JP2005146248A - Impact-resistant polystyrene resin composition - Google Patents

Impact-resistant polystyrene resin composition Download PDF

Info

Publication number
JP2005146248A
JP2005146248A JP2004109844A JP2004109844A JP2005146248A JP 2005146248 A JP2005146248 A JP 2005146248A JP 2004109844 A JP2004109844 A JP 2004109844A JP 2004109844 A JP2004109844 A JP 2004109844A JP 2005146248 A JP2005146248 A JP 2005146248A
Authority
JP
Japan
Prior art keywords
impact
styrene monomer
range
polystyrene resin
resistant polystyrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004109844A
Other languages
Japanese (ja)
Inventor
Takeshi Ikematsu
武司 池松
Ikuji Otani
郁二 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Japan Corp
Original Assignee
PS Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Japan Corp filed Critical PS Japan Corp
Priority to JP2004109844A priority Critical patent/JP2005146248A/en
Publication of JP2005146248A publication Critical patent/JP2005146248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an impact-resistant polystyrene resin composition remarkably improved in problems caused by dissolution and volatilization of organic volatile substances and largely improved in weathering stability at the same time. <P>SOLUTION: This impact-resistant polystyrene resin composition is composed of constituents (a) to (d) and scarcely contains the organic volatile substances, wherein the constituent (a) comprises 100 pts.wt. of an impact-resistant polystyrene resin having a melt flow rate of 0.5-30 g/min, used as an index of molecular weight, and a rubber content of 1-20 wt%, the constituent (b) comprises 0.01-10 pts.wt. of a volatile plasticizer having such a distillation characteristic that a temperature at which 50 vol% of the plasticizer is distilled under normal pressure is 150-450°C, the constituent (c) comprises less than 100 ppm of styrene monomer, and the constituent (d) comprises less than 150 ppm of the organic volatile substances including the styrene. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、スチレン単量体等の有機揮発性物質の少ない耐衝撃性ポリスチレン樹脂(以降はHIPSと略称する。)組成物に関する。具体的にはスチレン単量体、重合溶媒等の有機揮発性物質を、特定の可塑剤で置換してなるHIPS組成物に関する。   The present invention relates to an impact-resistant polystyrene resin (hereinafter abbreviated as HIPS) composition having a small amount of organic volatile substances such as a styrene monomer. Specifically, the present invention relates to a HIPS composition obtained by replacing an organic volatile substance such as a styrene monomer and a polymerization solvent with a specific plasticizer.

HIPSは優れた樹脂性能および加工特性を生かして合成樹脂として広く用いられている。しかし、必ずしも具体的な問題が顕在化している訳ではないが、近年これらのHIPSからの有機揮発性物質、特に残留単量体成分の食品あるいは環境への溶出あるいは揮発が心配される様になった。これに伴い、HIPS中に微量に存在する未反応スチレン単量体、未反応共重合単量体、単量体不純物、単量体由来の重合禁止剤、重合溶剤、重合開始剤分解物および副生成物等の有機揮発性物質の削減が求められるようになった。
一般に、既存HIPSのラジカル重合法においては、重合条件にも依存するが、重合時に一定量のスチレン単量体は未反応で残る。それ故、重合工程で残留するスチレン単量体や重合溶剤等の有機揮発性物質は、その後減圧下に加熱することにより脱揮(揮発除去の意味)してHIPSが回収される。しかし、脱揮時のHIPS温度は、HIPSの熱分解を回避するため220〜250℃程度が限界であり、また減圧度にも製造設備の限界がある。それ故、この種の脱揮工程で得られるHIPSに残る有機揮発性物質、例えばスチレン単量体は、製造条件にもよるが数百ppm程度になる。
HIPS is widely used as a synthetic resin by taking advantage of excellent resin performance and processing characteristics. However, although specific problems are not necessarily manifested, in recent years there has been concern about the elution or volatilization of organic volatile substances from these HIPS, particularly residual monomer components, into food or the environment. It was. Along with this, unreacted styrene monomer, unreacted copolymer monomer, monomer impurities, monomer-derived polymerization inhibitor, polymerization solvent, polymerization initiator decomposition product and by-product present in trace amounts in HIPS Reduction of organic volatile substances such as products has come to be demanded.
Generally, in the existing HIPS radical polymerization method, although depending on the polymerization conditions, a certain amount of styrene monomer remains unreacted during the polymerization. Therefore, organic volatile substances such as styrene monomer and polymerization solvent remaining in the polymerization step are then devolatilized by heating under reduced pressure (meaning volatilization removal) and HIPS is recovered. However, the HIPS temperature at the time of devolatilization is limited to about 220 to 250 ° C. in order to avoid thermal decomposition of HIPS, and the degree of decompression also has a limit of manufacturing equipment. Therefore, the organic volatile substance remaining in HIPS obtained by this type of devolatilization process, for example, a styrene monomer, is about several hundred ppm although it depends on the production conditions.

スチレン系重合体から有機揮発性物質を脱揮する改善方策として、水や低分子量のアルコールを脱揮時に混合する方法が公知である。例えば、脱揮時に少量の水を混合して、残留するスチレン単量体を水と減圧下に共沸除去する技術がある(例えば特許文献1参照)。また、脱揮時に少量のメタノール(沸点64.7℃)、エタノール(沸点78.3℃)等を混合して、残留するスチレン単量体(沸点145.2℃)を減圧下に共沸除去することによって、樹脂中に残留するスチレン単量体濃度を低減できることも公知である。(例えば特許文献2参照)
これらの従来技術では、HIPSに高揮発性(低沸点)の化合物である水やアルコール等を脱揮助剤として分散させ、これらと該有機揮発性物質を減圧下に一気に共沸(フラッシュ)することにより、有機揮発性物質の低減を達成している。この種の方法においては、脱揮助剤は該有機揮発性物質よりも通常は低沸点の化合物から選択され、それ自身がHIPS中に残留することを回避している。除去を目的とする有機揮発性物質よりも、用いる脱揮助剤は低沸点で、脱揮助剤揮発後も一部の有機揮発性物質は残留する。このために、この種の方法でHIPS中に残る微量の有機揮発性物質の除去には限界があった。
これらの既存のHIPSからの有機揮発性物質の食品あるいは環境への溶出あるいは揮発の心配を解決するため、樹脂中に微量に存在するスチレン単量体および重合溶剤等の有機揮発性物質の更なる低減が求められていた。
As an improvement measure for devolatilizing an organic volatile substance from a styrene polymer, a method of mixing water or a low molecular weight alcohol during devolatilization is known. For example, there is a technique in which a small amount of water is mixed during devolatilization, and the remaining styrene monomer is removed azeotropically with water under reduced pressure (see, for example, Patent Document 1). Also, a small amount of methanol (boiling point 64.7 ° C), ethanol (boiling point 78.3 ° C), etc. are mixed during devolatilization, and the remaining styrene monomer (boiling point 145.2 ° C) is removed azeotropically under reduced pressure. It is also known that the concentration of styrene monomer remaining in the resin can be reduced by doing so. (For example, see Patent Document 2)
In these conventional technologies, water, alcohol, etc., which are highly volatile (low boiling point) compounds are dispersed in HIPS as a devolatilization aid, and these and the organic volatile substances are azeotroped (flashed) at a time under reduced pressure. As a result, reduction of organic volatile substances is achieved. In this type of process, the devolatilization aid is usually selected from compounds having a lower boiling point than the organic volatile material, avoiding itself remaining in the HIPS. The devolatilization aid used has a lower boiling point than the organic volatile material intended for removal, and some of the organic volatile material remains after volatilization of the devolatilization aid. For this reason, there is a limit to the removal of trace amounts of organic volatile substances remaining in HIPS by this type of method.
In order to solve the concerns about elution or volatilization of organic volatile substances from these existing HIPS into food or the environment, further addition of organic volatile substances such as styrene monomer and polymerization solvent present in trace amounts in the resin Reduction was demanded.

米国特許第3,536,787号明細書US Pat. No. 3,536,787 米国特許第3,987,235号明細書US Pat. No. 3,987,235

本発明は成形品からの有機揮発性物質の溶出や揮発に伴う問題点を顕著に改善し、同時に耐候安定性も大きく改善したHIPS組成物の提供を課題とする。   It is an object of the present invention to provide a HIPS composition that remarkably improves problems associated with elution and volatilization of organic volatile substances from molded articles, and at the same time greatly improves the weather resistance stability.

本発明者等は上述の課題解決を鋭意検討した結果、HIPSに含まれる有機揮発性物質を、特定の可塑剤で置換してなるHIPS組成物が、上記の課題を解決することを見いだし、本発明をなすに至った。
即ち本発明は、下記に示すところである。
下記(a)〜(d)に示す範囲の組成を有する有機揮発性物質の少ない耐衝撃性ポリスチレン樹脂組成物。
(a)分子量の指標であるメルトフローレートが0.5〜30g/分の範囲およびゴム含率が1〜20重量%の範囲にある耐衝撃性ポリスチレン樹脂 100重量部
(b)常圧における50体積%の留出温度が150〜450℃の範囲にある可揮発な可塑剤 0.01〜10重量部の範囲
(c)スチレン単量体含有量が100ppm未満
(d)スチレン単量体を含む有機揮発性物質含有量が150ppm未満
As a result of intensive studies on solving the above-mentioned problems, the present inventors have found that a HIPS composition obtained by substituting an organic volatile substance contained in HIPS with a specific plasticizer solves the above-mentioned problems. Invented the invention.
That is, the present invention is as follows.
The impact-resistant polystyrene resin composition with few organic volatile substances which has a composition of the range shown to the following (a)-(d).
(A) 100 parts by weight of an impact-resistant polystyrene resin having a melt flow rate as a molecular weight index in the range of 0.5 to 30 g / min and a rubber content in the range of 1 to 20% by weight (b) 50 at normal pressure Volatile plasticizer with a vol% distillation temperature in the range of 150 to 450 ° C. Range of 0.01 to 10 parts by weight (c) Styrene monomer content less than 100 ppm (d) Including styrene monomer Organic volatile content is less than 150ppm

本発明のスチレン系脂組成物は、既存HIPSの優れた物理的特性を保持し、スチレン単量体等の有機揮発性物質の溶出や揮発に伴う問題点が顕著に改善、且つ耐候安定性が大きく改善する。   The styrene-based fat composition of the present invention retains the excellent physical properties of existing HIPS, significantly improves the problems associated with elution and volatilization of organic volatile substances such as styrene monomers, and has weather resistance stability. Greatly improved.

以下に、本発明を具体的に説明する。
本発明のHIPS組成物を構成するHIPSは、各種のラジカル重合法(塊状重合法、溶液重合法および縣濁重合法を含む)で重合して得られる。該HIPSのスチレン単量体の含有量は100ppm未満である。好ましくは80ppm未満、更に好ましくは40ppm未満、特に好ましくは10ppm未満である。また、スチレン単量体を含む有機揮発性物質の合計含有量は150ppm未満である。好ましいスチレン単量体と有機揮発性物質の合計の含有量は100ppm未満、更に好ましくは60ppm未満、特に好ましくは20ppm未満である。これらのスチレン単量体および有機揮発性物質の限定によって、成型品からの溶出や揮発に伴う問題が顕著に改善される。
ところで、一般に言われる有機揮発性物質には、未反応スチレン単量体、未反応共重合単量体、単量体不純物、単量体の重合禁止剤、重合溶剤、重合開始剤分解物等の揮発性を有する有機成分が広く含まれる。
しかし、本発明のHIPS組成物で組成定義するスチレン単量体を含む有機揮発性物質量は、“食品衛生法、食品、添加物等の規格基準、器具若しくは容器包装またはこれらの原材料の材料別規格、ポリスチレンを主成分とする合成樹脂製の器具または容器包装”で定められた揮発性物質であって、具体的にはスチレン単量体、トルエン、エチルベンゼン、n−プロピルベンゼンおよびイソプロピルベンゼンの合計量で示される。
The present invention will be specifically described below.
The HIPS constituting the HIPS composition of the present invention is obtained by polymerizing by various radical polymerization methods (including bulk polymerization method, solution polymerization method and suspension polymerization method). The content of styrene monomer in the HIPS is less than 100 ppm. Preferably it is less than 80 ppm, More preferably, it is less than 40 ppm, Most preferably, it is less than 10 ppm. The total content of organic volatile substances including styrene monomer is less than 150 ppm. The total content of styrene monomer and organic volatile substance is preferably less than 100 ppm, more preferably less than 60 ppm, particularly preferably less than 20 ppm. Due to the limitation of these styrene monomers and organic volatile substances, problems associated with elution and volatilization from molded articles are remarkably improved.
By the way, generally called organic volatile substances include unreacted styrene monomer, unreacted copolymer monomer, monomer impurity, monomer polymerization inhibitor, polymerization solvent, polymerization initiator decomposition product, etc. Volatile organic components are widely included.
However, the amount of organic volatile substances containing a styrene monomer defined by the HIPS composition of the present invention is “standards for food hygiene law, food, additives, etc. Volatile substances defined in the standard, “Equipment or container packaging made of synthetic resin mainly composed of polystyrene”, specifically, the sum of styrene monomer, toluene, ethylbenzene, n-propylbenzene and isopropylbenzene Indicated in quantity.

本発明を構成するスチレン単量体を含む有機揮発性物質の少ないHIPSは、例えば本願発明者等による先の出願2003−361865号明細書に記載の方法で得ることができる。即ち、具体的には前述の従来公知の重合方法で得たスチレン単量体を含む有機揮発性物質を150〜15,000ppmの範囲あるいはスチレン単量体を100〜10,000ppmの範囲で含むHIPSに、可揮発な可塑剤0.01〜10重量%を混合した後、該有機揮発性物質と共に、該可塑剤の一部を揮発除去することによって得られる。ここに可揮発な可塑剤とは、常圧における50体積%の留出温度が150〜450℃の範囲にある非反応性の有機化合物である。
以下に、本発明で用いられるHIPSの製造方法の例を説明する。本発明で用いられるのHIPSは、前述の如くに公知の重合技術で重合して得たHIPSを、次の方法で有機揮発性物質を脱揮除去して得ることができる。
有機揮発性物質の脱揮除去工程は、可揮発な可塑剤の混合工程(B)―脱揮工程(C)の順での実施を含む。より好ましくは、予備脱揮工程(A)−可揮発な可塑剤の混合工程(B)―脱揮工程(C)の順での実施を含む。
予備脱揮工程(A)は既存技術で揮発除去できる有機揮発性物質を予め除去する工程である。重合工程で得られるHIPSを、直接に有機揮発性物質除去工程(B)−(C)に回しても構わないが、この場合には相対的に多量の有機揮発性物質を処理するため、有機揮発性物質除去工程(B)−(C)への負荷が増大し、場合によっては好ましくない。
The HIPS with a small amount of organic volatile substances including the styrene monomer constituting the present invention can be obtained by, for example, the method described in the previous application 2003-361865 by the present inventors. Specifically, HIPS containing an organic volatile substance containing a styrene monomer obtained by the above-described conventionally known polymerization method in a range of 150 to 15,000 ppm or a styrene monomer in a range of 100 to 10,000 ppm. Further, after mixing 0.01 to 10% by weight of a volatile plasticizer, a part of the plasticizer is volatilized and removed together with the organic volatile substance. Here, the volatile plasticizer is a non-reactive organic compound having a distillation temperature of 50% by volume at normal pressure in the range of 150 to 450 ° C.
Below, the example of the manufacturing method of HIPS used by this invention is demonstrated. The HIPS used in the present invention can be obtained by devolatilizing and removing an organic volatile substance by the following method from HIPS obtained by polymerization using a known polymerization technique as described above.
The devolatilization removal step of the organic volatile substance includes an implementation in the order of a volatile plasticizer mixing step (B)-a devolatilization step (C). More preferably, it includes the preliminary devolatilization step (A) -the volatile plasticizer mixing step (B) -the devolatilization step (C).
The preliminary devolatilization step (A) is a step of removing in advance an organic volatile substance that can be volatilized and removed by an existing technique. The HIPS obtained in the polymerization step may be directly sent to the organic volatile substance removing steps (B) to (C). In this case, however, a relatively large amount of organic volatile substance is treated. The load on the volatile substance removing steps (B) to (C) increases, which is not preferable in some cases.

予備脱揮工程(A)には、基本的に公知の樹脂脱揮技術が利用できる。例えばフラッシュタンク脱揮法、ベント押出機脱揮法、水に分散してのスチームストリッピング脱揮法等が利用できる。この工程の脱揮で、HIPSに残留するスチレン単量体を含む有機揮発性物質量は150〜15,000ppmの範囲にすることが望ましい。また、その内のスチレン単量体は100〜10,000ppmの範囲にすることが好ましい。
可揮発な可塑剤の混合工程(B)は、HIPSと該可塑剤を混合する工程である。即ち、HIPSを軟化あるいは溶融して、該可塑剤を溶解あるいは分散させる工程である。該可塑剤の混合には既存の各種樹脂の混合装置が利用できる。例えば押出機、プラストミル等の樹脂混練り装置の他、粘度によっては各種ミキサー類も利用できる。混合方式はバッチ方式でも構わないが、処理効率の点で連続方式が実用的である。
For the preliminary devolatilization step (A), basically known resin devolatilization techniques can be used. For example, a flash tank devolatilization method, a vent extruder devolatilization method, a steam stripping devolatilization method dispersed in water, and the like can be used. It is desirable that the amount of the organic volatile substance including the styrene monomer remaining in HIPS is in the range of 150 to 15,000 ppm by devolatilization in this step. Moreover, it is preferable that the styrene monomer in it is made into the range of 100-10,000 ppm.
The volatile plasticizer mixing step (B) is a step of mixing HIPS and the plasticizer. That is, it is a step of softening or melting HIPS to dissolve or disperse the plasticizer. For mixing the plasticizer, existing mixing devices for various resins can be used. For example, in addition to a resin kneading apparatus such as an extruder or a plast mill, various mixers can be used depending on the viscosity. The mixing method may be a batch method, but a continuous method is practical in terms of processing efficiency.

HIPS100重量部に対して、可揮発な可塑剤の混合量は0.01〜20重量部が好ましく、更には0.1〜10重量部の範囲が好ましい。この範囲未満では該有機揮発性物質の揮発除去効果が著しく低減する。またこの範囲を超えると、該可塑剤自身の揮発除去の負荷が著しく増大する。
可揮発な可塑剤の混合工程(B)はHIPSの軟化温度以上、且つ熱分解温度以下で実施しなければならない。一般に100〜250℃の範囲が好ましい。該可塑剤の混合工程(B)における装置内の圧力は、供給した該可塑剤を液相に保つ圧力であることが好ましい。圧力が低過ぎると装置内で発泡が顕著になり、混合効率が著しく低下する。
脱揮工程(C)は、HIPSに含まれる有機揮発性物質を可揮発な可塑剤の少なくとも一部と共に揮発除去、即ち置換脱揮する工程である。該可塑剤は有機揮発性物質に置き換わって、HIPS中に一部が残留する。
本発明のHIPS組成物を構成する可揮発な可塑剤は、その常圧における50体積%の留出温度がHIPSから除こうとする有機揮発性物質の沸点超、450℃以下の有機化合物から選ばれる。除こうとする有機揮発性物質がスチレン単量体である場合、該可塑剤の常圧における50体積%の留出温度は、スチレン単量体の沸点を越えて150℃〜450℃の範囲、好ましくは160℃〜400℃の範囲である。常圧における50体積%の留出温度とは、JIS K2254の石油製品の蒸留試験方法における留出体積50%に達する温度計の読みである。
The mixing amount of the volatile plasticizer with respect to 100 parts by weight of HIPS is preferably 0.01 to 20 parts by weight, and more preferably 0.1 to 10 parts by weight. If it is less than this range, the volatilization removal effect of the organic volatile substance is remarkably reduced. On the other hand, if this range is exceeded, the load for removing the volatilization of the plasticizer itself significantly increases.
The mixing step (B) of the volatile plasticizer must be carried out at a temperature higher than the softening temperature of HIPS and lower than the thermal decomposition temperature. In general, a range of 100 to 250 ° C is preferable. The pressure in the apparatus in the plasticizer mixing step (B) is preferably a pressure that keeps the supplied plasticizer in a liquid phase. When the pressure is too low, foaming becomes remarkable in the apparatus, and the mixing efficiency is remarkably lowered.
The devolatilization step (C) is a step in which the organic volatile substance contained in the HIPS is removed by volatilization, that is, displacement devolatilization, together with at least a part of the volatile plasticizer. The plasticizer replaces the organic volatile material and remains partially in the HIPS.
The volatile plasticizer constituting the HIPS composition of the present invention is selected from organic compounds having a distillation temperature of 50% by volume at normal pressure exceeding the boiling point of the organic volatile substance to be removed from HIPS and 450 ° C. or less. It is. When the organic volatile substance to be removed is a styrene monomer, the distillation temperature of 50% by volume of the plasticizer at normal pressure is in the range of 150 ° C. to 450 ° C. exceeding the boiling point of the styrene monomer, Preferably it is the range of 160 to 400 degreeC. The 50 vol% distillation temperature at normal pressure is a thermometer reading that reaches 50% distillate volume in the JIS K2254 petroleum product distillation test method.

上記沸点温度を有する可揮発な可塑剤が流動パラフィンである場合、その平均分子量は動粘度で表すことができる。該流動パラフィンのJIS K2283法に基づく40℃の動粘度は0.1〜60mm2 /secの範囲が好ましい。また、分子量の今一つの指標として蒸留試験がある。該流動パラフィンのASTMD1160に基づく10mmHg、5体積%留出温度は100〜260℃の範囲が好ましい。
この範囲より高揮発性あるいは低分子量(低動粘度)の流動パラフィンでは、除こうとする有機揮発性物質に先行して流動パラフィンが揮発し、該有機揮発成分の効率的な揮発除去ができない。また、この範囲より低揮発性あるいは高分子量(高動粘度)の流動パラフィンでは、その揮発性が不足して該有機揮発成分との共揮発が難しくなり、やはり有機揮発成分の効率的な揮発除去ができず、好ましくない。
When the volatile plasticizer having the above boiling temperature is liquid paraffin, the average molecular weight can be expressed by kinematic viscosity. The kinematic viscosity at 40 ° C. of the liquid paraffin based on JIS K2283 method is preferably in the range of 0.1 to 60 mm 2 / sec. Another index of molecular weight is the distillation test. The liquid paraffin preferably has a 10 mmHg, 5 vol% distillation temperature based on ASTM D1160 in the range of 100 to 260 ° C.
In liquid paraffin having a higher volatility or lower molecular weight (low kinematic viscosity) than this range, liquid paraffin volatilizes prior to the organic volatile substance to be removed, and the organic volatile components cannot be efficiently volatilized and removed. In addition, liquid paraffin with a lower volatility or higher molecular weight (high kinematic viscosity) than this range is insufficient in volatility, making it difficult to co-volatilize with the organic volatile components. This is not preferable.

上記可揮発な可塑剤は上記沸点範囲の成分を含む混合物であっても構わない。例えば上記沸点範囲の可塑剤に、上記沸点範囲の未満あるいは越える可塑剤を混合することは、本発明の目的を達成できる範囲で可能である。しかし、この場合でも本発明の目的を達成するには10重量%以上、好ましくは50重量%以上、特に好ましくは70重量%以上の、上記沸点範囲の可塑剤を含むことが必要である。この場合、低沸点の成分は優先して揮発し、高沸点の成分はHIPS中に残留しやすい。
上記規定に該当する好ましい可揮発な可塑剤は、例えば“食品衛生法、食品、添加物等の規格基準”で定められた流動パラフィンおよび“化学物質の審査及び製造等の規制に関する法律”(化審法)に基づく、「化審法 化学物質」(改訂第4版)に該当する化合物より選ぶことができる。
特に好ましい可揮発な可塑剤は“食品衛生法、食品、添加物等の規格基準”で定められた流動パラフィン、および飽和脂肪族炭化水素である。
The volatile plasticizer may be a mixture containing components in the boiling range. For example, it is possible to mix a plasticizer having a boiling point within the above boiling range with a plasticizer that is less than or exceeds the above boiling range as long as the object of the present invention can be achieved. However, even in this case, in order to achieve the object of the present invention, it is necessary to contain 10% by weight or more, preferably 50% by weight or more, particularly preferably 70% by weight or more of the plasticizer having the above boiling range. In this case, the low-boiling component is volatilized preferentially, and the high-boiling component tends to remain in HIPS.
Preferred volatilizable plasticizers that fall under the above provisions are, for example, liquid paraffin defined in “Standards for Food Sanitation Law, Foods, Additives, etc.” You can choose from compounds that fall under the “Chemical Substances Control Law Chemical Substances” (4th revised edition) based on
Particularly preferred volatile plasticizers are liquid paraffins and saturated aliphatic hydrocarbons defined in “Standards for Food Sanitation Law, Foods, Additives, etc.”.

流動パラフィンの具体例として、エクソンモービル社から市販されているクリクリストールN52、ストールN52、クリストールN72、クリストールN82、クリストールN122、クリストールN172、クリストールN262、クリストールN352、プライモールN542等が挙げられる。(株)松村石油研究所から市販されているモレスコホワイトP−30、モレスコホワイトP−40、モレスコホワイトP−55、モレスコホワイトP−60、モレスコホワイトP−70、モレスコホワイトP−80、モレスコホワイトP−85、モレスコホワイトP−100、モレスコホワイトP−120、モレスコホワイトP−150、モレスコホワイトP−200、モレスコホワイトP−230、モレスコホワイトP−260、モレスコホワイトP−300、モレスコホワイトP−350、モレスコホワイトP−350P等が挙げられる。三光化学工業(株)から市販されている低揮発性の脂肪族炭化水素化合物40−S、60−S、70−S、80−S、90−S、100−S、120−S、150−S、260−S、350−S等が挙げられる。更にCKWitco Corporationから市販されているホワイトミネラルオイルが挙げられる。   As specific examples of liquid paraffin, Crycristor N52, Stall N52, Cristol N72, Cristol N82, Cristol N122, Cristol N172, Cristol N262, Cristol N352, Prime Mall N542, etc. commercially available from ExxonMobil Is mentioned. Moresco White P-30, Moresco White P-40, Moresco White P-55, Moresco White P-60, Moresco White P-70, Moresco White commercially available from Matsumura Oil Research Co., Ltd. P-80, Moresco White P-85, Moresco White P-100, Moresco White P-120, Moresco White P-150, Moresco White P-200, Moresco White P-230, Moresco White P -260, Moresco White P-300, Moresco White P-350, Moresco White P-350P and the like. Low volatility aliphatic hydrocarbon compounds 40-S, 60-S, 70-S, 80-S, 90-S, 100-S, 120-S, 150- commercially available from Sanko Chemical Co., Ltd. S, 260-S, 350-S and the like. Further examples include white mineral oil commercially available from CKWitco Corporation.

また、流動パラフィン類似物質として水素添加ポリブテン(合成イソパラフィン)があり、同様に好ましく利用できる。具体的には、新日本石油化学(株)から市販されているアイゾール300、アイゾール400等が利用できる。
飽和脂肪族炭化水素としてn−デカン、iso−デカン、n−ウンデカン、n−ドデカン、n−トリデカン、n−テトラデカン、n−ヘキサデカン、n−アイコサン、n−テトラコサン、7−メチルトリデカン、7−n−ヘキシルトリデカンおよび9−n−ヘキシルペンタデカン等が好ましく利用できる。
また更に、「化審法 化学物質」(改訂第4版)に該当する化合物より選ばれる第2類B(又はb)110項に分類される飽和炭化水素、第2類B(又はb)120項に分類される不飽和炭化水素、第2類B(又はb)410項に分類される飽和ー価アルコール、第2類B(又はb)420に分類される飽和多価アルコール、第2類B(又はb)463項の内、エーテル態酸素―個を持つ化合物に分類される化合物、第2類B(又はb)941項に分類されるケイ素化合物、第3類C(又はc)813〜816項の5,6,7および12員環脂環式化合物、第9類構造不明化合物等に分類される化合物も利用できる。その中では飽和炭化水素、環状脂環式化合物および不飽和炭化水素に分類されるものが、可塑剤の安定性、得られるHIPS組成物の物理的性能、安全衛生性および低臭気の点で好ましい。また、上記分類から外れるが利用できる有機化合物にエステル化合物、エーテル化合物等があり、同様の可揮発な可塑剤としての効果を期待できる。
Moreover, there exists hydrogenated polybutene (synthetic isoparaffin) as a liquid paraffin analog, and it can utilize preferably similarly. Specifically, Aisol 300, Aisol 400, etc. commercially available from Shin Nippon Petrochemical Co., Ltd. can be used.
As saturated aliphatic hydrocarbons, n-decane, iso-decane, n-undecane, n-dodecane, n-tridecane, n-tetradecane, n-hexadecane, n-icosane, n-tetracosane, 7-methyltridecane, 7- n-hexyltridecane, 9-n-hexylpentadecane, and the like can be preferably used.
Still further, a saturated hydrocarbon classified as a second class B (or b) item 110 selected from compounds corresponding to “Chemical Substances Control Law Chemical Substances” (revised 4th edition), a second class B (or b) 120 Unsaturated hydrocarbons classified in Section 2, Saturated-hydric alcohols classified in Section B (or b) 410, Saturated polyhydric alcohols classified in Section B (or b) 420, Class 2 B (or b) Of the 463 items, a compound classified as a compound having etheric oxygen—one, a second type B (or b) a silicon compound classified as a 941 item, a third type C (or c) 813 A compound classified as a 5, 6, 7, and 12-membered cycloaliphatic compound of Item 816, a compound with a class 9 unknown structure, or the like can also be used. Among them, those classified into saturated hydrocarbons, cyclic alicyclic compounds and unsaturated hydrocarbons are preferable in terms of plasticizer stability, physical performance of the resulting HIPS composition, safety and health, and low odor. . In addition, organic compounds that can be used although deviating from the above classification include ester compounds, ether compounds, and the like, and the effect as a similar volatile plasticizer can be expected.

これらの可揮発な可塑剤の少なくとも一部は、HIPSに含まれるスチレン単量体を含む有機揮発性物質と共に揮発除去されるが、その好ましい揮発除去量は、添加、混合された可塑剤の10重量%以上、好ましくは50重量%以上である。10重量%未満では可塑剤の添加量が増大し、且つ有機揮発性物質の除去率が低くなり、好ましくない。
本発明のHIPS組成物を構成する可揮発な可塑剤量(残留量)は、HIPSに対して0.01〜10重量%、好ましくは0.1〜7重量%。特に好ましくは0.2〜5重量%になるように選定される。残留可塑剤が0.01重量%未満の除去には、その負荷が著しく増大して好ましくない。残留可塑剤が10重量%を越えると、HIPS性能、例えば剛性や耐熱変形性の低下が顕著になり好ましくない。
脱揮工程(C)の温度は、有機揮発性物質を可揮発な可塑剤と共に高度に脱揮するには、高い方が好ましい。しかし、余りに高い温度はHIPSの劣化、更には熱分解を引き起こす。それ故、好ましい温度は150〜270℃の範囲である。また脱揮工程(C)の内圧は、有機揮発性物質を可揮発な可塑剤と共に高度に脱揮するには低い程好ましい。しかし、余りに低い内圧は装置的な負荷を増大して現実的でない。好ましい内圧は0.5〜200mmHgの範囲である。
At least a part of these volatile plasticizers is volatilized and removed together with an organic volatile substance containing a styrene monomer contained in HIPS. The preferred volatilization removal amount is 10% of the added and mixed plasticizer. % By weight or more, preferably 50% by weight or more. If it is less than 10% by weight, the amount of plasticizer added is increased, and the removal rate of organic volatile substances is lowered, which is not preferable.
The amount of volatile plasticizer (residual amount) constituting the HIPS composition of the present invention is 0.01 to 10% by weight, preferably 0.1 to 7% by weight, based on HIPS. Particularly preferably, it is selected to be 0.2 to 5% by weight. Removal of less than 0.01% by weight of residual plasticizer is not preferable because the load is remarkably increased. If the residual plasticizer exceeds 10% by weight, the HIPS performance, for example, the decrease in rigidity and heat distortion resistance becomes remarkable, which is not preferable.
The temperature of the devolatilization step (C) is preferably higher in order to highly devolatilize the organic volatile substance together with the volatile plasticizer. However, too high temperatures cause degradation of HIPS and further thermal decomposition. Therefore, the preferred temperature is in the range of 150-270 ° C. Moreover, the lower the internal pressure of the devolatilization step (C), the more preferable it is to volatilize the organic volatile substance together with the volatile plasticizer. However, a too low internal pressure increases the apparatus load and is not practical. A preferable internal pressure is in the range of 0.5 to 200 mmHg.

本発明のHIPS組成物を構成する可揮発な可塑剤蒸気圧は、その分子量および混合量を調整することによって、230℃における蒸気圧は好ましくは0.1〜50mmHg、特に好ましくは1〜20mmHgの範囲である。HIPS中に残留する可塑剤蒸気圧が高いと、加工成形時に可塑剤蒸気が発生し、金型汚染や成型品が汚染して好ましくない。しかし、極端に低い可塑剤蒸気圧達成には、揮発性の低い可塑剤を少量用いることが必要になる。このことは、HIPS製造時に有機揮発微物質と共に、可塑剤の一部を揮発除去することが難しく、有機揮発性物質の少ないHIPSを得ることが困難である。また、この様な極端に低い可塑剤量と低減した有機揮発性物質量のHIPS組成物では流動性不足により、成形性低下を来す場合がある。
本発明のHIPS組成物を構成するHIPSは、分子量の指標であるISO
R1133法で測定されるメルトフローレートが0.5〜30g/分の範囲のものが好ましい。メルトフローレートが0.5g/分未満の高い分子量では、得られるHIPS組成物の流動性が不足して成形性が低下する。また、メルトフローレートが30g/分を超える低い分子量では成形して得られる成形品の強度性能が大きく低下してやはり好ましくない。
The vapor pressure of the volatile plasticizer constituting the HIPS composition of the present invention is such that the vapor pressure at 230 ° C. is preferably 0.1 to 50 mmHg, particularly preferably 1 to 20 mmHg by adjusting the molecular weight and mixing amount. It is a range. If the plasticizer vapor pressure remaining in HIPS is high, plasticizer vapor is generated during processing and molding, and mold contamination and molded products are contaminated. However, to achieve an extremely low plasticizer vapor pressure, it is necessary to use a small amount of a plasticizer with low volatility. This is because it is difficult to volatilize and remove a part of the plasticizer together with the organic volatile fine substance during HIPS production, and it is difficult to obtain HIPS with a small amount of organic volatile substance. In addition, such an extremely low amount of plasticizer and a reduced amount of organic volatile substance in the HIPS composition may cause a decrease in moldability due to insufficient fluidity.
HIPS constituting the HIPS composition of the present invention is an ISO that is an index of molecular weight.
The thing whose melt flow rate measured by R1133 method is the range of 0.5-30 g / min is preferable. When the melt flow rate is high and the molecular weight is less than 0.5 g / min, the flowability of the resulting HIPS composition is insufficient and the moldability is lowered. Further, if the melt flow rate is a low molecular weight exceeding 30 g / min, the strength performance of the molded product obtained by molding is greatly lowered, which is also not preferable.

本発明のHIPS組成物を構成するHIPSのゴム含率は1〜20重量%、好ましくは3〜15重量%の範囲である。ゴム含率ゼロのポリスチレン樹脂は高弾性率の樹脂であるが、耐衝撃性が劣るとの欠点を有している。HIPSの耐衝撃性はゴム含率の増大に応じて漸次改善する。しかし、20重量%を越えると剛性、特に熱時剛性が著しく低下して好ましくない。
本発明のHIPS組成物はHIPS10〜100重量部に対して、耐衝撃性ポリスチレン(HIPS)以外のスチレン系樹脂90〜0重量部の範囲で含むことができる。この範囲にすることで剛性と耐衝撃性の性能バランスを要求に応じて調整して利用できる。しかし、この場合でもHIPSと該スチレン系樹脂との和に対するゴム含率は1〜20重量%、好ましくは3〜15重量%の範囲である。ここにスチレン系樹脂とはポリスチレン樹脂およびスチレンと他の芳香族ビニル化合物との共重合体樹脂である。
また本発明のHIPS組成物はHIPSおよびスチレン系樹脂に加えて、スチレン−共役ジエンブロック共重合体、AS樹脂、ABS樹脂、変性PPE、スチレン−アクリル酸エステル共重合体、スチレンメタアクリル酸エステル共重合体等のスチレンを含む共重合体を、必要により混合して用いることができる。これらの混合によって得られるHIPS組成物を成型して得られる成型品の耐熱性、剛性、成型後の外観等を改良できる場合がある。
The rubber content of HIPS constituting the HIPS composition of the present invention is in the range of 1 to 20% by weight, preferably 3 to 15% by weight. A polystyrene resin having a rubber content of zero is a resin having a high elastic modulus, but has a disadvantage that its impact resistance is poor. The impact resistance of HIPS gradually improves as the rubber content increases. However, if it exceeds 20% by weight, the rigidity, particularly the thermal rigidity, is remarkably lowered, which is not preferable.
The HIPS composition of the present invention can be contained in a range of 90 to 0 parts by weight of a styrene resin other than high impact polystyrene (HIPS) with respect to 10 to 100 parts by weight of HIPS. By using this range, the performance balance between rigidity and impact resistance can be adjusted and used as required. However, even in this case, the rubber content relative to the sum of HIPS and the styrenic resin is in the range of 1 to 20% by weight, preferably 3 to 15% by weight. Here, the styrene resin is a polystyrene resin and a copolymer resin of styrene and another aromatic vinyl compound.
In addition to the HIPS and styrene resin, the HIPS composition of the present invention includes a styrene-conjugated diene block copolymer, an AS resin, an ABS resin, a modified PPE, a styrene-acrylate copolymer, and a styrene methacrylate copolymer. A copolymer containing styrene such as a polymer can be used by mixing as necessary. In some cases, the heat resistance, rigidity, appearance after molding, and the like of a molded product obtained by molding the HIPS composition obtained by mixing these can be improved.

本発明のHIPS組成物は、(a)HIPS、(b)可揮発な可塑剤、(c)スチレン単量体、(d)有機揮発性物質、更には必要により(e)スチレン系樹脂および/またはスチレンを含む共重合体から構成されるが、必ずしもこれらの構成成分に限定するものではない。例えばスチレン系樹脂において使用される各種添加剤を、公知の作用効果を達成するために添加することもできる。例えば滑剤、酸化防止剤、紫外線吸収剤、離型剤、可塑剤、染料、顔料、帯電防止剤、防曇剤、各種充填剤等を、各の目的に合った効果を達成するために添加することができる。
可揮発な可塑剤と合わせて、通常スチレン系重合体で利用が公知な非揮発な可塑剤を混合して用いることもできる。非揮発な可塑剤としては、例えば常温における50体積%留出温度が450℃を越える流動パラフィン類が挙げられる。非揮発な可塑剤の添加量は、可揮発な可塑剤との和で、HIPS100重量部に対して好ましくは0.01〜10重量部の範囲、更に好ましくは0.1〜5重量部の範囲である。
酸化防止剤として、フェノール系またはフェノールアクリレート系〔例えば:2−tert−ブチル−6(3′−tert−ブチル−5′−メチル−2′−ヒドロキシベンジル)−4−メチルフェニルアクリレートおよびこれ等の誘導体がある〕が好ましい。上記化合物に加え燐系の酸化防止剤〔例えば:トリ(2,4−ジ−tert−ブチル)−フェニルフォスファイト,トリ(4−ノニル)−フェニルフォスファイト等〕を使用するのがより好ましい。更に上記2種のタイプに加え、イオウ含有系の酸化防止剤を加えるのが良い場合が多い。またこれ等はそれぞれ単独で使用しても良い。
The HIPS composition of the present invention comprises (a) HIPS, (b) a volatile plasticizer, (c) a styrene monomer, (d) an organic volatile substance, and (e) a styrene resin and / or Or it is comprised from the copolymer containing styrene, However, It is not necessarily limited to these structural components. For example, various additives used in a styrene resin can be added in order to achieve a known effect. For example, a lubricant, an antioxidant, an ultraviolet absorber, a release agent, a plasticizer, a dye, a pigment, an antistatic agent, an antifogging agent, various fillers, and the like are added in order to achieve an effect suitable for each purpose. be able to.
In combination with a volatile plasticizer, a non-volatile plasticizer known to be used as a normal styrenic polymer can also be mixed and used. Examples of the non-volatile plasticizer include liquid paraffins having a 50% by volume distillation temperature at room temperature exceeding 450 ° C. The addition amount of the non-volatile plasticizer is the sum of the volatile plasticizer and is preferably in the range of 0.01 to 10 parts by weight, more preferably in the range of 0.1 to 5 parts by weight with respect to 100 parts by weight of HIPS. It is.
Antioxidants include phenols or phenol acrylates [eg: 2-tert-butyl-6 (3'-tert-butyl-5'-methyl-2'-hydroxybenzyl) -4-methylphenyl acrylate and the like There is a derivative]. In addition to the above compounds, it is more preferable to use a phosphorus-based antioxidant [eg, tri (2,4-di-tert-butyl) -phenyl phosphite, tri (4-nonyl) -phenyl phosphite, etc.]. In addition to the above two types, it is often good to add a sulfur-containing antioxidant. These may be used alone.

全酸化防止剤の添加量は、HIPS100重量部に対してそれぞれ0.01〜5.0重量部、好ましくは0.05〜3.0重量部、より好ましくは0.10〜1.0重量部である。0.01重量部未満ではHIPSの熱劣化(例えば、架橋や分子量低下等)の防止効果が十分に発現せず、また5.0重量部を超えると分散不良、強度低下、あるいはコスト高等の問題が起こり、好ましくない。
帯電防止剤としては、アミン系、アミド系のものが好ましい。例えばアミン系として、ヒドロキシエチルアルキルアミンおよびその誘導体、アミド系としてはヒドロキシエチル脂肪酸アミドおよびその誘導体等が好ましく利用できる。帯電防止剤の添加量は、HIPS100重量部に対して好ましくは0.1〜5重量部、より好ましくは0.4〜2.0重量部である。0.1重量部未満では帯電防止効果が現れ難いし、5重量部を超えると成型体表面の光沢が失われ、印刷適性が低下を来す等の問題がある。
本発明のHIPS組成物を構成する各成分の混合方法は特に規定しない。各種の樹脂加工機器、例えばニーダー、バンバリーミキサー、押出し機を用いた機械的混合、溶媒に溶かして、あるいは重合体製造時に重合体溶液での溶液混合が利用できる。
The amount of total antioxidant added is 0.01 to 5.0 parts by weight, preferably 0.05 to 3.0 parts by weight, more preferably 0.10 to 1.0 parts by weight, based on 100 parts by weight of HIPS. It is. If the amount is less than 0.01 parts by weight, the effect of preventing thermal deterioration (eg, crosslinking and molecular weight reduction) of HIPS is not sufficiently exhibited. If the amount exceeds 5.0 parts by weight, problems such as poor dispersion, reduced strength, or high costs are caused. Is not desirable.
The antistatic agent is preferably an amine or amide. For example, hydroxyethyl alkylamine and its derivatives can be preferably used as the amine system, and hydroxyethyl fatty acid amide and its derivatives as the amide system. The addition amount of the antistatic agent is preferably 0.1 to 5 parts by weight, more preferably 0.4 to 2.0 parts by weight with respect to 100 parts by weight of HIPS. If the amount is less than 0.1 part by weight, the antistatic effect hardly appears. If the amount exceeds 5 parts by weight, the gloss of the surface of the molded body is lost, and printability is deteriorated.
The mixing method of each component which comprises the HIPS composition of this invention is not prescribed | regulated in particular. Various resin processing equipment such as kneaders, Banbury mixers, mechanical mixing using an extruder, dissolution in a solvent, or solution mixing with a polymer solution at the time of polymer production can be used.

本発明を実施例に基づいて説明する。実施例は単なる例であって、本発明を限定するものではない。
尚、スチレン系樹脂の各種測定評価は以下の方法に依った。
[測定、評価方法]
(1)可揮発な可塑剤量および有機揮発性物質量の測定
ここで言う有機揮発性物質量とは、具体的にはスチレン単量体を除き、エチルベンゼン、n−プロピルベンゼンおよびイソプロピルベンゼンの合計量である。スチレン単量体の検知限界は5ppm、スチレンを除く有機揮発物質の検知限界は5ppmであった。
測定手法:ガスクロマトグラフィーで測定した。
試料調製:樹脂1gをMEK10mlに溶解、3mlのメタノールを加えて重 合体を沈降させ、溶液中の成分濃度を測定。
測定機器:島津製製作所 GC14B
(2)非揮発な可塑剤量
仕込量より算出した。
(3)スチレン単量体溶出量の評価
HIPS組成物を射出成形して得られた0.8mm厚シートを細断、あるいは延伸フィルムの場合はその物に、樹脂1gを10mlのヘプタン溶剤を加え、25℃で1時間、ガラス容器にて振とうしながら、抽出または溶出した。この溶出液をガスクロマトグラフィーにかけて、HIPS組成物からの溶出スチレン単量体量を評価した。測定の検知限界は1ppmであった。
The present invention will be described based on examples. The examples are merely examples and do not limit the invention.
In addition, various measurement evaluations of the styrene resin depended on the following methods.
[Measurement and evaluation methods]
(1) Measurement of volatile plasticizer amount and organic volatile material amount The organic volatile material amount mentioned here is specifically the total of ethylbenzene, n-propylbenzene and isopropylbenzene, excluding styrene monomer. Amount. The detection limit of styrene monomer was 5 ppm, and the detection limit of organic volatile substances excluding styrene was 5 ppm.
Measuring method: Measured by gas chromatography.
Sample preparation: Dissolve 1 g of resin in 10 ml of MEK, add 3 ml of methanol to precipitate the polymer, and measure the component concentration in the solution.
Measuring equipment: Shimadzu Corporation GC14B
(2) Amount of non-volatile plasticizer Calculated from the charged amount.
(3) Evaluation of styrene monomer elution amount When 0.8 mm thick sheet obtained by injection molding of HIPS composition is chopped or stretched, 1 g of resin is added to 10 ml of heptane solvent. The sample was extracted or eluted while shaking in a glass container at 25 ° C. for 1 hour. This eluate was subjected to gas chromatography to evaluate the amount of styrene monomer eluted from the HIPS composition. The detection limit of measurement was 1 ppm.

(4)スチレン単量体の揮発量測定
HIPS組成物を射出成形して得られた0.8mm厚シート、延伸フィルムあるいは発泡ボードの場合はその物を破砕し、該樹脂組成物100gおよび加熱精製したシリカゲル20gを入れたシャーレを共にデシケーターに入れた。蓋を閉じて、25℃で1週間静置した。静置中にHIPS組成物の破砕物から揮発したスチレン単量体はシリカゲルに吸着することになる。その後、シリカゲルを取り出し、アセトンで脱着し、ガスクロマトグラフィーにて、吸着したスチレン単量体を測定し、HIPS組成物からの揮発量に換算した。
シリカゲル20gに吸着した量がHIPS組成物100gから揮発したスチレン単量体量としてppb換算した。測定の検知限界は10ppbであった。
(5)メルトフローレート
ISO R1133試験法に準拠
(6)ビカット軟化温度
ASTM D1525試験法に準拠
(7)HDT(熱変形温度)
ASTM D648法に準拠 (荷重18.6kg/cm2
(4) Measurement of volatilization amount of styrene monomer In the case of a 0.8 mm thick sheet, stretched film or foamed board obtained by injection molding of a HIPS composition, the product is crushed, 100 g of the resin composition and heat purification The petri dish containing 20 g of the silica gel was put in a desiccator. The lid was closed and allowed to stand at 25 ° C. for 1 week. The styrene monomer volatilized from the crushed HIPS composition during standing is adsorbed on the silica gel. Thereafter, the silica gel was taken out, desorbed with acetone, and the adsorbed styrene monomer was measured by gas chromatography, and converted into a volatilization amount from the HIPS composition.
The amount adsorbed on 20 g of silica gel was converted to ppb as the amount of styrene monomer volatilized from 100 g of the HIPS composition. The detection limit of measurement was 10 ppb.
(5) Melt flow rate Conforms to ISO R1133 test method (6) Vicat softening temperature Conforms to ASTM D1525 test method (7) HDT (heat distortion temperature)
Conforms to ASTM D648 law (load 18.6kg / cm 2 )

(8)耐候着色の評価
ダイプラ・メタルウェザー試験機(型式:KU−R5CI−A、ダイプラウィンテス社製)を使用した。光源にメタルハライドランプ(KF−1フィルター使用)を用い、30℃、湿度98RH%と55℃、湿度50RH%の各4時間のサイクルで72時間まで照射し、色変化を目測判定した。測定には射出成形した50×50×2mmの平板を用いた。判定基準は次の通り。
○:色変化が全く認められない。
△:若干の色変化が認められた。
×:明らかな黄褐色変化が認められた。
(9)引張強度
ASTM D638試験法に準拠
(10)Izod衝撃強度
ASTM D256試験法に準拠 (ノッチ付き)
(11)曲げ弾性率
ASTM D790試験法に準拠
(12)HIPSの成形性評価
射出成形法にて50×50×0.8mmの平板を射出成形し、成形品の表面状態を観察した。判定基準は次の通り。
○:均一で光沢のある表面状態を達成した。
△:一部に流動不足により、光沢に欠ける部分が認められた。
×:流動不足により、広い範囲で光沢に欠ける部分が認められた。
(13)流動パラフィンの動粘度
JIS K2283法に準拠し、40℃の動粘度
(8) Evaluation of weathering coloring A die plastic / metal weather tester (model: KU-R5CI-A, manufactured by Daipura Wintes) was used. Using a metal halide lamp (using a KF-1 filter) as a light source, irradiation was performed up to 72 hours in a cycle of 4 hours each of 30 ° C., humidity of 98 RH% and 55 ° C., and humidity of 50 RH%, and the color change was visually determined. An injection molded 50 × 50 × 2 mm flat plate was used for the measurement. Judgment criteria are as follows.
○: No color change is observed.
Δ: Some color change was observed.
X: Obvious yellowish brown change was recognized.
(9) Tensile strength Conforms to ASTM D638 test method (10) Izod impact strength Conforms to ASTM D256 test method (with notch)
(11) Flexural modulus Compliant with ASTM D790 test method (12) Formability evaluation of HIPS A 50 × 50 × 0.8 mm flat plate was injection molded by the injection molding method, and the surface state of the molded product was observed. Judgment criteria are as follows.
A: A uniform and glossy surface state was achieved.
(Triangle | delta): The part lacking gloss was recognized by the fluid shortage partially.
X: A portion lacking gloss was recognized in a wide range due to insufficient flow.
(13) Kinematic viscosity of liquid paraffin Kinematic viscosity at 40 ° C. according to JIS K2283 method

[樹脂製造例1〜3]
実験室の連続重合設備を用いて、重量平均粒子径が1.8μmのポリブタジエンゴム粒子(6重量%含有)が分散したHIPS76重量%、未反応スチレン単量体14重量%およびエチルベンゼン溶剤10重量%からなる重合体溶液を製造した。
この重合体溶液から揮発性物質を公知技術のフラッシュタンクを用いて脱揮したの後、ペレット化して耐衝撃性ポリスチレンであるHIPS−1(メルトフローレート:4.4g/10分)のペレットを得た。また、フラッシュタンクの脱揮条件を調整して、スチレン含量及び有機揮発性物質含量の異なるHIPS−2(メルトフローレート:4.2g/10分)およびHIPS−3(メルトフローレート:4.1g/10分)を得た。
[樹脂製造例4〜6]
実験室の連続重合設備を用いて、開始剤濃度および連鎖移動剤濃度を調節して分子量の異なる耐衝撃性ポリスチレンを重合した。重量平均粒子径が1.6〜2.1μmの範囲にあるポリブタジエンゴム粒子(6重量%含有)が分散したHIPS、未反応スチレン単量体およびエチルベンゼン溶剤からなる重合体溶液を製造した。この重合体溶液から揮発性物質をフラッシュタンクを用いて脱揮したの後、ペレット化して分子量の異なる耐衝撃性ポリスチレンであるHIPS−4(メルトフローレート:0.1g/10分)、HIPS−5(メルトフローレート:4.4g/10分)およびHIPS−6(メルトフローレート:2.5g/10分)のペレットを得た。
[Resin Production Examples 1 to 3]
Using a continuous polymerization equipment in a laboratory, 76% by weight of HIPS in which polybutadiene rubber particles (containing 6% by weight) having a weight average particle size of 1.8 μm are dispersed, 14% by weight of unreacted styrene monomer, and 10% by weight of ethylbenzene solvent A polymer solution consisting of
Volatile substances were devolatilized from this polymer solution using a known flash tank, and then pelletized to produce pellets of HIPS-1 (melt flow rate: 4.4 g / 10 min), which is impact-resistant polystyrene. Obtained. In addition, HIPS-2 (melt flow rate: 4.2 g / 10 min) and HIPS-3 (melt flow rate: 4.1 g) having different styrene contents and organic volatile substance contents by adjusting the devolatilization conditions of the flash tank / 10 minutes).
[Resin Production Examples 4 to 6]
Using a continuous polymerization equipment in a laboratory, impact polystyrene having different molecular weights was polymerized by adjusting the initiator concentration and the chain transfer agent concentration. A polymer solution consisting of HIPS, unreacted styrene monomer and ethylbenzene solvent in which polybutadiene rubber particles (containing 6% by weight) having a weight average particle size in the range of 1.6 to 2.1 μm were produced was produced. Volatile substances were devolatilized from the polymer solution using a flash tank, and then pelletized and impact polystyrene having different molecular weights, HIPS-4 (melt flow rate: 0.1 g / 10 min), HIPS- 5 (melt flow rate: 4.4 g / 10 min) and HIPS-6 (melt flow rate: 2.5 g / 10 min) pellets were obtained.

[樹脂製造例7]
実験室の連続重合設備を用いて、重量平均粒子径が1.8μmのポリブタジエンゴム粒子(12重量%含有)が分散したHIPS79重量%、未反応スチレン単量体11重量%およびエチルベンゼン溶剤10重量%からなる重合体溶液を製造した。この重合体溶液から揮発性物質をフラッシュタンクを用いて脱揮したの後、ペレット化して耐衝撃性ポリスチレンであるHIPS−7(メルトフローレート:4.0g/10分)のペレットを得た。
[樹脂製造例8]
実験室の連続重合設備を用いて、重量平均粒子径が2.0μmのポリブタジエンゴム粒子(22重量%含有)が分散したHIPS78重量%、未反応スチレン単量体12重量%およびエチルベンゼン溶剤10重量%からなる重合体溶液を製造した。この重合体溶液から揮発性物質をフラッシュタンクを用いて脱揮したの後、ペレット化して耐衝撃性ポリスチレンであるHIPS−8(メルトフローレート:3.6g/10分)のペレットを得た。
[Resin Production Example 7]
Using a continuous polymerization equipment in a laboratory, 79% by weight of HIPS in which polybutadiene rubber particles (containing 12% by weight) having a weight average particle size of 1.8 μm were dispersed, 11% by weight of unreacted styrene monomer, and 10% by weight of ethylbenzene solvent A polymer solution consisting of Volatile substances were devolatilized from the polymer solution using a flash tank, and then pelletized to obtain pellets of HIPS-7 (melt flow rate: 4.0 g / 10 min), which is high-impact polystyrene.
[Resin Production Example 8]
Using a continuous polymerization equipment in a laboratory, 78% by weight of HIPS in which polybutadiene rubber particles (containing 22% by weight) having a weight average particle size of 2.0 μm are dispersed, 12% by weight of unreacted styrene monomer, and 10% by weight of ethylbenzene solvent A polymer solution consisting of Volatile substances were devolatilized from the polymer solution using a flash tank and then pelletized to obtain pellets of HIPS-8 (melt flow rate: 3.6 g / 10 min), which is high impact polystyrene.

[樹脂製造例9]
実験室の連続重合設備を用いて、ポリスチレン87重量%、未反応スチレン単量体8重量%およびエチルベンゼン溶剤5重量%からなる重合体溶液を製造した。また、この重合体溶液から揮発性物質をフラッシュタンクを用いて脱揮した後、ペレット化してポリスチレンであるPS−1(メルトフローレート:3.9g/10分)のペレットを得た。
[実施例1〜6]および[比較例1〜5]
[HIPSへの可揮発な可塑剤、非揮発な可塑剤、水またはメタノールの混合方法]
可揮発な可塑剤としてのn−トリデカン、流動パラフィン(MO1〜3)、および非揮発な可塑剤としての流動パラフィン(MO4)を、前述のHIPS−1〜3に20mm二軸押出機を用いて混合した後に、再ペレット化した。水、メタノールは、密閉容器中で加温しながら、HIPS−1のペレットと接触することにより含浸させた。
[Resin Production Example 9]
Using a laboratory continuous polymerization facility, a polymer solution consisting of 87 wt% polystyrene, 8 wt% unreacted styrene monomer and 5 wt% ethylbenzene solvent was prepared. Moreover, after devolatilizing a volatile substance from this polymer solution using a flash tank, it pelletized and the pellet of PS-1 (melt flow rate: 3.9 g / 10min) which is polystyrene was obtained.
[Examples 1 to 6] and [Comparative Examples 1 to 5]
[Method of mixing volatile plasticizer, non-volatile plasticizer, water or methanol into HIPS]
N-Tridecane as a volatile plasticizer, liquid paraffin (MO1 to 3), and liquid paraffin (MO4) as a non-volatile plasticizer were added to the aforementioned HIPS-1 to 3 using a 20 mm twin screw extruder. After mixing, it was re-pelletized. Water and methanol were impregnated by contacting with pellets of HIPS-1 while heating in a closed container.

尚、流動パラフィンであるMO1は(株)松村石油研究所社製 商品名:モレスコホワイトP−40、MO2は(株)松村石油研究所社製 商品名:モレスコホワイトP−70、MO3は(株)松村石油研究所社製 商品名:モレスコホワイトP−150、MO4は(株)松村石油研究所社製 商品名:モレスコホワイトP−500である。
脱揮前の樹脂組成および可塑剤特性を表1に記載した。
[有機揮発性物質除去の条件]
可揮発な可塑剤、非揮発な可塑剤、メタノールまたは水を混合して得られたHIPS−1〜3のペレットを、20mmの真空ベント付き二軸押出機を用いて、可揮発な可塑剤、メタノールまたは水の少なくとも一部を脱揮した。比較例2は添加物なしで、同様に処理した。押出機での樹脂温度は平均230℃、ベントの真空度は6mmHgに調整した。
脱揮処理により得られたHIPS組成物に残る可塑剤種の量、スチレン単量体量、スチレン単量体を除く有機揮発性物質量、HIPS組成物の物性および該組成物からのスチレン単量体の溶出量、揮発量を表2に記載した。
In addition, MO1 which is liquid paraffin is made by Matsumura Oil Research Co., Ltd. Product name: Moresco White P-40, MO2 is made by Matsumura Oil Research Co., Ltd. Product name: Moresco White P-70, MO3 is Trade name: Moresco White P-150, manufactured by Matsumura Oil Research Co., Ltd., MO4 is a trade name: Moresco White P-500, manufactured by Matsumura Oil Research Co., Ltd.
The resin composition and plasticizer characteristics before devolatilization are shown in Table 1.
[Conditions for removing organic volatile substances]
A pellet of HIPS-1 to 3 obtained by mixing a volatile plasticizer, a non-volatile plasticizer, methanol or water, and a volatile plasticizer using a twin screw extruder with a 20 mm vacuum vent, At least a portion of methanol or water was devolatilized. Comparative Example 2 was treated in the same way without additives. The resin temperature in the extruder was adjusted to an average of 230 ° C., and the vent vacuum was adjusted to 6 mmHg.
Amount of plasticizer species remaining in HIPS composition obtained by devolatilization treatment, amount of styrene monomer, amount of organic volatile substance excluding styrene monomer, physical properties of HIPS composition, and styrene unit amount from the composition Table 2 shows the elution amount and volatilization amount of the body.

比較例1は、多量の可揮発な可塑剤が再脱揮後にHIPSに残留した例である。比較例2は添加物なしで、同様に処理した例。更に比較例3および4は、脱揮助剤として水またはメタノールを用いた例である。
実施例1〜6は樹脂物性のバランスに優れ、スチレン単量体の溶出および揮発量が非検出なものであった。比較例2、3、4および5のHIPS組成物は、スチレン単量体およびその他の有機揮発性物質を多く含んでおり、有機揮発性物質の溶出や揮発が多く、また樹脂組成物は着色性で示される耐候性に劣るものであった。更に、比較例1は多量の可塑剤を含むため、耐熱性、剛性(曲げ弾性)、強度等の特性に劣るものであった。
Comparative Example 1 is an example in which a large amount of volatile plasticizer remains in HIPS after re-devolatilization. Comparative Example 2 is an example of the same treatment without additives. Further, Comparative Examples 3 and 4 are examples using water or methanol as a devolatilization aid.
Examples 1 to 6 were excellent in the balance of resin physical properties, and the elution and volatilization amount of the styrene monomer was not detected. The HIPS compositions of Comparative Examples 2, 3, 4 and 5 contain a large amount of styrene monomer and other organic volatile substances, so that the organic volatile substances are often eluted and volatilized, and the resin composition is colored. It was inferior to the weather resistance shown by. Furthermore, since Comparative Example 1 contained a large amount of plasticizer, it was inferior in properties such as heat resistance, rigidity (bending elasticity), and strength.

Figure 2005146248
Figure 2005146248

Figure 2005146248
Figure 2005146248

[実施例7、8および比較例6,7]
比較例6、実施例7、実施例8および比較例7では分子量の異なるHIPS−1、4〜6を含む樹脂組成物の樹脂性能を比較した。HIPS100重量部に対して、可揮発な可塑剤としてMO2を2.5重量部用いて、実施例3と同様の方法でスチレン単量体および有機揮発性物質を揮発除去した後、非揮発性の可塑剤であるMO4を追加して、全可塑剤量3.0重量%に調整している。得られたHIPS組成物の物性評価結果を表3に記載した。
[Examples 7 and 8 and Comparative Examples 6 and 7]
In Comparative Example 6, Example 7, Example 8, and Comparative Example 7, the resin performances of resin compositions containing HIPS-1, 4 to 6 having different molecular weights were compared. Using 2.5 parts by weight of MO2 as a volatile plasticizer with respect to 100 parts by weight of HIPS, the styrene monomer and the organic volatile substance were removed by volatilization in the same manner as in Example 3, and then a non-volatile The plasticizer MO4 is added to adjust the total plasticizer amount to 3.0% by weight. The physical property evaluation results of the obtained HIPS composition are shown in Table 3.

Figure 2005146248
Figure 2005146248

比較例6は分子量が高い(メルトフローレートが0.5未満)ために、流動性が不足し、成形性に劣った。また、比較例7は分子量が低い(メルトフローレートが30g/分を越える)ため、強度や曲弾性率が低く、物性バランスに欠けるものであった。
[実施例9、10および比較例8、9]
実施例3と同様に処理してスチレン単量体および有機揮発性物質を除去したHIPS−1、7〜8あるいはPS−1を調整し、その性能を評価した。
これらの実施例はゴム含率量の差異を比較評価したものである。ゴム含率ゼロ(ポリスチレン樹脂)では耐衝撃性が著しく低い。また、ゴム含率20重量%以上では剛性、特に熱時剛性の低下が著しいものであった。得られたHIPSあるいはPS組成物の物性評価結果を表4に記載した。
Since Comparative Example 6 had a high molecular weight (melt flow rate of less than 0.5), the fluidity was insufficient and the moldability was poor. In Comparative Example 7, the molecular weight was low (melt flow rate exceeded 30 g / min), so the strength and the flexural modulus were low, and the physical property balance was lacking.
[Examples 9 and 10 and Comparative Examples 8 and 9]
HIPS-1, 7-8 or PS-1 from which styrene monomer and organic volatile substances were removed by the same treatment as in Example 3 was prepared, and its performance was evaluated.
These examples are comparative evaluations of differences in rubber content. When the rubber content is zero (polystyrene resin), the impact resistance is extremely low. Further, when the rubber content was 20% by weight or more, the rigidity, particularly the thermal rigidity, was significantly reduced. The physical property evaluation results of the obtained HIPS or PS composition are shown in Table 4.

Figure 2005146248
Figure 2005146248

[実施例11]
実施例3のHIPS−1組成物を押出成型して、厚さ0.25mmのシートを作成した。このシートを延伸機にて、130℃で二軸方向にそれぞれ2倍に延伸して、延伸フィルムを作成した。得られたフィルムは平均厚み約600μmの、厚み斑の少ない、表面光沢に優れるものであった。また、スチレン単量体の溶出量および揮発量測定値は非検出であった。
[実施例12]
実施例3のHIPS−1組成物を用い、核剤としてのタルクを添加して1段目押出機に導入し、約220℃で熱可塑化した後、ブタンを約4重量%を圧入、含浸させた。次いで2段目押出機に送込み、発泡に適した粘度に温度調節し、約130℃のダイスより押出して、約5mm厚の発泡ボードを成形した。得られたボードからのスチレン単量体揮発量の測定値は非検出であった。
[Example 11]
The HIPS-1 composition of Example 3 was extruded to produce a sheet having a thickness of 0.25 mm. This sheet was stretched twice in a biaxial direction at 130 ° C. by a stretching machine to prepare a stretched film. The obtained film had an average thickness of about 600 μm, few thickness spots, and excellent surface gloss. Moreover, the elution amount and volatilization amount measurement value of the styrene monomer were not detected.
[Example 12]
Using the HIPS-1 composition of Example 3, talc as a nucleating agent was added, introduced into the first stage extruder, thermoplasticized at about 220 ° C., and then injected with about 4% by weight of butane and impregnated. I let you. Subsequently, it was sent to a second stage extruder, temperature-adjusted to a viscosity suitable for foaming, and extruded from a die at about 130 ° C. to form a foam board having a thickness of about 5 mm. The measured value of the styrene monomer volatilization amount from the obtained board was not detected.

本発明のスチレン系脂組成物は、既存HIPSの優れた物理的特性を保持し、スチレン単量体等の有機揮発性物質の溶出や揮発に伴う問題点が顕著に改善、且つ耐候安定性が大きく改善するものである。それ故に既存のHIPSが使用される各種用途に使用できることは勿論のこと、有機揮発性物質の溶出や揮発に伴う各種問題が顕著に改善することから、環境、衛生に関わる用途に特に好ましく利用出来る。
具体的には射出成形、ブロー成形あるいはシート、フィルム加工して、シート、フィルム、容器等の食品包装材として利用できる。シートを再成形して、食品容器、飲料容器等の安全衛生の求められる用途に好ましく利用できる。また発泡成形した断熱ボード、食品包装の緩衝材として利用できる。
The styrene-based fat composition of the present invention retains the excellent physical properties of existing HIPS, significantly improves the problems associated with elution and volatilization of organic volatile substances such as styrene monomers, and has weather resistance stability. It is a big improvement. Therefore, it can be used in various applications where existing HIPS is used, and various problems associated with elution and volatilization of organic volatile substances are remarkably improved. .
Specifically, it can be used as food packaging materials for sheets, films, containers, etc. by injection molding, blow molding or sheet / film processing. The sheet can be reshaped to be preferably used for applications requiring safety and health such as food containers and beverage containers. It can also be used as a foam molded insulation board and as a cushioning material for food packaging.

Claims (10)

下記(a)〜(d)に示す範囲の組成を有する有機揮発性物質の少ない耐衝撃性ポリスチレン樹脂組成物。
(a)分子量の指標であるメルトフローレートが0.5〜30g/分の範囲およびゴム含率が1〜20重量%の範囲にある耐衝撃性ポリスチレン樹脂 100重量部
(b)常圧における50体積%の留出温度が150〜450℃の範囲にある可揮発な可塑剤 0.01〜10重量部の範囲
(c)スチレン単量体含有量が100ppm未満
(d)スチレン単量体を含む有機揮発性物質含有量が150ppm未満
The impact-resistant polystyrene resin composition with few organic volatile substances which has a composition of the range shown to the following (a)-(d).
(A) 100 parts by weight of an impact-resistant polystyrene resin having a melt flow rate as a molecular weight index in the range of 0.5 to 30 g / min and a rubber content in the range of 1 to 20% by weight (b) 50 at normal pressure Volatile plasticizer with a vol% distillation temperature in the range of 150 to 450 ° C. Range of 0.01 to 10 parts by weight (c) Styrene monomer content less than 100 ppm (d) Including styrene monomer Organic volatile content is less than 150ppm
可揮発な可塑剤が飽和脂肪族炭化水素であることを特徴とする請求項1記載の耐衝撃性ポリスチレン樹脂組成物。   The impact-resistant polystyrene resin composition according to claim 1, wherein the volatile plasticizer is a saturated aliphatic hydrocarbon. 可揮発な可塑剤が下記(e)および(f)に示す範囲の特性を有する流動パラフィンであることを特徴とする請求項1又は2に記載の耐衝撃性ポリスチレン樹脂組成物。
(e)40℃の動粘度が0.1〜60mm2 /secの範囲
(f)蒸留試験における10mmHg、5体積%留出温度が100〜260℃の範囲
The impact-resistant polystyrene resin composition according to claim 1 or 2, wherein the volatile plasticizer is a liquid paraffin having characteristics within the ranges shown in (e) and (f) below.
(E) Kinematic viscosity at 40 ° C. in the range of 0.1-60 mm 2 / sec (f) 10 mmHg in distillation test, 5 vol% distillation temperature in the range of 100-260 ° C.
スチレン単量体を100〜10,000ppmの範囲およびスチレン単量体を含む有機揮発性物質を150〜15,000ppmの範囲で含有する耐衝撃性ポリスチレン樹脂に、可揮発な可塑剤0.01〜10重量%を混合した後、スチレン単量体を含む有機揮発性物質と共に、該可塑剤の一部を揮発除去することによって、スチレン単量体を100ppm未満およびスチレン単量体を含む有機揮発性物質含有量を150ppm未満に低減することによって製造されることを特徴とする請求項1〜3のいずれか1項記載の耐衝撃性ポリスチレン樹脂組成物。   An impact resistant polystyrene resin containing a styrene monomer in the range of 100 to 10,000 ppm and an organic volatile substance containing the styrene monomer in the range of 150 to 15,000 ppm, a volatile plasticizer 0.01 to After mixing 10% by weight, a part of the plasticizer is volatilized and removed together with an organic volatile substance containing a styrene monomer, whereby an organic volatile substance containing less than 100 ppm of the styrene monomer and the styrene monomer is contained. The impact-resistant polystyrene resin composition according to any one of claims 1 to 3, which is produced by reducing the substance content to less than 150 ppm. スチレン単量体を100〜10,000ppmの範囲およびスチレン単量体を含む有機揮発性物質を150〜15,000ppmの範囲で含有する耐衝撃性ポリスチレン樹脂に、40℃の動粘度が0.1〜60mm2 /secの範囲、且つ減圧蒸留試験における10mmHg、5体積%留出温度が100〜260℃の範囲にある流動パラフィンを0.01〜10重量%の範囲で混合した後、該流動パラフィンの少なくとも一部を該低分子量成分と共に揮発除去することによって、スチレン単量体を100ppm未満およびスチレン単量体を含む有機揮発性物質含有量を150ppm未満に低減することによって製造されることを特徴とする請求項1〜3のいずれか1項記載の耐衝撃性ポリスチレン樹脂組成物。 An impact-resistant polystyrene resin containing a styrene monomer in a range of 100 to 10,000 ppm and an organic volatile substance containing a styrene monomer in a range of 150 to 15,000 ppm has a kinematic viscosity at 40 ° C. of 0.1. After mixing liquid paraffin in the range of ˜60 mm 2 / sec and 10 mmHg in the vacuum distillation test and 5 vol% distillation temperature in the range of 100 to 260 ° C. in the range of 0.01 to 10% by weight, the liquid paraffin Produced by reducing the content of organic volatile substances containing styrene monomer to less than 100 ppm and styrene monomer to less than 150 ppm by volatilizing and removing at least a part of the styrene monomer together with the low molecular weight component. The impact-resistant polystyrene resin composition according to any one of claims 1 to 3. 25℃、1時間における耐衝撃性ポリスチレン樹脂組成物からのスチレン単量体のn−ヘプタン溶出量が5ppm未満であることを特徴とする請求項1〜5のいずれか1項記載の耐衝撃性ポリスチレン樹脂組成物。   The impact resistance according to any one of claims 1 to 5, wherein the elution amount of n-heptane of the styrene monomer from the impact-resistant polystyrene resin composition at 25 ° C for 1 hour is less than 5 ppm. Polystyrene resin composition. 請求項1〜6のいずれか1項に記載の耐衝撃性ポリスチレン樹脂組成物を押出、延伸成形してなるシート、フィルムおよびそれを再成形してなる包装容器。   The sheet | seat and film which extrude and stretch-mold the impact-resistant polystyrene resin composition of any one of Claims 1-6, and the packaging container formed by remolding it. 請求項1〜6のいずれか1項に記載の耐衝撃性ポリスチレン樹脂組成物を押出発泡成形してなる発泡シートおよびそれを再成形してなる食品発泡容器。   A foam sheet formed by extrusion foam molding of the impact-resistant polystyrene resin composition according to any one of claims 1 to 6 and a food foam container formed by remolding the foam sheet. 請求項1〜6のいずれか1項に記載の耐衝撃性ポリスチレン樹脂組成物を押出発泡成形してなる発泡ボード。   The foam board formed by extrusion foaming the impact-resistant polystyrene resin composition of any one of Claims 1-6. 請求項1〜6のいずれか1項に記載の耐衝撃性ポリスチレン樹脂組成物を射出成形してなる食品包装容器。   The food packaging container formed by injection-molding the impact-resistant polystyrene resin composition of any one of Claims 1-6.
JP2004109844A 2003-10-22 2004-04-02 Impact-resistant polystyrene resin composition Pending JP2005146248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004109844A JP2005146248A (en) 2003-10-22 2004-04-02 Impact-resistant polystyrene resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003361865 2003-10-22
JP2004109844A JP2005146248A (en) 2003-10-22 2004-04-02 Impact-resistant polystyrene resin composition

Publications (1)

Publication Number Publication Date
JP2005146248A true JP2005146248A (en) 2005-06-09

Family

ID=34703111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004109844A Pending JP2005146248A (en) 2003-10-22 2004-04-02 Impact-resistant polystyrene resin composition

Country Status (1)

Country Link
JP (1) JP2005146248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146247A (en) * 2003-10-22 2005-06-09 Ps Japan Corp Method for removing organic volatile substance in styrene resin and styrene resin obtained by the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258444A (en) * 1994-03-18 1995-10-09 Sumitomo Chem Co Ltd Foam comprising polystyrenic resin composition
JPH11323065A (en) * 1998-05-18 1999-11-26 Denki Kagaku Kogyo Kk Rubber-modified styrene-based resin composition and its blow molding product
JP2002128841A (en) * 2000-08-16 2002-05-09 Asahi Kasei Corp Beverage container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258444A (en) * 1994-03-18 1995-10-09 Sumitomo Chem Co Ltd Foam comprising polystyrenic resin composition
JPH11323065A (en) * 1998-05-18 1999-11-26 Denki Kagaku Kogyo Kk Rubber-modified styrene-based resin composition and its blow molding product
JP2002128841A (en) * 2000-08-16 2002-05-09 Asahi Kasei Corp Beverage container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146247A (en) * 2003-10-22 2005-06-09 Ps Japan Corp Method for removing organic volatile substance in styrene resin and styrene resin obtained by the same

Similar Documents

Publication Publication Date Title
KR101902060B1 (en) High-transparent thermoplastic compositions having chemical resistance, process for making thereof and article thereof
KR20080112842A (en) Thermoplastic resin composition with improved weather resistant
TWI582163B (en) Polycarbonate blend and method of producing the same
US20180030244A1 (en) Alternative Methods to Control Crosslinking in High Impact Polystyrene
JP2005145560A (en) Container for drinks
JP2005146248A (en) Impact-resistant polystyrene resin composition
JP2023086827A (en) Styrenic resin composition, foam sheet and food container
BR112014031893B1 (en) SCRATCH-RESISTANT ARTICLE MADE FROM MIXTURES OF POLYCARBONATE WITH MODIFIED METHYL METHACRYLATE POLYMER
TW201016779A (en) Improved monovinylidene aromatic polymer compositions comprising poly-alpha-olefin additives
JPH0625507A (en) Rubber-modified styrene-based resin composition with excellent appearance characteristics
JP2008037955A (en) Thermoplastic resin composition and molded product thereof
JP2020100678A (en) Styrenic resin composition, foam sheet and food container
JP2005146260A (en) Styrene-based polymer for foaming, foamed sheet and foamed container
JP7474036B2 (en) Styrene-unsaturated carboxylic acid resin, resin composition thereof, extruded sheet and molded product
JPH1087759A (en) Rubber modified styrene-based resin and its composition
EP4045106B1 (en) Styrene butadiene block copolymer compositions for medical devices
JP7232636B2 (en) Plate-shaped extruded foam
WO2018001943A1 (en) Polymer composition comprising at least one vinyl aromatic diene block copolymer and specific amounts of oil
KR101821622B1 (en) A method for continuous producing a rubber-modified styrenic thermoplastic having advanced environmental stress crack resistance
JP2005146251A (en) Method for removing low-molecular weight component in styrene resin and styrene resin containing small amount of low-molecular weight component
JPH1036464A (en) Rubber-modified styrene resin and its composition
CN108291041B (en) Acrylic acid composition
KR101839483B1 (en) Resin compositon for window profile having excellent thermal stability
JP2533977B2 (en) Rubber-modified styrene resin composition with excellent low-temperature moldability
KR100188528B1 (en) Styrenic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316