JP2005144743A - Resin layer forming device and embossing apparatus - Google Patents

Resin layer forming device and embossing apparatus Download PDF

Info

Publication number
JP2005144743A
JP2005144743A JP2003382508A JP2003382508A JP2005144743A JP 2005144743 A JP2005144743 A JP 2005144743A JP 2003382508 A JP2003382508 A JP 2003382508A JP 2003382508 A JP2003382508 A JP 2003382508A JP 2005144743 A JP2005144743 A JP 2005144743A
Authority
JP
Japan
Prior art keywords
substrate
resin layer
resin
corona discharge
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003382508A
Other languages
Japanese (ja)
Other versions
JP4268502B2 (en
Inventor
Yuzo Hayashi
祐三 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2003382508A priority Critical patent/JP4268502B2/en
Publication of JP2005144743A publication Critical patent/JP2005144743A/en
Application granted granted Critical
Publication of JP4268502B2 publication Critical patent/JP4268502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin layer forming device capable of forming the resin layer closely bonded to a substrate, and an embossing device capable of forming an embossed pattern to the resin layer with high precision. <P>SOLUTION: This embossing device 30 is mainly composed of a resin layer forming device 31 and an embossing part 21. The resin layer forming device is equipped with a corona discharge device (dischargfe means) 32, a partition wall 43, a resin feeder (resin supply means) 14, a molding blade (flattening means) 45 and a feed roller 46. A substrate 17, on which the resin layer must be formed, is introduced into the embossing device 30 by the feed roller 46 and the like. The corona discharge device 32 is constituted so as to apply a high voltgage current of high frequency to one set of electrodes 32a to excite electron energy to generate corona discharge toward the substrate 17. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基板上に樹脂層を形成する樹脂層形成装置、およびこの樹脂層に凹凸を形成する凹凸形成装置に関する。   The present invention relates to a resin layer forming apparatus for forming a resin layer on a substrate, and an unevenness forming apparatus for forming unevenness on the resin layer.

例えば、携帯電話や携帯用ゲーム機などの携帯電子機器では、そのバッテリ駆動時間が使い勝手に大きく影響するために、消費電力を抑えることができる反射型液晶表示装置を表示部として備えている。反射型液晶表示装置は、その前面から入射する外光を反射するための反射膜を備えており、その形態としては液晶パネルを構成する2枚の基板の間に反射膜を内蔵したものや、透過型の液晶パネルの背面側に半透過膜を備えた反射体を配設したものが知られている。   For example, portable electronic devices such as a mobile phone and a portable game machine have a reflective liquid crystal display device that can suppress power consumption as a display unit because the battery driving time greatly affects usability. The reflection-type liquid crystal display device includes a reflection film for reflecting external light incident from the front surface, and includes a reflection film built-in between two substrates constituting a liquid crystal panel, 2. Description of the Related Art A transmissive liquid crystal panel having a reflector provided with a semi-transmissive film on the back side is known.

光を反射させるための反射体としては、表面に多数の凹部を形成した基板の表面に反射膜を成膜した反射体が知られている。こうした反射体は、多数の凹部の作用によって反射面内でムラなく均一な反射光を得ることができる。   As a reflector for reflecting light, a reflector in which a reflective film is formed on the surface of a substrate on which a large number of concave portions are formed is known. Such a reflector can obtain uniform reflected light evenly within the reflecting surface by the action of a large number of recesses.

こうした反射体の従来の製造方法としては、例えば、下記特許文献1に記載されている方法が挙げられる。即ち、圧子によって凹凸面を備えた転写原型を製造し、この転写原型から転写積層体を形成して、転写積層体を基板に貼り付けて反射体を得る方法が記載されている。
特開2001−310334号公報
As a conventional manufacturing method of such a reflector, for example, a method described in Patent Document 1 below can be cited. That is, a method is described in which a transfer master having an uneven surface is manufactured by an indenter, a transfer laminate is formed from the transfer master, and the transfer laminate is attached to a substrate to obtain a reflector.
JP 2001-310334 A

しかしながら、特許文献1に示す反射体の製造方法では、転写積層体を基板に所望の強度で密着させることが困難であり、必要な強度を持った反射体が得られないという可能性がある。また、材料の種類も限定され、転写積層体の基板への貼り付けという工程上、所定の反射性能を維持した反射体の凹凸面を形成することが困難である。   However, in the reflector manufacturing method shown in Patent Document 1, it is difficult to bring the transfer laminate into close contact with the substrate with a desired strength, and there is a possibility that a reflector having a required strength cannot be obtained. Moreover, the kind of material is also limited, and it is difficult to form an uneven surface of the reflector that maintains a predetermined reflection performance in the process of attaching the transfer laminate to the substrate.

本発明は、上記事情に鑑みてなされたものであって、基板に密着した樹脂層を形成可能な樹脂層形成装置、およびこうした樹脂層に高精度で凹凸を形成することが可能な凹凸形成装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a resin layer forming apparatus capable of forming a resin layer in close contact with a substrate, and an uneven forming apparatus capable of forming unevenness on such a resin layer with high accuracy. The purpose is to provide.

上記の目的を達成するために、本発明によれば、基板の表面にコロナ放電を行なう放電手段と、前記基板上に流動性の樹脂を盛り付ける樹脂供給手段と、前記樹脂の表面を平坦化して前記基板上に樹脂層を形成する平坦化手段とを備えたことを特徴とする樹脂層形成装置が提供される。   In order to achieve the above object, according to the present invention, discharge means for performing corona discharge on the surface of a substrate, resin supply means for placing a fluid resin on the substrate, and planarizing the surface of the resin There is provided a resin layer forming apparatus comprising a planarizing means for forming a resin layer on the substrate.

また、本発明によれば、基板の表面にコロナ放電を行なう放電手段と、前記基板上に流動性の樹脂を盛り付ける樹脂供給手段と、前記樹脂の表面を平坦化して前記基板上に樹脂層を形成する平坦化手段と、前記樹脂層に凹凸を形成する凹凸形成手段とを備えたことを特徴とする凹凸形成装置が提供される。   Further, according to the present invention, the discharge means for performing corona discharge on the surface of the substrate, the resin supply means for placing a fluid resin on the substrate, and the resin layer on the substrate by flattening the surface of the resin Provided is a concavo-convex forming apparatus comprising: a planarizing means for forming; and a concavo-convex forming means for forming concavo-convex in the resin layer.

前記コロナ放電の電界強度(kV/cm)は5kV/cm以上150kV/cmに設定されればよい。また、前記凹凸形成手段は、周面に突起が形成されたローラであればよい。   The electric field strength (kV / cm) of the corona discharge may be set to 5 kV / cm or more and 150 kV / cm. Moreover, the said uneven | corrugated formation means should just be a roller by which the protrusion was formed in the surrounding surface.

本発明の樹脂層形成装置によれば、コロナ放電によって基材表面が親水性または極性が付与されるが、そのメカニズムは、電圧、イオンによる衝撃、電子の衝撃、コロナ放電による空間電荷等によって空気中の酸素が活性化され、基板表面の付着分子の分子鎖が切断される。例えば、ガラス基板の場合には、−OH,−SiO−,−SiOH等の極性基が生成する。また、樹脂基板の場合には、=C=O,−C−O−,−COOH,−C−OH等の極性基が生成する。その結果、基板の表面エネルギーが増大して基板表面の濡れ性が大幅に向上すると考えられる。これにより、極性材料である樹脂層が表面にしっかりと密着した基板を得ることができる。また、本発明の凹凸形成装置によれば、コロナ放電によって基板上に形成される樹脂層が基板としっかり密着するので、安定した高精度な凹凸を形成することができる。   According to the resin layer forming apparatus of the present invention, the substrate surface is imparted hydrophilicity or polarity by corona discharge, and the mechanism thereof is air, such as voltage, ion impact, electron impact, space charge due to corona discharge, etc. The oxygen inside is activated, and the molecular chains of the attached molecules on the substrate surface are cleaved. For example, in the case of a glass substrate, polar groups such as —OH, —SiO—, and —SiOH are generated. In the case of a resin substrate, polar groups such as = C = O, -C-O-, -COOH, -C-OH are generated. As a result, it is considered that the surface energy of the substrate is increased and the wettability of the substrate surface is greatly improved. Thereby, the board | substrate with which the resin layer which is a polar material closely_contact | adhered to the surface can be obtained. Moreover, according to the uneven | corrugated formation apparatus of this invention, since the resin layer formed on a board | substrate by corona discharge firmly adheres to a board | substrate, the stable highly accurate unevenness | corrugation can be formed.

以下、本発明の実施の形態について、図面を交えて説明する。まず最初に本発明の凹凸形成装置によって製造される反射体の一例について説明する。図1は、反射体の構成の一例を示す部分斜視図であり、図2は、図1に示す反射体の断面模式図であり、図3のAは、図1に示す反射体に形成された凹部の平面構成図であり、図3のBは、図3のAに示すG−G線に沿う断面構成図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, an example of a reflector manufactured by the concavo-convex forming apparatus of the present invention will be described. 1 is a partial perspective view showing an example of the configuration of a reflector, FIG. 2 is a schematic cross-sectional view of the reflector shown in FIG. 1, and A in FIG. 3 is formed on the reflector shown in FIG. FIG. 3B is a cross-sectional configuration diagram taken along line GG shown in FIG. 3A.

図1のBに示すように、反射体10は基板11と、この基板11の一面11a上に積層されたAlやAg等の高反射率の反射膜12とから概略構成されている。この基板11は、図1のAに示すように、支持層15と、この支持層15上に形成された樹脂層16とから構成されている。樹脂層16は、反射膜12に所定の表面形状、すなわち樹脂層16の凹部13に倣った凹部12aを与えるもので、一面11aに複数の凹部13が設けられている。   As shown in FIG. 1B, the reflector 10 is schematically configured by a substrate 11 and a reflective film 12 having a high reflectivity such as Al or Ag laminated on one surface 11 a of the substrate 11. As shown in FIG. 1A, the substrate 11 includes a support layer 15 and a resin layer 16 formed on the support layer 15. The resin layer 16 gives the reflective film 12 a predetermined surface shape, that is, a concave portion 12a following the concave portion 13 of the resin layer 16, and a plurality of concave portions 13 are provided on one surface 11a.

こうした凹部13によって、図1のBに示すように、反射膜12に凹部12aが形成され、反射膜12にムラの無い均一な反射性を与える。こうした基板11を構成する支持層15は、例えばSiOコーティング付きのガラス板から構成されれば良く、また、樹脂層16は紫外線硬化性樹脂から構成されていればよい。こうした基板11の厚さは、例えば50μm〜1mmの範囲であれば好ましく、特に100〜700μmの範囲がよい。 As shown in FIG. 1B, the concave portion 13 forms a concave portion 12 a in the reflective film 12, and gives the reflective film 12 uniform and uniform reflectivity. The support layer 15 constituting the substrate 11 may be made of, for example, a glass plate with a SiO 2 coating, and the resin layer 16 may be made of an ultraviolet curable resin. The thickness of the substrate 11 is preferably in the range of 50 μm to 1 mm, for example, and particularly preferably in the range of 100 to 700 μm.

反射膜12は、基板の一面11a上に、例えば、AlやAg等の高反射特性の金属を蒸着して形成すればよく、膜厚は0.05〜0.2μmの範囲が良く、0.08〜0.15μmの範囲が特に好ましい。反射膜12の膜厚が0.05μm未満だと反射率が低下してしまうので好ましくなく、0.2μmを超えると必要以上に成膜コストがかかることや、凹部13によって与えられる凹部12aが小さくなってしまうので好ましくない。   The reflection film 12 may be formed by vapor-depositing a metal having high reflection characteristics such as Al or Ag on the one surface 11a of the substrate, and the film thickness is preferably in the range of 0.05 to 0.2 μm. A range of 08 to 0.15 μm is particularly preferable. If the thickness of the reflective film 12 is less than 0.05 μm, the reflectance is lowered, which is not preferable. If the thickness exceeds 0.2 μm, the film formation cost is more than necessary, and the concave portion 12 a provided by the concave portion 13 is small. This is not preferable.

凹部13は、基板11の樹脂層16に対して、後ほど詳述する反転金型を用いて型押し加工によって形成されたものであり、図1のB及び図2に示すように、反射膜12上において、各凹部12aの輪郭12c同士が相互に接している。この輪郭12c同士が接する部分は先の尖ったピーク形状に形成され、凹部12a同士の間にある平坦部分12dの領域が少ないのが反射特性上好ましい。   The recess 13 is formed on the resin layer 16 of the substrate 11 by embossing using a reversal mold that will be described in detail later. As shown in FIGS. 1B and 2, the reflective film 12 is formed. In the above, the contours 12c of the recesses 12a are in contact with each other. The portion where the contours 12c are in contact with each other is formed in a pointed peak shape, and it is preferable in terms of reflection characteristics that the area of the flat portion 12d between the recesses 12a is small.

また図3に示すように、凹部13の内面は、各々半径が異なる2つの球面の一部である第1曲面13aと、第2曲面13bとを含んでおり、これらの曲面13a,13bを与える球の中心O1,O2は凹部13の最深点Oの法線上に配置されている。第1曲面13aはO1を中心とする半径R1の球面の一部とされ、第2曲面13bはO2を中心とする半径R2の球面の一部とされている。そして、図3のAに示す平面図において、凹部13の最深点Oを通過し、G−G線に直交する直線Hの近傍において第1曲面13aと第2曲面13bとが概ね区画されている。凹部13の深さは例えば0.3〜2.0μm程度に形成されればよい。   As shown in FIG. 3, the inner surface of the recess 13 includes a first curved surface 13a and a second curved surface 13b, which are part of two spherical surfaces each having a different radius, and gives these curved surfaces 13a and 13b. The sphere centers O 1 and O 2 are arranged on the normal line of the deepest point O of the recess 13. The first curved surface 13a is a part of a spherical surface with a radius R1 centered on O1, and the second curved surface 13b is a part of a spherical surface with a radius R2 centered on O2. And in the top view shown to A of FIG. 3, the 1st curved surface 13a and the 2nd curved surface 13b are divided substantially in the vicinity of the straight line H which passes the deepest point O of the recessed part 13, and is orthogonal to GG line. . The depth of the recessed part 13 should just be formed in about 0.3-2.0 micrometers, for example.

図4は、上述したような構成の反射体10に、図3における図示右側から入射角30°で光を照射し、受光角を反射面に対する正反射の方向である30°を中心として±30°の範囲(0°〜60°;0°が反射体一面の法線方向に相当)で振って反射体10の反射率(%)を測定した結果を示すグラフである。   4 irradiates the reflector 10 having the above-described structure with light at an incident angle of 30 ° from the right side of the drawing in FIG. 3, and the light receiving angle is ± 30 around 30 ° which is the direction of regular reflection with respect to the reflecting surface. It is a graph which shows the result of having measured in the range (0 degree-60 degrees; 0 degree is equivalent to the normal line direction of one surface of a reflector), and measuring the reflectance (%) of the reflector 10. FIG.

図4に示すグラフから明らかなように、上記構成を備えた反射体10によれば、半径の比較的小さい球面からなる第2曲面13bの傾斜角の絶対値が比較的大きいことから、反射光が広角に散乱されて約15°〜50°の広い受光角範囲で高い反射率を得ることができる。また、半径が比較的大きい球面からなる第1曲面13aにおける反射により、前記第2曲面13bよりも特定方向の狭い範囲に散乱される反射が生じるため、全体として反射率が正反射方向である30°よりも小さい角度で最大となり、そのピークの近傍における反射率も高くなる。   As is apparent from the graph shown in FIG. 4, according to the reflector 10 having the above-described configuration, the absolute value of the inclination angle of the second curved surface 13b made of a spherical surface having a relatively small radius is relatively large. Is scattered at a wide angle, and a high reflectance can be obtained in a wide light receiving angle range of about 15 ° to 50 °. Further, the reflection on the first curved surface 13a composed of a spherical surface having a relatively large radius causes reflection to be scattered in a narrow range in a specific direction as compared with the second curved surface 13b, so that the reflectance is the regular reflection direction as a whole. The maximum is obtained at an angle smaller than 0 °, and the reflectance in the vicinity of the peak increases.

その結果、反射体10に入射し反射された光のピークが正反射方向よりも反射体10の法線方向に近い側にシフトするので、反射体10正面方向の反射輝度を高めることができる。従って、こうした反射体10が液晶表示装置の反射層に適用されれば、通常表示面を斜めにして使用されることから、液晶表示装置の正面方向における反射輝度を向上させることができ、液晶表示装置の観察者方向への輝度を高めることができる。   As a result, the peak of light incident on and reflected by the reflector 10 is shifted to the side closer to the normal direction of the reflector 10 than the regular reflection direction, so that the reflection luminance in the front direction of the reflector 10 can be increased. Accordingly, if such a reflector 10 is applied to the reflective layer of a liquid crystal display device, the display surface is normally used with an oblique display surface. Therefore, the reflection luminance in the front direction of the liquid crystal display device can be improved. The brightness of the apparatus toward the viewer can be increased.

次に、本発明の凹凸形成装置について説明する。図5は本発明の樹脂層形成装置を含む凹凸形成装置を示す断面図である。凹凸形成装置30は、大別して樹脂層形成装置31と、凹凸加工部21とからなる。樹脂層形成装置31は、コロナ放電器(放電手段)32、仕切壁33、樹脂供給器(樹脂供給手段)34、成型刃(平坦化手段)35および送りローラ46を備えている。樹脂層を形成する基板17は送りローラ36などで凹凸形成装置30に導入される。   Next, the uneven | corrugated formation apparatus of this invention is demonstrated. FIG. 5 is a cross-sectional view showing an unevenness forming apparatus including the resin layer forming apparatus of the present invention. The concavo-convex forming apparatus 30 is roughly divided into a resin layer forming apparatus 31 and a concavo-convex processed portion 21. The resin layer forming apparatus 31 includes a corona discharger (discharge unit) 32, a partition wall 33, a resin supply unit (resin supply unit) 34, a molding blade (flattening unit) 35, and a feed roller 46. The substrate 17 on which the resin layer is formed is introduced into the concavo-convex forming apparatus 30 by a feed roller 36 or the like.

コロナ放電器32は、1組の電極32aに所定周波数の高電圧を発生させる電源・トランス系からなるもので、電極が存在する雰囲気に電子エネルギーを与えてコロナ放電を発生させる。この図では、基板17の表面近傍に電極で発生したコロナが放射される。この様に電極が被照射体である基板17の表面に沿って配置される場合には(印加電圧の大きさにもよるが)電極32aと被照射体(基板17)とは、距離を比較的小さく設定する。   The corona discharger 32 is composed of a power supply / transformer system that generates a high voltage of a predetermined frequency at a pair of electrodes 32a, and applies electron energy to the atmosphere in which the electrodes exist to generate corona discharge. In this figure, corona generated by the electrodes is emitted near the surface of the substrate 17. In this way, when the electrodes are arranged along the surface of the substrate 17 that is the object to be irradiated (depending on the magnitude of the applied voltage), the distance between the electrode 32a and the object to be irradiated (substrate 17) is compared. Set to a smaller value.

すなわち、電極32a間隔(A)よりも電極−基板間距離(D)を小さく設定する必要があり、例えば印加電圧2kV程度では、A:20〜40mmの場合、Dは1〜10mm、できれば1〜5mmに設定する。Dが10mm以上の場合には、電極間の放電が支配的になってしまい、被照射面へコロナ雰囲気が照射されず、ロスとなってしまう。また、1mm以下の場合には、放電雰囲気は生成されやすいが、装置の設計上或いは設置上の要求精度が必要になり、好ましくない。   That is, it is necessary to set the electrode-substrate distance (D) smaller than the electrode 32a interval (A). For example, when the applied voltage is about 2 kV, A is 20 to 40 mm, D is 1 to 10 mm, preferably 1 to Set to 5 mm. When D is 10 mm or more, the discharge between the electrodes becomes dominant, and the irradiated surface is not irradiated with the corona atmosphere, resulting in a loss. In the case of 1 mm or less, a discharge atmosphere is likely to be generated, but the required accuracy in designing or installing the apparatus is required, which is not preferable.

仕切り壁33は、こうした樹脂供給器14から基板17上に樹脂18が塗布可能にする樹脂溜19とコロナ放電器32との間を区画すると同時に、樹脂18の不要な流出を防止する機能を果たす。成型刃(ブレード)35は、例えば樹脂溜19に隣接して設置され、刃状先端35aによって基板との間に所定の隙間が保たれている。この隙間の間隔を制御することにより、基板17上に塗布される樹脂層36の膜厚が制御される。   The partition wall 33 functions as a partition between the resin reservoir 19 and the corona discharger 32 that allow the resin 18 to be applied onto the substrate 17 from the resin supply device 14 and at the same time, prevents unnecessary discharge of the resin 18. . The molding blade (blade) 35 is installed, for example, adjacent to the resin reservoir 19, and a predetermined gap is maintained between the blade-shaped tip 35 a and the substrate. By controlling the gap distance, the thickness of the resin layer 36 applied on the substrate 17 is controlled.

通常、この膜厚は、形成後の膜厚で2.5〜3.5μm,好ましくは2.5〜3.0μmに設定される。2.5μm未満であると、ランダムな微小凹凸のうち深い側の凹部を安定に形成できなくなって所望の反射特性が得られない。また3.5μmを超えると、形成した凹部の上に形成される平坦化膜の膜厚が厚くなり、パネルの信頼性に悪影響を及ぼす(高温保存或いは高温高湿保存時の平坦化膜の収縮、或いは極端な場合クラック等が発生する等。)。なお、図には示していないが、この樹脂の塗布手段は上述のものに限らずいわゆるロールコータであっても良い。   Usually, this film thickness is set to 2.5 to 3.5 μm, preferably 2.5 to 3.0 μm, after the formation. If it is less than 2.5 μm, it is impossible to stably form a deep concave portion among random minute irregularities, and desired reflection characteristics cannot be obtained. On the other hand, if the thickness exceeds 3.5 μm, the thickness of the flattening film formed on the formed concave portion becomes thick, which adversely affects the reliability of the panel (shrinkage of the flattening film during high temperature storage or high temperature high humidity storage). Or, in extreme cases, cracks, etc.). Although not shown in the figure, the resin application means is not limited to that described above, and a so-called roll coater may be used.

凹凸加工部21は、加工ローラ(凹凸形成手段)22、ピンチローラ23、および送りローラ24を備えている。略円筒形の加工ローラ(凹凸形成手段)22は、その周囲に多数の凹凸(突起)22aが形成されている。凹凸(突起)22aは、例えば図1に示す反射体10の樹脂層36に形成される凹部(凹凸)43の形状を反転させた形状であればよい。   The unevenness processing section 21 includes a processing roller (unevenness forming means) 22, a pinch roller 23, and a feed roller 24. The substantially cylindrical processing roller (unevenness forming means) 22 has a large number of unevenness (projections) 22a formed around it. The unevenness (projection) 22a may be a shape obtained by inverting the shape of the recess (unevenness) 43 formed in the resin layer 36 of the reflector 10 shown in FIG.

加工ローラ22の回転によって、樹脂層形成装置31で基板17上に積層された樹脂16に凹凸22aが連続的に押し付けられ、樹脂層36に多数の凹部(凹凸)43が形成される。こうした凹凸22aを備えた加工ローラ22は、塑性変形性の円筒材に凹部(又は凸部)43を象った圧子を打ち付けて形成することができる。   By the rotation of the processing roller 22, the unevenness 22 a is continuously pressed against the resin 16 laminated on the substrate 17 by the resin layer forming device 31, and a large number of recessed portions (unevenness) 43 are formed in the resin layer 36. The processing roller 22 provided with such irregularities 22a can be formed by hitting an indenter in the shape of a concave portion (or convex portion) 43 on a plastically deformable cylindrical material.

ピンチローラ23は、基板17を介して加工ローラ22に対面して設けられ、加工ローラ22との間で基板を支持する。送りローラ24は樹脂層36に凹部43が形成された基板17を、加工ローラ22の円周速度と基板17の移動速度とを高精度で一致させて搬送することで加工が行われる。   The pinch roller 23 is provided to face the processing roller 22 via the substrate 17 and supports the substrate with the processing roller 22. The feed roller 24 is processed by conveying the substrate 17 having the recess 43 formed in the resin layer 36 with the circumferential speed of the processing roller 22 and the moving speed of the substrate 17 matched with high accuracy.

このような構成の凹凸形成装置の動作と作用を説明する。本発明の凹凸形成装置30を用いて、基板17上に樹脂層36を形成し、さらにこの樹脂層36に凹部43を形成する場面を想定する。樹脂層36を形成された基板17は送りローラ16によって凹凸形成装置30内に導入され、コロナ放電器32に達する。   The operation and action of the concavo-convex forming apparatus having such a configuration will be described. It is assumed that the resin layer 36 is formed on the substrate 17 using the unevenness forming apparatus 30 of the present invention, and further the recess 43 is formed in the resin layer 36. The substrate 17 on which the resin layer 36 is formed is introduced into the concavo-convex forming apparatus 30 by the feed roller 16 and reaches the corona discharger 32.

ここでコロナ放電器32は一組の電極32aに印加された交流電圧によって周辺の雰囲気に電子エネルギーが付与され、基板17表面の近傍にコロナ放電によるイオン・ラジカル雰囲気が生成し、つまり空気中の酸素が活性化されることにより基板表面の付着分子の分子鎖が切断され、例えばガラス基板の場合には−OH,−SiO−,SiOH,等の極性基が生成する。   Here, the corona discharger 32 applies electron energy to the surrounding atmosphere by the alternating voltage applied to the pair of electrodes 32a, and an ion / radical atmosphere is generated by corona discharge in the vicinity of the surface of the substrate 17, that is, in the air. When oxygen is activated, the molecular chain of the adhesion molecule on the substrate surface is cut, and for example, in the case of a glass substrate, polar groups such as —OH, —SiO—, and SiOH are generated.

また樹脂基板の場合には=C=O、−C−O−,−COOH、−C−OH 等の極性基が生成する。その結果、基板の表面エネルギーが増大し、基板の水あるいは樹脂への濡れ性が大幅に向上する。一般に、ガラス基板では本来−SiO−,−Si−OHのような親水性極性基が存在するが、製造後の履歴、たとえば保管・梱包輸送・反射板やパネルの製造プロセス内の雰囲気内での仕掛、前段工程の薬液の残り 等々の影響で水や積層される樹脂材料の濡れ性が種々変化することがある。   In the case of a resin substrate, polar groups such as ═C═O, —C—O—, —COOH, and —C—OH are generated. As a result, the surface energy of the substrate increases and the wettability of the substrate to water or resin is greatly improved. In general, hydrophilic polar groups such as -SiO- and -Si-OH are inherently present in glass substrates, but the history after manufacture, for example, in the atmosphere in the manufacturing process of storage, packaging and transportation, reflectors and panels The wettability of water and the resin material to be laminated may change variously due to the effects of the work in progress, the remaining chemical solution in the previous step, and the like.

さらにフィルム基板の場合には、上記のような履歴に加え基板の材料自体の持つ疎水性基のために、いっそう濡れ性が複雑に変化する。本発明では、フィルム材料として、PETをはじめ種々の材料、例えばポリエチレン系、ポリプロピレン系、ポリスチレン系等に対しても表面処理効果が得られる。   Further, in the case of a film substrate, the wettability changes in a more complicated manner due to the hydrophobic group of the substrate material itself in addition to the above history. In the present invention, the surface treatment effect can be obtained for various materials including PET, such as polyethylene, polypropylene, and polystyrene, as the film material.

本発明では図5に示す以外に、図6に示すようなコロナ放電効果を高めたものが特に好ましく用いられる。この装置では、コロナ放電用電極(電極I:42 及び電極II:42’)を、被照射体(基板17)の表面上方と被照射体(基板17)の下面との間に、絶縁材60(ポリ4フッ化エチレン、ジュラコン、アクリル、ポリエステル、或いはアルマイト処理したアルミ板等)を介して所定の距離(D+基板厚み)をもって配置されている。   In the present invention, in addition to those shown in FIG. 5, those having an enhanced corona discharge effect as shown in FIG. 6 are particularly preferably used. In this apparatus, the corona discharge electrodes (electrode I: 42 and electrode II: 42 ') are disposed between the upper surface of the irradiated body (substrate 17) and the lower surface of the irradiated body (substrate 17). They are arranged with a predetermined distance (D + substrate thickness) through (polytetrafluoroethylene, Duracon, acrylic, polyester, anodized aluminum plate, or the like).

なお、絶縁材60は、印加電圧、基板17の厚さ、絶縁性、照射時間等に応じて適宜設置されるものであるが、通常は1〜30mmの誘電体が用いられる。
このような構成にすることにより、基板表面に対し安定したコロナ放電処理とそれによる表面改質(濡れ性の向上)が得られる。
The insulating material 60 is appropriately set according to the applied voltage, the thickness of the substrate 17, the insulating properties, the irradiation time, and the like, but usually a dielectric of 1 to 30 mm is used.
With such a configuration, a stable corona discharge treatment on the substrate surface and surface modification (improvement of wettability) thereby can be obtained.

コロナ放電に関わる条件としては、電極間距離が、例えば3〜200mm,被照射エリアを広く取り生産性を良くするには、20〜100mm程度に設定される。印加電圧は、電界強度(kV/cm:単位電極間距離あたりの電圧)が3〜150kV/cm,好ましくは5〜100kV/cmが選択される。電界強度が3kV未満ではコロナ放電が有効に発生せず、表面改質の効果が得にくい。一方150kV/cmを超えると不要なスパークが発生し、コロナ放電が発生しにくくなる。また電源系もパワーの大きなものが必要になる等のデメリットもある。   As conditions relating to corona discharge, the distance between electrodes is set to, for example, about 3 to 200 mm, and about 20 to 100 mm in order to increase the irradiation area and improve productivity. The applied voltage is selected such that the electric field strength (kV / cm: voltage per unit electrode distance) is 3 to 150 kV / cm, preferably 5 to 100 kV / cm. When the electric field strength is less than 3 kV, corona discharge does not occur effectively and it is difficult to obtain the effect of surface modification. On the other hand, if it exceeds 150 kV / cm, unnecessary sparks are generated and corona discharge is difficult to occur. In addition, there is a demerit that a power supply system requires a large amount of power.

さらに、印加電圧の周波数・波形もコロナ放電効果に影響するファクタであり、本発明では、パルス状の高電圧が用いられる。(1μsec以下のパルスの場合、被照射面への表面改質効果が低下するためである。)例えば、本発明では通常1μsec以上のパルスが使用される。なお、本発明では、コロナ放電時にその近傍の雰囲気に気流を存在させることで、表面改質効果をさらに上げることができる。これは、気流により、発生したイオンやラジカル種が基板表面に接触する確率を上げることができるためと考えられる。   Furthermore, the frequency / waveform of the applied voltage is also a factor that affects the corona discharge effect. In the present invention, a pulsed high voltage is used. (In the case of a pulse of 1 μsec or less, the surface modification effect on the irradiated surface is reduced.) For example, in the present invention, a pulse of 1 μsec or more is usually used. In the present invention, the surface modification effect can be further improved by allowing an air flow to exist in the atmosphere near the corona discharge. This is presumably because the probability that the generated ions and radical species come into contact with the substrate surface by the airflow can be increased.

コロナ放電により基板表面の濡れ性が向上する度合いは、通常、極性液体(例えば水、アルコール、アセトン 等)の接触角を接触角計(例えば協和界面科学社製ドロップマスタ100型)で評価することで定性的に判断できる。すなわち、基板表面の極性が増加するほど極性液体の接触角が低下し0度に近づくからである。   The degree to which the wettability of the substrate surface is improved by corona discharge is usually evaluated by a contact angle meter (for example, Drop Master Model 100 manufactured by Kyowa Interface Science Co., Ltd.) for a polar liquid (for example, water, alcohol, acetone, etc.). Can be qualitatively judged. That is, as the polarity of the substrate surface increases, the contact angle of the polar liquid decreases and approaches 0 degrees.

或いは簡便な方法としては、例えば約30dyn/cm〜70dyn/cmの範囲の表面張力を有する炭化水素系液体が、“濡れ性試薬”として市販されており、これらの液体を少量基板表面に滴下又は塗布した際の液の拡がり度合いで基板表面の極性を定性的に判定するものである。   Alternatively, as a simple method, for example, hydrocarbon liquids having a surface tension in the range of about 30 dyn / cm to 70 dyn / cm are commercially available as “wetting agents”, and a small amount of these liquids are dropped on the substrate surface. The polarity of the substrate surface is qualitatively determined by the degree of spreading of the liquid when applied.

コロナ放電によって表面の濡れ性が大幅に向上した基板17は、仕切り壁33の下部から樹脂溜19に入る。ここで基板17には樹脂供給器14から供給された樹脂18が塗布される。この時基板17はコロナ放電によって濡れ性が向上しているので、塗布された樹脂18の膜厚が均一になり、その後に形成される凹凸形状の深さの精度が確保できることとなる。   The substrate 17 whose surface wettability is greatly improved by corona discharge enters the resin reservoir 19 from the lower part of the partition wall 33. Here, the resin 18 supplied from the resin supplier 14 is applied to the substrate 17. At this time, since the wettability of the substrate 17 is improved by corona discharge, the thickness of the applied resin 18 becomes uniform, and the accuracy of the depth of the uneven shape formed thereafter can be ensured.

形成される樹脂層の膜厚の均一性は、基板上の樹脂層の材料と基板との濡れ性に極めて敏感であり、濡れ性が悪い場合には、樹脂塗布後に徐々に「うねり」現象が出ることがあり、樹脂の表面に細かな凹凸を生じたり、顕著な場合には「はじき」と呼ばれる現象により樹脂層が形成されない領域ができると同時に、その近傍の樹脂層が著しく厚くなった部分(ビルドアップ部)が発生する。このような状態では、反射体としての特性が制御できなくなる。   The film thickness uniformity of the formed resin layer is extremely sensitive to the wettability between the material of the resin layer on the substrate and the substrate, and when the wettability is poor, the “swell” phenomenon gradually occurs after resin application. The area where the resin layer is not formed due to the phenomenon that the surface of the resin is finely formed or is noticeable, and the resin layer is not formed due to the phenomenon called “repelling”, and the resin layer in the vicinity of it is extremely thick (Build-up part) occurs. In such a state, the characteristics as a reflector cannot be controlled.

本発明に関わる反射体では、完成された反射体としての反射特性を所望のものにするためには、凹凸の深さ形状をサブミクロンレベル、例えば±0.15μmの精度で制御する必要がある。このような観点から、基板に塗布される樹脂層の膜厚及びその凹凸バラツキも上記の値のレベルで制御されることが重要である。そのためには、基板と樹脂層との間の濡れ性が良いことが基本的な条件である。さらにまた、基板上に形成した樹脂層を硬化させた後の密着性も向上し、パネルとしての信頼性にも良い結果が得られる。   In the reflector according to the present invention, in order to obtain desired reflection characteristics as a completed reflector, it is necessary to control the depth shape of the unevenness with a submicron level, for example, accuracy of ± 0.15 μm. . From such a viewpoint, it is important that the film thickness of the resin layer applied to the substrate and the unevenness thereof are also controlled at the level of the above value. For this purpose, it is a basic condition that the wettability between the substrate and the resin layer is good. Furthermore, the adhesion after the resin layer formed on the substrate is cured is improved, and a good result as the reliability of the panel can be obtained.

再び図5を参照して、樹脂18が塗布された基板17は、搬送されるに従って成型刃(ブレード)35によって塗布された樹脂18の膜厚が一定に規制され樹脂層36が形成される。この後均一な樹脂層36が形成された基板17は、そのまま凹凸加工部21に導入される。   Referring to FIG. 5 again, as the substrate 17 coated with the resin 18 is transported, the film thickness of the resin 18 coated with the molding blade (blade) 35 is regulated to be constant, and the resin layer 36 is formed. Thereafter, the substrate 17 on which the uniform resin layer 36 is formed is introduced into the concavo-convex processed portion 21 as it is.

この凹凸加工部21では、樹脂層36及び基板17は加工ローラ22とピンチローラ23に挟まれる。そして加工ローラ22の凹凸22aが樹脂36に連続して押し付けられ、樹脂層36には多数の凹部43が形成される。このような凹部43は、コロナ放電器によって基板17の表面の濡れ性を高めてから樹脂層36が形成されるので安定して凹部43を形成することができる。   In the uneven portion 21, the resin layer 36 and the substrate 17 are sandwiched between the processing roller 22 and the pinch roller 23. The unevenness 22 a of the processing roller 22 is continuously pressed against the resin 36, and a large number of recesses 43 are formed in the resin layer 36. Such a recess 43 can be stably formed since the resin layer 36 is formed after increasing the wettability of the surface of the substrate 17 by a corona discharger.

この後、凹部43が形成された樹脂層36に紫外線等(不図示)を照射して樹脂層36を硬化させ、さらに凹部を覆うようにその上面にAlやAgのような高反射性膜を成膜することで図1に示すような反射体10を得ることができる。   Thereafter, the resin layer 36 in which the recesses 43 are formed is irradiated with ultraviolet rays or the like (not shown) to cure the resin layer 36, and a highly reflective film such as Al or Ag is formed on the upper surface so as to cover the recesses. By forming the film, a reflector 10 as shown in FIG. 1 can be obtained.

このような反射体10は、例えば液晶表示パネル(反射型液晶表示装置)に好適に用いることができる。図9に示すように、液晶表示パネル51は、液晶層52を挟持して対向する第1の基板53と第2の基板54をシール材55で接合一体化した液晶表示パネルであり、第1の基板53の液晶層52側には、電極層や配向膜を含み、液晶層52を駆動制御するための表示回路56が形成され、第2の基板54の液晶層52側には、電極層や配向膜を含み液晶層52を駆動制御するための表示回路57が積層形成されている。   Such a reflector 10 can be suitably used for a liquid crystal display panel (reflection type liquid crystal display device), for example. As shown in FIG. 9, the liquid crystal display panel 51 is a liquid crystal display panel in which a first substrate 53 and a second substrate 54 facing each other with a liquid crystal layer 52 interposed therebetween are joined and integrated with a seal material 55. A display circuit 56 for driving and controlling the liquid crystal layer 52 is formed on the liquid crystal layer 52 side of the substrate 53, and an electrode layer is formed on the liquid crystal layer 52 side of the second substrate 54. In addition, a display circuit 57 that includes an alignment film and drives and controls the liquid crystal layer 52 is stacked.

また、表示回路56と表示回路57との間には、この2つの表示回路56,57間に一定の間隔を保持するためのスペーサ部材58が多数形成されている。そして、第1の基板53と第2の基板54の間に、反射体10が形成される。また反射体10の上面には、オーバーコート層59が積層されている。   In addition, a large number of spacer members 58 are formed between the display circuit 56 and the display circuit 57 to maintain a constant distance between the two display circuits 56 and 57. Then, the reflector 10 is formed between the first substrate 53 and the second substrate 54. An overcoat layer 59 is laminated on the upper surface of the reflector 10.

このような構成により、反射体10は液晶表示パネル51に入射した外光Nを効率的に反射させ、液晶層52を明るく照らし出す役割を果たす。   With such a configuration, the reflector 10 efficiently reflects the external light N incident on the liquid crystal display panel 51 and brightly illuminates the liquid crystal layer 52.

また、反射体10は、例えば半透過反射型の液晶表示パネル(半透過反射型液晶表示装置)にも好適に用いることができる。図10に示すように、反射体10には、一定の大きさの開口10aが形成されるとともに、第1の基板53の下側には、液晶表示パネル51を照明する照明装置61が備えられる。こうした液晶表示パネル51は、液晶表示パネル51に入射した外光Nを反射体10で効率的に反射させ、液晶層52を明るく照らし出すとともに、照明装置61から照射される照明光Lを反射体10に形成した開口10aから透過させ、夜間や暗所でも液晶層52を明るく照らし出すことができる。   The reflector 10 can also be suitably used for, for example, a transflective liquid crystal display panel (semi-transmissive reflective liquid crystal display device). As shown in FIG. 10, the reflector 10 has an opening 10 a of a certain size, and an illumination device 61 that illuminates the liquid crystal display panel 51 is provided below the first substrate 53. . Such a liquid crystal display panel 51 efficiently reflects the external light N incident on the liquid crystal display panel 51 by the reflector 10, illuminates the liquid crystal layer 52 brightly, and reflects the illumination light L emitted from the illumination device 61 as a reflector. The liquid crystal layer 52 can be brightly illuminated even at night or in a dark place.

本出願人は本発明の樹脂層形成装置の効果を検証した。検証にあたって、樹脂層を形成する基板として厚み0.7mmのガラス基板(SiOパッシベーション膜400Å付き450mm×350mm)を準備した。また基板上に形成する樹脂層として、感光性アクリル系樹脂を用いた。また図6に示す装置でコロナ放電ユニット(タンタック社製ジェネレータHV2010型)によって、100kV、パルス頻度100pps(1秒あたりのパルス数)、電極幅200mm、電極間隔50mmで20秒間コロナ放電処理を行った。その後感光性アクリル系樹脂を基板表面に厚さ3μmになるように塗布し平坦化した。 The present applicant verified the effect of the resin layer forming apparatus of the present invention. In the verification, a glass substrate (450 mm × 350 mm with a SiO 2 passivation film 400 mm) having a thickness of 0.7 mm was prepared as a substrate on which the resin layer was formed. A photosensitive acrylic resin was used as the resin layer formed on the substrate. In addition, the apparatus shown in FIG. 6 was used for corona discharge treatment with a corona discharge unit (generator HV2010 type manufactured by Tantac Co., Ltd.) at 100 kV, a pulse frequency of 100 pps (number of pulses per second), an electrode width of 200 mm, and an electrode interval of 50 mm. . Thereafter, a photosensitive acrylic resin was applied on the surface of the substrate so as to have a thickness of 3 μm and flattened.

その後所定の凹凸形状を有するローラを設置した凹凸形成装置に基板を導入して樹脂層に凹凸形状を形成した。この時、同一工程の同一条件でコロナ放電処理した基板に、感光性アクリル系樹脂を塗布し平坦化したサンプルを半硬化させ、膜の平坦化度を粗さ計(ミツトヨ製 サーフテスト SJ−400型など)を用いて計測した。Ra:0.015〜0.018μm、Ry:0.15μmであった(JISに基き、RaとRyは、それぞれ、Ra:平均表面粗さ、Ry:最大粗さである。)。また、比較例として、本発明のコロナ放電を行わずに形成した樹脂層を平坦化させ、上記と同様に半硬化させて膜の平坦化度を計測した。こうした本発明例の検証結果を図7(a)(b)に、比較例の検証結果を図7(c)(d)にそれぞれ示す。   Thereafter, the substrate was introduced into a concavo-convex forming apparatus provided with a roller having a predetermined concavo-convex shape to form a concavo-convex shape in the resin layer. At this time, a sample obtained by applying a photosensitive acrylic resin to a substrate subjected to corona discharge treatment under the same conditions in the same process and semi-curing the sample was semi-cured, and the flatness of the film was measured with a roughness meter (Surf Test SJ-400 manufactured by Mitutoyo Corporation). Type). Ra: 0.015-0.018 μm, Ry: 0.15 μm (Based on JIS, Ra and Ry are Ra: average surface roughness and Ry: maximum roughness, respectively). Further, as a comparative example, the resin layer formed without performing corona discharge of the present invention was flattened, and semi-cured in the same manner as described above, and the flatness of the film was measured. The verification results of the present invention example are shown in FIGS. 7 (a) and 7 (b), and the verification results of the comparative example are shown in FIGS. 7 (c) and 7 (d), respectively.

図7に示す検証結果によれば、本発明による基板は、後述の比較例1(コロナ放電処理なし)に比べるとRaやRy値においていずれも小さい値を示し、かつ比較例1に見られるようなウネリ(最大0.1μm)が見られなかった。また、この時感光性アクリル系樹脂を塗布する直前の基板の水接触角を計測したところ、約22±3度であった。   According to the verification results shown in FIG. 7, the substrate according to the present invention shows lower values in both Ra and Ry values than Comparative Example 1 (without corona discharge treatment) described later, and can be seen in Comparative Example 1. No eel (maximum 0.1 μm) was observed. At this time, the water contact angle of the substrate immediately before the application of the photosensitive acrylic resin was measured and found to be about 22 ± 3 degrees.

一方、従来の比較例によれば、平坦化度はRa:0.018〜0.020μm、Ry:0.17〜0.18μmにとどまった。また樹脂層形成前の水の接触角は、約47±5度であった。   On the other hand, according to the conventional comparative example, the flatness was only Ra: 0.018 to 0.020 μm and Ry: 0.17 to 0.18 μm. The contact angle of water before forming the resin layer was about 47 ± 5 degrees.

上述した実施例1と同様のガラス基板及び同じコロナ放電装置を用いて、処理を行った。但し、印加電圧と電極間距離を変化させることで、電界強度のレベルを変化させて表面処理した。基板表面の水の接触角と膜厚の均一性を表1に示す。なお、コロナ処理時間は30秒、パルスは300ppsに設定した。   Processing was carried out using the same glass substrate as in Example 1 and the same corona discharge device. However, the surface treatment was performed by changing the level of the electric field intensity by changing the applied voltage and the distance between the electrodes. Table 1 shows the contact angle of water on the substrate surface and the uniformity of the film thickness. The corona treatment time was set to 30 seconds and the pulse was set to 300 pps.

Figure 2005144743
Figure 2005144743

表1に示す検証結果によれば、接触角は、電界強度が低い領域(〜6kV/cm)では、約±5度のばらつきであり、それ以上では約±3°であった。6kV/cm以上の電界強度では、表面処理の効果が現れた。また160kV/cm以上では、200mm角エリア内では効果があまり変化しなかった。しかし、基板周囲(300mm角エリアに相当)では、膜のうねりが見られ、最外周辺では、一部膜のはじきが見られた。   According to the verification results shown in Table 1, the contact angle was about ± 5 ° in the region where the electric field strength was low (˜6 kV / cm), and about ± 3 ° beyond that. The effect of surface treatment appeared at an electric field strength of 6 kV / cm or more. Moreover, at 160 kV / cm or more, the effect did not change so much in the 200 mm square area. However, film undulation was observed around the substrate (corresponding to a 300 mm square area), and part of the film repelled around the outermost periphery.

上述した実施例2において、基板面にほぼ沿うように100mm/secの気流が存在するようにした。なお、実施例3にかかわる電極まわりの構成を図8に示す。こうした検証結果を表2に示す。表2によれば、表面処理の効果の向上が見られた。なお、比較例はコロナ放電処理を行なわなかったものを示す。   In Example 2 described above, an air flow of 100 mm / sec was present so as to be substantially along the substrate surface. FIG. 8 shows the configuration around the electrodes according to the third embodiment. These verification results are shown in Table 2. According to Table 2, the improvement of the effect of surface treatment was seen. In addition, a comparative example shows what did not perform a corona discharge process.

Figure 2005144743
Figure 2005144743

基板としてPET(ポリエチレンテレフタレート(188μm厚)を用いる以外は実施例1と同様にコロナ放電処理を行った。印加電圧と電極間距離を変化させた場合の水の接触角をまとめて表3に示す。なお、コロナ処理時間は40秒、パルスは400ppsであった。比較例として、コロナ放電処理を行なわないものを挙げた。   Corona discharge treatment was performed in the same manner as in Example 1 except that PET (polyethylene terephthalate (188 μm thickness) was used as the substrate. Table 3 summarizes the contact angles of water when the applied voltage and the distance between the electrodes were changed. The corona treatment time was 40 seconds and the pulse was 400 pps.As a comparative example, the one without corona discharge treatment was mentioned.

Figure 2005144743
Figure 2005144743

表3に示す検証結果によれば、コロナ放電処理を行なわない比較例では、水の接触角がかなり大きいが、コロナ処理により低下した。また角度の低下に伴い、均一な塗布が可能となった。   According to the verification results shown in Table 3, in the comparative example in which the corona discharge treatment was not performed, the contact angle of water was considerably large, but decreased due to the corona treatment. In addition, uniform coating became possible as the angle decreased.

図1は、反射体の構成の一例を示す部分斜視図である。FIG. 1 is a partial perspective view showing an example of the configuration of a reflector. 図2は、図1に示す反射体の断面模式図である。FIG. 2 is a schematic cross-sectional view of the reflector shown in FIG. 図3は、図1に示す反射体に形成された凹部の平面構成図である。FIG. 3 is a plan configuration diagram of a recess formed in the reflector shown in FIG. 図4は、図3に示すG−G線に沿う断面構成図である。4 is a cross-sectional configuration diagram taken along the line GG shown in FIG. 図5は、本発明の樹脂層形成装置および凹凸形成装置を示す断面図である。FIG. 5 is a cross-sectional view showing the resin layer forming apparatus and the unevenness forming apparatus of the present invention. 図6は、好ましい装置の実施形態を示す平面図である。FIG. 6 is a plan view showing a preferred apparatus embodiment. 図7は、樹脂膜の粗さを示す説明図である。FIG. 7 is an explanatory diagram showing the roughness of the resin film. 図8は、他の実施形態を示す模式図である。FIG. 8 is a schematic diagram showing another embodiment. 図9は、他の実施形態を示す断面図である。FIG. 9 is a cross-sectional view showing another embodiment. 図10は、他の実施形態を示す断面図である。FIG. 10 is a cross-sectional view showing another embodiment.

符号の説明Explanation of symbols

10 凹凸形成装置
11 樹脂層形成装置
12 コロナ放電器(放電手段)
13 凹部(凹凸)
14 樹脂供給器(樹脂供給手段)
15 成型刃(平坦化手段)
16 樹脂層
17 基板
22 加工ローラ(凹凸形成手段)
22a 凹凸(突起)
10 Concavity and convexity forming device 11 Resin layer forming device 12 Corona discharger (discharge means)
13 Concave (Roughness)
14 Resin supply (resin supply means)
15 Molding blade (flattening means)
16 Resin layer 17 Substrate 22 Processing roller (Unevenness forming means)
22a Concavity and convexity (protrusion)

Claims (5)

基板の表面にコロナ放電を行なう放電手段と、前記基板上に流動性の樹脂を盛り付ける樹脂供給手段と、前記樹脂の表面を平坦化して前記基板上に樹脂層を形成する平坦化手段とを備えたことを特徴とする樹脂層形成装置。 Discharging means for performing corona discharge on the surface of the substrate, resin supply means for placing a fluid resin on the substrate, and flattening means for flattening the surface of the resin to form a resin layer on the substrate. A resin layer forming apparatus. 前記コロナ放電の電界強度(kV/cm)を5kV/cm以上150kV/cm以下に設定することを特徴とする請求項1に記載の樹脂層形成装置。 2. The resin layer forming apparatus according to claim 1, wherein the electric field strength (kV / cm) of the corona discharge is set to 5 kV / cm or more and 150 kV / cm or less. 基板の表面にコロナ放電を行なう放電手段と、前記基板上に流動性の樹脂を盛り付ける樹脂供給手段と、前記樹脂の表面を平坦化して前記基板上に樹脂層を形成する平坦化手段と、前記樹脂層に凹凸を形成する凹凸形成手段とを備えたことを特徴とする凹凸形成装置。 Discharge means for performing corona discharge on the surface of the substrate; resin supply means for placing a fluid resin on the substrate; flattening means for flattening the surface of the resin to form a resin layer on the substrate; An unevenness forming apparatus comprising an unevenness forming means for forming unevenness on a resin layer. 前記コロナ放電の電界強度(kV/cm)を5kV/cm以上150kV/cm以下に設定することを特徴とする請求項3に記載の凹凸形成装置。 The uneven | corrugated formation apparatus of Claim 3 which sets the electric field strength (kV / cm) of the said corona discharge to 5 kV / cm or more and 150 kV / cm or less. 前記凹凸形成手段は、周面に突起が形成されたローラであることを特徴とする請求項3または4に記載の凹凸形成装置。 The unevenness forming apparatus according to claim 3 or 4, wherein the unevenness forming means is a roller having protrusions formed on a peripheral surface.
JP2003382508A 2003-11-12 2003-11-12 Reflector manufacturing method Expired - Fee Related JP4268502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003382508A JP4268502B2 (en) 2003-11-12 2003-11-12 Reflector manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003382508A JP4268502B2 (en) 2003-11-12 2003-11-12 Reflector manufacturing method

Publications (2)

Publication Number Publication Date
JP2005144743A true JP2005144743A (en) 2005-06-09
JP4268502B2 JP4268502B2 (en) 2009-05-27

Family

ID=34691561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003382508A Expired - Fee Related JP4268502B2 (en) 2003-11-12 2003-11-12 Reflector manufacturing method

Country Status (1)

Country Link
JP (1) JP4268502B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113085159A (en) * 2021-05-18 2021-07-09 上汽通用五菱汽车股份有限公司 Surface treatment equipment and method for enhancing connection strength of inner plate and outer plate of tail gate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113085159A (en) * 2021-05-18 2021-07-09 上汽通用五菱汽车股份有限公司 Surface treatment equipment and method for enhancing connection strength of inner plate and outer plate of tail gate
CN113085159B (en) * 2021-05-18 2023-08-29 上汽通用五菱汽车股份有限公司 Surface treatment equipment and method for enhancing connection strength of inner plate and outer plate of tail door

Also Published As

Publication number Publication date
JP4268502B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
US20090147179A1 (en) Prism Sheet and Production Method thereof and Surface Light Source Device
JP3774616B2 (en) Lighting device and light guide plate manufacturing method
KR100508464B1 (en) Light reflecting plate, production process thereof and reflection type liquid crystal display device
JP2008003232A (en) Optical sheet and method for producing optical sheet, backlight and liquid crystal display
JP2008507731A (en) Light collimating / diffusing film and system for producing such film
TW200809369A (en) Beam direction control element and method of manufacturing same
JP2003045234A (en) Transparent conductive film
JP2000314882A (en) Liquid crystal display device, light guiding plate and manufacture of light guiding plate
EP3462081B1 (en) Optical body, method for manufacturing optical body, and light-emitting apparatus
JP2001021706A (en) Light diffusing film, surface light source device and display device
WO2007129609A1 (en) Liquid crystal display element having prism sheet, and liquid crystal display device using the liquid crystal display element
JP4268502B2 (en) Reflector manufacturing method
JP2010146772A (en) Light guide plate, and method of manufacturing the same
KR101161275B1 (en) Optical Plate Assembly and Method for Manufacturing The Same
JP2002148417A (en) Optical sheet, method for manufacturing the same, surface light source device and display device
JPH075463A (en) Surface light source and display device using the same
KR101794792B1 (en) Light guide plate, light source device, light guide plate manufacturing device, and method for manufacturing light guide plate
CN111727386A (en) Surface concave-convex sheet, screen, image display system and transfer roller
JP3948625B2 (en) Surface light source using lens sheet
JP2019066644A (en) Optical body and light-emitting device
JP5509566B2 (en) Optical component and liquid crystal display unit
JP5431215B2 (en) Light guide plate and surface light source device
JP3953801B2 (en) Diffusion film and manufacturing method thereof, surface light source device and liquid crystal display device
JPH09329715A (en) Body for surface light source element light guide and surface light source element
JP2005305971A (en) Irregularity forming apparatus, microirregularity fabricating method, and liquid crystal display element using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Effective date: 20081216

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120227

LAPS Cancellation because of no payment of annual fees