JP2005147280A - Hydrogen storage device and fuel cell device - Google Patents

Hydrogen storage device and fuel cell device Download PDF

Info

Publication number
JP2005147280A
JP2005147280A JP2003386298A JP2003386298A JP2005147280A JP 2005147280 A JP2005147280 A JP 2005147280A JP 2003386298 A JP2003386298 A JP 2003386298A JP 2003386298 A JP2003386298 A JP 2003386298A JP 2005147280 A JP2005147280 A JP 2005147280A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
storage device
nanocarbon material
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003386298A
Other languages
Japanese (ja)
Inventor
Tomoyuki Yamamura
知之 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003386298A priority Critical patent/JP2005147280A/en
Publication of JP2005147280A publication Critical patent/JP2005147280A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inhibit the flow-out of a fibrous nano-carbon material when hydrogen gas is discharged in a hydrogen storage device using the fibrous nano-carbon material as a hydrogen absorption material. <P>SOLUTION: The device is configured so that a container is partitioned into small (N+1) chambers by N partition plates having an opening part; that the partition plates are attached slantly so that the opening part is positioned in a lowermost part with respect to the gravity direction when the hydrogen gas is discharged; and that the small chambers form a bent flowing passage when the hydrogen gas is discharged. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は水素貯蔵装置の容器構造に関するものであって、特に軽量で微細なナノ炭素材料を水素吸蔵物質として用いる場合に好適な容器構造に関するものである。   The present invention relates to a container structure of a hydrogen storage device, and more particularly to a container structure suitable when a light and fine nanocarbon material is used as a hydrogen storage material.

近年、燃料電池などの新しいエネルギー供給装置を実用化し普及させようという試みが活発になってきた。中でも固体高分子型燃料電池は、水素と酸素との電気化学反応によって電力を取り出すものであり、排出ガスが水蒸気のみであるという極めて環境負荷の小さい優れた発電方法である。   In recent years, attempts have been actively made to put a new energy supply device such as a fuel cell into practical use. Among them, the polymer electrolyte fuel cell is an excellent power generation method that takes out electric power through an electrochemical reaction between hydrogen and oxygen and has an extremely low environmental load, in which the exhaust gas is only water vapor.

燃料電池において燃料として用いられる水素は大気中にはほとんど存在せず、また気体であるが故に希薄で低密度であり、さらに分子サイズが小さいので漏洩しやすく爆発の危険性を伴う。したがって燃料電池システムを各種機器やオンサイト発電装置、燃料電池自動車等へ搭載して普及させられるかどうかは、燃料である水素をいかにして高密度かつ安全に貯蔵・供給できるかにかかっている。   Hydrogen used as a fuel in a fuel cell hardly exists in the atmosphere, and since it is a gas, it is dilute and low-density, and since it has a small molecular size, it easily leaks and is associated with an explosion risk. Therefore, whether or not the fuel cell system can be installed in various devices, on-site power generation devices, fuel cell vehicles, etc. depends on how hydrogen, which is a fuel, can be stored and supplied with high density and safety. .

水素ガスの貯蔵方法としては、気体状で貯蔵する高圧水素ガスボンベと、液体状で貯蔵する液化水素ボンベが実用化されており、また水素吸蔵合金を用いる貯蔵方法が長年にわたり研究されている。一方、ナノ炭素材料の一種であるカーボンナノチューブが、水素吸蔵合金を遥かにしのぐ5〜10重量%もの水素を吸蔵するという報告もなされており、微細な粉末状の炭素系材料を水素吸蔵物質として用いる方法の実用化が大きく期待されている。   As hydrogen gas storage methods, high-pressure hydrogen gas cylinders that store in a gaseous state and liquefied hydrogen cylinders that store in a liquid state have been put into practical use, and storage methods using hydrogen storage alloys have been studied for many years. On the other hand, it has been reported that carbon nanotubes, which are a kind of nanocarbon material, occlude 5 to 10% by weight of hydrogen, far surpassing hydrogen-absorbing alloys, and fine powdery carbon-based materials are used as hydrogen-occluding substances. The practical use of the method used is greatly expected.

水素吸蔵合金やナノ炭素材料を水素吸蔵物質として用いる水素貯蔵装置は、これらの水素吸蔵物質を中空の容器に充填し、水素ガスの注入/放出口の他、必要に応じて冷却機構や加熱機構等を取り付けたものである。特許文献1には炭素系水素吸蔵物質を容器に収めた水素貯蔵装置の例が記載されている。   A hydrogen storage device using a hydrogen storage alloy or nanocarbon material as a hydrogen storage material fills a hollow container with these hydrogen storage materials, and in addition to a hydrogen gas injection / discharge port, a cooling mechanism and a heating mechanism as required Etc. are attached. Patent Document 1 describes an example of a hydrogen storage device in which a carbon-based hydrogen storage material is housed in a container.

水素吸蔵物質を用いた水素貯蔵装置に水素ガスを吸蔵させるには、外部からある程度の圧力で水素ガスを注入すればよく、逆に水素ガスを取り出すには外部の圧力を下げれば水素ガスが自然に脱離して放出される。このとき吸蔵速度や脱離速度を向上させるために、必要に応じて水素吸蔵物質を冷却または加熱することが行われる。
特開2002−237318号公報(図2)
In order to store hydrogen gas in a hydrogen storage device using a hydrogen storage material, it is only necessary to inject hydrogen gas at a certain pressure from the outside. Conversely, to extract hydrogen gas, if the external pressure is reduced, the hydrogen gas is naturally To be released. At this time, in order to improve the occlusion rate and desorption rate, the hydrogen occlusion material is cooled or heated as necessary.
JP 2002-237318 A (FIG. 2)

水素吸蔵物質としてのナノ炭素材料は、ナノメートルサイズの微細な形態を有するため比表面積が大きく、大量の水素を吸蔵できるという特徴がある。さらに従来の水素吸蔵合金と比較して比重が小さく、ナノ炭素材料を水素吸蔵物質として用いれば軽量で大容量の水素貯蔵装置を実現することができる。しかしながら比重が小さくかつ微細であるというナノ炭素材料に特有の性質は、水素を放出する際に、自身が放出した水素ガスの圧力によって容器内で飛散してしまうという、従来の水素吸蔵合金では考えられなかった新たな問題を引き起こした。容器内で飛散したナノ炭素材料の一部は水素ガスと共にガス放出口から流出して燃料電池セル等の外部機器に到達し、これらの外部機器に損傷を与える恐れがあるほか、水素吸蔵物質が失われることによって水素貯蔵容量が減少するという問題を生じる。
一般にこのような問題を解決する手段としては、ガス流路にフィルターを挿入することが
行われる。図5は従来の水素貯蔵装置の構成例である。ナノ炭素材料3が充填された容器7にはフィルター9が取り付けられ、水素ガス放出時に水素ガス注入/放出口2からナノ炭素材料が外部に流出しないよう、フィルター9で濾過される。
従来の水素貯蔵装置では、ナノ炭素材料を濾別するために、フィルター9としてHEPAフィルター等の非常にメッシュの細かいものを用いる必要があり、圧損が増大して水素ガス供給速度が低下してしまうという問題がある。またフィルターが目詰まりを起こすため定期的な保守が必須であり、運転コストが増大する要因ともなる。水素吸蔵能の大きいフッ素化ナノ炭素材料を水素吸蔵物質として用いた場合は、遊離したフッ素ガスまたはフッ化水素ガスによってフィルター素材が侵食され、フィルター能力が低下し、長期間安定した性能を維持できないという問題がある。
A nanocarbon material as a hydrogen storage material has a feature of having a large specific surface area and a large amount of hydrogen because it has a fine form of nanometer size. Furthermore, a specific gravity is small compared with the conventional hydrogen storage alloy, and if a nano carbon material is used as a hydrogen storage material, a lightweight and large capacity hydrogen storage device can be realized. However, the unique property of nanocarbon materials with low specific gravity and fineness is considered in conventional hydrogen storage alloys that when hydrogen is released, it is scattered in the container due to the pressure of the hydrogen gas released by itself. It caused new problems that could not be done. Part of the nanocarbon material scattered in the container flows out of the gas discharge port together with hydrogen gas and reaches external devices such as fuel cells, which may cause damage to these external devices. The loss causes a problem that the hydrogen storage capacity is reduced.
In general, as a means for solving such a problem, a filter is inserted into the gas flow path. FIG. 5 is a configuration example of a conventional hydrogen storage device. A filter 9 is attached to the container 7 filled with the nanocarbon material 3 and is filtered by the filter 9 so that the nanocarbon material does not flow out from the hydrogen gas injection / release port 2 when hydrogen gas is released.
In the conventional hydrogen storage device, in order to filter out the nanocarbon material, it is necessary to use a very fine mesh such as a HEPA filter as the filter 9, and the pressure loss increases and the hydrogen gas supply rate decreases. There is a problem. In addition, since the filter is clogged, regular maintenance is indispensable, which increases operating costs. When a fluorinated nanocarbon material with a large hydrogen storage capacity is used as the hydrogen storage material, the filter material is eroded by the liberated fluorine gas or hydrogen fluoride gas, the filter capacity decreases, and stable performance cannot be maintained for a long time. There is a problem.

以上の課題を解決するため本発明は、
「ナノ炭素材料を容器に充填した水素貯蔵装置であって、前記容器は、開口部を有するN枚の仕切板によってN+1室の小室に仕切られており、前記仕切板の開口部において相互に連絡する前記小室が、水素ガス放出時において屈曲した流路を形成することを特徴とする水素貯蔵装置(請求項1)」
および、
「前記仕切板は、水素ガス放出時における重力方向に対して前記開口部が最下部に位置するように傾斜して取り付けられ、かつ前記ナノ炭素材料は、水素ガス放出時における重力方向に対して最下部の小室に充填されている請求項1に記載の水素貯蔵装置(請求項2)」
および、
「前記容器が振動発生装置を備えるものである請求項2に記載の水素貯蔵装置(請求項3)」
を提供する。
In order to solve the above problems, the present invention provides:
“A hydrogen storage device in which a nanocarbon material is filled in a container, the container being partitioned into N + 1 chambers by N partition plates having openings, and communicating with each other at the openings of the partition plates. The hydrogen storage device is characterized in that the small chamber that forms a curved flow path when hydrogen gas is released (Claim 1). "
and,
“The partition plate is attached so as to be inclined so that the opening is positioned at the lowest position with respect to the direction of gravity when hydrogen gas is released, and the nanocarbon material is attached to the direction of gravity when hydrogen gas is released. The hydrogen storage device according to claim 1, wherein the lowermost chamber is filled (claim 2). "
and,
“The hydrogen storage device according to claim 2, wherein the container includes a vibration generating device (claim 3)”.
I will provide a.

また本発明は優れた水素吸蔵能を有する水素吸蔵物質を用いた水素貯蔵装置として、
「前記ナノ炭素材料がフッ素化ナノ炭素材料である請求項1ないし請求項3のいずれか一項に記載の水素貯蔵装置(請求項4)」
および、
「前記フッ素化ナノ炭素材料がフッ素化アモルファスナノ炭素材料である請求項4に記載の水素貯蔵装置(請求項5)」
を提供する。
Further, the present invention is a hydrogen storage device using a hydrogen storage material having an excellent hydrogen storage capacity,
“Hydrogen storage device according to claim 1, wherein the nanocarbon material is a fluorinated nanocarbon material” (Claim 4).
and,
“The hydrogen storage device according to claim 4, wherein the fluorinated nanocarbon material is a fluorinated amorphous nanocarbon material”.
I will provide a.

また本発明は優れた水素吸蔵能を有し、かつ長期間安定した性能を維持できる水素貯蔵装置として、
「前記容器および仕切板がアルミニウム、アルミニウム合金、ニッケル、ニッケル合金、ニッケル銅合金の少なくとも1種類からなる材質で製作された請求項4または請求項5に記載の水素貯蔵装置(請求項6)」
を提供する。
The present invention also has an excellent hydrogen storage capacity, and as a hydrogen storage device that can maintain stable performance for a long period of time,
“The hydrogen storage device according to claim 4 or 5, wherein the container and the partition plate are made of a material made of at least one of aluminum, aluminum alloy, nickel, nickel alloy, and nickel copper alloy”.
I will provide a.

また本発明は上記の水素貯蔵装置を備え、小型軽量で長期間安定した性能を維持できる燃料電池装置として、
「請求項1ないし請求項6のいずれか一項に記載の水素貯蔵装置を備えた燃料電池装置(請求項7)」
を提供する。
In addition, the present invention includes the above-described hydrogen storage device, and as a fuel cell device capable of maintaining stable performance for a long time with a small size and light weight,
"Fuel cell device comprising the hydrogen storage device according to any one of claims 1 to 6 (Claim 7)"
I will provide a.

本発明に係る水素貯蔵装置は、水素吸蔵物質としてナノ炭素材料を用いるものであるた
め、小型軽量でありながら大量の水素を貯蔵することができる。
Since the hydrogen storage device according to the present invention uses a nanocarbon material as a hydrogen storage substance, a large amount of hydrogen can be stored while being small and light.

本発明に係る水素貯蔵装置は、仕切板によって区分された小室が水素ガス放出時において屈曲した流路を構成するように配置されているため、水素ガス放出時に容器内で飛散したナノ炭素材料の大部分は仕切板に衝突して落下し、水素ガス放出口にまで拡散して貯蔵装置外部に流出することを抑制できる。したがって従来の水素貯蔵装置のようにフィルターをガス放出口に付加する必要がなく、フィルターの透過抵抗による水素ガスの流量低下が起こらないため、十分な水素ガス供給速度を得ることができる。さらにフィルターの目詰まりや侵食が起こりえないため、定期的な保守が不要であり、運転コストが低減されるという効果を有する。   Since the hydrogen storage device according to the present invention is arranged so that the small chamber divided by the partition plate constitutes a flow path that is bent when hydrogen gas is released, the nanocarbon material scattered in the container when hydrogen gas is released Most of them can be prevented from colliding with the partition plate and falling, diffusing to the hydrogen gas discharge port, and flowing out of the storage device. Therefore, it is not necessary to add a filter to the gas discharge port as in the conventional hydrogen storage device, and the flow rate of hydrogen gas does not decrease due to the permeation resistance of the filter, so that a sufficient hydrogen gas supply rate can be obtained. Further, since the filter cannot be clogged or eroded, periodic maintenance is unnecessary, and the operation cost is reduced.

前記仕切板を水素ガス放出時における重力方向に対して開口部が最下部になるように傾斜して取り付け、さらにナノ炭素材料を最下部の小室に充填しておけば、仕切板に衝突して落下したナノ炭素材料は重力によって自動的に開口部に達し、小室を順次経由して最終的に最下部の小室すなわちナノ炭素材料が当初充填されていた部分に還流される。このためナノ炭素材料の大部分は常時最下部の小室に存在することになり、水素ガス放出口から流出する確率をさらに低減することができる。このとき容器全体を振動発生装置によって振動させれば、ナノ炭素材料を迅速に容器下部へ還流させることができる。   If the partition plate is attached so that the opening is at the bottom with respect to the direction of gravity when hydrogen gas is released, and the nanocarbon material is filled in the bottom chamber, it will collide with the partition plate. The dropped nanocarbon material automatically reaches the opening due to gravity, and finally passes through the chambers, and finally returns to the lowermost chamber, that is, the portion where the nanocarbon material is initially filled. For this reason, most of the nanocarbon material always exists in the lowermost chamber, and the probability of flowing out from the hydrogen gas discharge port can be further reduced. At this time, if the entire container is vibrated by the vibration generator, the nanocarbon material can be quickly refluxed to the lower part of the container.

ナノ炭素材料としてフッ素化ナノ炭素材料を用いた場合には上記の効果に加えて水素貯蔵量の向上が期待でき、特にフッ素化アモルファスナノ炭素材料を用いた場合にはさらに大きな水素貯蔵量が期待できる。フッ素化ナノ炭素材料を用いる場合において、容器および仕切板をアルミニウム、アルミニウム合金、ニッケル、ニッケル合金、ニッケル銅合金のいずれかの材質で製作すれば、フッ素化ナノ炭素材料から遊離したフッ素またはフッ化水素によって容器が侵食されることがなく、長期間安定した性能を維持できる。   When a fluorinated nanocarbon material is used as the nanocarbon material, in addition to the above effects, an improvement in the hydrogen storage amount can be expected. In particular, when a fluorinated amorphous nanocarbon material is used, a larger hydrogen storage amount is expected. it can. In the case of using a fluorinated nanocarbon material, if the container and partition plate are made of any material of aluminum, aluminum alloy, nickel, nickel alloy, nickel copper alloy, fluorine or fluoride released from the fluorinated nanocarbon material The container is not eroded by hydrogen, and stable performance can be maintained for a long time.

本発明に係る水素貯蔵装置を備えた燃料電池装置は全体として小型・軽量化が可能であるほか、低運転コストで十分かつ安定した水素供給速度が得られるため、効率の高い電力源として広い分野に応用することができる。   The fuel cell device provided with the hydrogen storage device according to the present invention can be reduced in size and weight as a whole, and a sufficient and stable hydrogen supply speed can be obtained at a low operating cost. It can be applied to.

以下、本発明に係る水素貯蔵装置について、図面を参照しながら説明する。   Hereinafter, the hydrogen storage device according to the present invention will be described with reference to the drawings.

図1は本発明に係る水素貯蔵装置の第1の実施形態を示す概略図であり、図1(a)は断面図、図1(b)は断面斜視図である。円筒形の容器1の最上部には、水素ガスを注入および放出するための水素ガス注入/放出口2が設けられる。容器1には内壁から張り出す形で5枚(N=5)の仕切板B1〜B5が取り付けられ、6室の小室C1〜C6に仕切られる。なお第1の実施の形態ではN=5とした例を示すが、本発明における仕切板の数Nに特に上限はなく、数が多いほど高い効果が得られることは言うまでもない。   FIG. 1 is a schematic view showing a first embodiment of a hydrogen storage device according to the present invention, FIG. 1 (a) is a sectional view, and FIG. 1 (b) is a sectional perspective view. A hydrogen gas injection / discharge port 2 for injecting and releasing hydrogen gas is provided at the top of the cylindrical container 1. Five (N = 5) partition plates B1 to B5 are attached to the container 1 so as to protrude from the inner wall, and are partitioned into six small chambers C1 to C6. In the first embodiment, an example in which N = 5 is shown, but there is no particular upper limit to the number N of partition plates in the present invention, and it goes without saying that the higher the number, the higher the effect.

各仕切板の一端には開口部A1〜A5があり、各小室C1〜C6は開口部A1〜A5を介して連絡している。開口部は大きい方がナノ炭素材料3から放出された水素ガスの流通抵抗が小さくなるが、飛散したナノ炭素材料の拡散を抑制する効果も減少するため、目標とする性能に応じて適当に選択すればよい。   One end of each partition plate has openings A1 to A5, and the small chambers C1 to C6 communicate with each other through the openings A1 to A5. The larger the opening, the smaller the flow resistance of hydrogen gas released from the nanocarbon material 3, but the effect of suppressing the diffusion of the scattered nanocarbon material is also reduced, so it is selected appropriately according to the target performance do it.

最下部の小室C1には水素吸蔵物質としてナノ炭素材料3が充填される。ナノ炭素材料3としては、フラーレン、金属内包フラーレン、ナノ炭素粒子、単層カーボンナノチューブ、多層カーボンナノチューブ、非晶質カーボンナノチューブ、これらのナノ炭素材料に水素吸蔵能を向上させる官能基を結合したもの等、水素吸蔵能を有する公知のナノ炭素材料を特に制限無く用いることができる。ナノ炭素材料の中でも特に水素吸蔵物質として好
適なのはフッ素化ナノ炭素材料であり、全体が非晶質構造であるフッ素化アモルファスナノ炭素繊維であればなお好ましい。フッ素化ナノ炭素材料は、炭素繊維を構成する炭素原子に電気陰性度が高いフッ素が化学結合したものであって、電子密度の偏りによって大量の水素を吸蔵することができる上、極めて比重が小さいという特徴がある。またフッ素化ナノ炭素材料の一種であるフッ素化アモルファスナノ炭素繊維は、繊維全体が非晶質構造であるため構造欠陥密度が高く、非常に大量の水素を吸蔵しうるものである。
The lowermost chamber C1 is filled with the nanocarbon material 3 as a hydrogen storage material. Nanocarbon material 3 includes fullerene, metal-encapsulated fullerene, nanocarbon particles, single-walled carbon nanotubes, multi-walled carbon nanotubes, amorphous carbon nanotubes, and these nanocarbon materials combined with functional groups that improve hydrogen storage capacity. Any known nanocarbon material having a hydrogen storage capacity can be used without particular limitation. Among the nanocarbon materials, a fluorinated nanocarbon material is particularly suitable as a hydrogen storage material, and a fluorinated amorphous nanocarbon fiber having an amorphous structure as a whole is more preferable. A fluorinated nanocarbon material is a material in which fluorine having high electronegativity is chemically bonded to carbon atoms constituting a carbon fiber, and can absorb a large amount of hydrogen due to a deviation in electron density and has a very low specific gravity. There is a feature. Further, a fluorinated amorphous nanocarbon fiber, which is a kind of fluorinated nanocarbon material, has a high structure defect density because the entire fiber has an amorphous structure, and can absorb a very large amount of hydrogen.

水素吸蔵物質としてフッ素化ナノ炭素材料を用いた場合には、容器1および仕切板B1〜B5は、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、ニッケル銅合金の少なくとも一種類からなる材質で製作することが望ましい。これらの材質はフッ素化ナノ炭素材料から遊離する恐れのあるフッ素およびフッ化水素に対して耐久性が高く、腐食による性能低下を抑制できるためである。   When a fluorinated nanocarbon material is used as the hydrogen storage material, the container 1 and the partition plates B1 to B5 should be made of a material made of at least one of aluminum, aluminum alloy, nickel, nickel alloy, and nickel copper alloy. Is desirable. This is because these materials have high durability against fluorine and hydrogen fluoride, which may be released from the fluorinated nanocarbon material, and can suppress performance degradation due to corrosion.

以上の構造を備えた水素貯蔵装置に、水素ガス注入/放出口2を通して高圧の水素ガスを注入してナノ炭素材料3に水素ガスを吸蔵させた後、水素ガス注入/放出口2を密閉することによって水素を貯蔵する。貯蔵した水素を利用する際は、水素ガス注入/放出口2に燃料電池セル等の外部機器を接続し、必要に応じて減圧弁により圧力を調整しながら水素を放出する。水素ガスの放出によって容器1内の圧力が下がると、ナノ炭素材料3から水素ガスが自動的に脱離してくるが、適当な加熱手段を用いてナノ炭素材料3を緩やかに加熱すれば、水素ガスの脱離速度が上昇し、外部への水素ガス供給速度を向上させることができる。
水素貯蔵装置から水素ガスを放出する際には、ナノ炭素材料から脱離した水素ガスによって容器1の内部に急激な圧力変化が生じ、乱流が発生する。容器1の下部にあるナノ炭素材料3は比重が小さく、微細な粉末状の形態を有するため、その一部はこの乱流によって容易に飛散する。飛散したナノ炭素材料は水素ガス流に乗って容器1内の下部から上部へと拡散を始める。このとき容器1の内部には仕切板B1〜B5が取り付けられているため、飛散したナノ炭素材料の大部分はまず仕切板B1に衝突して落下し、水素ガス流から排除される。ここで落下しなかったナノ炭素材料は、水素ガス流に乗って、開口部で相互に連絡した小室C2〜C6に、図1(b)に矢印で示すごとく順次流入する。このとき水素ガス流路が屈曲するように仕切板と開口部が配置されているため、開口部A1から流入したナノ炭素材料の大部分は仕切板B2に衝突して落下し、以下同様の効果によって各小室毎にナノ炭素材料が水素ガス流から排除される。その結果、最終的にナノ炭素材料が水素ガス注入/放出口2に到達する確率は極めて小さなものとなる。
A high-pressure hydrogen gas is injected into the hydrogen storage device having the above structure through the hydrogen gas injection / release port 2 to occlude the hydrogen gas in the nanocarbon material 3, and then the hydrogen gas injection / release port 2 is sealed. To store hydrogen. When using the stored hydrogen, an external device such as a fuel cell is connected to the hydrogen gas injection / release port 2 and the hydrogen is released while adjusting the pressure by a pressure reducing valve as necessary. When the pressure in the container 1 decreases due to the release of hydrogen gas, the hydrogen gas automatically desorbs from the nanocarbon material 3, but if the nanocarbon material 3 is heated gently using an appropriate heating means, The gas desorption rate increases, and the hydrogen gas supply rate to the outside can be improved.
When hydrogen gas is released from the hydrogen storage device, a sudden pressure change occurs inside the container 1 due to the hydrogen gas desorbed from the nanocarbon material, and turbulence is generated. Since the nanocarbon material 3 in the lower part of the container 1 has a small specific gravity and has a fine powder form, a part thereof is easily scattered by this turbulent flow. The scattered nanocarbon material starts to diffuse from the lower part in the container 1 to the upper part on the hydrogen gas flow. At this time, since the partition plates B1 to B5 are attached to the inside of the container 1, most of the scattered nanocarbon material first collides with the partition plate B1 and falls to be excluded from the hydrogen gas flow. The nanocarbon material that did not fall here flows in a hydrogen gas flow and sequentially flows into the small chambers C2 to C6 that are in communication with each other through the opening as shown by arrows in FIG. At this time, since the partition plate and the opening are arranged so that the hydrogen gas flow path is bent, most of the nanocarbon material that has flowed in from the opening A1 collides with the partition plate B2 and falls, and so on. This removes the nanocarbon material from the hydrogen gas stream for each chamber. As a result, the probability that the nanocarbon material finally reaches the hydrogen gas injection / release port 2 is extremely small.

図2は本発明に係る水素貯蔵装置の第2の実施形態を示す概略図であり、図2(a)は断面図、図2(b)は断面斜視図である。図2は水素ガス放出時の配置を示し、重力は図の下側に向かって働くものとする。容器1、水素ガス注入/放出口2およびナノ炭素材料3については図1の例と同様であるので説明を省略する。第2の実施形態では、開口部A1〜A5が最も下側に位置するように、仕切板B1〜B5は傾斜して取り付けられる。   2A and 2B are schematic views showing a second embodiment of the hydrogen storage device according to the present invention. FIG. 2A is a sectional view, and FIG. 2B is a sectional perspective view. FIG. 2 shows the arrangement at the time of hydrogen gas release, and gravity works toward the lower side of the figure. Since the container 1, the hydrogen gas injection / discharge port 2 and the nanocarbon material 3 are the same as those in the example of FIG. In the second embodiment, the partition plates B1 to B5 are attached so as to be inclined so that the openings A1 to A5 are located on the lowermost side.

第2の実施形態に係る水素貯蔵装置において、水素ガスを放出する際に飛散したナノ炭素材料が仕切板によって水素ガス流から排除されるのは第1の実施形態と同様であるが、各仕切板B1〜B5は開口部A1〜A5が最下部となるように傾斜して取り付けられているため、仕切板上に落下したナノ炭素材料は重力によって開口部に向かって移動し、最終的に最下部の小室C1に戻ることになる。その結果、ナノ炭素材料の大部分は常時最下部の小室に存在することになり、水素ガス放出口から流出する確率をさらに低減することができる。   In the hydrogen storage device according to the second embodiment, the nanocarbon material scattered when hydrogen gas is released is excluded from the hydrogen gas flow by the partition plate, as in the first embodiment. Since the plates B1 to B5 are attached so as to be inclined so that the openings A1 to A5 are at the bottom, the nanocarbon material dropped on the partition plate moves toward the openings by gravity and finally reaches the bottom. It will return to the lower chamber C1. As a result, most of the nanocarbon material always exists in the lowermost chamber, and the probability of flowing out from the hydrogen gas discharge port can be further reduced.

ナノ炭素材料の移動は重力により自動的に行われるが、容器1に振動が加わることによって加速される。仕切板の傾斜が急角度であるほど飛散したナノ炭素材料の回収率は高く
なるが、空間の利用率は下がるので、水素貯蔵装置全体としての効率を考慮して傾斜を設定すればよい。
The movement of the nanocarbon material is automatically performed by gravity, but is accelerated by applying vibration to the container 1. The recovery rate of the scattered nanocarbon material increases as the inclination of the partition plate becomes steeper, but the space utilization rate decreases. Therefore, the inclination may be set in consideration of the efficiency of the entire hydrogen storage device.

図3は本発明に係る水素貯蔵装置の第3の実施形態を示す概略図であり、図3(a)は断面図、図3(b)は断面斜視図である。図3は水素ガス放出時の配置を示し、重力は図の下側に向かって働くものとする。容器1、水素ガス注入/放出口2およびナノ炭素材料3については第1および第2の実施形態と同様であるので説明を省略する。   3A and 3B are schematic views showing a third embodiment of the hydrogen storage device according to the present invention. FIG. 3A is a sectional view, and FIG. 3B is a sectional perspective view. FIG. 3 shows the arrangement at the time of hydrogen gas release, and gravity works toward the lower side of the figure. Since the container 1, the hydrogen gas inlet / outlet 2 and the nanocarbon material 3 are the same as those in the first and second embodiments, description thereof will be omitted.

第3の実施形態では容器内に軸対称の仕切板が設けられる。円筒形の容器1内には仕切板D1〜D4が取り付けられ、E1〜E5の計5室の小室に仕切られる。水素吸蔵物質であるナノ炭素材料3は最下部の小室E1に充填される。図1の例と同様に仕切板の枚数(N=4)はあくまで例示であって、実際には枚数が多いほど有効である。   In the third embodiment, an axially symmetric partition plate is provided in the container. Partition plates D1 to D4 are attached in the cylindrical container 1 and partitioned into a total of five chambers E1 to E5. The nanocarbon material 3 which is a hydrogen storage material is filled in the lowermost chamber E1. Similar to the example of FIG. 1, the number of partition plates (N = 4) is merely an example, and in practice, the larger the number, the more effective.

仕切板D1およびD3は下凸の皿状をなし、中央に開口部F1およびF3を有する。また仕切板D2およびD4は上凸の傘状をなし、容器1の内壁との間に開口部F2およびF4を有するように取り付けられる。このとき開口部F2またはF4を仕切板D2またはD4の全周にわたって設ける場合には、仕切板D2またはD4を容器1に直接固定することができないので、水素ガス流を阻害しない程度の適度の大きさを持つ柱状部材等によって仕切板D1または仕切板D3に固定すれば良い。また開口部F2またはF4を仕切板D2またはD4の全周にわたって設けない場合には、その閉口部において仕切板D2またはD4を容器1内壁に固定すれば良い。   Partition plates D1 and D3 have a downwardly convex dish shape, and have openings F1 and F3 in the center. Moreover, the partition plates D2 and D4 form an upwardly convex umbrella shape, and are attached so as to have openings F2 and F4 between the inner wall of the container 1. At this time, when the opening F2 or F4 is provided over the entire circumference of the partition plate D2 or D4, the partition plate D2 or D4 cannot be directly fixed to the container 1, so that the hydrogen gas flow is not hindered. What is necessary is just to fix to the partition plate D1 or the partition plate D3 with the columnar member etc. which have thickness. When the opening F2 or F4 is not provided over the entire circumference of the partition plate D2 or D4, the partition plate D2 or D4 may be fixed to the inner wall of the container 1 at the closed portion.

ナノ炭素材料3から放出された水素ガスは開口部F1〜F4において相互に連絡する小室E1〜E5を順次通過し、水素ガス注入/放出口2に至る。水素ガス放出時に発生する乱流によって飛散したナノ炭素材料の大部分は、仕切板D1に衝突して最下部の小室E1に還流する。一方、一部のナノ炭素材料は開口部F1を通過して上部に拡散するが、図3(b)に矢印で示すようにガス流路が屈曲しているため、開口部F1を通過したナノ炭素材料の大部分は仕切板D2に衝突して落下し、水素ガス流から排除される。同様に開口部F2を通過したナノ炭素材料の大部分は仕切板D3で排除され、最終的に水素ガス注入/放出口2に至る確率は非常に小さいものとなる。   The hydrogen gas released from the nanocarbon material 3 sequentially passes through the small chambers E1 to E5 communicating with each other in the openings F1 to F4 and reaches the hydrogen gas injection / discharge port 2. Most of the nanocarbon material scattered by the turbulent flow generated when hydrogen gas is released collides with the partition plate D1 and returns to the lowermost chamber E1. On the other hand, some of the nanocarbon material passes through the opening F1 and diffuses upward, but the gas flow path is bent as shown by the arrow in FIG. Most of the carbon material collides with the partition plate D2 and falls, and is excluded from the hydrogen gas flow. Similarly, most of the nanocarbon material that has passed through the opening F2 is eliminated by the partition plate D3, and the probability of finally reaching the hydrogen gas injection / discharge port 2 is very small.

各仕切板で水素ガス流から排除されたナノ炭素材料は、下部に位置する仕切板上に落下するが、各仕切板は重力方向に対して最下部に開口部を有するように配置されているため、仕切板上に落下したナノ炭素材料は自動的に開口部を通って順次下部の小室に移動し、最終的に最下部の小室E1に還流することになる。   The nanocarbon material excluded from the hydrogen gas flow by each partition plate falls on the partition plate located in the lower part, but each partition plate is arranged so as to have an opening at the bottom in the direction of gravity. Therefore, the nanocarbon material dropped on the partition plate automatically moves sequentially through the opening to the lower chamber and finally returns to the lowermost chamber E1.

第3の実施形態では容器1の最下部に振動発生装置4が設けられており、これを適当な周波数および振幅で振動させることによって仕切板D1〜D4に振動を伝達し、小室E2〜E4にあるナノ炭素材料を速やかにE1まで移動させることができる。   In the third embodiment, a vibration generator 4 is provided at the lowermost part of the container 1, and the vibration is transmitted to the partition plates D1 to D4 by vibrating this at an appropriate frequency and amplitude, and the chambers E2 to E4 are transmitted. A certain nanocarbon material can be quickly moved to E1.

以上、本発明に係る水素貯蔵装置の実施形態を3つの例により説明したが、本発明の実施形態はこれらの例に限定されるものではなく、要求される水素貯蔵容量や水素供給速度、充填するナノ炭素材料の特性に合わせて、仕切板や開口部の形状を変更し、または仕切板の枚数を増減して実施することが可能である。   As mentioned above, although the embodiment of the hydrogen storage device according to the present invention has been described with three examples, the embodiment of the present invention is not limited to these examples, and the required hydrogen storage capacity, hydrogen supply rate, and filling The shape of the partition plate and the opening can be changed or the number of partition plates can be increased or decreased in accordance with the characteristics of the nanocarbon material to be performed.

次に本発明に係る燃料電池装置の実施形態を説明する。   Next, an embodiment of a fuel cell device according to the present invention will be described.

図4は、本発明に係る燃料電池装置の一例を示す概略図であって、固体高分子型燃料電池に適用した例を示すものである。   FIG. 4 is a schematic view showing an example of a fuel cell device according to the present invention, and shows an example applied to a solid polymer fuel cell.

水素貯蔵装置5の水素ガス注入/放出口2には圧力計10が取り付けられ、容器1内の水素ガスの圧力を計測することができる。水素貯蔵装置5に水素を貯蔵する際は、バルブ12およびバルブ13を開きバルブ14を閉じた状態で、水素ステーション等の外部水素源からの高圧水素ガスを、配管11を通して水素貯蔵装置5に注入する。圧力計10が適当な圧力に達したところで各バルブを閉じれば水素貯蔵装置5に水素が貯蔵される。   A pressure gauge 10 is attached to the hydrogen gas inlet / outlet 2 of the hydrogen storage device 5, and the pressure of the hydrogen gas in the container 1 can be measured. When hydrogen is stored in the hydrogen storage device 5, high-pressure hydrogen gas from an external hydrogen source such as a hydrogen station is injected into the hydrogen storage device 5 through the pipe 11 with the valves 12 and 13 opened and the valve 14 closed. To do. If each valve is closed when the pressure gauge 10 reaches an appropriate pressure, hydrogen is stored in the hydrogen storage device 5.

貯蔵された水素を燃料として電力を取り出す際は、バルブ13およびバルブ14を開き、圧力調整器15により圧力を調整しながら水素ガスを放出させる。水素ガスは加湿器17を通して燃料電池セル19の燃料極20に供給され、一方、空気極21には空気供給装置18から加湿器16を通して空気が供給される。燃料電池セル内では電気化学反応によって起電力が生じ、出力端子22から電流を取り出すことができる。   When taking out electric power using the stored hydrogen as a fuel, the valve 13 and the valve 14 are opened, and the pressure regulator 15 adjusts the pressure to release hydrogen gas. Hydrogen gas is supplied to the fuel electrode 20 of the fuel cell 19 through the humidifier 17, while air is supplied to the air electrode 21 from the air supply device 18 through the humidifier 16. In the fuel cell, an electromotive force is generated by an electrochemical reaction, and a current can be taken out from the output terminal 22.

ここでは固体高分子型燃料電池を例に説明したが、本発明に係る燃料電池装置はアルカリ型、リン酸型、溶融炭酸塩型、または固体酸化物型であっても良く、本発明に係る水素貯蔵装置を備えることによって、同一の効果を得ることができる。   Here, a solid polymer fuel cell has been described as an example. However, the fuel cell device according to the present invention may be of an alkaline type, a phosphoric acid type, a molten carbonate type, or a solid oxide type. By providing the hydrogen storage device, the same effect can be obtained.

本発明に係る水素貯蔵装置の一例を示す概略図である。It is the schematic which shows an example of the hydrogen storage apparatus which concerns on this invention. 本発明に係る水素貯蔵装置の一例を示す概略図である。It is the schematic which shows an example of the hydrogen storage apparatus which concerns on this invention. 本発明に係る水素貯蔵装置の一例を示す概略図である。It is the schematic which shows an example of the hydrogen storage apparatus which concerns on this invention. 本発明に係る燃料電池装置の一例を示す概略図である。It is the schematic which shows an example of the fuel cell apparatus which concerns on this invention. 従来の水素貯蔵装置の一例を示す概略図である。It is the schematic which shows an example of the conventional hydrogen storage apparatus.

符号の説明Explanation of symbols

1:容器、2:水素ガス注入/放出口、3:ナノ炭素材料、4:振動発生装置、5:水素貯蔵装置、7:容器、9:フィルター、10:圧力計、11:配管、12〜14:バルブ、15:圧力調整器、16:加湿器、17:加湿器、18:空気供給装置、19:燃料電池セル、20:燃料極、21:空気極、22:出力端子、A1〜A5:開口部、B1〜B5:仕切板、C1〜C6:小室、D1〜D4:仕切板、E1〜E5:小室、F1〜F4:開口部
1: container, 2: hydrogen gas inlet / outlet, 3: nanocarbon material, 4: vibration generator, 5: hydrogen storage device, 7: container, 9: filter, 10: pressure gauge, 11: piping, 12 to 14: Valve, 15: Pressure regulator, 16: Humidifier, 17: Humidifier, 18: Air supply device, 19: Fuel cell, 20: Fuel electrode, 21: Air electrode, 22: Output terminal, A1 to A5 : Opening, B1 to B5: partition plate, C1 to C6: small chamber, D1 to D4: partition plate, E1 to E5: small chamber, F1 to F4: opening

Claims (7)

ナノ炭素材料を容器に充填した水素貯蔵装置であって、前記容器は、開口部を有するN枚の仕切板によってN+1室の小室に仕切られており、前記仕切板の開口部において相互に連絡する前記小室が、水素ガス放出時において屈曲した流路を形成することを特徴とする水素貯蔵装置。 A hydrogen storage device in which a container is filled with a nanocarbon material, and the container is partitioned into N + 1 chambers by N partition plates having openings, and communicates with each other at the openings of the partition plates. The hydrogen storage device, wherein the small chamber forms a flow path that is bent when hydrogen gas is released. 前記仕切板は、水素ガス放出時における重力方向に対して前記開口部が最下部に位置するように傾斜して取り付けられ、かつ前記ナノ炭素材料は、水素ガス放出時における重力方向に対して最下部の小室に充填されている請求項1に記載の水素貯蔵装置。 The partition plate is attached so as to be inclined so that the opening is positioned at the lowest position with respect to the direction of gravity when hydrogen gas is released, and the nanocarbon material is positioned at the highest position with respect to the direction of gravity when hydrogen gas is released. 2. The hydrogen storage device according to claim 1, wherein the lower chamber is filled. 前記容器が振動発生装置を備えるものである請求項2に記載の水素貯蔵装置。 The hydrogen storage device according to claim 2, wherein the container includes a vibration generator. 前記ナノ炭素材料がフッ素化ナノ炭素材料である請求項1ないし請求項3のいずれか一項に記載の水素貯蔵装置。 The hydrogen storage device according to any one of claims 1 to 3, wherein the nanocarbon material is a fluorinated nanocarbon material. 前記フッ素化ナノ炭素材料がフッ素化アモルファスナノ炭素材料である請求項4に記載の水素貯蔵装置。 The hydrogen storage device according to claim 4, wherein the fluorinated nanocarbon material is a fluorinated amorphous nanocarbon material. 前記容器および仕切板がアルミニウム、アルミニウム合金、ニッケル、ニッケル合金、ニッケル銅合金の少なくとも1種類からなる材質で製作された請求項4または請求項5に記載の水素貯蔵装置。 6. The hydrogen storage device according to claim 4, wherein the container and the partition plate are made of a material made of at least one of aluminum, aluminum alloy, nickel, nickel alloy, and nickel copper alloy. 請求項1ないし請求項6のいずれか一項に記載の水素貯蔵装置を備えた燃料電池装置。
A fuel cell device comprising the hydrogen storage device according to any one of claims 1 to 6.
JP2003386298A 2003-11-17 2003-11-17 Hydrogen storage device and fuel cell device Pending JP2005147280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386298A JP2005147280A (en) 2003-11-17 2003-11-17 Hydrogen storage device and fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386298A JP2005147280A (en) 2003-11-17 2003-11-17 Hydrogen storage device and fuel cell device

Publications (1)

Publication Number Publication Date
JP2005147280A true JP2005147280A (en) 2005-06-09

Family

ID=34694019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386298A Pending JP2005147280A (en) 2003-11-17 2003-11-17 Hydrogen storage device and fuel cell device

Country Status (1)

Country Link
JP (1) JP2005147280A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101285011B1 (en) 2011-12-06 2013-07-10 강평호 A structure for gas charging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101285011B1 (en) 2011-12-06 2013-07-10 강평호 A structure for gas charging

Similar Documents

Publication Publication Date Title
JP5760000B2 (en) Hydrogen storage tank with metal hydride
JP5234898B2 (en) Hydrogen supply device for fuel cell
US5688611A (en) Segmented hydride battery including an improved hydrogen storage means
US6742650B2 (en) Metal hydride storage canister design and its manufacture
US8021793B2 (en) Hydrogen producing apparatus and fuel cell system using the same
US9214683B2 (en) Hybrid fuel cell
EP0813264A2 (en) Fuel cell system, fuel feed system for fuel cell and portable electric appliance
JPH1064567A (en) Fuel cell hydrogen supply system and portable electrical machinery and apparatus
CN112066242B (en) Solid hydrogen source device for hydrogen fuel
JP2005518514A (en) Feather-type heat conduction device
JP2016118299A (en) Hydrogen storage tank having metal hydride
US9005572B2 (en) Hydrogen generator
EP1872429B1 (en) A fuel cell and a method for operating said fuel cell
US20100261094A1 (en) Apparatus for containing metal-organic frameworks
US20040161652A1 (en) Alkaline fuel cell pack with gravity fed electrolyte circulation and water management system
EP2442393B1 (en) Hydrogen generator
JP2004273164A (en) Fuel cell system
JP2005147280A (en) Hydrogen storage device and fuel cell device
CN101794893B (en) Hydrogen storing unit and coupled fuel cell
JPS6249703B2 (en)
WO2001068526A1 (en) Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
JP2007012319A (en) Fuel cell system
CN114352924B (en) Diffusion type hydrogen storage bottle
JP2005155823A (en) Hydrogen storing method and device, and fuel cell device
JP3626371B2 (en) Hydrogen supply device for fuel cell