JP2005147161A - Laminated support - Google Patents

Laminated support Download PDF

Info

Publication number
JP2005147161A
JP2005147161A JP2003380789A JP2003380789A JP2005147161A JP 2005147161 A JP2005147161 A JP 2005147161A JP 2003380789 A JP2003380789 A JP 2003380789A JP 2003380789 A JP2003380789 A JP 2003380789A JP 2005147161 A JP2005147161 A JP 2005147161A
Authority
JP
Japan
Prior art keywords
laminated
magnet
elastic body
plates
magnet core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003380789A
Other languages
Japanese (ja)
Inventor
Shigenobu Suzuki
重信 鈴木
Kazuyoshi Iida
一嘉 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2003380789A priority Critical patent/JP2005147161A/en
Publication of JP2005147161A publication Critical patent/JP2005147161A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated support capable of easily setting absorbable energy without being dependent on axial force. <P>SOLUTION: A magnet core 30 is inserted into a hollow section 28, and the inserted magnet core 30 is firmly stuck to a laminated elastic body 16 forming the hollow section 28. The magnet core 30 is formed by laminating multiple sheets to a direction pulling against each other on a disk-shaped magnet plate 30A formed by a permanent magnet, namely, a direction in which a S pole face and a N pole face are faced with each other. The laminating direction of the magnet core 30 is coincided with an X direction, and an upper end face of the magnet core 30 is located lower than an upper end face of the laminated elastic body 16. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、積層支持体に関する。   The present invention relates to a laminated support.

従来から、ゴムなどの軟質板と金属などの硬質板とを交互に積層した積層支持体が、免震装置の支承片として使用されている。そして、図6に示すように、この積層支持体50の中心に孔52を構成し、この孔52に複数枚の板を摩擦板54として積層して、ダンパとしての機能をもたせたものも開示されている(特許文献1)。   Conventionally, a laminated support in which soft plates such as rubber and hard plates such as metal are alternately laminated has been used as a support piece for a seismic isolation device. Then, as shown in FIG. 6, a hole 52 is formed at the center of the laminated support 50, and a plurality of plates are laminated as friction plates 54 in the hole 52 to provide a function as a damper. (Patent Document 1).

しかしながら、特許文献1に記載の技術では、複数枚の摩擦板54間の摩擦力を所望の大きさにするために、摩擦板54への積層方向の力(以下「軸力J」という)を利用する必要がある。この軸力Jは、積層支持体50で支持する被支持体の荷重によって変化するため、所望の大きさの摩擦力を得ることが困難である。複数の摩擦板54により吸収可能なエネルギーは前述の摩擦力に依存するため、この吸収可能なエネルギーの設定も困難になるという問題が生じていた。
特開平9−217520号公報
However, in the technique described in Patent Document 1, a force in the stacking direction on the friction plate 54 (hereinafter referred to as “axial force J”) is used to make the frictional force between the plurality of friction plates 54 a desired magnitude. Need to use. Since this axial force J varies depending on the load of the supported body supported by the laminated support body 50, it is difficult to obtain a desired frictional force. Since the energy that can be absorbed by the plurality of friction plates 54 depends on the frictional force described above, there is a problem that it is difficult to set the energy that can be absorbed.
JP-A-9-217520

本発明は上記事実を考慮し吸収可能なエネルギーを、軸力に依存せず簡易に設定することの可能な積層支持体を提供することを目的とする。   An object of the present invention is to provide a laminated support that can easily set the energy that can be absorbed without depending on the axial force in consideration of the above facts.

上記課題を解決するために、本発明の積層支持体は、剛性を有する硬質板と弾性を有する弾性板とが所定の積層方向に交互に積層されて構成され、前記積層方向に被支持体の荷重を支持する積層弾性体と、前記積層弾性体の内部に設けられ、磁力を有する複数の磁石板が互いに引き合う向きで接触して前記積層方向と同方向に積層され、前記積層弾性体が前記積層方向と直交する方向へせん断変形する際に前記複数の磁石板が相互にずれる磁石コアと、前記被支持体から前記磁石コアへの荷重を軽減する荷重軽減手段と、を含んで構成されている。   In order to solve the above-mentioned problems, the laminated support of the present invention is configured by alternately laminating rigid hard plates and elastic elastic plates in a predetermined laminating direction. A laminated elastic body that supports a load and a plurality of magnet plates that are provided inside the laminated elastic body and have a magnetic force are brought into contact with each other in a direction that attracts each other, and are laminated in the same direction as the laminating direction. A magnet core in which the plurality of magnet plates are displaced from each other when shearing is deformed in a direction perpendicular to the stacking direction, and load reducing means for reducing a load from the supported body to the magnet core. Yes.

上記構成の積層支持体では、積層弾性体は、剛性を有する硬質板と弾性を有する弾性板とが所定の積層方向に交互に積層されて構成されており、積層方向に被支持体の荷重を支持する。磁石コアは、積層弾性体の内部に設けられており、磁力を有する複数の磁石板が互いに引き合う向きで接触して積層弾性体の積層方向と同方向に積層されている。また、磁石コアを構成する複数の磁石板は、積層弾性体が積層方向と直交する方向へせん断変形する際に相互にずれる。そして、磁石コアは荷重軽減手段によって被支持体からの荷重が軽減されている。ここでの荷重軽減手段は、被支持体からの荷重が全くかからないようにする手段を含むものである。この荷重軽減手段としては、例えば、被支持体とが磁石コアに接触しないように被支持体側または磁石コア側に凹部を設ける手段が挙げられる。磁石コアは、このような荷重軽減手段を有しているので、軸力に影響されず、または軸力の影響を軽減することができる。一方、積層された磁石板同士は磁力により引き合っているので、各々が積層方向と直交する方向にずれる際に被支持体の荷重なしでも所定の摩擦力を得ることができる。   In the laminated support body having the above configuration, the laminated elastic body is configured by alternately laminating rigid hard plates and elastic elastic plates in a predetermined laminating direction, and loads the supported body in the laminating direction. To support. The magnet core is provided inside the laminated elastic body, and is laminated in the same direction as the laminating direction of the laminated elastic body by contacting a plurality of magnetic plates having magnetic force in a direction that attracts each other. The plurality of magnet plates constituting the magnet core are displaced from each other when the laminated elastic body undergoes shear deformation in a direction orthogonal to the lamination direction. In the magnet core, the load from the supported body is reduced by the load reducing means. Here, the load reducing means includes means for preventing any load from the supported body. Examples of the load reducing means include means for providing a recess on the supported body side or the magnet core side so that the supported body does not contact the magnet core. Since the magnet core has such load reducing means, it is not affected by the axial force or can reduce the influence of the axial force. On the other hand, since the laminated magnet plates are attracted to each other by a magnetic force, a predetermined frictional force can be obtained without any load on the supported body when they are shifted in a direction perpendicular to the laminating direction.

したがって、本発明の積層支持体によれば、軸力を利用しない磁力による摩擦力、及び軸力を軽減する軽減手段により、所望のエネルギー吸収力を簡易に設定することができる。   Therefore, according to the laminated support body of the present invention, the desired energy absorption force can be easily set by the frictional force due to the magnetic force not using the axial force and the mitigating means for reducing the axial force.

なお、本発明の積層支持体の積層弾性体は、請求項2に記載のように、前記積層方向に中空が形成された筒状とされ、前記磁石コアは前記中空に設けられ1端面が前記積層弾性体の端面よりも積層方向内側に配置されていることを特徴とすることもできる。   The laminated elastic body of the laminated support according to the present invention has a cylindrical shape in which a hollow is formed in the laminating direction, the magnet core is provided in the hollow, and one end face is formed as described above. It can also be characterized in that it is arranged on the inner side in the laminating direction than the end face of the laminated elastic body.

上記構成によれば、磁石コアの1端面を積層弾性体の端面よりも積層方向内側に配置することにより、被支持体からの荷重を簡易な構造で回避することができる。   According to the said structure, the load from a to-be-supported body can be avoided with a simple structure by arrange | positioning one end surface of a magnet core inside a lamination direction rather than the end surface of a lamination | stacking elastic body.

また、本発明の積層支持体は、請求項3に記載のように、磁石板が互いに引き合う力が1N/mm以上50N/mm以下であることが好ましい。 The layered support of the present invention, as described in claim 3, it is preferable force magnet plate attract each other is 1N / mm 2 or more 50 N / mm 2 or less.

磁石コアによるエネルギー吸収は、磁石板間の磁力に依存するため、磁力を変化させることにより吸収エネルギーを変化させることができるが、磁石板が互いに引き合う力は上記のように、1N/mm以上50N/mm以下にすることが好ましい。 Since energy absorption by the magnet core depends on the magnetic force between the magnet plates, the absorbed energy can be changed by changing the magnetic force. However, the force with which the magnet plates attract each other is 1 N / mm 2 or more as described above. 50 N / mm 2 or less is preferable.

また、本発明の積層支持体は、請求項4に記載のように、複数の磁石板間の摩擦係数は0.2以上0.5以下であることが好ましい。   Moreover, as for the laminated support body of this invention, it is preferable that the friction coefficient between several magnet plates is 0.2-0.5.

複数の磁石板は互いに接触しているため、接触面の表面粗さによっても摩擦力が変化する。したがって、複数の磁石板間の摩擦係数を変化させることにより吸収エネルギーを変化させることができるが、複数の磁石板間の摩擦係数は0.2以上0.5以下にすることが好ましい。   Since the plurality of magnet plates are in contact with each other, the frictional force varies depending on the surface roughness of the contact surface. Therefore, the absorbed energy can be changed by changing the friction coefficient between the plurality of magnet plates, but the friction coefficient between the plurality of magnet plates is preferably 0.2 or more and 0.5 or less.

また、本発明の積層支持体は、請求項5に記載のように、積層弾性体の両端面にこの両端面の面方向に張り出して積層された端面板を備えたことを特徴とすることもできる。   In addition, the laminated support of the present invention is characterized in that, as described in claim 5, the laminated elastic body includes end face plates that are laminated so as to protrude in the surface direction of the both end faces. it can.

このような端面板を備えることにより、容易に被支持体を支持することができる。   By providing such an end face plate, the supported body can be easily supported.

本発明の積層支持体は上記構成としたので、吸収可能なエネルギーを、軸力に依存せず簡易に設定することができる。   Since the laminated support of the present invention has the above configuration, the energy that can be absorbed can be set easily without depending on the axial force.

本発明の積層支持体12は、図1に示すように、複数枚の円盤状の金属板18と、同じく複数枚の円盤状のゴム20とを厚み方向に交互に積層した(以下この積層方向を「X方向」という)積層弾性体16を備える。積層弾性体16の中央部には、積層弾性体16をX方向に貫通する中空部28が形成されている。中空部28は、円柱状の空間とされている。   As shown in FIG. 1, the laminated support 12 of the present invention is formed by alternately laminating a plurality of disc-shaped metal plates 18 and a plurality of disc-shaped rubbers 20 in the thickness direction (hereinafter, this laminating direction). (Referred to as “X direction”). A hollow portion 28 that penetrates the laminated elastic body 16 in the X direction is formed at the center of the laminated elastic body 16. The hollow portion 28 is a cylindrical space.

中空部28には、磁石コア30が挿入され、挿入された磁石コア30は中空部28を構成する積層弾性体16と密着されている。磁石コア30は、図4に示すように、永久磁石で構成される円盤状の磁石板30Aを互いに引き合う方向、すなわち、互いのS極面とN極面とが向き合う方向に、複数枚積層して構成されている。図2に示すように、磁石コア30は積層方向がX方向と一致されており、磁石コア30の上端面は積層弾性体16の上端面よりも下側に位置している。   A magnet core 30 is inserted into the hollow portion 28, and the inserted magnet core 30 is in close contact with the laminated elastic body 16 constituting the hollow portion 28. As shown in FIG. 4, the magnet core 30 is formed by laminating a plurality of disk-shaped magnet plates 30A composed of permanent magnets in the direction in which they are attracted to each other, that is, in the direction in which the S pole face and the N pole face face each other. Configured. As shown in FIG. 2, the lamination direction of the magnet core 30 coincides with the X direction, and the upper end surface of the magnet core 30 is located below the upper end surface of the laminated elastic body 16.

積層弾性体16の側面には被覆ゴム26が設けられている。この被覆ゴム26によって金属板18が覆われており、金属板18の劣化が防止されている。   A coated rubber 26 is provided on the side surface of the laminated elastic body 16. The metal plate 18 is covered with the covering rubber 26, so that the metal plate 18 is prevented from being deteriorated.

積層弾性体16のX方向の両端には、円盤状でその径が積層弾性体16の径よりも大きい取付プレート22、24が固着されている。取付プレート22、24は、中心軸が積層弾性体16の中心軸と一致され、積層弾性体16の端面から外縁部が張り出した状態で積層弾性体16に固着されている。取付プレート22と磁石コア30との間には、図2に示すように、隙間が構成されている。取付プレート22、24はそれぞれ、地盤42び建物40に固定される。   At both ends in the X direction of the laminated elastic body 16, mounting plates 22 and 24 having a disk shape and a diameter larger than the diameter of the laminated elastic body 16 are fixed. The mounting plates 22 and 24 are fixed to the laminated elastic body 16 with the central axis thereof coinciding with the central axis of the laminated elastic body 16 and the outer edge portion protruding from the end surface of the laminated elastic body 16. As shown in FIG. 2, a gap is formed between the mounting plate 22 and the magnet core 30. The mounting plates 22 and 24 are fixed to the ground 42 and the building 40, respectively.

この状態で、図3に示すように、地盤42と建物40とが水平方向に相対移動すると、積層弾性体16は同方向にせん断変形する。このせん断変形により、地盤42と建物40との相対移動のエネルギーが吸収される。また、磁石コア30は、積層弾性体16がせん断変形するときに各々の磁石板30Aが同方向にずれることにより変形して、ダンパとして機能する。このときの各々のゴム20間の摩擦力Mは、磁石コア30と取付プレート24との間には隙間が構成されていて、磁石コア30が建物40の荷重を負担しないことから、磁石板30A間の引っ張り力をP、磁石板の摩擦係数をμとすると、
M=μPで表すことができる。すなわち、摩擦力Mは建物40の荷重に影響されない。そして、磁石板30A間の引っ張り力Pは磁石板30Aの磁力を変えることにより、摩擦係数μは磁石板30Aの板面の表面粗さを変えることによって容易に変更することができる。したがって、建物40の荷重を受ける場合と比較して、水平方向における所望のエネルギー吸収力を簡易に設定することができる。
In this state, as shown in FIG. 3, when the ground 42 and the building 40 are relatively moved in the horizontal direction, the laminated elastic body 16 undergoes shear deformation in the same direction. By this shear deformation, the energy of relative movement between the ground 42 and the building 40 is absorbed. Further, when the laminated elastic body 16 undergoes shear deformation, the magnet core 30 is deformed when each magnet plate 30A is displaced in the same direction, and functions as a damper. The frictional force M between the rubbers 20 at this time is such that a gap is formed between the magnet core 30 and the mounting plate 24, and the magnet core 30 does not bear the load of the building 40. Assuming that the pulling force is P and the friction coefficient of the magnet plate is μ,
M = μP. That is, the frictional force M is not affected by the load of the building 40. The tensile force P between the magnet plates 30A can be easily changed by changing the magnetic force of the magnet plate 30A, and the friction coefficient μ can be easily changed by changing the surface roughness of the plate surface of the magnet plate 30A. Therefore, compared with the case where the load of the building 40 is received, a desired energy absorbing power in the horizontal direction can be set easily.

なお、本実施形態では、磁石コア30の上端面を積層弾性体16の上端面よりも下側に位置させることにより、磁石コア30が建物40の荷重を負担しないようにしたが、磁石コア30の上端面を積層弾性体16の上端面と同一平面上に位置させると共に、図5(A)に示すように、取付プレート24の磁石コア30と対向する部分に凹部24Aを構成して磁石コア30が建物40の荷重を負担しないようにしたり、取付プレート24の磁石コア30と対向する部分に孔24Bを構成して磁石コア30が建物40の荷重を負担しないようにしたりすることもできる。さらには、建物40側に凹部を設けて磁石コア30に荷重がかからないようにしてもよい。特に、本実施形態のような構成とすることにより、取付プレート24に特別な加工を施す必要がなく、簡易な構成とすることができる。   In the present embodiment, the upper end surface of the magnet core 30 is positioned below the upper end surface of the laminated elastic body 16 so that the magnet core 30 does not bear the load of the building 40. The upper end surface of the mounting plate 24 is positioned on the same plane as the upper end surface of the laminated elastic body 16, and as shown in FIG. It is also possible to prevent 30 from bearing the load of the building 40, or to configure the hole 24B in a portion facing the magnet core 30 of the mounting plate 24 so that the magnet core 30 does not bear the load of the building 40. Furthermore, a recess may be provided on the building 40 side so that no load is applied to the magnet core 30. In particular, with the configuration as in the present embodiment, it is not necessary to perform special processing on the mounting plate 24, and a simple configuration can be achieved.

また、磁石板30Aが互いに引き合う力(磁力)を変えることにより磁石コア30での吸収可能エネルギーを調整することができるが、磁石コア30をダンパとして機能させることを考慮すると、磁石板30Aが互いに引き合う力は1N/mm以上50N/mm以下であることが好ましい。 Further, the energy that can be absorbed by the magnet core 30 can be adjusted by changing the force (magnetic force) that the magnet plates 30A attract each other. However, considering that the magnet core 30 functions as a damper, the magnet plates 30A The attractive force is preferably 1 N / mm 2 or more and 50 N / mm 2 or less.

また、磁石板30A間の摩擦係数は、0.2以上0.5以下であることが好ましい。   The coefficient of friction between the magnet plates 30A is preferably 0.2 or more and 0.5 or less.

また、磁石板30Aには、強磁性体の材料、希土類ボンド磁石(NdFe系、SmCo系、SmFeN系)、希土類焼結磁石(NdFeB系、SmCo系)、フェライト焼結、フェライトボンド、アルニコ等を用いることができる。   The magnet plate 30A is made of a ferromagnetic material, a rare earth bonded magnet (NdFe, SmCo, SmFeN), a rare earth sintered magnet (NdFeB, SmCo), ferrite sintered, ferrite bonded, alnico, etc. Can be used.

本実施形態の積層支持体を一部破断して示す斜視図である。It is a perspective view which shows the laminated support body of this embodiment partially broken. 本実施形態の積層支持体の断面図である。It is sectional drawing of the lamination | stacking support body of this embodiment. 本実施形態の積層支持体の積層弾性体および磁石コアが建物と地盤との相対移動により変形した状態を示す断面図である。It is sectional drawing which shows the state which the lamination | stacking elastic body and magnet core of the lamination | stacking support body of this embodiment deform | transformed by the relative movement of a building and the ground. 本実施形態の一部の磁石板を示す斜視図である。It is a perspective view which shows a part of magnet plate of this embodiment. 本実施形態の積層支持体の変形例えお示す断面図である。It is sectional drawing which shows the modification of the laminated support body of this embodiment. 従来例を示す断面図である。It is sectional drawing which shows a prior art example.

符号の説明Explanation of symbols

12 積層支持体
16 積層弾性体
18 金属板(硬性板)
20 ゴム(弾性板)
22 取付プレート(端面板)
24A 凹部(荷重軽減手段)
24B 孔(荷重軽減手段)
24 取付プレート(端面板)
28 中空部(中空)
30 磁石コア
30A 磁石板
40 建物(被支持体)
12 Laminated support 16 Laminated elastic body 18 Metal plate (hard plate)
20 Rubber (elastic plate)
22 Mounting plate (end face plate)
24A Concavity (load reduction means)
24B hole (load reduction means)
24 Mounting plate (end face plate)
28 Hollow part (hollow)
30 Magnet core 30A Magnet plate 40 Building (supported body)

Claims (5)

剛性を有する硬質板と弾性を有する弾性板とが所定の積層方向に交互に積層されて構成され、前記積層方向に被支持体の荷重を支持する積層弾性体と、
前記積層弾性体の内部に設けられ、磁力を有する複数の磁石板が互いに引き合う向きで接触して前記積層方向と同方向に積層され、前記積層弾性体が前記積層方向と直交する方向へせん断変形する際に前記複数の磁石板が相互にずれる磁石コアと、
前記被支持体から前記磁石コアへの荷重を軽減する荷重軽減手段と、
を備えた積層支持体。
A laminated elastic body configured by alternately laminating rigid rigid plates and elastic elastic plates in a predetermined laminating direction, and supporting the load of the supported body in the laminating direction;
Provided inside the laminated elastic body, a plurality of magnet plates having magnetic force contact each other in a direction attracting each other and laminated in the same direction as the laminating direction, and the laminated elastic body undergoes shear deformation in a direction perpendicular to the laminating direction. A magnet core in which the plurality of magnet plates are displaced from each other when
A load reducing means for reducing a load from the supported body to the magnet core;
A laminated support comprising:
前記積層弾性体は前記積層方向に中空が形成された筒状とされ、前記磁石コアは前記中空に設けられ1端面が前記積層弾性体の端面よりも積層方向内側に配置されていることを特徴とする請求項1に記載の積層支持体。   The laminated elastic body has a cylindrical shape in which a hollow is formed in the laminating direction, the magnet core is provided in the hollow, and one end surface is arranged on the inner side in the laminating direction than the end surface of the laminated elastic body. The laminated support according to claim 1. 前記磁石板が互いに引き合う力は1N/mm以上50N/mm以下であることを特徴とする請求項1または請求項2に記載の積層支持体。 The laminated support according to claim 1 or 2, wherein a force with which the magnet plates attract each other is 1 N / mm 2 or more and 50 N / mm 2 or less. 前記複数の磁石板間の摩擦係数は0.2以上0.5以下であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の積層支持体。   The laminated support according to any one of claims 1 to 3, wherein a friction coefficient between the plurality of magnet plates is 0.2 or more and 0.5 or less. 前記積層弾性体の両端面にこの両端面の面方向に張り出して積層された端面板を備えたことを特徴とする請求項2乃至請求項4のいずれか1項に記載の積層支持体。   The laminated support according to any one of claims 2 to 4, further comprising an end face plate that is laminated on both end faces of the laminated elastic body so as to protrude in a surface direction of the both end faces.
JP2003380789A 2003-11-11 2003-11-11 Laminated support Pending JP2005147161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380789A JP2005147161A (en) 2003-11-11 2003-11-11 Laminated support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380789A JP2005147161A (en) 2003-11-11 2003-11-11 Laminated support

Publications (1)

Publication Number Publication Date
JP2005147161A true JP2005147161A (en) 2005-06-09

Family

ID=34690356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380789A Pending JP2005147161A (en) 2003-11-11 2003-11-11 Laminated support

Country Status (1)

Country Link
JP (1) JP2005147161A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678801A (en) * 2012-06-13 2012-09-19 谭晓婧 Single-rod rectangular shock absorber with magnetorheological elastic bodies
CN102678800A (en) * 2012-05-23 2012-09-19 谭晓婧 Plate-type damper of single-outlet rod magnetorheological elastomer
CN102678802A (en) * 2012-06-13 2012-09-19 谢宁 Dual-ejector-rod magnetorheological elastomer rectangular shock absorber
CN103388646A (en) * 2013-07-30 2013-11-13 谭苹 Double-ring type magneto-rheological damper
KR20200055368A (en) * 2018-11-13 2020-05-21 한국과학기술원 Magneto-rheological Elastomer Vibration Isolation Device with Laminated electromagnet construction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678800A (en) * 2012-05-23 2012-09-19 谭晓婧 Plate-type damper of single-outlet rod magnetorheological elastomer
CN102678801A (en) * 2012-06-13 2012-09-19 谭晓婧 Single-rod rectangular shock absorber with magnetorheological elastic bodies
CN102678802A (en) * 2012-06-13 2012-09-19 谢宁 Dual-ejector-rod magnetorheological elastomer rectangular shock absorber
CN103388646A (en) * 2013-07-30 2013-11-13 谭苹 Double-ring type magneto-rheological damper
KR20200055368A (en) * 2018-11-13 2020-05-21 한국과학기술원 Magneto-rheological Elastomer Vibration Isolation Device with Laminated electromagnet construction
KR102141093B1 (en) * 2018-11-13 2020-08-04 한국과학기술원 Magneto-rheological Elastomer Vibration Isolation Device with Laminated electromagnet construction

Similar Documents

Publication Publication Date Title
CN107534377B (en) Linear actuator
US10491090B2 (en) Vibrating motor and electronic device
TWI462133B (en) Vibration actuator
KR102648129B1 (en) transducer device
WO2017130936A1 (en) Actuator
US6819209B2 (en) Magnetic damper and actuator having the same
JP5349732B2 (en) motor
KR102003829B1 (en) Vibration transducer and actuator
US20200044544A1 (en) Linear vibration motor
JP5637028B2 (en) Vibration generator
KR20050005596A (en) Vibrator structure
JP5556400B2 (en) Rotor core member and permanent magnet fixing method
JP2005147161A (en) Laminated support
WO2009099639A2 (en) Improved magnetic circuit for electrodynamic moving voice coil actuators
JPH08339916A (en) Permanent-magnet magnetic circuit
US20230199403A1 (en) Electroacoustic drivers and loudspeakers containing same
WO2010076656A2 (en) Improved inertial type acoustic transducer
JP2001012544A (en) Magnetic circuit
JPH07203644A (en) Rotary device
JPH1155900A (en) Spindle motor
JP2019102682A (en) Permanent electromagnetic holder and permanent electromagnetic holder device
JP4874703B2 (en) Electromagnetic actuator
JP5200333B2 (en) Method for manufacturing rotor of electric motor and rotor
US11489427B2 (en) Sound vibration actuator with three vibration assemblies and different frequencies
JP2008082353A (en) Laminated support