JP2005145512A - Method and apparatus for storing refuse derived solid fuel - Google Patents

Method and apparatus for storing refuse derived solid fuel Download PDF

Info

Publication number
JP2005145512A
JP2005145512A JP2003386232A JP2003386232A JP2005145512A JP 2005145512 A JP2005145512 A JP 2005145512A JP 2003386232 A JP2003386232 A JP 2003386232A JP 2003386232 A JP2003386232 A JP 2003386232A JP 2005145512 A JP2005145512 A JP 2005145512A
Authority
JP
Japan
Prior art keywords
storage tank
nitrogen
fuel
waste
solid waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003386232A
Other languages
Japanese (ja)
Inventor
Yukimatsu Shakunaga
幸松 釈永
Katsuhiko Iwamoto
克彦 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Engineering Co Ltd
Original Assignee
Kuraray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Engineering Co Ltd filed Critical Kuraray Engineering Co Ltd
Priority to JP2003386232A priority Critical patent/JP2005145512A/en
Publication of JP2005145512A publication Critical patent/JP2005145512A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a practical method capable of storing refused derived solid fuel with no danger of firing and explosion. <P>SOLUTION: Nitrogen separated from air by a pressure changing adsorption separation method is continuously introduced into a storage tank storing the refuse derived solid fuel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、廃棄物固形化燃料の貯蔵方法及び貯蔵装置に関する。さらに詳しくは、廃棄物固形化燃料の貯槽内に圧力変動吸着分離法により空気から分離された窒素を導入することを特徴とする、廃棄物固形化燃料の貯蔵方法及び貯蔵装置に関する。   The present invention relates to a waste solidified fuel storage method and storage device. More specifically, the present invention relates to a waste solidified fuel storage method and storage device, characterized in that nitrogen separated from air by a pressure fluctuation adsorption separation method is introduced into a solidified fuel storage tank.

従来から、可燃性廃棄物を燃料資源として再利用するために固形化したもの、即ち廃棄物固形化燃料を製造し、利用する方法や装置に関しては良く知られており、近年の廃棄物及び炭酸ガス排出削減の必要性から各地で廃棄物固形化燃料による発電などが実施されている。   Conventionally, a method and apparatus for producing and using a combustible waste that has been solidified for reuse as a fuel resource, that is, a solid waste fuel, is well known. Due to the need to reduce gas emissions, power generation using solid waste fuel is being implemented in various locations.

例えば、非特許文献1には廃棄物固形化燃料の製造法及び発電事業の概要が記載されている。この文献には、廃棄物を固形化燃料として発電などに使用する場合、ごみなどの廃棄物から不燃物を選別除去し、粉砕し、乾燥した後石灰と混合し、成形して固形化燃料とすることが記載されている。   For example, Non-Patent Document 1 describes a method for producing solid waste fuel and an outline of a power generation business. In this document, when waste is used as a solidified fuel for power generation, etc., non-combustible materials are sorted and removed from waste such as waste, pulverized, dried, mixed with lime, molded, and solidified fuel. It is described to do.

また、非特許文献2にはごみ固形燃料発電所事故中間報告が記載されている。本文献にはごみ固形化燃料の貯槽において発熱、発火などによって発生した事故の概要と推定される事故発生の機構が記載されている。さらに、既存の設備において火災や爆発を予防するために槽内の温度測定やガス濃度測定が実施されていること、火災が発生した際の消火方法としてスプリンクラーの散水や不活性ガスの封入などを準備している施設があることが記載されている。さらに非特許文献3には別の施設におけるごみ固形燃料の発熱トラブルが記載されている。   Non-Patent Document 2 describes an interim report of a solid fuel power plant accident. This document describes an accident occurrence mechanism that is estimated as an overview of accidents caused by heat generation, ignition, etc. in a solid waste fuel storage tank. In addition, the temperature and gas concentration in the tank are measured to prevent fires and explosions in existing equipment, and sprinkler watering and inert gas sealing are included as fire extinguishing methods in the event of a fire. It is stated that there are facilities in preparation. Furthermore, Non-Patent Document 3 describes a heat generation problem of solid waste fuel in another facility.

福山市環境ホームページ、“福山リサイクル(RDF)発電事業の概要”、[online]、[平成15年10月27日検索]、インターネット<URL:http://www.city.fukuyama.hiroshima.jp/kankyohozen/kankyo/top010417.html>Fukuyama City Environmental Homepage, “Summary of Fukuyama Recycling (RDF) Power Generation Project”, [online], [October 27, 2003 search], Internet <URL: http: // www. city. fukuyama. hiroshima. jp / kankyohozen / kankyo / top010417. html> 三重県 循環システム推進チーム、“ごみ固形燃料発電所事故調査中間報告書”、[online]、平成15年9月16日、[平成15年10月27日検索]、インターネット<URL:http://www.eco.pref.mie.jp/kouhou/kyou/200309161640401000/>Mie Prefecture Circulation System Promotion Team, “Garbage Solid Fuel Power Plant Accident Investigation Interim Report”, [online], September 16, 2003, [October 27, 2003 Search], Internet <URL: http: // / Www. eco. pref. mie. jp / kouhou / kyou / 200309161640401000 /> 産経新聞社 Sankei Web記事、“ごみ固形燃料が異常発熱、全面搬出へ 石川の発電施設”、[online]、平成15年10月16日[平成15年11月10日検索]、インターネット<URL:http://www.sankei.co.jp/news/031016/1016sha093.htm>Sankei Shimbun Sankei Web article, “Garbage solid fuel is abnormally heated, and to the full export Ishikawa's power generation facility”, [online], October 16, 2003 [November 10, 2003 search], Internet <URL: http: // www. sankei. co. jp / news / 031016 / 1016sha093. htm>

廃棄物固形化燃料を発電などに利用する際には、製造された廃棄物固形化燃料を搬出、使用されるまでの間一旦貯槽に貯蔵する必要がある。しかし、近年廃棄物固形化燃料を製造、利用する施設で、貯槽内における廃棄物固形化燃料の異常発熱や、自然発火による火災に起因する事故が発生し、貯槽の火災、爆発を防止するための対策が急務となっている。   When waste solidified fuel is used for power generation or the like, it is necessary to carry out the produced solid waste fuel and store it in a storage tank until it is used. However, in recent years, in facilities that produce and use solid waste fuel, in order to prevent fires and explosions in storage tanks due to abnormal heating of solid waste fuel in storage tanks and accidents caused by spontaneous fires. Measures are urgently needed.

当初、廃棄物固形化燃料の貯蔵中の発熱や自然発火の危険性についてはあまり重大視されてはいなかった。もちろん、実際に運転されている廃棄物固形化燃料利用施設においては、廃棄物固形化燃料を貯蔵する貯槽の火災、爆発に対する対策は講じられている。非特許文献2に記載されているとおり、火災、爆発の兆候を検知する方法としては温度センサーによる貯槽内の温度監視、ポータブル測定器による一酸化炭素やメタン濃度の測定などが採用されており、火災が発生した場合の消火方法として、スプリンクラーによる散水や、不活性ガスの封入が採用されている。しかし、非特許文献3にも記載されているように現実に貯槽の火災などのトラブルが発生している点から見ても、これらが十分に有効であったとはいえない   Initially, less attention was given to the risk of heat generation and spontaneous ignition during storage of solid waste fuel. Of course, in solid waste fuel utilization facilities that are actually in operation, measures are taken against fires and explosions in storage tanks that store solid waste fuel. As described in Non-Patent Document 2, as a method of detecting signs of fire and explosion, temperature monitoring in the storage tank by a temperature sensor, measurement of carbon monoxide and methane concentration by a portable measuring instrument, etc. are adopted. As a fire extinguishing method in the event of a fire, sprinkler spraying and inert gas sealing are employed. However, as described in Non-Patent Document 3, even if a trouble such as a fire in a storage tank actually occurs, it cannot be said that these were sufficiently effective.

貯槽内の温度やガス濃度の測定によって火災、爆発の兆候を検知し予防しようとする場合、温度やガス濃度の変化が比較的遅く一定であるなど定期的に測定した結果から危険な状態に達する時期が予測可能であれば事前に有効な対策を取ることが可能である。しかし、貯槽内における廃棄物固形化燃料の温度上昇は微生物による反応と化学的な酸化反応の両方が関係するため予測しにくく、低温においては緩やかであるがある程度温度が上がると急速に加速する場合が多い。しかも発熱の状況は原料ごみの組成などによっても大きく変動するため予測は一般に困難である。従って、温度やガス濃度の測定を実施していても急速な温度上昇のため消火などの対策が間に合わないことが多く、火災や爆発を防止するためには常時火災や爆発の危険のない状態を保つような手段を講じることが必要である。   When trying to detect and prevent signs of fire or explosion by measuring the temperature and gas concentration in the storage tank, it reaches a dangerous state from the results of regular measurements such as changes in temperature and gas concentration being relatively slow and constant. If the time is predictable, it is possible to take effective measures in advance. However, the temperature rise of solidified fuel in the storage tank is difficult to predict because it involves both microbial reactions and chemical oxidation reactions, and is moderate at low temperatures but accelerated rapidly when the temperature rises to some extent There are many. Moreover, it is generally difficult to predict the state of heat generation because it greatly fluctuates depending on the composition of raw material waste. Therefore, even when measuring temperature and gas concentration, countermeasures such as fire extinguishing are often not in time due to rapid temperature rise, and in order to prevent fires and explosions, there is always no risk of fire or explosion. It is necessary to take measures to keep it.

これに対し消火方法として採用されているスプリンクラーによる散水は一時的な消火や緊急時の除熱の方法としては有効であるが、危険防止のために常時実施することはできない。その理由は、廃棄物固形化燃料に常に発火を十分に防止できる量の水を含ませたのでは燃料として使用する際に支障を生ずるし、含ませる水の量が不十分であれば発火を十分に防止できないのみならずかえって微生物による反応とそれに伴う発熱が促進される恐れもあるからである。   On the other hand, sprinklers used as a fire extinguishing method are effective as a temporary fire extinguishing method or an emergency heat removal method, but cannot always be carried out to prevent danger. The reason is that if solid waste fuel always contains an amount of water that can sufficiently prevent ignition, it will cause problems when used as fuel, and if the amount of included water is insufficient, ignition will occur. This is because not only can it not be sufficiently prevented, but also the reaction by microorganisms and the accompanying fever may be accelerated.

一方、不活性ガスの封入には散水のような問題はないため常時実施可能であれば有効な対策となる。しかし、この場合不活性ガスを供給する方法が実用上の大きな課題である。不活性ガスとして使用される代表的なものは窒素であり、一般にはボンベから供給されるか、液体窒素として分離、貯蔵して供給される。これらの方法によれば密閉された小さな貯槽に一時的に不活性ガスを封入することができ、一時的に使用される場合には実用上も採用可能な方法といえる。   On the other hand, there is no problem such as watering in the filling of the inert gas, so it is an effective measure if it can always be performed. However, in this case, a method for supplying an inert gas is a big problem in practical use. A typical example of the inert gas used is nitrogen, which is generally supplied from a cylinder or separated and stored as liquid nitrogen. According to these methods, the inert gas can be temporarily sealed in a small sealed tank, and it can be said that the method can be used practically when temporarily used.

しかし、廃棄物を大量に連続的に固形化し利用するための設備では、廃棄物固形化燃料を貯蔵する貯槽自体が巨大になり、貯槽の廃棄物固形化燃料受入口や払出し口が常時あるいは頻繁に外気に対して解放されているため、常時窒素雰囲気に保つには大量の窒素を連続的に供給することが必要となる。ボンベや液化窒素でこのような大量の窒素供給を実施するには、これに対応した大量のボンベや巨大な液化窒素設備を設置することが必要となり、コスト、ボンベの搬入や液化設備メンテナンスの手間などの面で現実的でない。このため、運転時に火災防止のため常時窒素を導入することは行われていないのが現状である。   However, in the equipment for solidifying and utilizing a large amount of waste continuously, the storage tank for storing the solid waste fuel becomes huge, and the solid waste fuel inlet and discharge port of the storage tank are always or frequently used. Therefore, it is necessary to continuously supply a large amount of nitrogen in order to always maintain a nitrogen atmosphere. In order to supply such a large amount of nitrogen with a cylinder or liquefied nitrogen, it is necessary to install a large number of cylinders and a huge liquefied nitrogen facility corresponding to this, and costs, labor of loading cylinders and maintaining liquefaction equipment It is not realistic in terms of. For this reason, nitrogen is not always introduced to prevent fire during operation.

その他、一般の貯槽で防火のために実施される対策として、密閉・防爆構造の採用や、槽の外部からの冷却がある。しかし、大型の貯槽で空間部に十分な量の酸素が存在する場合には密閉しても発熱は起こり得るし、廃棄物固形化燃料を常時受入、払出す必要のある貯槽の場合、これを密閉すること自体が困難である。また、貯槽の容積が大きい場合、熱伝導性の低い廃棄物固形化燃料が保温材として働くため、外部からの冷却のみで貯槽内の温度を十分に安全な範囲に保つことも困難である。   Other countermeasures implemented for fire protection in general storage tanks include the use of a sealed / explosion-proof structure and cooling from the outside of the tank. However, if there is a sufficient amount of oxygen in the space in a large storage tank, heat generation can occur even if it is sealed, and in the case of a storage tank where solid waste fuel needs to be received and discharged at all times, It is difficult to seal itself. Further, when the volume of the storage tank is large, the waste solidified fuel having low thermal conductivity works as a heat insulating material, so that it is difficult to keep the temperature in the storage tank in a sufficiently safe range only by cooling from the outside.

従って本発明の目的は、上記のような状況に鑑み廃棄物固形化燃料を火災、爆発の危険なく貯蔵できる実用的な廃棄物固形化燃料の貯蔵方法及び貯蔵装置を提供することにある。   Accordingly, an object of the present invention is to provide a practical waste solidified fuel storage method and storage device that can store the solidified fuel without risk of fire and explosion in view of the above situation.

本発明者らは、上記目的を達成するため鋭意検討し、廃棄物固形化燃料の特性を損なわず発火を防ぐ方法として、窒素を導入することが好ましいこと、発火を防ぐには、導入する窒素の純度が超高純度である必要はないことに着目した結果、圧力変動吸着分離法により空気から分離した窒素を廃棄物固形化燃料を貯蔵する貯槽に導入することにより上記目的を達成できることを見出し、本発明に至った。   The inventors of the present invention have intensively studied to achieve the above object, and it is preferable to introduce nitrogen as a method for preventing ignition without impairing the characteristics of the solid waste fuel. As a result of paying attention to the fact that the purity of the gas does not have to be ultra-high purity, it has been found that the above object can be achieved by introducing nitrogen separated from the air by the pressure fluctuation adsorption separation method into a storage tank for storing solid waste fuel. The present invention has been reached.

すなわち、本発明は、廃棄物固形化燃料を貯蔵する貯槽内に圧力変動吸着分離法により空気中から分離された窒素を導入することを特徴とする廃棄物固形化燃料の貯蔵方法である。また、本発明のもう一つの発明は、廃棄物固形化燃料を貯蔵する貯槽に、窒素導管を介して圧力変動吸着分離装置が接続されてなる廃棄物固形化燃料の貯蔵装置である。   That is, the present invention is a method for storing waste solidified fuel, characterized in that nitrogen separated from the air by a pressure fluctuation adsorption separation method is introduced into a storage tank for storing the solidified fuel. Another invention of the present invention is a waste solidified fuel storage device in which a pressure fluctuation adsorption separation device is connected to a storage tank for storing solid waste fuel via a nitrogen conduit.

本発明によれば、生産手段として現実的に採用可能であって廃棄物固形化燃料を火災、爆発の危険なく貯蔵することができる方法と貯蔵装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method and storage apparatus which can be practically employ | adopted as a production means and can store waste solidified fuel without the danger of a fire and an explosion can be provided.

本発明で廃棄物固形化燃料を貯蔵する貯槽に窒素を導入する目的は、貯槽内の酸素濃度を下げ、廃棄物固形化燃料が微生物による反応及び化学的な酸化によって発熱しさらには自然発火するのを防止することにある。微生物による反応、燃焼を含む化学酸化はともに貯槽気相中の酸素濃度が低下すると大きく抑制されることが知られている。従ってこの目的のために必要なのは酸素濃度を一定レベルまで下げることであり、貯槽内の酸素を極めて微量とする必要はない。   The purpose of introducing nitrogen into a storage tank for storing waste solidified fuel in the present invention is to reduce the oxygen concentration in the storage tank, and the solidified fuel generates heat due to reaction and chemical oxidation by microorganisms and further spontaneously ignites. It is to prevent. It is known that chemical oxidation including reaction and combustion by microorganisms is greatly suppressed when the oxygen concentration in the gas phase of the storage tank decreases. Therefore, what is necessary for this purpose is to reduce the oxygen concentration to a certain level, and it is not necessary to make the amount of oxygen in the storage tank extremely small.

さらに、窒素を連続的に貯槽に供給しパージした場合には、貯槽から放出される窒素が熱を持ち出すことにより、貯槽内で発酵などが起こり発熱した場合でも熱蓄積による温度上昇が抑制される。さらに窒素は廃棄物固形化燃料を貯蔵する貯槽内での詰まり防止用ブラスターの作動用気体としても利用される。   Furthermore, when nitrogen is continuously supplied to the storage tank and purged, the nitrogen released from the storage tank brings out heat, so that temperature rise due to heat accumulation is suppressed even when fermentation occurs in the storage tank and heat is generated. . Nitrogen is also used as an operating gas for a clogging blaster in a storage tank for storing solid waste fuel.

本発明の特徴は、圧力変動吸着分離法により空気から分離した窒素を、廃棄物固形化燃料を貯蔵する貯槽に導入することにある。圧力変動吸着分離法はガス成分の吸着剤に対する吸着の圧力による選択性の差を利用して混合ガスから目的とするガスを分離する方法である。原料ガスを空気として窒素を分離する場合について述べると、吸着剤である分子篩活性炭素を充填した吸着塔に原料空気を加圧下に供給し、酸素を選択的に吸着させ、窒素を製品として分離するものである。   A feature of the present invention is that nitrogen separated from air by the pressure fluctuation adsorption separation method is introduced into a storage tank for storing solid waste fuel. The pressure fluctuation adsorption separation method is a method for separating a target gas from a mixed gas by utilizing a difference in selectivity depending on the pressure of adsorption of a gas component to an adsorbent. When nitrogen is separated using raw material gas as air, raw material air is supplied under pressure to an adsorption tower filled with molecular sieve activated carbon as an adsorbent to selectively adsorb oxygen and separate nitrogen as a product. Is.

酸素が吸着された吸着剤は圧力を減じて通気することにより酸素を脱着して再生され、繰返し使用される。吸着塔は1基のみで使用することも可能だが、1基のみで使用すると吸着剤を再生している間は窒素の供給ができなくなるため非効率的であり、連続的に窒素を供給するためには通常吸着塔を2基使用し、1基が吸着により窒素を製造している間にもう1基は脱着により吸着剤を再生する。これらがタイマーの設定により交互に吸着と脱着を繰り返して窒素が製造され、連続的に供給される。   The adsorbent on which oxygen has been adsorbed is regenerated by desorbing oxygen by aeration and reducing pressure, and is used repeatedly. Although it is possible to use only one adsorption tower, it is inefficient because it is impossible to supply nitrogen while regenerating the adsorbent, and nitrogen is continuously supplied. In general, two adsorbing towers are used, and one adsorbs the adsorbent by desorption while the other produces nitrogen by adsorption. These are alternately adsorbed and desorbed by setting a timer to produce nitrogen, which is continuously supplied.

圧力変動吸着分離法によれば99.99%以上という高純度の窒素を製造することもできるが、製造する窒素純度をわずかに下げることにより、同一の装置、動力で製造できる窒素の量を大幅に増やすことができ、窒素の製造に必要なランニングコストを大きく下げることができる特徴を有する。圧力変動吸着分離法は窒素の製造コストの面で有利であるが、本発明のように製造する窒素純度がそれほど高くなくてよい場合にはさらに有利である。例えば小型機種では99.99%を99.9%に下げた場合、あるいは99.9%を99%に下げた場合同一装置での発生量は約1.5〜2倍になる。中型では同一出力で同1.2〜1.5倍程度、同一設備で1.2〜2倍となる。   According to the pressure fluctuation adsorption separation method, it is possible to produce high-purity nitrogen of 99.99% or more, but by slightly reducing the purity of the produced nitrogen, the amount of nitrogen that can be produced with the same equipment and power is greatly increased. The running cost required for the production of nitrogen can be greatly reduced. The pressure fluctuation adsorption separation method is advantageous in terms of the production cost of nitrogen, but is more advantageous when the purity of the produced nitrogen does not have to be so high. For example, in a small model, when 99.99% is reduced to 99.9%, or when 99.9% is reduced to 99%, the amount generated in the same apparatus is about 1.5 to 2 times. The medium size is about 1.2 to 1.5 times the same output, and 1.2 to 2 times the same equipment.

さらに、圧力変動吸着分離法により窒素を製造、供給した場合、吸着剤を再生する際に、空気より酸素濃度の高い混合ガスが生成する。この混合ガスはそのまま空気中へ廃棄しても何ら問題はないが、廃棄物固形化燃料の性質や燃焼条件などの理由によって廃棄物固形化燃料を燃焼させる際に酸素濃度の高いガスを利用した方が有利な場合にはこの混合ガスを使用することもできる。   Further, when nitrogen is produced and supplied by the pressure fluctuation adsorption separation method, a mixed gas having an oxygen concentration higher than that of air is generated when the adsorbent is regenerated. There is no problem even if this mixed gas is disposed in the air as it is, but due to the nature of the solid waste fuel and the combustion conditions, a high oxygen concentration gas was used when burning the solid waste fuel. This mixed gas can also be used if it is more advantageous.

廃棄物固形化燃料を貯蔵する貯槽の材質、大きさあるいは形状は、廃棄物固形化燃料を貯蔵して支障のないものであれば特に制限はない。貯槽の形状としてはコンクリート製のピット式、サイロ型(円筒タンク式)などが好ましく用いられる。特に、大量の廃棄物固形化燃料を連続的に処理する施設の場合、サイロ型の貯槽であって、その上部に廃棄物固形化燃料の受入口を、その下部に払出し口を有するものが好ましく用いられる。   The material, size, or shape of the storage tank for storing the waste solidified fuel is not particularly limited as long as it does not interfere with the storage of the solidified fuel. As the shape of the storage tank, a concrete pit type, silo type (cylindrical tank type) or the like is preferably used. In particular, in the case of a facility that continuously processes a large amount of waste solidified fuel, a silo type storage tank having a waste solidified fuel inlet at the top and a discharge port at the bottom is preferable. Used.

圧力変動吸着分離装置で製造した窒素は導管で廃棄物固形化燃料を貯蔵する貯槽へ輸送される。貯槽の構造や利用形態によっては導管を貯槽に接続せずに開口部を解放したときにのみ導管の窒素出口を貯槽内に導入するなどの方法によっても貯槽への窒素の導入は可能であるが、通常は貯槽のいずれかの部分に窒素導管を接続し窒素を貯槽へ導入するのが好ましい。   Nitrogen produced by the pressure fluctuation adsorption separation device is transported by a conduit to a storage tank for storing solid waste fuel. Depending on the structure and usage of the storage tank, nitrogen can be introduced into the storage tank by a method such as introducing the nitrogen outlet of the conduit into the storage tank only when the opening is opened without connecting the conduit to the storage tank. Usually, it is preferable to connect a nitrogen conduit to any part of the storage tank to introduce nitrogen into the storage tank.

窒素導管の貯槽への接続位置は貯槽の構造を考慮して適宜定められる。貯槽の開口部が貯槽片側にのみ存在する場合は開口部付近に窒素導管を接続し窒素導管から開口部への窒素流れによって貯槽内部への空気の流入を防ぐ方法もとりうる。貯槽がサイロ型であり上下部に開口部がある場合、窒素導管の接続位置は貯槽の中間部とするのが好ましい。ここでいう中間部とは、貯槽の有効貯蔵部分の高さに対し下から10%〜80%の位置、好ましくは20〜60%の位置を指す。このように窒素導管を貯槽中間部とすることにより、上下の開口部から窒素を放出した場合に貯槽中間部から上下へ向かって窒素の流れが発生する。この窒素流れが貯槽内の廃棄物固形化燃料層を通過するため、貯槽内全体が良好な低酸素状態に保たれるとともに、窒素流れによる除熱の効果も発生するという利点がある。   The connection position of the nitrogen conduit to the storage tank is appropriately determined in consideration of the structure of the storage tank. When the opening of the storage tank exists only on one side of the storage tank, a method may be adopted in which a nitrogen conduit is connected in the vicinity of the opening and the inflow of air into the storage tank is prevented by the nitrogen flow from the nitrogen conduit to the opening. When the storage tank is a silo type and there are openings in the upper and lower parts, it is preferable that the connection position of the nitrogen conduit is the middle part of the storage tank. The intermediate part here refers to a position of 10% to 80%, preferably a position of 20 to 60% from the bottom with respect to the height of the effective storage part of the storage tank. By using the nitrogen conduit as the storage tank intermediate part in this way, when nitrogen is released from the upper and lower openings, a nitrogen flow is generated from the storage tank intermediate part upward and downward. Since this nitrogen flow passes through the waste solidified fuel layer in the storage tank, there is an advantage that the entire storage tank is maintained in a good low oxygen state and heat removal effect by the nitrogen flow is also generated.

窒素導管は貯槽の1箇所に接続されていてもよいし、複数の位置に接続されていてもよい。貯槽が大型の場合貯槽内の窒素の良好な流通状態を得るためには複数の位置に接続することが好ましい。高さ方向の複数箇所に窒素導管を接続しておくことは、貯蔵量が変動しても廃棄物固形化燃料層内の窒素流れを確保できる点で好ましい。高さ方向に複数箇所設置する場合、燃料貯蔵量が少なくなっても効果を維持できるように貯槽下部にも導管を接続するなど、その一部が中間部以外に設置されていてもよい。これら複数の窒素導管のそれぞれに流量調節バルブを設置し、廃棄物固形化燃料の貯蔵状態に応じて窒素の導入状態を変更してもよい。また、サイロ内の窒素流れが偏らないためには、貯槽円周方向にも複数の窒素導管を接続することがさらに好ましい。   The nitrogen conduit may be connected to one place of the storage tank or may be connected to a plurality of positions. When the storage tank is large, it is preferable to connect to a plurality of positions in order to obtain a good circulation state of nitrogen in the storage tank. It is preferable to connect nitrogen conduits to a plurality of locations in the height direction in that the nitrogen flow in the waste solidified fuel layer can be secured even if the storage amount varies. In the case where a plurality of places are installed in the height direction, some of them may be installed other than the middle part, such as connecting a conduit to the lower part of the storage tank so that the effect can be maintained even if the amount of fuel stored is reduced. A flow rate adjustment valve may be installed in each of the plurality of nitrogen conduits, and the nitrogen introduction state may be changed according to the storage state of the solid waste fuel. In order to prevent the nitrogen flow in the silo from being biased, it is more preferable to connect a plurality of nitrogen conduits in the circumferential direction of the storage tank.

また、廃棄物固形化燃料を貯蔵する貯槽と圧力変動吸着分離装置の間の窒素導管には、必要に応じて流量調節バルブ、製造された窒素を複数の導管に分配するための分配管、内部点検時に使用する大気放出管などを設置するのが好ましい。   In addition, the nitrogen conduit between the storage tank for storing solid waste fuel and the pressure fluctuation adsorption separation device includes a flow control valve, a distribution pipe for distributing the produced nitrogen to multiple conduits, It is preferable to install an atmospheric discharge pipe or the like used for inspection.

窒素を導入した際には内部が加圧にならないよう貯槽内のガスを貯槽外へ放出する必要があるが、ガスを放出する方法や場所についても貯槽の形態や廃棄物固形化燃料の受入、払出し方法等に応じて適宜選択すればよい。専用の排出口を設けて排出してもよいが、開口部が外気に対して解放されるように設けてあれば窒素は開口部から放出される。   When nitrogen is introduced, it is necessary to release the gas in the storage tank to the outside so that the inside does not become pressurized, but the method and place for releasing the gas also include the form of the storage tank and the reception of solid waste fuel, What is necessary is just to select suitably according to the payout method. A dedicated exhaust port may be provided for exhaustion. However, if the opening is provided so as to be released to the outside air, nitrogen is released from the opening.

貯槽への窒素の導入は連続、一定量である必要はなく、装置や運転の状況に応じて適切な方法で供給すればよい。貯槽が密閉かそれに近い状況にできる場合は、最初に貯槽内の酸素濃度を下げるに足るだけの窒素を導入し、密閉中は窒素の導入を停止していてもよい。この場合、貯槽への廃棄物固形化燃料の出し入れに際して装置を解放する際に、装置を解放している間だけ外気の浸入を防ぐために窒素を導入する方法も採用し得る。   The introduction of nitrogen into the storage tank does not have to be continuous and constant, and may be performed by an appropriate method according to the apparatus and the operating conditions. When the storage tank can be closed or close to it, nitrogen sufficient to lower the oxygen concentration in the storage tank may be first introduced, and the introduction of nitrogen may be stopped during the sealing. In this case, when the apparatus is released when the solid waste fuel is taken in and out of the storage tank, a method of introducing nitrogen to prevent the intrusion of the outside air only while the apparatus is released may be employed.

貯槽内に導入する窒素は純度が高いほど少ない窒素量で貯槽内酸素濃度を下げることができる点では有利だが、あまり純度を高くすると窒素を製造する設備が大きくなりコストが高くなる。一方あまり窒素の純度が低いと貯槽中の酸素濃度を安全な範囲に下げるのが難しくなり、窒素導入開始前に貯槽に存在した空気や開口部などからの空気の混入で酸素濃度が上昇する危険が増大する。酸素濃度が11%以下のガス中では通常の燃料は燃焼しなくなるとされているため、貯槽に導入する窒素純度はこの酸素濃度を達成できる程度には高いこと、言い換えれば導入する窒素中の酸素量が11%よりは十分低いことが好ましい。従って本発明で貯槽内に導入する窒素の純度は好ましくは93%以上、99.9%以下、さらに好ましくは95%以上、99.5%以下、さらに好ましくは97%以上99%以下である。   Nitrogen introduced into the storage tank is advantageous in that the higher the purity, the lower the oxygen concentration in the storage tank can be with a small amount of nitrogen. However, if the purity is too high, the equipment for producing nitrogen becomes large and the cost increases. On the other hand, if the purity of nitrogen is too low, it will be difficult to reduce the oxygen concentration in the storage tank to a safe range, and the oxygen concentration may increase due to air from the storage tank or air from the opening before the introduction of nitrogen. Will increase. Since it is said that ordinary fuel will not burn in a gas with an oxygen concentration of 11% or less, the purity of nitrogen introduced into the storage tank is high enough to achieve this oxygen concentration, in other words, oxygen in the introduced nitrogen. The amount is preferably sufficiently lower than 11%. Therefore, the purity of nitrogen introduced into the storage tank in the present invention is preferably 93% or more and 99.9% or less, more preferably 95% or more and 99.5% or less, and further preferably 97% or more and 99% or less.

また、廃棄物固形化燃料を連続的又は断続的に受入、払出しする場合のように、貯槽に外気に対して解放された開口部が存在し密閉されない場合は窒素の導入は連続的に実施することが好ましい。窒素の導入量は、貯槽の大きさ、開口部の大きさや開閉状況、導入する窒素の純度、求める安全性のレベルなどに応じて適宜決めればよい。この場合においても窒素導入量は一定である必要はなく貯槽の使用状況に応じて変動させてもよい。例えば貯槽内に温度計を設置し温度の状況に応じて窒素導入量を増減する方法、貯槽内にガス濃度計を設置してガス濃度に応じて窒素導入量を増減する方法が採用できる。特に酸素濃度計を設置して酸素濃度が所定濃度以下になるように窒素導入量を制御する方法が好ましい。あるいは、開口部からの放出する窒素が一定流速、可能ならば放出流速が開口部で1m/秒以上とし、空気からの酸素の逆流が防止できるよう窒素導入量を決める方法も採用することが好ましい。以上で述べた窒素の導入を効率的に行うには圧力変動吸着分離法は極めて適した手段となる。   In addition, when the solidified fuel is received or discharged continuously or intermittently, nitrogen is continuously introduced when the storage tank has an opening opened to the outside air and is not sealed. It is preferable. The amount of nitrogen introduced may be appropriately determined according to the size of the storage tank, the size and opening / closing status of the opening, the purity of the nitrogen to be introduced, the level of safety required. Also in this case, the nitrogen introduction amount does not need to be constant, and may be varied according to the use state of the storage tank. For example, a method can be employed in which a thermometer is installed in the storage tank and the nitrogen introduction amount is increased or decreased according to the temperature condition, and a gas concentration meter is installed in the storage tank and the nitrogen introduction amount is increased or decreased depending on the gas concentration. In particular, a method of installing an oxygen concentration meter and controlling the amount of nitrogen introduced so that the oxygen concentration becomes a predetermined concentration or less is preferable. Alternatively, it is preferable to adopt a method of determining the amount of nitrogen introduced so that the nitrogen released from the opening has a constant flow rate, if possible, the discharge flow rate is 1 m / second or more at the opening, and the backflow of oxygen from the air can be prevented. . The pressure fluctuation adsorption separation method is an extremely suitable means for efficiently introducing nitrogen as described above.

貯蔵される廃棄物固形化燃料は通常、家庭などから出た可燃ごみを原料として破砕、選別、乾燥、固形化し、利用しやすい形状の固形燃料としたものである。廃棄物固形化燃料の原料としては通常の家庭ごみの他、廃プラスチックなどの可燃性廃棄物も採用することができる。廃棄物固形化燃料の形状は、あまり微粉状であれば窒素気流に伴って飛散する、装置各部を詰まらせるなどの問題が生じ、逆に大きすぎるかたまりであれば連続的な移送が難しくなるので通常は円柱形の形状で、長さ50〜100mm、直径10〜50mmのものが好ましく用いられる。また、含まれる水分は10%以下が好ましく、これより多い場合燃料として使用した場合に有効に取り出せる熱量が減少し微生物反応よる発熱が起こりやすくなる傾向がある。   The solid waste fuel to be stored is usually a combustible waste from a home or the like as a raw material, which is crushed, sorted, dried and solidified into a solid fuel having a shape that is easy to use. In addition to ordinary household waste, combustible waste such as waste plastic can also be used as a raw material for solidifying fuel. If the shape of the solid waste fuel is too fine, it will cause problems such as scattering with the nitrogen stream and clogging each part of the device. Conversely, if it is too large, it will be difficult to transfer continuously. Usually, a cylindrical shape having a length of 50 to 100 mm and a diameter of 10 to 50 mm is preferably used. Further, the moisture content is preferably 10% or less, and if it is more than this, the amount of heat that can be effectively taken out when used as a fuel tends to decrease and heat generation due to microbial reaction tends to occur.

廃棄物固形化燃料を貯槽へ受入し、貯槽から払出す方法についても廃棄物の固形化方法や固形化燃料の利用方法、取扱量などに応じて種々の方法が採用できるが、大量の廃棄物を固形化して発電などに使用する場合に好ましい方法としては、廃棄物固形化燃料製造設備よりコンベヤーなどにより搬送した廃棄物固形化燃料をサイロ型貯槽の最上部に設けた受入口より連続的に又は断続的に受入し、該貯槽の最下部に設けた払出し口より連続的に又は断続的に払出しする方法が挙げられる。   Various methods can be adopted for the method of receiving waste solidified fuel into the storage tank and dispensing it from the storage tank depending on the solidification method of waste, the method of using solidified fuel, the amount handled, etc. As a preferred method for solidifying the solid waste and using it for power generation, etc., the waste solidified fuel transported from the waste solidified fuel production facility by a conveyor or the like is continuously fed from the inlet provided at the top of the silo storage tank. Or the method of receiving intermittently and paying out continuously or intermittently from the discharge opening provided in the lowest part of this storage tank is mentioned.

なお、本発明による方法を実施するに際しては、貯槽内及び貯槽から排出される窒素によって作業者が窒息などの事故を起こさないよう留意する必要があり、運転中に窒素が排出される貯槽開口部に作業者が接近できないようにマンホール、覗き窓に幅20cm以下の格子を設けるなどの設備上の対策を実施する事が好ましい。   In carrying out the method according to the present invention, it is necessary to take care not to cause accidents such as suffocation by the nitrogen discharged from the storage tank and from the storage tank, and the storage tank opening through which nitrogen is discharged during operation. It is preferable to implement countermeasures on the facility such as providing a manhole and a peep window with a width of 20 cm or less so that the worker cannot approach the door.

本発明に係る廃棄物固形化燃料の貯蔵方法の実施形態の一例を図1に示す。廃棄物固形化燃料製造装置で製造された廃棄物固形化燃料は、コンベヤー1により受入コンベヤー2に送られ、2より順次パケットエレベーター3そして投入コンベヤー4により廃棄物固形化燃料を貯蔵する貯槽5に送られる。貯槽5に貯蔵された廃棄物固形化燃料は搬出コンベヤー6により搬送車に乗せられ発電所等へ搬送される。廃棄物固形化燃料貯蔵設備の発熱、発火防止のための圧力変動吸着分離装置7を設置し、7で発生した窒素は導管8を通じて常時貯槽5内にパージすると共に必要に応じ詰まり防止のブラスター10の作動気体としても使用する。   An example of an embodiment of a method for storing solid waste fuel according to the present invention is shown in FIG. The solid waste fuel produced by the solid waste fuel production apparatus is sent to the receiving conveyor 2 by the conveyor 1, and sequentially from 2 to the storage tank 5 for storing the solid waste fuel by the packet elevator 3 and the input conveyor 4. Sent. The solid waste fuel stored in the storage tank 5 is put on a transport vehicle by a carry-out conveyor 6 and is transported to a power plant or the like. A pressure fluctuation adsorption separation device 7 is installed to prevent heat generation and ignition of the solid waste fuel storage facility. Nitrogen generated in 7 is constantly purged into the storage tank 5 through the conduit 8 and, if necessary, a blaster 10 to prevent clogging. Also used as a working gas.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらにより何ら限定されるものではない。
廃棄物固形化燃料を貯蔵する貯槽として直径4.8m、高さ12mの外形を有するサイロ型の貯槽を使用した。貯槽の内部貯蔵部容量は120m、上部に直径50cmの廃棄物固形化燃料受入口、下部に直径50cmの払出し口を有し、下部6mは払出し口を頂点とする円錐形状である。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
A silo-type storage tank having an outer shape with a diameter of 4.8 m and a height of 12 m was used as a storage tank for storing solid waste fuel. The internal storage capacity of the storage tank is 120 m 3 , a solid waste fuel receiving port having a diameter of 50 cm is provided at the upper portion, a discharging port having a diameter of 50 cm is provided at the lower portion, and the lower portion 6 m has a conical shape with the discharging port as a vertex.

また、圧力変動吸着分離装置としてクラレケミカル株式会社製、商品名「クラセップ RK−11」(純度99%の窒素生成能力約35m/hr)を使用した。圧力変動吸着分離装置出口からは40A配管で窒素を導出し、サイロ側壁の中間部2箇所(内部貯蔵部低部より6m及び9m)に設けたリング状配管を介し、貯槽のこの高さに円周方向90度間隔で4箇所に設置した15Aの各入口部とリング配管の間はバルブ付き窒素導管で接続した。 Moreover, the product name "Kurasep RK-11" (a nitrogen production capacity of about 35 m 3 / hr having a purity of 99%) manufactured by Kuraray Chemical Co., Ltd. was used as the pressure fluctuation adsorption separation device. From the outlet of the pressure fluctuation adsorption separation apparatus, nitrogen is led out through a 40A pipe, and the height of the storage tank is circled through ring-shaped pipes provided in two middle parts of the silo side wall (6m and 9m from the lower part of the internal storage part). The 15 A installed at four locations at intervals of 90 ° in the circumferential direction and the ring piping were connected by a nitrogen conduit with a valve.

本発明の廃棄物固形化燃料の貯蔵装置を示す。The storage apparatus of the solid waste fuel of this invention is shown.

符号の説明Explanation of symbols

1 廃棄物固形化燃料搬送コンベアー
2 廃棄物固形化燃料受入コンベアー
3 バケットエレベータ
4 廃棄物固形化燃料投入コンベアー
5 廃棄物固形化燃料貯槽
6 廃棄物固形化燃料搬出コンベアー
7 圧力変動吸着分離装置
8 窒素導管
9 窒素大気放出管
10 ブラスター
11 ブラスター
12 制御弁
13 制御弁
14 制御弁
15 制御弁
16 制御弁
17 制御弁
18 マンホール
19 搬送車
20 廃棄物固形化燃料受入口
21 廃棄物固形化燃料払出し口
1 Waste Solidified Fuel Conveyor 2 Waste Solidified Fuel Receiving Conveyor 3 Bucket Elevator 4 Waste Solidified Fuel Input Conveyor 5 Solid Waste Fuel Storage Tank 6 Solid Waste Fuel Carrying Conveyor 7 Pressure Fluctuation Adsorption Separator 8 Nitrogen Conduit 9 Nitrogen atmospheric discharge pipe 10 Blaster 11 Blaster 12 Control valve 13 Control valve 14 Control valve 15 Control valve 16 Control valve 17 Control valve 18 Manhole 19 Transport vehicle 20 Waste solid fuel inlet 21 Waste solid fuel outlet

Claims (6)

廃棄物固形化燃料を貯蔵する貯槽内に圧力変動吸着分離法により空気から分離された窒素を導入することを特徴とする廃棄物固形化燃料の貯蔵方法。   A method for storing solid waste fuel, comprising introducing nitrogen separated from air by a pressure fluctuation adsorption separation method into a storage tank for storing solid waste fuel. 該窒素の純度が95%以上、99.5%以下である請求項1記載の廃棄物固形化燃料の貯蔵方法。   The method for storing solid waste fuel according to claim 1, wherein the purity of the nitrogen is 95% or more and 99.5% or less. 該窒素の貯槽内への導入を連続的に行う請求項1又は2記載の廃棄物固形化燃料の貯蔵方法。 The waste solidified fuel storage method according to claim 1 or 2, wherein the nitrogen is continuously introduced into the storage tank. 廃棄物固形化燃料の、貯槽内への受入及び貯槽からの払出しを連続的又は断続的に行う廃棄物固形化燃料の貯蔵方法であって、窒素を該貯槽へ連続的に導入し、廃棄物固形化燃料の受入口及び/又は払出し口から放出させる請求項1〜3記載の廃棄物固形化燃料の貯蔵方法。   A method for storing waste solidified fuel in which waste solidified fuel is received into and discharged from a storage tank continuously or intermittently, wherein nitrogen is continuously introduced into the storage tank, and waste The waste solidified fuel storage method according to claim 1, wherein the solidified fuel is discharged from a solid fuel receiving port and / or a discharge port. 廃棄物固形化燃料を貯蔵する貯槽に、窒素導管を介して圧力変動吸着分離装置が接続されてなる廃棄物固形化燃料の貯蔵装置。   A waste solidified fuel storage device in which a pressure fluctuation adsorption separation device is connected to a storage tank for storing solid waste fuel via a nitrogen conduit. 廃棄物固形化燃料を貯蔵する貯槽が上部に廃棄物固形化燃料導受入口、下部に廃棄物固形化燃料払出し口を有する貯槽であって、窒素導管が貯槽中間部に設置された請求項5記載の廃棄物固形化燃料の貯蔵装置。
6. The storage tank for storing waste solidified fuel is a storage tank having a waste solidified fuel receiving inlet at an upper portion and a waste solidified fuel discharge port at a lower portion, and a nitrogen conduit is installed at a middle portion of the storage tank. The waste solidified fuel storage device described.
JP2003386232A 2003-11-17 2003-11-17 Method and apparatus for storing refuse derived solid fuel Pending JP2005145512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386232A JP2005145512A (en) 2003-11-17 2003-11-17 Method and apparatus for storing refuse derived solid fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386232A JP2005145512A (en) 2003-11-17 2003-11-17 Method and apparatus for storing refuse derived solid fuel

Publications (1)

Publication Number Publication Date
JP2005145512A true JP2005145512A (en) 2005-06-09

Family

ID=34693969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386232A Pending JP2005145512A (en) 2003-11-17 2003-11-17 Method and apparatus for storing refuse derived solid fuel

Country Status (1)

Country Link
JP (1) JP2005145512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083379A1 (en) * 2006-01-20 2007-07-26 Taiheiyo Cement Corporation Production facility for cement production raw fuel, cement production plant and method of converting waste to cement raw fuel
ITRM20090649A1 (en) * 2009-12-10 2011-06-11 Shap Corp S R L METHOD OF TREATMENT OF USEFUL BIOMASSES AS FUELS FOR THE PRODUCTION OF ELECTRICITY

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083379A1 (en) * 2006-01-20 2007-07-26 Taiheiyo Cement Corporation Production facility for cement production raw fuel, cement production plant and method of converting waste to cement raw fuel
JPWO2007083379A1 (en) * 2006-01-20 2009-06-11 太平洋セメント株式会社 Cement production raw fuel production facility, cement production plant, and waste cement raw fuel conversion method
ITRM20090649A1 (en) * 2009-12-10 2011-06-11 Shap Corp S R L METHOD OF TREATMENT OF USEFUL BIOMASSES AS FUELS FOR THE PRODUCTION OF ELECTRICITY

Similar Documents

Publication Publication Date Title
CN101595439B (en) Control system for conversion of carbonaceous feedstock into gas
JP6876789B2 (en) Circulating inert medium sealing system with air supply drive and QHSE storage and transportation method
CN102303758A (en) Coal storage silo safety protection process and protection system
JP2008045750A (en) Rectangular parallelepiped fluid storage and quantitative dispensing container
JP2009536261A (en) Low temperature gasification facility with horizontally oriented gasifier
WO2006022599B1 (en) Production method for exfoliated graphite, equipment for its production, exfoliated graphite and means of its use
US8197581B2 (en) Self-regulating bio-gas treatment system
KR101097577B1 (en) Apparatus and method for inhibiting decomposition of germane
CN202637777U (en) Flame-insulation explosion-proof device and flame-insulation explosion-proof emergency system
CN101637663A (en) Method for treating release gas in storage tank area
CN202464544U (en) Inerting safety protection device for coal storage silo
JP2005145512A (en) Method and apparatus for storing refuse derived solid fuel
JP2006520443A5 (en)
CN205042006U (en) Extensive three -phase froth of mine foaming device
CN204891604U (en) Volatile organic compounds&#39;s device among low temperature pyrolysis - catalytic degradation processing incineration fly ash
CN103738607A (en) Safety protection device of center-inerting pipe type coal storage silo
CN207933241U (en) A kind of apparatus and system of thermal desorption harmless treatment oil sludge
TW200523496A (en) Gas-using facility including portable dry scrubber system and/or over-pressure control arrangement
CN100522322C (en) Safe removal of volatile, oxidizable compounds from particles, in particular polymer particles
CN106959715A (en) The control method for preventing calcium carbide dust bulk cement storage tank from exploding
RU2318567C2 (en) Fire prevention method and system
CN105126606A (en) Method for low temperature pyrolysis-catalytic degradation treatment on burning fly ash volatile organic compounds
SU874138A1 (en) Vertical ring absorber
US4265707A (en) Method and apparatus for separating fission and activation products from gas atmospheres
CN211434842U (en) Be used for gaseous extinguishing device in dust removal storehouse