry, which is not yet obtained by a known casting method. Processed into a fired sheet. The green sheet is cut into a predetermined shape.

この未焼成シートの所定位置に貫通孔を穿孔し、その内周面にスルーホール導電体16となる、Ptを主成分とする導電ペーストを塗布する。また、この未焼成シートの表裏面のうち所定領域に、検知電極12,基準電極13、及び延出リード14,15となる所定パターンで、Ptを主成分とする導電ペーストを印刷し、乾燥させて、固体電解質層用の未焼成シートとする。   A through-hole is drilled at a predetermined position of the green sheet, and a conductive paste containing Pt as a main component and serving as a through-hole conductor 16 is applied to the inner peripheral surface of the through-hole. In addition, a conductive paste containing Pt as a main component is printed in a predetermined pattern on the front and back surfaces of the green sheet in a predetermined pattern to be the detection electrode 12, the reference electrode 13, and the extended leads 14 and 15, and dried. Thus, an unsintered sheet for the solid electrolyte layer is obtained.

また別途、第1,第2絶縁層用、及び強化保護層用の未焼成シートを作成する。具体的には、アルミナ粉末、あるいは、アルミナ粉末とイットリアを所定量固溶させたジルコニア粉末と、バインダ(ホ゜リヒ゛ニルフ゛チラール)と、溶剤と混練してスラリーとし、これを公知のキャスティング法によって未焼成シートに加工する。この未焼成シートを所定形状を有する複数ヶに切断する。これら未焼成シートは、第1絶縁層21、第2絶縁層22、及び強化保護層19となる。   Separately, unfired sheets for the first and second insulating layers and the reinforced protective layer are prepared. Specifically, alumina powder or a zirconia powder in which a predetermined amount of alumina powder and yttria are dissolved, a binder (polyvinyl vinyl), and a solvent are kneaded to form a slurry, which is a green sheet by a known casting method. To process. The green sheet is cut into a plurality having a predetermined shape. These unfired sheets become the first insulating layer 21, the second insulating layer 22, and the reinforced protective layer 19.

この未焼成シートのうち、第2絶縁層22となる未焼成シートについて、その所定位置に貫通孔を穿孔し、その内周面にスルーホール導電体27となる、Ptを主成分とする導電ペーストを塗布する。また、その表裏面のうち所定領域に、抵抗発熱体23、及び端子パッド28となる所定パターンで、Ptを主成分とする導電ペーストを印刷し、乾燥させて、第2絶縁層用の未焼成シートとする。 Among the unfired sheets, the unfired sheet to be the second insulating layer 22 is made of a conductive paste mainly composed of Pt, in which through holes are drilled at predetermined positions and through-hole conductors 27 are formed on the inner peripheral surface thereof. Apply. In addition, a conductive paste mainly composed of Pt is printed in a predetermined pattern to be the resistance heating element 23 and the terminal pad 28 in a predetermined region of the front and back surfaces, and dried, so that it is not fired for the second insulating layer. A sheet.

ついで、第1絶縁層用の未焼成シートと第2絶縁層用の未焼成シートとを、抵抗発熱体23のパターンが層間となるようにして積層し、圧着する。さらに、第1絶縁層用の未焼成シートと固体電解質層用の未焼成シートとを、基準電極13のパターンが層間となるようにして積層し、圧着する。
さらに、別途、アルミナ粉末と、気孔化材(カーボン粉末)と、バインダ(フ゛チラール樹脂及びシ゛フ゛チルテレフタレート)と、分散剤とを混練したスラリーをシート化し切断して、電極保護層用の未焼成シートを作成しておく。この電極保護層用の未焼成シートを検知電極12となるパターンを覆うようにして、また、強化保護層用の未焼成シートを積層圧着して、所定形状に切断して、未焼成積層体を得た。
Next, the unfired sheet for the first insulating layer and the unfired sheet for the second insulating layer are laminated and pressure-bonded so that the pattern of the resistance heating element 23 is between the layers. Further, the unfired sheet for the first insulating layer and the unfired sheet for the solid electrolyte layer are laminated so that the pattern of the reference electrode 13 is between the layers, and pressure-bonded.
Separately, a slurry obtained by kneading alumina powder, a pore-forming material (carbon powder), a binder (butyral resin and dibutyl terephthalate), and a dispersing agent is cut into a sheet, and an unfired sheet for an electrode protective layer is obtained. Create it. The unfired sheet for the electrode protective layer is covered with the pattern to be the detection electrode 12, and the unfired sheet for the reinforcing protective layer is laminated and pressure-bonded, cut into a predetermined shape, and the unfired laminate is obtained. Obtained.

その後、公知の手法によってこの未焼成積層体を焼成する。具体的には、大気雰囲気下、20℃/Hの昇温速度で昇温させ、450℃に1時間保持して、脱脂を行う。ついで、昇温させ、1500℃で1時間焼成し、積層型ガスセンサ素子1を得た(図1,図2参照)。   Thereafter, the green laminate is fired by a known method. Specifically, degreasing is performed by raising the temperature at a rate of temperature increase of 20 ° C./H in an air atmosphere and holding at 450 ° C. for 1 hour. Next, the temperature was raised and the laminate was fired at 1500 ° C. for 1 hour to obtain a multilayer gas sensor element 1 (see FIGS. 1 and 2).

ついで、本実施形態に使用する波数測定装置100を、図3を参照して説明する。この波数測定装置100は、京都工芸繊維大学の工芸学部物質工学科セラミック物理学研究室(Pezzotti教授)が有するラマン分光分析装置である。この波数測定装置100では、Arイオンレーザ120(波長488nm)のレーザ光を、顕微光学系130でX−Yテーブル170上に載置した測定試料SMに導き照射する。その反射光を再び顕微光学系130で受け、分光器140に導く。なお、この分光器140には、高精度のトリプルモノクロメータ(T-64000,Jobin-Yvon/HoribaGroup ISA製)を用いている。更にこの分光器140は、Cr3+イオンの蛍光ピークのような安定かつ高強度なピークを対象とした場合、測定温度の管理や機械的なバラツキ抑制のため、ネオンランプ光源からの光線を分光して得たリファレンスピークをモニタし、これを用いてピーク補正するなど測定条件の最適化を行う等の改良が施されており、その分解能が0.01cm-1にまで高められている。 Next, the wave number measuring apparatus 100 used in the present embodiment will be described with reference to FIG. This wave number measuring apparatus 100 is a Raman spectroscopic analysis apparatus possessed by the Ceramic Physics Laboratory (Professor Pezzotti) of the Department of Materials Engineering, Kyoto Institute of Technology. In this wave number measuring apparatus 100, laser light of an Ar ion laser 120 (wavelength 488 nm) is guided and irradiated to the measurement sample SM placed on the XY table 170 by the microscopic optical system 130. The reflected light is received again by the microscopic optical system 130 and guided to the spectroscope 140. The spectroscope 140 uses a high precision triple monochromator (T-64000, manufactured by Jobin-Yvon / HoribaGroup ISA). Furthermore, when the spectroscope 140 targets a stable and high intensity peak such as a fluorescence peak of Cr 3+ ions, the spectroscope 140 separates a light beam from a neon lamp light source in order to manage a measurement temperature and suppress mechanical variation. The reference peak obtained in this way is monitored, and the measurement conditions are optimized, such as peak correction using this, and the resolution is increased to 0.01 cm −1 .

反射光のうち分光器140で分光された光は、一次元ラインセンサとなるCCDアレイ150に入力される。CCDアレイ150では、各CCD素子に入射する光の波長(波数)が異なることから、各CCD素子の出力を得ることで、各波長(波数)毎の光の強度が測定できる。即ち、スペクトル強度分布が測定できることとなる。これをコンピュータ160に取り込み、更に処理を行う。   Of the reflected light, the light split by the spectroscope 140 is input to the CCD array 150 serving as a one-dimensional line sensor. In the CCD array 150, since the wavelength (wave number) of light incident on each CCD element is different, the intensity of light for each wavelength (wave number) can be measured by obtaining the output of each CCD element. That is, the spectral intensity distribution can be measured. This is taken into the computer 160 and further processed.

ところで、前述したように、アルミナ結晶粒子には、アルミニウムイオンの不可避不純物としてわずかにCr3+イオンを含むことが判っている。ところで、このCr3+イオンを含むアルミナ結晶粒子に694nm以下(例えば、488nmや514nm)の波長を有するレーザ光を照射すると、Cr3+イオンがそのピークPKの絶対波数値約14400cm-1の蛍光を発することが判っている(図4参照)。 By the way, as described above, it has been found that the alumina crystal particles contain slight Cr 3+ ions as inevitable impurities of aluminum ions. By the way, when the alumina crystal particles containing Cr 3+ ions are irradiated with laser light having a wavelength of 694 nm or less (for example, 488 nm or 514 nm), the Cr 3+ ions emit fluorescence having an absolute wave value of about 14400 cm −1 at the peak PK. (See FIG. 4).

さらに、この蛍光のピークの絶対波数値(相対波数値)は、アルミナ結晶粒子に掛かる応力の大きさに応じて変化することが判っている。このことから、蛍光のピークの波数値を測定すれば、アルミナ結晶粒子に掛かっている応力の大きさを推定することができる。   Furthermore, it has been found that the absolute wave value (relative wave value) of this fluorescence peak changes according to the magnitude of stress applied to the alumina crystal particles. From this, the magnitude of the stress applied to the alumina crystal particles can be estimated by measuring the wave number of the fluorescence peak.

そこで、本実施形態に係るガスセンサ素子1についても、これを利用して、固体電解質層11に生じる応力、第1絶縁層21に生じる応力、及びこれらの間に生じる応力差を測定することを考える。   Therefore, it is considered that the gas sensor element 1 according to the present embodiment is also used to measure the stress generated in the solid electrolyte layer 11, the stress generated in the first insulating layer 21, and the stress difference generated therebetween. .

酸素濃淡電池用固体電解質層11は、ジルコニアをある程度含み、アルミナ含有量は比較的少ない(例えば、50%、30%、10%、あるいは3%。後述する図7参照)のに対し、第1絶縁層21は、アルミナの含有量が多い(例えば、90%、または100%。後述する図7参照)。このように、固体電解質層11と第1絶縁層21とでは、アルミナの含有量が異なるので、互いの熱膨張率が異なると考えられるからである。一般的には、アルミナ−ジルコニア複合体については、アルミナの含有量が大きくなるほど熱膨張率が低くなるため、アルミナ含有量の異なる異種のアルミナ−ジルコニア複合材層、あるいはアルミナ−ジルコニア複合体層とアルミナ層とを積層して同時焼結すると、互いの間に熱膨張差が生じる。具体的には、アルミナ含有量の多いアルミナ−ジルコニア複合材層あるいはアルミナ層には、アルミナ含有量の少ないアルミナ−ジルコニア複合材から圧縮応力が掛けられることとなる。逆に、アルミナ含有量の少ないアルミナ−ジルコニア複合材には、アルミナ含有量の多いアルミナ−ジルコニア複合材あるいはアルミナ層から引張応力が掛けられることとなる。
なお、これらの応力は、全体としては残留応力であるが、それぞれの層からすれば外力として作用していることになる。
従って、この積層型ガスセンサ素子1において、固体電解質層11には、第1絶縁層21により引張応力が掛かり、この逆に、第1絶縁層21には、固体電解質層11により圧縮応力が掛かると予測され、これら2層の間には応力差が生じると予測されるのである。
The solid electrolyte layer 11 for an oxygen concentration cell contains a certain amount of zirconia and has a relatively low alumina content (for example, 50%, 30%, 10%, or 3%, see FIG. 7 described later), whereas the first The insulating layer 21 has a high content of alumina (for example, 90% or 100%, see FIG. 7 described later). As described above, the solid electrolyte layer 11 and the first insulating layer 21 have different alumina contents, and thus are considered to have different coefficients of thermal expansion. In general, for alumina-zirconia composites, the higher the alumina content, the lower the coefficient of thermal expansion. Therefore, different alumina-zirconia composite layers having different alumina contents, or alumina-zirconia composite layers When the alumina layer is laminated and simultaneously sintered, a difference in thermal expansion occurs between them. Specifically, the alumina-zirconia composite material layer or the alumina layer having a high alumina content is subjected to a compressive stress from the alumina-zirconia composite material having a low alumina content. Conversely, an alumina-zirconia composite material having a low alumina content is subjected to tensile stress from the alumina-zirconia composite material or alumina layer having a high alumina content.
These stresses are residual stresses as a whole, but they act as external forces from the respective layers.
Therefore, in the stacked gas sensor element 1, the solid electrolyte layer 11 is subjected to tensile stress by the first insulating layer 21, and conversely, the first insulating layer 21 is subjected to compressive stress by the solid electrolyte layer 11. It is predicted that a stress difference will occur between these two layers.

そこで、本実施形態では、まず、固体電解質層11と同じ組成、あるいは、第1絶縁体層21と同じ組成(後述する図7参照)を有する基準試料SBを用意する。ついで、基準試料SBに応力を掛けつつレーザ光を照射し蛍光を測定して、応力値と蛍光ピークの波数値κp(蛍光ピークの相対波数値κps)との関係を求める。
基準試料SBとしては、100wt%アルミナからなる試料のほか、アルミナ含有量が90,70,50,20,3wt%のアルミナ−ジルコニア複合材からなる基準試料SBを以下のようにして作成した。
即ち、原料粉末としてアルミナ粉末と5mol%Y23含有安定化ジルコニア粉末とを上述のアルミナ質量分率で秤量し、ボールミル混合し、成形後、大気雰囲気下で、1500℃×1Hrで焼成した。その後、3×4×40mmの直方体の試験片形状に加工し、さらに1200℃×1Hrのアニールを行って、基準試料SBを得た。なお、アニールを行うのは、加工による歪みを除去するためである。
Therefore, in the present embodiment, first, a reference sample SB having the same composition as the solid electrolyte layer 11 or the same composition as the first insulator layer 21 (see FIG. 7 described later) is prepared. Next, the reference sample SB is irradiated with laser light while applying stress to measure fluorescence, and the relationship between the stress value and the fluorescence peak wave value κp (fluorescence peak relative wave value κps) is obtained.
As the reference sample SB, in addition to a sample made of 100 wt% alumina, a reference sample SB made of an alumina-zirconia composite material having an alumina content of 90, 70, 50, 20, 3 wt% was prepared as follows.
That is, alumina powder and 5 mol% Y 2 O 3 -containing stabilized zirconia powder as raw material powders were weighed in the above-mentioned alumina mass fraction, ball mill mixed, molded, and then fired at 1500 ° C. × 1 Hr in an air atmosphere. . Thereafter, the sample was processed into a 3 × 4 × 40 mm rectangular parallelepiped test piece shape, and further annealed at 1200 ° C. × 1 Hr to obtain a reference sample SB. The annealing is performed in order to remove distortion caused by processing.

ついで、これらの基準試料SBを用いて、これらの基準試料に掛かっている応力値と、基準とする絶対波数値(20491cm-1:Arイオンレーサ゛光の波数)に対する蛍光ピークの相対波数値κpsとの関係を、以下のようにして求める。
なお、本実施形態で用いた波数測定装置100は、ラマン分光分析装置であるため、光の波数値を絶対波数値で表示するのではなく、試料に照射したArイオンレーザのレーザ光(波長488nm)の持つ絶対波数値(κa=20491cm-1)を基準とする相対波数値κsで表示するように設計されている。このため、本実施形態においても、光の波数を、絶対波数値ではなく、相対波数値で表すこととする。また、蛍光ピークの波数値κpとして、その相対波数値表現である蛍光の相対波数値κpsで表すこととする。
なお、容易に理解できるように、基準の絶対波数値(κa=20491cm-1)から蛍光ピークの相対波数値(κps=約6087cm-1)を差し引けば、蛍光ピークの絶対波数値表現(κpa=約14400cm-1)が得られる。
Then, using these reference samples SB, the stress value applied to these reference samples and the relative wave value κps of the fluorescence peak with respect to the reference absolute wave value (20491 cm −1 : wave number of Ar ion laser light) Is obtained as follows.
Since the wave number measuring apparatus 100 used in this embodiment is a Raman spectroscopic analyzer, the wave number of light is not displayed as an absolute wave number, but an Ar ion laser laser beam (wavelength 488 nm) irradiated on the sample. ) Has a relative wave value κs based on the absolute wave value (κa = 20491 cm −1 ). For this reason, also in the present embodiment, the wave number of light is represented not by an absolute wave value but by a relative wave value. Further, the wave value κp of the fluorescence peak is represented by the relative wave value κps of fluorescence, which is the relative wave value expression.
Incidentally, easily as it can be appreciated, if the absolute wave value of the reference (κa = 20491cm -1) subtracting the relative wave value of the fluorescence peak (κps = about 6087cm -1), the absolute wave numerical representation of the fluorescence peak (Kappapa = About 14400 cm -1 ).

まず、この基準試料SBに応力を付加する手段について説明する。本実施形態では、JIS−R−1601に従い、図5に示すように、基準試料SBに4点曲げ方式による応力を加えるため、4点曲げ応力付加ジグ80を用いる。このジグ80は、図中上方に位置する第1台座81とこれより下方に位置する第2台座82との間に、上部スパンL1の間隔を置いて、直径2mmφの円柱コロ83a,83bを配置する。また、下部スパンL2の間隔を置いて、同じく直径2mmφの円柱コロ84a,84bを配置する。さらに、これら2対の円柱コロ83a,83b及び84a,84bの間に、2対の円柱コロ83a,83b及び84a,84bそれぞれが左右対称に配置されるようにして、基準試料SBを配置し、ロードセル91を介してプッシャ85で荷重Pを掛ける。これにより、基準試料SBは、いわゆる4点曲げによる応力が掛けられる。なお、ロードセル91の出力は、チャージアンプ90を通じて、コンピュータ160に入力される(図3参照)。   First, means for applying stress to the reference sample SB will be described. In this embodiment, in accordance with JIS-R-1601, as shown in FIG. 5, a four-point bending stress applying jig 80 is used to apply stress to the reference sample SB by the four-point bending method. In this jig 80, cylindrical rollers 83a and 83b having a diameter of 2 mmφ are arranged between the first pedestal 81 located in the upper part of the drawing and the second pedestal 82 located in the lower part with an interval of the upper span L1. To do. Further, cylindrical rollers 84a and 84b having a diameter of 2 mmφ are also arranged at intervals of the lower span L2. Further, between the two pairs of cylindrical rollers 83a, 83b and 84a, 84b, the reference sample SB is arranged such that the two pairs of cylindrical rollers 83a, 83b and 84a, 84b are arranged symmetrically, respectively. A load P is applied by the pusher 85 through the load cell 91. Thereby, the reference sample SB is subjected to stress by so-called four-point bending. The output of the load cell 91 is input to the computer 160 through the charge amplifier 90 (see FIG. 3).

各基準試料に掛かる応力の分布は、基準試料側面の仮想中心線(破線A−O−Bで示す)上において、線形の1軸応力場となることが判っており、図5の拡大図に示すように、中心Oよりも図中下方では引張応力、図中上方では圧縮応力となる。また、仮想中心線の下端Bにおける最大引張応力値σtmaxは、σtmax=3P(L2−L1)/(2Ws・Ts2)で与えられる。
なお、上式において、Pは荷重、L1は上部スパン(=10mm)、L2は下部スパン(=30mm)、Wsは基準試料の幅(=3mm)、Tsは基準試料の厚み(=4mm)である。
従って、基準試料側面の仮想中心線A−O−B上では、その位置が判れば、その位置で基準試料に掛かっている応力の大きさも判ることとなる。
The distribution of stress applied to each reference sample is known to be a linear uniaxial stress field on a virtual center line (indicated by a broken line A-O-B) on the side surface of the reference sample. As shown, the tensile stress is lower in the figure than the center O, and the compressive stress is higher in the figure. Further, the maximum tensile stress value σtmax at the lower end B of the virtual center line is given by σtmax = 3P (L2−L1) / (2Ws · Ts 2 ).
In the above equation, P is the load, L1 is the upper span (= 10 mm), L2 is the lower span (= 30 mm), Ws is the width of the reference sample (= 3 mm), and Ts is the thickness of the reference sample (= 4 mm). is there.
Therefore, if the position is known on the virtual center line AOB on the side surface of the reference sample, the magnitude of the stress applied to the reference sample at that position can also be determined.

そこで、基準試料SBに荷重Pをかけ続けた状態の4点曲げ応力付加ジグ80を、X−Yテーブル170に載置し、この基準試料側面の仮想中心線A−O−B上に、波数測定装置100を用いて、Arイオンレーザ光を照射する。なお、レーザ光のスポット径は2μmφ、出力200mWとした。   Therefore, the four-point bending stress applying jig 80 in a state where the load P is continuously applied to the reference sample SB is placed on the XY table 170, and the wave number is placed on the virtual center line AOB on the side of the reference sample. Ar ion laser light is irradiated using the measuring apparatus 100. The spot diameter of the laser beam was 2 μmφ and the output was 200 mW.

さらに、反射光を分光し、Cr3+イオンが発する蛍光のスペクトル強度分布を求める(図4参照)。ついで、このスペクトル分布から、そのピークPKの位置(相対波数値κps)を求める。なお、本実施形態では、蛍光のスペクトル強度分布からそのピークPKの相対波数値を求めるのに、この分布が、ローレンシアン及びガウシアンの混合であるとして、公知のソフトウェア(Grams386、Galactic Co.製)を用いた。 Further, the reflected light is dispersed to obtain a spectral intensity distribution of fluorescence emitted by Cr 3+ ions (see FIG. 4). Next, the position of the peak PK (relative wave value κps) is obtained from this spectrum distribution. In this embodiment, in order to obtain the relative wave value of the peak PK from the spectral intensity distribution of fluorescence, it is assumed that this distribution is a mixture of Laurentian and Gaussian, and known software (Grams386, manufactured by Galactic Co.) Was used.

さらにその上で、X−Yテーブル170により、ジグ80と共に基準試料を移動させて、レーザ光のスポット照射位置を仮想中心線A−O−B上に沿って移動させ、各点における応力値と、蛍光ピークの相対波数値との関係を得た。各基準試料SBについての結果を図6に示す。このようにすると、レーザ光の照射位置を仮想中心線A−O−B上に沿って移動させつつ、蛍光ピークの相対波数値を計測するだけで、蛍光ピークの相対波数値と様々な応力値との関係が得られるので、両者間の関係データの取得が極めて容易である。   Further, the reference sample is moved together with the jig 80 by the XY table 170, the spot irradiation position of the laser beam is moved along the virtual center line AOB, and the stress value at each point is calculated. The relationship with the relative wave value of the fluorescence peak was obtained. The results for each reference sample SB are shown in FIG. In this way, the relative wave value of the fluorescence peak and various stress values can be obtained simply by measuring the relative wave value of the fluorescence peak while moving the irradiation position of the laser beam along the virtual center line AOB. Therefore, it is very easy to obtain relationship data between the two.

この図6では、左側の縦軸には、アルミナ100%の基準試料(100Aと表示)における、外部応力0の点で得られた蛍光ピークの相対波数値(κps=6085.3cm-1:絶対波数値κpa=14405.7cm-1)を基準点(△κ=0)として、波数値のシフト量△κで示してある。一方、右側の縦軸は、蛍光ピークの相対波数値κps及び絶対波数値κpaで示してある。
この図6には、アルミナ100%の基準試料(100Aと表示)のほか、90wt%、70wt%、50wt%、20wt%、3wt%(図中、90A,70A,50A,20A,3Aと表示)の場合を示してある。
In FIG. 6, the vertical axis on the left shows the relative wave value of the fluorescence peak obtained at the point of zero external stress (κps = 6085.3 cm −1 : absolute in the 100% alumina reference sample (indicated as 100A). A wave value κpa = 14405.7 cm −1 ) is used as a reference point (Δκ = 0), and is indicated by a wave value shift amount Δκ. On the other hand, the vertical axis on the right side indicates the relative wave value κps and the absolute wave value κpa of the fluorescence peak.
In FIG. 6, in addition to a reference sample of 100% alumina (indicated as 100A), 90 wt%, 70 wt%, 50 wt%, 20 wt%, 3 wt% (indicated as 90A, 70A, 50A, 20A, 3A in the figure) This case is shown.

これらの結果から、応力値と蛍光ピークの相対波数値との関係は、一次式の関係となることが予測できる。また、各測定点がほぼ直線状に並んでいることから、応力値と蛍光ピークの相対波数値との間には極めて強い相関関係があり、高い精度で相互に値を変換できることが予測できる。なお、応力値と蛍光ピークの絶対波数値との関係も同様である。 From these results, it can be predicted that the relationship between the stress value and the relative wave value of the fluorescence peak is a linear relationship. In addition, since the measurement points are arranged almost linearly, there is an extremely strong correlation between the stress value and the relative wave value of the fluorescence peak, and it can be predicted that the values can be mutually converted with high accuracy. The relationship between the stress value and the absolute wave value of the fluorescence peak is the same.

そこで、図6に示す各基準試料SBに掛かっている応力値σと蛍光ピークの相対波数値κpsとの関係を、回帰直線の式を算出して得た。
アルミナ100%のとき:κps100=−0.00248×3×σ+6085.3 …式(2)
アルミナ90%のとき :κps90 =−0.00248×3×σ+6085.9 …式(3)
アルミナ70%のとき :κps70 =−0.00215×3×σ+6086.5 …式(4)
アルミナ50%のとき :κps50 =−0.00230×3×σ+6087.6 …式(5)
アルミナ20%のとき :κps20 =−0.00246×3×σ+6088.8 …式(6)
アルミナ3%のとき :κps3 =−0.00289×3×σ+6089.2 …式(7)
なお、κps100,κps90等は、各々のアルミナ含有率の場合における蛍光ピークの相対波数値(cm-1)であり、σは応力値(MPa)である。また、これらの関係式のうち、「−0.00248」等は、圧電分光係数(Piezo spectroscpic coefficient)に相当する。また、応力値σに掛ける係数「3」は、上述の4点曲げにおいて生じる応力場は1軸応力場であったのに対して、後述する実測の試料において生じている応力場は3軸応力場であるため、この違いを調整する係数である。
いずれの関係式(2)〜(7)においても、応力値σと蛍光ピークの相対波数値κps100,κps90等との間には極めて強い相関関係があり、この関係式を用いれば、蛍光ピークの相対波数値κps100等と応力値σとを高い精度で相互に値を変換できることが判る。
Therefore, the relationship between the stress value σ applied to each reference sample SB shown in FIG. 6 and the relative wave value κps of the fluorescence peak was obtained by calculating a regression line equation.
When alumina is 100%: κps100 = −0.00248 × 3 × σ + 6085.3 Formula (2)
When alumina is 90%: κps90 = −0.00248 × 3 × σ + 6085.9 Equation (3)
When alumina is 70%: κps70 = −0.00215 × 3 × σ + 6086.5 Formula (4)
When alumina is 50%: κps50 = −0.00230 × 3 × σ + 6087.6 (5)
When alumina is 20%: κps20 = −0.00246 × 3 × σ + 6088.8 Formula (6)
When alumina is 3%: κps3 = −0.00289 × 3 × σ + 6089.2 Equation (7)
Note that κps100, κps90, and the like are relative wave values (cm −1 ) of the fluorescence peak in the case of each alumina content, and σ is a stress value (MPa). Further, among these relational expressions, “−0.00248” or the like corresponds to a piezoelectric spectroscopic coefficient. The coefficient “3” multiplied by the stress value σ is a uniaxial stress field generated in the above-described four-point bending, whereas a stress field generated in an actually measured sample described later is a triaxial stress field. Because this is a field, it is a coefficient that adjusts this difference.
In any of the relational expressions (2) to (7), there is a very strong correlation between the stress value σ and the relative wave values κps100, κps90, etc. of the fluorescence peak. It can be seen that the relative wave value κps100 and the like and the stress value σ can be converted to each other with high accuracy.

一方、本実施形態にかかる積層型ガスセンサ素子1を図2に示すように切断し、その端面(測定面)MSを鏡面研磨した実測試料を作成する。その上で、図2の左方に示すように、固体電解質層11のうち界面IF1の直近の部位MZ1と、第1絶縁層21のうち界面IF1の直近の部位MA1にレーザ光を照射し、固体電解質層11の部位MZ1と第1絶縁層21の部位MA1における蛍光ピークの相対波数値κpszおよびκpsaをそれぞれ測定した。ただし、部位MZ1と部位MA1の位置はごく近接しているため、これらの位置における蛍光ピークの相対波数値κpszとκpsaとは、ほぼ同じ値となった(κpsz≒κpsa)。界面IF1の付近で、不連続的に急変することはなく、得られる蛍光ピークの波数値は連続的に徐々に変化するためである。従って、界面IF1上の部位MB1にレーザ光を照射して得た蛍光ピークの相対波数値κpsbともほぼ同じ値となった(κpsz≒κpsa≒κpsb)。
なお、レーザ光のスポット径は2μmφ、出力200mWとした。
On the other hand, the stacked gas sensor element 1 according to the present embodiment is cut as shown in FIG. 2, and an actual measurement sample is prepared by mirror-polishing the end surface (measurement surface) MS. Then, as shown on the left side of FIG. 2, laser light is irradiated to a portion MZ1 of the solid electrolyte layer 11 closest to the interface IF1 and a portion MA1 of the first insulating layer 21 immediately to the interface IF1, The relative wave values κpsz and κpsa of the fluorescence peaks at the site MZ1 of the solid electrolyte layer 11 and the site MA1 of the first insulating layer 21 were measured, respectively. However, since the positions of the part MZ1 and the part MA1 are very close to each other, the relative wave values κpsz and κpsa of the fluorescence peaks at these positions are almost the same value (κpsz≈κpsa). This is because there is no sudden and sudden change near the interface IF1, and the wave number of the obtained fluorescence peak changes gradually and continuously. Therefore, the relative wave value κpsb of the fluorescence peak obtained by irradiating the part MB1 on the interface IF1 with the laser light is almost the same value (κpsz≈κpsa≈κpsb).
The spot diameter of the laser beam was 2 μmφ and the output was 200 mW.

そこで、固体電解質層11及び第1,第2絶縁層21,22のアルミナ含有率を異ならせて作成した実施例1〜3及び比較例に係る積層型ガスセンサ素子1について、この部位MZ1と部位MA1における蛍光ピークの相対波数値κpsz,κpsaを測定した。その測定結果を、図6に示す結果により、各組成毎に得た式(式(2)〜(7)のいずれか)に従って、応力値σ(σZ、σA)に換算すると、図7の表に示す結果となる。
この図7の表によれば、固体電解質層11におけるアルミナ含有率と、第1絶縁層21におけるアルミナ含有率との差が大きくなるにつれて、固体電解質層11の界面直近における応力値σZ(この部分が固体電解質層の最大応力の点になる)が大きくなることが判る。同様に、第1絶縁層21の界面直近における応力値σA(この部分が第1絶縁層の最大応力の点になる)も大きくなることが判る。なお、応力値は、正の値のとき引張応力を示し、負の値のとき圧縮応力を示す。
Therefore, the part MZ1 and the part MA1 of the laminated gas sensor elements 1 according to Examples 1 to 3 and the comparative example prepared by changing the alumina contents of the solid electrolyte layer 11 and the first and second insulating layers 21 and 22 are different. The relative wave values κpsz and κpsa of the fluorescence peak at were measured. When the measurement results are converted into stress values σ (σZ, σA) according to the formula (any one of formulas (2) to (7)) obtained for each composition based on the results shown in FIG. 6, the table of FIG. The result is as follows.
According to the table of FIG. 7, as the difference between the alumina content in the solid electrolyte layer 11 and the alumina content in the first insulating layer 21 increases, the stress value σZ (this portion near the interface of the solid electrolyte layer 11) Is a point of maximum stress of the solid electrolyte layer). Similarly, it can be seen that the stress value σA (this portion becomes the point of the maximum stress of the first insulating layer) near the interface of the first insulating layer 21 also increases. The stress value indicates a tensile stress when the value is positive, and indicates a compressive stress when the value is negative.

また、界面IF1を介して、固体電解質層11と第1絶縁層21に生じている応力差Dσ(=σZ−(σA))も、図7の表に示す。この応力差Dσも、固体電解質層11におけるアルミナ含有率と第1絶縁層21におけるアルミナ含有率との差が大きくなるにつれて、大きくなることが判る。   Further, the stress difference Dσ (= σZ− (σA)) generated in the solid electrolyte layer 11 and the first insulating layer 21 via the interface IF1 is also shown in the table of FIG. It can be seen that this stress difference Dσ also increases as the difference between the alumina content in the solid electrolyte layer 11 and the alumina content in the first insulating layer 21 increases.

ついで、固体電解質層11及び第1,第2絶縁層21,22の組成が異なる実施例1,2,3及び比較例の積層型ガスセンサ素子1について、冷熱サイクル試験(耐久試験)を50000回行った。その後の積層型ガスセンサ素子1の良否判定結果について、図7の表に示す。
なお、冷熱サイクル耐久試験においては、抵抗発熱体23に対して12Vの電圧を10秒印加して積層型ガスセンサ素子1を加熱した後、風を当てて電極保護層18表面の温度が約150℃まで低下するように60秒間風冷することを1回として、50000回の冷熱サイクル試験を行う。その後、供試された積層型ガスセンサ素子1についてレッドチェックを行い、クラックの有無を実体顕微鏡(倍率4倍)で確認し、クラックの発生が確認されたものをNGとし、クラックの発生していないものをOKとしている。
Subsequently, the thermal cycle test (endurance test) was performed 50000 times for the laminated gas sensor elements 1 of Examples 1, 2, 3 and Comparative Examples having different compositions of the solid electrolyte layer 11 and the first and second insulating layers 21, 22. It was. The quality determination results of the stacked gas sensor element 1 thereafter are shown in the table of FIG.
In the cold cycle endurance test, a voltage of 12 V was applied to the resistance heating element 23 for 10 seconds to heat the laminated gas sensor element 1, and then the temperature of the surface of the electrode protective layer 18 was about 150 ° C. by applying wind. Air cooling for 60 seconds is performed once so that the temperature decreases to 50,000 times. Thereafter, a red check is performed on the tested multilayer gas sensor element 1 and the presence or absence of cracks is confirmed with a stereomicroscope (magnification 4 times). Things are OK.

この図7の表の結果より、固体電解質層11の界面直近における応力値σZが、300MPa以下である場合には、冷熱サイクル耐久試験を行っても、クラックを生じない(実施例1,2,3参照)。しかし、300MPaを越えると、冷熱サイクル耐久試験によりクラックを生じることが判る(比較例参照)。即ち、耐久性、信頼性に劣ることが判る。   From the results in the table of FIG. 7, when the stress value σZ in the vicinity of the interface of the solid electrolyte layer 11 is 300 MPa or less, cracks do not occur even when the thermal cycle durability test is performed (Examples 1, 2, 3). However, when 300 MPa is exceeded, it turns out that a crack arises by a cold cycle endurance test (refer to a comparative example). That is, it turns out that it is inferior to durability and reliability.

また、界面IF1を介して固体電解質層11と第1絶縁層21との間に生じている応力差Dσが、400MPa以下である場合には、冷熱サイクル耐久試験を行っても、クラックを生じない(実施例1,2,3参照)。しかし、400MPaを越えると、冷熱サイクル耐久試験によりクラックを生じることが判る(比較例参照)。即ち、耐久性、信頼性に劣ることが判る。   In addition, when the stress difference Dσ generated between the solid electrolyte layer 11 and the first insulating layer 21 via the interface IF1 is 400 MPa or less, no crack is generated even if the thermal cycle durability test is performed. (See Examples 1, 2, and 3). However, when it exceeds 400 MPa, it can be seen that a crack is caused by a cold cycle endurance test (see comparative example). That is, it turns out that it is inferior to durability and reliability.

以上より、固体電解質層11の界面直近における応力値σZが、300MPa以下となるようにすると良いことが判る。また、界面IF1を介して固体電解質層11と第1絶縁層21との間に生じている応力差Dσが、400MPa以下となるようにすると良いことが判る。   From the above, it can be seen that the stress value σZ in the vicinity of the interface of the solid electrolyte layer 11 should be 300 MPa or less. It can also be seen that the stress difference Dσ generated between the solid electrolyte layer 11 and the first insulating layer 21 via the interface IF1 should be 400 MPa or less.

なお、応力値σZを得るに当たっては、前述したように、予め固体電解質層11と同じ組成の基準試料SBを作成し、この基準試料SBに応力を掛けつつ蛍光ピークの波数値を計測して、応力値と蛍光ピークの波数値との第1関係を得ておく。一方、積層型ガスセンサ素子1の固体電解質層11の断面のうち、界面IF1直近の部位MZ1における蛍光ピークの波数値κpszを測定し、第1関係に基づいて波数値κpszを応力値σZに換算するとよい。
また、応力差Dσを得るに当たっては、上述のようにして応力値σZを得るほか、以下のようにして、応力値σAを求め、これらの差を算出すればよい。予め第1絶縁層21と同じ組成の基準試料SBを作成し、この基準試料SBに応力を掛けつつ蛍光ピークの波数値を計測して、応力値と蛍光ピークの波数値との第2関係を得ておく。一方、積層型ガスセンサ素子1の第1絶縁層21の断面のうち、界面IF1直近の部位MA1における蛍光ピークの波数値κpsaを測定し、第2関係に基づいて波数値κpsaを応力値σAに換算する。
In order to obtain the stress value σZ, as described above, a reference sample SB having the same composition as that of the solid electrolyte layer 11 is prepared in advance, and the wave number of the fluorescence peak is measured while applying stress to the reference sample SB. A first relationship between the stress value and the wave value of the fluorescence peak is obtained. On the other hand, in the cross section of the solid electrolyte layer 11 of the multilayer gas sensor element 1, when the wave value κpsz of the fluorescence peak at the portion MZ1 closest to the interface IF1 is measured, and the wave value κpsz is converted into the stress value σZ based on the first relationship. Good.
In obtaining the stress difference Dσ, in addition to obtaining the stress value σZ as described above, the stress value σA may be obtained as follows and the difference between them may be calculated. A reference sample SB having the same composition as that of the first insulating layer 21 is prepared in advance, and the wave value of the fluorescence peak is measured while applying stress to the reference sample SB, and the second relationship between the stress value and the wave value of the fluorescence peak is obtained. Get it. On the other hand, in the cross section of the first insulating layer 21 of the stacked gas sensor element 1, the wave value κpsa of the fluorescence peak at the portion MA1 closest to the interface IF1 is measured, and the wave value κpsa is converted into the stress value σA based on the second relationship. To do.

以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、上記の実施形態では、蛍光ピークの波数値として、相対波数値κpsを用いたが、絶対波数値を用いても良いことは明らかである。
また、上記実施形態では、図1及び図2に示す形態の積層型ガスセンサ素子1について示した。しかし、アルミナ−ジルコニア複合材からなる固体電解質層と、これと同時焼成によって直接接して積層されたアルミナを主成分とするアルミナ絶縁層とを有する積層型ガスセンサ素子であれば良く、これらの間に大気導入口が形成されていても良いし、上記固体電解質層上に中空の測定室が形成された絶縁層を介して、酸素ポンピング素子が積層されていても良い。
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the above embodiment, the relative wave value κps is used as the wave value of the fluorescence peak, but it is obvious that an absolute wave value may be used.
Moreover, in the said embodiment, it showed about the laminated | stacked gas sensor element 1 of the form shown to FIG.1 and FIG.2. However, any multilayer gas sensor element having a solid electrolyte layer made of an alumina-zirconia composite material and an alumina insulating layer mainly composed of alumina laminated in direct contact with the solid electrolyte layer may be used. An air inlet may be formed, or an oxygen pumping element may be stacked via an insulating layer in which a hollow measurement chamber is formed on the solid electrolyte layer.

また、上記実施形態では、固体電解質層11の断面のうち、界面IF1直近の部位MZ1における蛍光ピークの波数値κpszを測定し、これを換算して応力値σZを得、第1絶縁層21の断面のうち、界面IF1直近の部位MA1における蛍光ピークの波数値κpsaを測定し、これを換算して応力値σAを得た。
しかし、界面IF1の付近で、不連続的に急変することはなく、得られる蛍光ピークの波数値は連続的に徐々に変化する。このため、界面IF1上の部位MB1にレーザ光を照射して得た蛍光ピークの相対波数値κpsbを含め、三者はほぼ同じ値となる(κpsz≒κpsa≒κpsb)。そこで、界面IF1上の部位MB1における蛍光ピークの相対波数値κpsbを測定し、固体電解質層11における応力値と蛍光ピークの波数値との第1関係、及び第1絶縁層21における応力値と蛍光ピークの波数値との第2関係を用いて換算することで、応力値σZ,σAを得ても良い。このようにすると、積層型ガスセンサ素子1における測定回数を減らすことができる。
Further, in the above-described embodiment, the wave value κpsz of the fluorescence peak at the portion MZ1 closest to the interface IF1 in the cross section of the solid electrolyte layer 11 is measured, and converted to obtain the stress value σZ. In the cross section, the wave value κpsa of the fluorescence peak at the portion MA1 closest to the interface IF1 was measured and converted to obtain the stress value σA.
However, it does not change discontinuously suddenly near the interface IF1, and the wave value of the obtained fluorescence peak gradually and gradually changes. For this reason, the three values are almost the same (κpsz≈κpsa≈κpsb) including the relative wave value κpsb of the fluorescence peak obtained by irradiating the part MB1 on the interface IF1 with laser light. Therefore, the relative wave value κpsb of the fluorescence peak at the site MB1 on the interface IF1 is measured, the first relationship between the stress value in the solid electrolyte layer 11 and the wave value of the fluorescence peak, and the stress value and fluorescence in the first insulating layer 21 are measured. The stress values σZ and σA may be obtained by conversion using the second relationship with the peak wave value. If it does in this way, the frequency | count of a measurement in the lamination type gas sensor element 1 can be reduced.

本実施形態にかかる積層型ガスセンサ素子の分解斜視図である。It is a disassembled perspective view of the lamination type gas sensor element concerning this embodiment. 本実施形態にかかる積層型ガスセンサ素子の断面図である。It is sectional drawing of the lamination type gas sensor element concerning this embodiment. 本実施形態に係る蛍光ピークの波数測定に用いる機器の構成を示す説明図である。It is explanatory drawing which shows the structure of the apparatus used for the wavenumber measurement of the fluorescence peak which concerns on this embodiment. Cr3+イオンが発する蛍光のスペクトル強度分布を示す説明図である。It is explanatory drawing which shows the spectrum intensity distribution of the fluorescence which Cr3 + ion emits. 基準試料に応力を掛けつつレーザ光を照射するために、基準試料を4点曲げ方式による応力を加えるためのジグの形態を示す説明図である。It is explanatory drawing which shows the form of the jig | tool for applying the stress by a 4-point bending method to a reference | standard sample, in order to irradiate a laser beam, applying a stress to a reference | standard sample. 基準試料に掛かっている応力と、蛍光ピークの波数値のシフト量△κとの、あるいは蛍光ピークの相対波数値(絶対波数値)との関係を、アルミナの含有量を変化させて得たグラフである。Graph obtained by changing the alumina content to show the relationship between the stress applied to the reference sample and the shift amount Δκ of the wave value of the fluorescence peak or the relative wave value (absolute wave value) of the fluorescence peak It is. 固体電解質層及び第1絶縁層中のアルミナ含有量を変更した場合(実施例1,2,3及び比較例)についての固体電解質層の最大応力σZ、第1絶縁層の最大応力σA、界面における応力差Dσと、冷熱サイクル耐久試験との関係について示す表である。The maximum stress σZ of the solid electrolyte layer, the maximum stress σA of the first insulating layer, and the interface at the interface when the alumina content in the solid electrolyte layer and the first insulating layer is changed (Examples 1, 2, 3 and Comparative Example) It is a table | surface shown about the relationship between stress difference D (sigma) and a thermal cycle durability test.

符号の説明Explanation of symbols

1 積層型ガスセンサ素子
10 酸素濃淡電池素子
11 酸素濃淡電池用固体電解質層(固体電解質層)
12 検知電極
13 基準電極
20 基体
21 第1絶縁層(アルミナ絶縁層)
22 第2絶縁層(アルミナ絶縁層)
23 抵抗発熱体
24 発熱部
IF1 (固体電解質層11と第1絶縁層21との)界面
100 波数測定装置
120 レーザ
130 光学系
140 分光器
150 CCDアレイ
160 コンピュータ
170 X−Yテーブル
90 チャージアンプ
SB 基準試料(第1基準試料、第2基準試料)
MS 測定面
PK 蛍光のピーク位置
Fs,Fs100,Fs90,Fs70,Fs50,Fs20,Fs3 蛍光ピークの相対波数値
σ 応力
κs 相対波数値
κp 蛍光ピークの波数値
Dσ 応力差
1 Stacked Gas Sensor Element 10 Oxygen Concentration Battery Element 11 Oxygen Concentration Battery Solid Electrolyte Layer (Solid Electrolyte Layer)
12 sensing electrode 13 reference electrode 20 base 21 first insulating layer (alumina insulating layer)
22 Second insulating layer (alumina insulating layer)
23 resistance heating element 24 heating part IF1 interface 100 (solid electrolyte layer 11 and first insulating layer 21) interface 100 wave number measuring device 120 laser 130 optical system 140 spectroscope 150 CCD array 160 computer 170 XY table 90 charge amplifier SB reference Sample (first reference sample, second reference sample)
MS measurement surface PK Fluorescence peak position Fs, Fs100, Fs90, Fs70, Fs50, Fs20, Fs3 Fluorescence peak relative wave value σ Stress κs Relative wave value κp Fluorescence peak wave value Dσ Stress difference

Claims (2)

ジルコニア結晶粒子とCr3+イオンを含有するアルミナ結晶粒子とが互いに分散されてなる固体電解質層と、
上記固体電解質層と同時焼成により少なくとも一部で直接接して積層され、Cr3+イオンを含有するアルミナ結晶粒子を主成分とするアルミナ絶縁層と、
を備える積層型ガスセンサ素子であって、
上記アルミナ絶縁層との界面直近において上記固体電解質層が受けている引張応力が最大でも300MPa以下である
積層型ガスセンサ素子。
A solid electrolyte layer in which zirconia crystal particles and alumina crystal particles containing Cr 3+ ions are dispersed with each other;
An alumina insulating layer mainly composed of alumina crystal particles containing Cr 3+ ions, laminated in direct contact with at least a part of the solid electrolyte layer and co-firing;
A laminated gas sensor element comprising:
A laminated gas sensor element in which the tensile stress received by the solid electrolyte layer in the vicinity of the interface with the alumina insulating layer is 300 MPa or less at the maximum.
ジルコニア結晶粒子とCr3+イオンを含有するアルミナ結晶粒子とが互いに分散されてなる固体電解質層と、
上記固体電解質層と同時焼成により少なくとも一部で直接接して積層され、Cr3+イオンを含有するアルミナ結晶粒子を主成分とするアルミナ絶縁層と、
を備える積層型ガスセンサ素子であって、
上記固体電解質層とアルミナ絶縁層との界面を介して、上記固体電解質層が受けている応力と、上記アルミナ絶縁層が受けている応力との差が400MPa以下である
積層型ガスセンサ素子。
A solid electrolyte layer in which zirconia crystal particles and alumina crystal particles containing Cr 3+ ions are dispersed with each other;
An alumina insulating layer mainly composed of alumina crystal particles containing Cr 3+ ions, laminated in direct contact with at least a part of the solid electrolyte layer and co-firing;
A laminated gas sensor element comprising:
A multilayer gas sensor element, wherein a difference between a stress received by the solid electrolyte layer and a stress received by the alumina insulating layer via an interface between the solid electrolyte layer and the alumina insulating layer is 400 MPa or less.
JP2003385423A 2003-11-14 2003-11-14 Multilayer gas sensor element Expired - Fee Related JP4503988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003385423A JP4503988B2 (en) 2003-11-14 2003-11-14 Multilayer gas sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385423A JP4503988B2 (en) 2003-11-14 2003-11-14 Multilayer gas sensor element

Publications (2)

Publication Number Publication Date
JP2005147836A true JP2005147836A (en) 2005-06-09
JP4503988B2 JP4503988B2 (en) 2010-07-14

Family

ID=34693490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385423A Expired - Fee Related JP4503988B2 (en) 2003-11-14 2003-11-14 Multilayer gas sensor element

Country Status (1)

Country Link
JP (1) JP4503988B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010126A (en) * 2012-07-03 2014-01-20 Denso Corp Alumina/zirconia laminated sintered body and method for manufacturing the same and gas sensor element containing alumina/zirconia laminated sintered body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172054A (en) * 1985-01-25 1986-08-02 Ngk Spark Plug Co Ltd Oxygen gas sensor
JP2000292406A (en) * 1999-02-03 2000-10-20 Ngk Spark Plug Co Ltd Ceramic lamination body and its manufacture
JP2001066280A (en) * 1999-06-22 2001-03-16 Ngk Spark Plug Co Ltd Ceramic laminate, its manufacturing method, and oxygen sensor element using the same
JP2002286680A (en) * 2001-03-27 2002-10-03 Ngk Spark Plug Co Ltd Lamination type gas sensor element and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172054A (en) * 1985-01-25 1986-08-02 Ngk Spark Plug Co Ltd Oxygen gas sensor
JP2000292406A (en) * 1999-02-03 2000-10-20 Ngk Spark Plug Co Ltd Ceramic lamination body and its manufacture
JP2001066280A (en) * 1999-06-22 2001-03-16 Ngk Spark Plug Co Ltd Ceramic laminate, its manufacturing method, and oxygen sensor element using the same
JP2002286680A (en) * 2001-03-27 2002-10-03 Ngk Spark Plug Co Ltd Lamination type gas sensor element and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010126A (en) * 2012-07-03 2014-01-20 Denso Corp Alumina/zirconia laminated sintered body and method for manufacturing the same and gas sensor element containing alumina/zirconia laminated sintered body

Also Published As

Publication number Publication date
JP4503988B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
KR101706879B1 (en) Sensor electrode, manufacturing method thereof, and metal paste for electrode formation
JP5005564B2 (en) LAMINATE FORMING METHOD, SENSOR ELEMENT MANUFACTURING METHOD, AND SENSOR ELEMENT
DE19715193A1 (en) Air-fuel ratio sensor of multilayer type
JP4503988B2 (en) Multilayer gas sensor element
JP4359122B2 (en) Laminated gas sensor element and evaluation method thereof
DE10129258A1 (en) Multi-layer gas sensor, use e.g. for regulating air-fuel ratio of car engines, has binding interface with crystals containing silica between zirconium oxide-type electrolyte sheet and alumina-type insulating sheet
US7819996B2 (en) Method of manufacturing ceramic sheet and method of manufacturing gas sensing element
JP4228975B2 (en) Multilayer gas sensor element
JP2019158554A (en) Sensor element and gas sensor
JP3873302B2 (en) Stacked oxygen sensor element
JP3162324B2 (en) Ceramic heater and oxygen sensor
KR20130075488A (en) Quantative analysys method for dielectric substance of multi-layer ceramic capacitor
JP4779976B2 (en) Manufacturing method of electronic parts
JP2005147837A (en) Stress measuring method, and manufacturing method for measuring object or article equipped with measuring object using the same
JP6130370B2 (en) Method for manufacturing multilayer piezoelectric device, multilayer piezoelectric device including auxiliary agent, and use of auxiliary agent for suppressing fracture stress of multilayer piezoelectric device
US10620152B2 (en) Sensor element
JP4579636B2 (en) Manufacturing method of gas sensor
JP2005283285A (en) Oxygen concentration detection sensor
JP4350630B2 (en) Manufacturing method of gas sensor
Sayan et al. Residual stress measurement of a single-step sintered planar anode supported SC-SOFC using fluorescence spectroscopy
CN111372905A (en) Solid electrolyte, method for producing same, and gas sensor
RU2260787C1 (en) Method of measuring diffusion constants in polycrystallline materials
US20220011259A1 (en) Solid electrolyte and gas sensor
JP2003344351A (en) Oxygen sensor element
US20040139599A1 (en) Laminate-type dielectric element and method for fabricating thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061103

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4503988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees