JP2005144458A - Welding method and welding equipment - Google Patents

Welding method and welding equipment Download PDF

Info

Publication number
JP2005144458A
JP2005144458A JP2003381114A JP2003381114A JP2005144458A JP 2005144458 A JP2005144458 A JP 2005144458A JP 2003381114 A JP2003381114 A JP 2003381114A JP 2003381114 A JP2003381114 A JP 2003381114A JP 2005144458 A JP2005144458 A JP 2005144458A
Authority
JP
Japan
Prior art keywords
welding
weaving
period
torch
welding torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003381114A
Other languages
Japanese (ja)
Other versions
JP4768222B2 (en
Inventor
Kenji Oshima
健司 大嶋
Satoshi Yamane
敏 山根
Toshihiko Ishihara
利彦 石原
Hikari Yamamoto
光 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2003381114A priority Critical patent/JP4768222B2/en
Publication of JP2005144458A publication Critical patent/JP2005144458A/en
Application granted granted Critical
Publication of JP4768222B2 publication Critical patent/JP4768222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding method and welding equipment capable of allowing a welding torch to correctly follow a weld line in the butt welding to form a weld bead by advancing/retracting the welding torch in the direction of the weld line direction while weaving the welding torch in a direction substantially orthogonal to the weld line. <P>SOLUTION: In a butt arc welding method to form a welding bead by advancing/retracting a welding torch 2 in the direction of the weld line while weaving the welding torch in a direction substantially orthogonal to the weld line, the integrated welding current value and the integrated welding voltage value are compared with each other on the right and left sides with a weaving center C as a boundary during the equal phase period from the weaving center C of the period in which welding arcs 20a and 20b are generated between the welding torch 2 and groove surfaces of base metals 8a and 8b, and the weaving center of the welding torch 2 is moved in the direction in which the difference between the welding current values and the difference between the welding voltage values on the right and left sides are reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、溶接トーチを溶接線とほぼ垂直方向にウィービングさせながら溶接線方向に進退させて溶接ビードを形成する突合せアーク溶接の溶接方法及び溶接装置に関するものである。   The present invention relates to a welding method and welding apparatus for butt arc welding in which a welding bead is formed by weaving a welding torch in a direction substantially perpendicular to a welding line to advance and retreat in the welding line direction.

一般に、自動アーク溶接を行う際の溶接線追従には、溶接トーチを溶接線とほぼ垂直方向にウィービングさせ、アーク長及び突き出し長の変化に伴う電気的変化を基に、溶接トーチのウィービング中心位置を制御する方法が広く採られている。この方法では、ウィービング中心を境に左右両側で得られた溶接電流を比較し、その比較信号に基づいて左右両側での溶接電流の積分値が小さくなる方向に溶接トーチのウィービング中心を移動させることにより、溶接トーチを溶接線に追従させることができる(例えば、特許文献1等参照)。   In general, for welding line tracking when performing automatic arc welding, the welding torch is weaved in a direction substantially perpendicular to the welding line, and the weaving center position of the welding torch is based on the electrical changes accompanying changes in the arc length and protrusion length. The method of controlling is widely adopted. In this method, the welding currents obtained on the left and right sides are compared with the weaving center as a boundary, and the welding torch weaving center is moved in a direction in which the integrated value of the welding currents on the left and right sides is reduced based on the comparison signal. Thus, the welding torch can follow the weld line (see, for example, Patent Document 1).

特公昭53−11502号公報Japanese Patent Publication No.53-11502

近年、溶接トーチを溶接線とほぼ垂直方向にウィービングさせつつ、繰り返し溶接線方向に進退させながら溶接線に倣わせることによって、ルートギャップを有する突合せ継手を対象としても、裏当て材を用いることなく良好な裏ビードを形成する技術が開発された。   In recent years, using a backing material even for butt joints with a root gap by weaving a welding torch in a direction substantially perpendicular to the weld line and following the weld line while repeatedly advancing and retreating in the weld line direction A technology to form a good back bead has been developed.

しかし、この技術においては、溶接トーチを溶接線方向に進退させつつ溶接ビードを形成するため、既に溶接ビードの初層が形成された部分に溶接金属を重畳させる際には、アークが、溶接トーチと母材の開先表面との間ではなく、溶接トーチと溶融池との間に発生する場合がある。そのため、この技術に特許文献1に記載されたような溶接線追従の制御を適用した場合、アークが溶接トーチと溶融池表面との間に発生している期間では、溶融池の状態によってウィービング中心を境界とした左右両側でのアーク長が変動し、的確な溶接線追従が行われない場合が生じる。   However, in this technique, since the weld bead is formed while the welding torch is advanced and retracted in the direction of the weld line, when the weld metal is superimposed on the portion where the initial layer of the weld bead has already been formed, the arc is generated by the welding torch. May occur between the welding torch and the molten pool, not between the groove and the groove surface of the base metal. Therefore, when the welding line tracking control described in Patent Document 1 is applied to this technique, the weaving center depends on the state of the molten pool during the period in which the arc is generated between the welding torch and the molten pool surface. The arc length on both the left and right sides of the boundary may fluctuate, and accurate welding line tracking may not be performed.

本発明は、上記の事柄に鑑みてなされたものであり、その目的は、溶接トーチを溶接線とほぼ垂直方向にウィービングさせながら溶接線方向に進退させて溶接ビードを形成する突合せ溶接にあって、的確に溶接トーチを溶接線に追従させることができる溶接方法及び溶接装置を提供することにある。   The present invention has been made in view of the above-mentioned matters, and the object thereof is butt welding in which a welding bead is formed by advancing and retreating in the welding line direction while weaving the welding torch in a direction substantially perpendicular to the welding line. An object of the present invention is to provide a welding method and a welding apparatus that can cause a welding torch to accurately follow a weld line.

上記目的を達成するために、第1の発明は、溶接トーチを溶接線とほぼ垂直方向にウィービングさせながら溶接線方向に進退させて溶接ビードを形成する突合せアーク溶接の溶接方法において、前記溶接トーチと母材の開先表面との間で溶接アークが発生する期間の、ウィービング中心から等しい位相期間におけるウィービング中心を境界とした左右両側での溶接電流値、溶接電圧値の積分値をそれぞれ比較し、それら左右両側での溶接電流値、溶接電圧値の差が小さくなる方向に前記溶接トーチのウィービング中心を移動させることを特徴とする。   In order to achieve the above object, a first invention provides a welding method for butt arc welding in which a welding bead is formed by advancing and retreating in a welding line direction while weaving the welding torch in a direction substantially perpendicular to the welding line. The welding current value and welding voltage value integration values on both the left and right sides of the weaving center in the same phase period from the weaving center during the period in which the welding arc occurs between the groove and the base metal groove surface are compared. The weaving center of the welding torch is moved in the direction in which the difference between the welding current value and the welding voltage value on both the left and right sides becomes smaller.

また、第2の発明は、上記第1の発明において、前記溶接トーチと母材の開先表面との間で溶接アークが発生する期間は、前記溶接トーチの溶接線方向への動作が前進から後退へ切り換わる直前のウィービング数周期間であることを特徴とする。   Further, according to a second aspect of the present invention, in the first aspect, during the period in which a welding arc is generated between the welding torch and the groove surface of the base material, the operation of the welding torch in the welding line direction is advanced. It is characterized by the number of weaving cycles immediately before switching to the reverse.

また、第3の発明は、上記第1の発明において、前記溶接トーチと母材の開先表面との間で溶接アークが発生する期間は、前記溶接トーチが溶接線方向に前進しているときのウィービング1周期分の溶接電圧の平均値と、その直前のウィービング1周期分の溶接電圧の平均値との差が設定のしきい値を超えた直後から、前記溶接トーチの動作が前進から後退へ切り換わるまでの期間であることを特徴とする。   In a third aspect based on the first aspect, the welding torch is advanced in the weld line direction during a period in which a welding arc is generated between the welding torch and the groove surface of the base material. Immediately after the difference between the average value of the welding voltage for one period of weaving and the average value of the welding voltage for one period of weaving immediately before exceeds the set threshold, the operation of the welding torch moves backward from forward. It is a period until it switches to.

また、第4の発明は、溶接トーチを溶接線とほぼ垂直方向にウィービングさせながら溶接線方向に進退させて溶接ビードを形成する突合せアーク溶接の溶接装置において、電極ワイヤを挿通した溶接トーチと、この溶接トーチを溶接線とほぼ垂直方向にウィービングさせながら溶接線方向に進退させる溶接ロボットと、前記溶接トーチと母材の開先表面との間で溶接アークが発生する期間の、ウィービング中心から等しい位相期間におけるウィービング中心を境界とした左右両側での溶接電流値、溶接電圧値の積分値をそれぞれ比較し、それら左右両側での溶接電流値、溶接電圧値の差が小さくなる方向に前記溶接トーチのウィービング中心を移動させるように前記溶接ロボットを制御する制御装置とを備えたことを特徴とする。   The fourth invention is a butt arc welding welding apparatus in which a welding bead is formed by advancing and retreating in the welding line direction while weaving the welding torch in a direction substantially perpendicular to the welding line, and a welding torch in which an electrode wire is inserted; It is equal from the center of the weaving during the period in which the welding arc is generated between the welding torch and the groove surface of the base metal, and the welding robot for moving the welding torch in the direction of the welding line while weaving the welding torch substantially perpendicularly to the welding line Compare the welding current value and the integrated value of the welding voltage value on the left and right sides with the weaving center in the phase period as the boundary, and the welding torch in the direction in which the difference between the welding current value and the welding voltage value on the left and right sides becomes smaller And a controller for controlling the welding robot to move the weaving center.

本発明によれば、溶接線と垂直方向にウィービングしながら溶接線方向に繰り返し進退させつつ溶接ビードを形成する突合せアーク溶接を行う場合であっても、適正な溶接線追従が可能になるため、良好な裏ビードを有する高品質な溶接を行うことができる。   According to the present invention, even when performing butt arc welding to form a weld bead while repeatedly advancing and retreating in the weld line direction while weaving in the direction perpendicular to the weld line, it becomes possible to follow the appropriate weld line, High quality welding with a good back bead can be performed.

以下、本発明の溶接方法及び溶接装置の一実施の形態を図面を参照しつつ説明する。
図1は本発明の溶接装置の一実施の形態の全体構成を表す概略図、図2は溶接トーチの動作図である。
これら図1及び図2において、1は多関節型のアーム1aを有する溶接ロボット(マニピュレータ)、2は溶接ロボット1のアーム1a先端に設けた溶接トーチ、3は溶接トーチ2に挿通された電極ワイヤである。溶接ロボット1は、図2に示すように、溶接トーチ2を溶接線に対しほぼ垂直方向にウィービングさせながら(図2中の矢印26参照)、溶接線方向に進退させることができる(図2中の矢印25参照)。
Hereinafter, an embodiment of a welding method and a welding apparatus of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing the overall configuration of an embodiment of a welding apparatus of the present invention, and FIG. 2 is an operation diagram of a welding torch.
1 and 2, 1 is a welding robot (manipulator) having an articulated arm 1 a, 2 is a welding torch provided at the tip of the arm 1 a of the welding robot 1, and 3 is an electrode wire inserted through the welding torch 2. It is. As shown in FIG. 2, the welding robot 1 can advance and retract in the weld line direction while weaving the welding torch 2 in a direction substantially perpendicular to the weld line (see arrow 26 in FIG. 2) (in FIG. 2). Arrow 25).

4は溶接トーチ2に電極ワイヤ3を導くチューブ、5はリール6に巻回された電極ワイヤ3を溶接トーチ2に順次送給するワイヤ送給装置である。なお、特に図示していないが、溶接トーチ2には、シールドガスを噴射するガスノズルが設けてある。7は電極ワイヤ3等に電力(電流、電圧)を供給する電源装置で、この電源装置7のプラス端子7aは電極ワイヤ3(厳密にはチューブ4)に、マイナス端子7bは溶接対象である突合せ継手8に、それぞれ接続している。また、電源装置7の図示しない出力端子は、ワイヤ送給装置5に接続しており、電源装置7からワイヤ送給装置5に供給される指令信号(電力)の大きさにより、電極ワイヤ3の送給速度が調整される。   4 is a tube for guiding the electrode wire 3 to the welding torch 2, and 5 is a wire feeding device for sequentially feeding the electrode wire 3 wound around the reel 6 to the welding torch 2. Although not particularly shown, the welding torch 2 is provided with a gas nozzle for injecting a shielding gas. 7 is a power supply device for supplying power (current, voltage) to the electrode wire 3 and the like. The positive terminal 7a of the power supply device 7 is the electrode wire 3 (strictly, the tube 4), and the negative terminal 7b is a butt to be welded. Each is connected to the joint 8. Further, an output terminal (not shown) of the power supply device 7 is connected to the wire feeding device 5, and the electrode wire 3 is controlled by the magnitude of a command signal (power) supplied from the power supply device 7 to the wire feeding device 5. The feeding speed is adjusted.

9はロボット制御盤で、このロボット制御盤9は、溶接ロボット1、電源装置7に対する指令信号を演算する制御装置10と、この制御装置10で演算された各指令信号を溶接ロボット1及び電源装置7にそれぞれ出力するロボットドライバ11及び電源ドライバ12とを内蔵している。13は突合せ継手8間のルートギャップや目違いを検出し制御装置10に出力するギャップセンサで、このギャップセンサ13は、溶接ロボット1のアーム1aの先端において、溶接トーチ2の近傍(図1に矢印で図示した溶接線方向前方側)に設けられている。このギャップセンサ13としては、例えば公知のレーザセンサや超音波センサ等が用いられる。   Reference numeral 9 denotes a robot control panel. The robot control panel 9 includes a control device 10 for calculating command signals for the welding robot 1 and the power supply device 7, and the command signals calculated by the control device 10 for the welding robot 1 and the power supply device. 7 includes a robot driver 11 and a power supply driver 12 that output the signals respectively. Reference numeral 13 denotes a gap sensor that detects a route gap or a misinterpretation between the butt joints 8 and outputs the detected gap to the control device 10. This gap sensor 13 is located near the welding torch 2 (see FIG. 1) at the tip of the arm 1a of the welding robot 1. It is provided on the front side in the welding line direction indicated by an arrow. As the gap sensor 13, for example, a known laser sensor or ultrasonic sensor is used.

図3は、上記制御装置10の概略構成を表すブロック図である。
この図3において、14は信号の入力部であるA/D変換器で、このA/D変換器14を介して、ギャップセンサ13からの検出信号や電源装置7による電極ワイヤ3に供給された電力(電流・電圧)の値が、制御装置10に入力されディジタル信号化される。15は所定の制御手順のプログラムや制御に必要な定数を格納するリードオンリーメモリー(ROM)で、このROM15には、突合せ継手8のルートギャップに応じて、予め実験的(又は理論的)に求められた溶接条件(電極ワイヤ3の印加電力、送給速度、ウィービング条件、溶接速度)の組合せパターンをまとめた溶接条件テーブルが格納されている。
FIG. 3 is a block diagram illustrating a schematic configuration of the control device 10.
In FIG. 3, reference numeral 14 denotes an A / D converter that is a signal input unit, and the detection signal from the gap sensor 13 and the electrode wire 3 by the power supply device 7 are supplied via the A / D converter 14. The value of electric power (current / voltage) is input to the control device 10 and converted into a digital signal. Reference numeral 15 denotes a read only memory (ROM) that stores a program of a predetermined control procedure and constants necessary for control. This ROM 15 is obtained experimentally (or theoretically) in advance according to the root gap of the butt joint 8. A welding condition table in which combination patterns of the welding conditions (applied power of electrode wire 3, feeding speed, weaving condition, welding speed) are collected is stored.

16は時間計測を行うタイマ、17はROM15に格納したプログラムや溶接条件テーブルから選定した溶接条件に順じ、溶接ロボット1や電源装置7に対する所定の指令信号を演算する中央演算処理装置(CPU)である。18はCPU17の演算結果や演算途中の数値を一時的に記憶するランダムアクセスメモリ(RAM)、19はCPU17で演算された指令信号をアナログ信号に変換し、対応のドライバ(上記ロボットドライバ11、電源ドライバ12)に出力するD/A変換器である。   16 is a timer for measuring time, and 17 is a central processing unit (CPU) that calculates predetermined command signals for the welding robot 1 and the power supply device 7 in accordance with the welding conditions selected from the programs stored in the ROM 15 and the welding condition table. It is. Reference numeral 18 denotes a random access memory (RAM) that temporarily stores calculation results of the CPU 17 and numerical values during the calculation. Reference numeral 19 converts an instruction signal calculated by the CPU 17 into an analog signal, and the corresponding driver (the robot driver 11, the power supply). It is a D / A converter that outputs to the driver 12).

このような構成により、溶接開始点及び終了点が入力されると、溶接開始の指示を機に、制御装置10は、ギャップセンサ13からの検出信号に基づき、溶接条件を逐次更新し、溶接ロボット1及び電源装置7を制御する。   With such a configuration, when the welding start point and end point are input, the control device 10 sequentially updates the welding conditions based on the detection signal from the gap sensor 13 based on the instruction to start welding, and the welding robot. 1 and the power supply device 7 are controlled.

溶接ロボット1は、ロボットドライバ11を介して出力される制御装置10からの指令信号を入力すると、その指令信号に応じたウィービング条件及び移動速度(溶接速度)で、図2に示すように溶接トーチ2を溶接線と垂直方向にウィービングさせつつ、溶接線方向に繰り返しスイッチバックさせる。このとき、溶接線方向への前進と後退とからなる溶接トーチ2のスイッチバック動作の1サイクルは、まず、開先に初層溶接を行う前進方向の経路aと、その後、折り返し点dで折り返して2層目の溶接ビードを重畳させる後退方向の経路bと、さらに折り返し点eで折り返して3層目の溶接ビードを重畳させる前進方向の経路cとからなる。   When the welding robot 1 receives a command signal from the control device 10 that is output via the robot driver 11, the welding robot 1 has a weaving condition and a moving speed (welding speed) according to the command signal as shown in FIG. 2 is repeatedly switched back in the weld line direction while weaving 2 in the direction perpendicular to the weld line. At this time, one cycle of the switchback operation of the welding torch 2 consisting of advancement and retreat in the weld line direction is first performed at the path a in the advance direction in which the first layer welding is performed on the groove, and then turned back at the turn-back point d. The path b in the backward direction in which the second-layer weld bead is superimposed and the path c in the forward direction in which the third-layer weld bead is superimposed at the folding point e.

一方、電源装置7は、電源ドライバ12を介して出力される制御装置10からの指令信号を入力すると、その指令値に応じた電圧・電流を電極ワイヤ3に印加する。電極ワイヤ3に印加される電流は、電源装置7のプラス端子7a→電極ワイヤ3→突合せ継手8→電源装置7のマイナス端子7bといった順に流れる。これにより、電極ワイヤ3の先端から突合せ継手8の溶接箇所までの間にアーク20が発生し、そのアーク熱により電極ワイヤ3の先端部と突合せ継手8の溶接箇所とが溶融し、突合せ継手8に溶接ビード(溶融金属)が付着形成される。また、こうした電極ワイヤ3の消耗(溶融)に伴い、電源装置7は、制御装置10からの指令信号に応じた大きさのワイヤ送給信号(電圧)をワイヤ送給装置5に出力し、ワイヤ送給装置5の駆動速度を制御することにより、電極ワイヤ3を順次溶接トーチ2に送給する。   On the other hand, when the power supply device 7 receives a command signal from the control device 10 output via the power supply driver 12, the power supply device 7 applies a voltage / current corresponding to the command value to the electrode wire 3. The current applied to the electrode wire 3 flows in the order of the plus terminal 7 a of the power supply device 7 → the electrode wire 3 → the butt joint 8 → the minus terminal 7 b of the power supply device 7. As a result, an arc 20 is generated from the tip of the electrode wire 3 to the welded portion of the butt joint 8, and the arc heat melts the tip of the electrode wire 3 and the welded portion of the butt joint 8. A weld bead (molten metal) is deposited on the surface. As the electrode wire 3 is consumed (melted), the power supply device 7 outputs a wire feeding signal (voltage) having a magnitude corresponding to the command signal from the control device 10 to the wire feeding device 5, and the wire The electrode wire 3 is sequentially fed to the welding torch 2 by controlling the driving speed of the feeding device 5.

ここで、本発明の溶接方法の一実施の形態における溶接線追従制御の概念について説明する。
図4は溶接線前方から見たアーク発生時の溶接点近傍の様子を表す図、図5はアーク発生時の電流、電圧の変化を表すグラフである。
一般に、溶接線倣いにアーク電力データを用いる場合、各ウィービング周期において、ウィービング中心Cを境界とした左右両側の電流、電圧の積分値が等しくなるように、ウィービング中心Cが開先幅方向に制御される。溶接トーチを一方向に移動させる(すなわち前進のみの)溶接の場合には、溶融池21は左右のアーク20a,20bの後方に存在するため、アーク20a,20bは、図4(a)に示すように、母材8a,8bの開先表面と電極ワイヤ3との間に発生する。なお、ここでは、便宜上、ウィービング左端Lに位置するときの電極ワイヤ3に符号3aを、ウィービング右端Rに位置するときの電極ワイヤ3に符号3bを付す。よって、計測される溶接電流、溶接電圧値は、ウィービング左端Lにおいては電極ワイヤ3aと母材8aの開先表面との間、ウィービング右端Rにおいては、電極ワイヤ3bと母材8bの開先表面との間の値となり、ウィービング中心Cが両母材8a,8b間のギャップ中心に一致している場合、その電流値、電圧値はそれぞれ、概ね図5(a)、図5(b)に示すような波形となる。
Here, the concept of the welding line tracking control in one embodiment of the welding method of the present invention will be described.
FIG. 4 is a diagram showing a state near a welding point when an arc is generated as viewed from the front of the welding line, and FIG. 5 is a graph showing changes in current and voltage when the arc is generated.
In general, when using arc power data for copying a welding line, the weaving center C is controlled in the groove width direction so that the integrated values of the current and voltage on both the left and right sides of the weaving center C are equal in each weaving cycle. Is done. In the case of welding in which the welding torch is moved in one direction (that is, only forward), since the molten pool 21 exists behind the left and right arcs 20a and 20b, the arcs 20a and 20b are shown in FIG. Thus, it occurs between the groove surfaces of the base materials 8 a and 8 b and the electrode wire 3. Here, for convenience, the electrode wire 3 when positioned at the weaving left end L is denoted by reference symbol 3a, and the electrode wire 3 when positioned at the weaving right end R is denoted by reference symbol 3b. Therefore, the measured welding current and welding voltage values are between the electrode wire 3a and the groove surface of the base material 8a at the weaving left end L, and at the weaving right end R, the groove surface of the electrode wire 3b and the base material 8b. When the weaving center C coincides with the gap center between the two base materials 8a and 8b, the current value and voltage value are approximately shown in FIGS. 5 (a) and 5 (b), respectively. The waveform is as shown.

一方、図4(b)に示すように、ウィービング中心Cが母材8a,8bのギャップ中心より右側にずれている場合、ウィービング左端Lにおける電極ワイヤ3aと母材8aの開先表面との間の距離(アーク長)が、ウィービング右端Rにおける電極ワイヤ3bと母材8bの開先表面との間の距離(アーク長)よりも長くなるため、その電流値、電圧値はそれぞれ、概ね図5(c)、図5(d)に示すような波形となる。   On the other hand, as shown in FIG. 4B, when the weaving center C is shifted to the right side from the gap center of the base materials 8a and 8b, the distance between the electrode wire 3a and the groove surface of the base material 8a at the left end L of the weaving. Is longer than the distance (arc length) between the electrode wire 3b and the groove surface of the base material 8b at the right end R of the weaving, the current value and the voltage value thereof are approximately shown in FIG. (C) A waveform as shown in FIG.

ウィービング中心Cの制御は、図5(a)乃至図5(d)に示すように、ウィービング中心Cを境界として両側の電流、電圧を、ウィービング中心Cに対して同位相のところにある期間Δt(ウィービング中心通過からts経過後のΔtの期間)積分し、ウィービング左右における積分値の差が小さくなる方向にウィービング中心Cを移動することにより行われる。例えば、図4(b)のように、ウィービング中心Cがギャップ中心から右側に外れると、図5(c)、図5(d)に示すように、電流の積分値はウィービング中心Cの右側で大きく、電圧の積分値はウィービング中心Cの左側で大きくなる。よって、ウィービング中心Cは、この左右両側の積分値の差を小さくする方向(この場合は左側)に制御される。それにより、図4(b)のように、ウィービング中心Cは、ギャップ中心と一致していない場合、両母材8a,8bの開先表面から等距離にあるギャップ中心位置へと制御される。   As shown in FIGS. 5A to 5D, the weaving center C is controlled in such a manner that the current and voltage on both sides with the weaving center C as a boundary are in the same phase Δt with respect to the weaving center C. (Period of Δt after ts has passed since passing through the weaving center) Integration is performed by moving the weaving center C in a direction in which the difference between the integrated values on the left and right of the weaving decreases. For example, when the weaving center C deviates to the right side from the gap center as shown in FIG. 4B, the integrated value of the current is on the right side of the weaving center C as shown in FIGS. 5C and 5D. The integrated value of the voltage is large on the left side of the weaving center C. Therefore, the weaving center C is controlled in a direction (in this case, the left side) to reduce the difference between the integral values on the left and right sides. Accordingly, as shown in FIG. 4B, when the weaving center C does not coincide with the gap center, the weaving center C is controlled to the gap center position that is equidistant from the groove surfaces of both the base materials 8a and 8b.

一方、図2に示すように、溶接線方向に進退を繰り返す場合には、後退時(経路b移動時)、及び前進時の一部(経路c移動時)において、既に溶接が行われた部分(溶融池上)を通過するため、図4(c)に示すように、アーク20a,20bは、それぞれ電極ワイヤ3a,3bと溶融池21との間で発生する可能性がある。この場合、計測される溶接電流、溶接電圧値は、ウィービング左端Lにおいては電極ワイヤ3aと溶融池21との間、ウィービング右端Rにおいては電極ワイヤ3bと溶融池21との間の値となる。よって、何らかの要因により、溶融池21表面の高さが幅方向に不均一となった場合、ウィービング中心Cの位置とは無関係にアーク20a,20bの長さが変化する場合がある。例えば、図4(d)に示すように、溶融池21が幅方向に右上がりに形成されていると、母材8a,8b間のギャップ中心とウィービング中心Cが一致していても、計測される溶接電流、溶接電圧値はそれぞれ、概ね図5(c)、図5(d)に示すような波形となる。よって、図4(d)の場合、ウィービング中心Cを境界として両側の電流、電圧をウィービング中心に対して同位相の期間Δt(ウィービング中心C通過してts経過後のΔtの期間)積分し、ウィービング左右の積分値の差が小さくなる方向にウィービング中心Cが制御されると、ギャップ中心と一致しているウィービング中心Cをわざわざずらす制御を行うことになる。   On the other hand, as shown in FIG. 2, in the case of repeated advancement and retreat in the welding line direction, a portion that has already been welded during retreat (path b movement) and part of advance (path c movement). Since it passes through (on the molten pool), the arcs 20a and 20b may be generated between the electrode wires 3a and 3b and the molten pool 21, respectively, as shown in FIG. In this case, the measured welding current and welding voltage value are between the electrode wire 3a and the molten pool 21 at the weaving left end L, and between the electrode wire 3b and the molten pool 21 at the weaving right end R. Therefore, when the height of the surface of the molten pool 21 becomes nonuniform in the width direction for some reason, the lengths of the arcs 20a and 20b may change regardless of the position of the weaving center C. For example, as shown in FIG. 4D, when the molten pool 21 is formed to rise to the right in the width direction, it is measured even if the gap center between the base materials 8a and 8b and the weaving center C coincide. The welding current and welding voltage value generally have waveforms as shown in FIGS. 5 (c) and 5 (d), respectively. Therefore, in the case of FIG. 4D, the current and voltage on both sides with the weaving center C as a boundary are integrated with respect to the weaving center for a period Δt (the period of Δt after passing ts after passing the weaving center C), When the weaving center C is controlled in a direction in which the difference between the integral values on the left and right of the weaving becomes smaller, control is performed to bother the weaving center C that coincides with the gap center.

そこで、本発明のように、溶接線方向に進退を繰り返すスイッチバック溶接では、図4(a)のように、アーク20a,20bが電極ワイヤ3a,3bと母材8a,8bの開先表面との間に発生する期間、すなわち経路a移動時のウィービング周期の溶接電流値、溶接電圧値のみを、ウィービング中心Cの制御に利用することにより、ウィービング中心Cのギャップ中心への制御が可能となる。アーク20a,20bが電極ワイヤ3a,3bと母材8a,8bの開先表面との間に発生する期間として、本発明でウィービング中心Cの制御用に電流値、電圧値を計測する期間は、例えば、溶接トーチ2が前進から後退へと切り換わる直前の(折り返し点d到達前の)ウィービング数周期分(以下、この期間を「第一の期間」と記載する)、若しくは、前進時に溶融池上から発生していたアーク20が開先表面から発生する直後から(前のスイッチバックの1サイクルとの境界点、すなわち1サイクルの開始点)から、前進から後退に切り換わるまで(折り返し点dに到達するまで)の期間(以下、この期間を「第二の期間」と記載する)等である。   Therefore, in the switchback welding that repeatedly advances and retreats in the weld line direction as in the present invention, as shown in FIG. 4A, the arcs 20a and 20b are connected to the electrode wires 3a and 3b and the groove surfaces of the base materials 8a and 8b. By using only the welding current value and welding voltage value of the weaving period during movement of the path a during the movement of the weaving center C, it is possible to control the weaving center C to the gap center. . As a period in which the arcs 20a and 20b are generated between the electrode wires 3a and 3b and the groove surfaces of the base materials 8a and 8b, the period for measuring the current value and the voltage value for controlling the weaving center C in the present invention is as follows. For example, the number of weaving cycles (before reaching the turn-around point d) immediately before the welding torch 2 switches from forward to backward (hereinafter referred to as “first period”), or on the molten pool during forward movement From immediately after the arc 20 generated from the groove surface is generated from the groove surface (boundary point with one cycle of the previous switchback, that is, the start point of one cycle), until it switches from forward to backward (to the turning point d) (This period is hereinafter referred to as “second period”) and the like.

溶接電流値、溶接電圧値の取得開始時刻は、上記第一の期間については、予め設定された溶接条件から溶接トーチ2が折り返し点dを通過する時刻を求めておき、その時刻からウィービングのa周期(a=整数、設定値)分前の時刻とし、上記第二の期間については、アークの発生点が溶融池上から開先表面に移行する瞬間にアーク電圧が上昇することから、前進時におけるウィービング1周期分の電圧の平均値を算出し、その値と前周期の平均電圧値との差が設定のしきい値以上になった時刻とする。これにより、アークが開先表面から発生する時の溶接電流値、溶接電圧値の取得が可能となり、正確な溶接線追従を可能にし、品質の高い溶接ビードを得ることができる。   Regarding the acquisition start time of the welding current value and the welding voltage value, for the first period, a time at which the welding torch 2 passes the turning point d is determined from preset welding conditions, and the weaving a The time before the cycle (a = integer, set value), and for the second period, the arc voltage rises at the moment when the arc generation point shifts from the molten pool to the groove surface. The average value of the voltage for one period of weaving is calculated, and the time when the difference between the average value and the average voltage value of the previous period becomes equal to or greater than the set threshold value is set. As a result, it is possible to acquire a welding current value and a welding voltage value when an arc is generated from the groove surface, enable accurate follow-up of the weld line, and obtain a high-quality weld bead.

図6は、前述の制御装置10に格納したプログラムによる制御手順のフローチャートで、上記構成の制御装置10は、この図6のフローに基づき、溶接ロボット1、ワイヤ送給装置5、電源装置7を制御する。
制御装置10は、まずステップ100にて、ロボット制御盤9に設けた(或いは別途設けた)図示しない設定部より、操作者により設定された溶接開始点及び終了点を入力する。入力された溶接開始点・終了点は、A/D変換器14を介してディジタル信号化され、RAM18に格納される。
FIG. 6 is a flowchart of a control procedure by a program stored in the control device 10 described above. The control device 10 having the above-described configuration is configured to connect the welding robot 1, the wire feeding device 5, and the power supply device 7 based on the flow of FIG. Control.
First, in step 100, the control device 10 inputs a welding start point and an end point set by the operator from a setting unit (not shown) provided on the robot control panel 9 (or provided separately). The input welding start / end points are converted into digital signals via the A / D converter 14 and stored in the RAM 18.

ステップ101に移り、ギャップセンサ13からの突合せ継手8のルートギャップや目違い量の検出信号をA/D変換器14を介して入力し、ディジタル信号化してRAM18に格納し、ステップ102に手順を移行する。   Moving to step 101, the detection signal of the root gap and the misalignment amount of the butt joint 8 from the gap sensor 13 is input via the A / D converter 14, converted into a digital signal, and stored in the RAM 18. Transition.

ステップ102では、CPU17によって、ステップ101で入力された検出信号を基に、適切な溶接条件(電極ワイヤ3の印加電力、送給速度、溶接速度)がROM15に格納した溶接条件テーブルの中から1つ選定(設定)され、RAM18に格納される(n=1とする)。そして、CPU17は、設定された溶接条件で溶接を実行するための指令信号を演算し、それぞれロボットドライバ11、電源ドライバ12を介して溶接ロボット1、電源装置7に出力する。溶接ロボット1には、溶接トーチ2の移動速度(溶接速度)及びウィービング条件が指令され、電源装置7には、電極ワイヤ3の送給速度及び供給電力(電流・電圧)が指令される。   In step 102, based on the detection signal input in step 101 by the CPU 17, an appropriate welding condition (applied power, feeding speed, welding speed of the electrode wire 3) is selected from the welding condition table stored in the ROM 15. Are selected (set) and stored in the RAM 18 (n = 1). And CPU17 calculates the command signal for performing welding on the set welding conditions, and outputs it to the welding robot 1 and the power supply device 7 via the robot driver 11 and the power supply driver 12, respectively. The welding robot 1 is instructed to move the welding torch 2 (welding speed) and the weaving condition, and the power supply device 7 is instructed to feed the electrode wire 3 and supply power (current / voltage).

続いて、ステップ103では、ウィービング溶接中、電源装置7から電極ワイヤ3に印加された電流・電圧の測定値を入力し、A/D変換器14を介してディジタル信号化してRAM18に格納し、ステップ104に移る。   Subsequently, in step 103, during the weaving welding, the measured value of the current / voltage applied to the electrode wire 3 from the power supply device 7 is input, converted into a digital signal via the A / D converter 14, and stored in the RAM 18, Move on to step 104.

ステップ104では、タイマ16による計測時刻(現在時刻)がウィービング周期(1周期分)に達したかどうかを判定し、判定が満たされない場合、ステップ103に戻って、継続して電流・電圧の測定値を入力する。現在時刻がウィービング周期に達し、ステップ104の判定が満たされた場合、ステップ105に手順を移行する。   In step 104, it is determined whether or not the time measured by the timer 16 (current time) has reached the weaving period (for one period). If the determination is not satisfied, the process returns to step 103 to continue the current / voltage measurement. Enter a value. If the current time reaches the weaving cycle and the determination in step 104 is satisfied, the procedure proceeds to step 105.

ステップ105では、RAM18に格納されたウィービング中心の補正出力トリガ信号のON/OFFを判定し、ONの場合、ステップ108に移り、OFFの場合はステップ106に移る。   In step 105, it is determined whether the correction output trigger signal at the center of the weaving stored in the RAM 18 is ON / OFF. If ON, the process proceeds to step 108. If OFF, the process proceeds to step 106.

ステップ106では、まずウィービング1周期の平均電圧値Vave(m)とその前のウィービング1周期の平均電圧値Vave(m−1)との差ΔVが、あるしきい値V以上かどうかが判定される。またそれと同時に、現在時刻をt、溶接開始後、溶接トーチ2の動作が前進(経路a移動時)から後退(経路b移動時)へと切り換わる回数がnとなる時刻をtc(n)、ウィービング周期をT、aを定数として、現在時刻が、前進から後退へと切り換わる時刻(折り返し点d到達時刻)よりa周期分前の時刻(tc(n)−aT)に到達したかどうかが判定される。これらのうち、いずれかの判定が満たされた場合、ステップ107に移ってRAM18に補正出力トリガ信号のONを格納し、ステップ108へと移る。いずれの判定も満たされない場合は、ステップ103に手順を戻す。
なお、このステップ106の判定は、上記のように、二つの判定基準のいずれかが満たされる場合(OR条件)でなくても、両方が満たされる場合(AND条件)としても良い。また、2つの判定基準を用いずとも、いずれか一方の判定基準のみを使用しても良い。
In step 106, first determines the difference ΔV of one weaving cycle of the average voltage value Vave and (m) and the preceding one weaving cycle of the average voltage value Vave (m-1) is, whether the threshold value greater than or equal to V 0 is Is done. At the same time, the current time is t, and after the start of welding, the time when the number of times the operation of the welding torch 2 switches from forward (when moving the path a) to backward (when moving the path b) is n is tc (n), Whether the current time has reached a time (tc (n) −aT) a period before the time (turning point d arrival time) when the weaving cycle is T and a is a constant and the time is switched from forward to backward (turn-around point d arrival time). Determined. If any one of these determinations is satisfied, the routine proceeds to step 107, where the correction output trigger signal ON is stored in the RAM 18, and the routine proceeds to step 108. If neither determination is satisfied, the procedure returns to step 103.
Note that the determination in step 106 may not be the case where one of the two determination criteria is satisfied (OR condition) as described above, but may be the case where both are satisfied (AND condition). Further, only one of the determination criteria may be used without using the two determination criteria.

ステップ108では、現在時刻tが前進から後退へと切り換わる時刻tc(n)に到達したかを判定する。ステップ108の判定が満たされた場合、手順をステップ109に移し、CPU17によって、RAM18に格納された所定期間(前述した第一の期間、又は第二の期間)中における指定期間Δt(図5参照)の電流値、電圧値を、ウィービング中心を境に左右両側について積分する。そして、この左右両側の積分値の値を比較して、両者の差が小さくなるようにウィービング中心を移動させる補正値をRAM18に格納し、格納された補正値をD/A変換器19を介してアナログ信号化して、ロボットドライバ11を介して溶接ロボット1に出力する。これにより、電極ワイヤ3のウィービング中心位置が、母材8a,8bのギャップ中心位置にほぼ一致した適正な位置に補正される。   In step 108, it is determined whether or not the current time t has reached a time tc (n) at which the current time t switches from forward to backward. If the determination in step 108 is satisfied, the procedure proceeds to step 109, and the CPU 17 designates the specified period Δt (see FIG. 5) in the predetermined period (the first period or the second period described above) stored in the RAM 18. ) Is integrated on both the left and right sides of the weaving center. Then, the left and right integral values are compared, a correction value for moving the weaving center so as to reduce the difference between the two is stored in the RAM 18, and the stored correction value is passed through the D / A converter 19. The analog signal is output to the welding robot 1 via the robot driver 11. Thereby, the weaving center position of the electrode wire 3 is corrected to an appropriate position substantially coincident with the gap center position of the base materials 8a and 8b.

一方、現在時刻がn回目の前進から後退への切り換え時刻(tc(n))を経過しており、ステップ108での判定が満たされない場合、手順をステップ110に移し、RAM18に補正出力トリガ信号のOFFを格納して、ステップ109における判定基準となる時刻をtc(n)からtc(n+1)へと変更し、ステップ103に戻り、以降の手順を繰り返す。   On the other hand, if the current time has passed the nth forward-to-reverse switching time (tc (n)) and the determination in step 108 is not satisfied, the procedure proceeds to step 110 and the RAM 18 receives the correction output trigger signal. Is stored, the time that is the criterion in step 109 is changed from tc (n) to tc (n + 1), the process returns to step 103, and the subsequent procedures are repeated.

先のステップ109にてウィービング中心を補正したら、ステップ111に移り、溶接トーチ2が溶接終了点に到達したかどうかを判定する。判定が満たされない場合、ステップ101に戻って、ルートギャップ、目違いの入力からの手順を行い、ステップ102で新たな溶接条件が設定され、ステップ103以降の手順を繰り返す。一方、溶接終了点に到達し、ステップ111の判定が満たされた場合には、溶接ロボット1及び電源装置7に対する指令信号をOFFにして図6の制御手順を終了する。   When the weaving center is corrected in the previous step 109, the process proceeds to step 111, and it is determined whether or not the welding torch 2 has reached the welding end point. If the determination is not satisfied, the procedure returns to Step 101, the procedure from the input of the root gap and the mistake is performed, new welding conditions are set at Step 102, and the procedure after Step 103 is repeated. On the other hand, when the welding end point is reached and the determination in step 111 is satisfied, the command signal for the welding robot 1 and the power supply device 7 is turned off and the control procedure of FIG. 6 is ended.

このような手順を実行することにより、前述した第一の期間又は第二の期間中に、溶接トーチ2のウィービング中心Cが、母材8a,8bのギャップ中心位置にほぼ一致するように制御される。   By executing such a procedure, the weaving center C of the welding torch 2 is controlled to substantially coincide with the gap center position of the base materials 8a and 8b during the first period or the second period described above. The

なお、図6の制御手順では、結果として、前述した第一の期間又は第二の期間中、ウィービング周期毎にウィービング中心位置を制御するようになっているが、これに限られず、例えば、ウィービング周期毎にウィービング中心を制御するのではなく、第一の期間又は第二の期間中の電圧値、電流値の積分値を累積し、ウィービング中心を境にして左右両側における電圧値、電流値の積分値の累積を比較してその差が小さくなる方向にウィービング中心位置を移動させるようにしても良い。この場合、ウィービング中心位置を実際に補正するのは、例えば、折り返し点d通過時や、スイッチバック動作の1サイクル開始時(経路cから経路aへの切換わり時)等、スイッチバック動作の1サイクル中の適宜のタイミングで行うようにすれば良い。   In the control procedure of FIG. 6, as a result, the weaving center position is controlled for each weaving cycle during the first period or the second period described above. However, the present invention is not limited to this. Rather than controlling the weaving center for each period, the integrated value of the voltage value and current value during the first period or the second period is accumulated, and the voltage value and current value on both the left and right sides of the weaving center as a boundary. It is also possible to compare the accumulated integral values and move the weaving center position in a direction in which the difference decreases. In this case, the weaving center position is actually corrected by, for example, 1 of the switchback operation such as when the turn-around point d passes or when one cycle of the switchback operation starts (when switching from the path c to the path a). It may be performed at an appropriate timing during the cycle.

以上のように、本実施の形態によれば、溶接線追従に利用する溶接電流値、溶接電圧値の取得期間を、アークが母材8a,8bの開先表面から発生する期間に限定することにより、電極ワイヤ3先端と母材8a,8bの開先表面との間の溶接電流値、溶接電圧値を得ることができる。これにより、溶接線と垂直方向にウィービングしながら溶接線方向に繰り返し進退させつつ溶接ビードを形成する突合せアーク溶接方法を行う場合であっても、溶接トーチを適正な溶接線に追従させることができ、良好な裏ビードを有する高品質な溶接を行うことができる。   As described above, according to the present embodiment, the acquisition period of the welding current value and the welding voltage value used for welding line tracking is limited to the period in which the arc is generated from the groove surfaces of the base materials 8a and 8b. Thus, the welding current value and the welding voltage value between the tip of the electrode wire 3 and the groove surfaces of the base materials 8a and 8b can be obtained. This enables the welding torch to follow an appropriate welding line even when performing a butt arc welding method in which a welding bead is formed while repeatedly advancing and retreating in the welding line direction while weaving in a direction perpendicular to the welding line. High quality welding with good back bead can be performed.

なお、以上においては、母材8a,8b間のルートギャップの検出データが、ギャップ検出センサ13により、オンラインで制御装置10に入力される例を説明してきたが、これに限られず、オフラインで予め測定しておき、それを事前に入力する構成としても良い。また、電極ワイヤ3のみでアーク溶接する場合を例に挙げたが、例えば、電極ワイヤ3に加えてフィラワイヤを設けたいわゆるダブルワイヤ方式の溶接装置にも、本発明は適用可能である。また、図1において、ワイヤ送給装置5をリール6側に設けたいわゆるプッシュ方式のものとして説明したが、溶接トーチ2側に設けるいわゆるプル方式のものとしても、これらを組合せたものとしても構わない。これらの場合も上記同様の効果を得ることができる。   In the above description, the example in which the detection data of the route gap between the base materials 8a and 8b is input to the control device 10 online by the gap detection sensor 13 is not limited to this. It is good also as a structure which measures and inputs it in advance. Moreover, although the case where arc welding was performed using only the electrode wire 3 was taken as an example, for example, the present invention can also be applied to a so-called double wire type welding apparatus provided with a filler wire in addition to the electrode wire 3. In FIG. 1, the wire feeding device 5 is described as a so-called push type provided on the reel 6 side. However, a so-called pull type provided on the welding torch 2 side may be combined. Absent. In these cases, the same effect as described above can be obtained.

本発明の溶接装置の一実施の形態の全体構成を表す概略図である。It is the schematic showing the whole structure of one Embodiment of the welding apparatus of this invention. 本発明の溶接装置に備えられた溶接トーチの動作図である。It is an operation | movement figure of the welding torch with which the welding apparatus of this invention was equipped. 本発明の溶接装置の一実施の形態に備えられた制御装置の概略構成を表すブロック図である。It is a block diagram showing schematic structure of the control apparatus with which one Embodiment of the welding apparatus of this invention was equipped. 溶接線前方から見たアーク発生時の溶接点近傍の様子を表す図である。It is a figure showing the mode of the welding point vicinity at the time of the arc generation seen from the welding line front. アーク発生時の電流、電圧の変化を表すグラフである。It is a graph showing the change of the electric current at the time of arc generation, and a voltage. 本発明の溶接装置の一実施の形態に備えられた制御装置による制御手順を表すフローチャートである。It is a flowchart showing the control procedure by the control apparatus with which one Embodiment of the welding apparatus of this invention was equipped.

符号の説明Explanation of symbols

1 溶接ロボット
2 溶接トーチ
3 電極ワイヤ
10 制御装置
C ウィービング中心
1 Welding Robot 2 Welding Torch 3 Electrode Wire 10 Controller C Weaving Center

Claims (4)

溶接トーチを溶接線とほぼ垂直方向にウィービングさせながら溶接線方向に進退させて溶接ビードを形成する突合せアーク溶接の溶接方法において、
前記溶接トーチと母材の開先表面との間で溶接アークが発生する期間の、ウィービング中心から等しい位相期間におけるウィービング中心を境界とした左右両側での溶接電流値、溶接電圧値の積分値をそれぞれ比較し、それら左右両側での溶接電流値、溶接電圧値の差が小さくなる方向に前記溶接トーチのウィービング中心を移動させることを特徴とする溶接方法。
In a welding method of butt arc welding in which a welding bead is formed by advancing and retreating in the welding line direction while weaving the welding torch substantially perpendicular to the welding line,
The integrated value of the welding current value and the welding voltage value on both the left and right sides of the weaving center in the same phase period from the weaving center during the period in which the welding arc is generated between the welding torch and the groove surface of the base metal. A welding method characterized by comparing each of them and moving the weaving center of the welding torch in a direction in which the difference between the welding current value and the welding voltage value on both the left and right sides becomes smaller.
前記溶接トーチと母材の開先表面との間で溶接アークが発生する期間は、前記溶接トーチの溶接線方向への動作が前進から後退へ切り換わる直前のウィービング数周期間であることを特徴とする請求項1に記載の溶接方法。   The period in which the welding arc is generated between the welding torch and the groove surface of the base metal is the number of weaving cycles immediately before the operation of the welding torch in the welding line direction is switched from forward to backward. The welding method according to claim 1. 前記溶接トーチと母材の開先表面との間で溶接アークが発生する期間は、前記溶接トーチが溶接線方向に前進しているときのウィービング1周期分の溶接電圧の平均値と、その直前のウィービング1周期分の溶接電圧の平均値との差が設定のしきい値を超えた直後から、前記溶接トーチの動作が前進から後退へ切り換わるまでの期間であることを特徴とする請求項1に記載の溶接方法。   The period during which the welding arc is generated between the welding torch and the groove surface of the base metal is the average value of the welding voltage for one period of weaving when the welding torch is advanced in the welding line direction, and immediately before that. A period from immediately after the difference from the average value of the welding voltage for one period of weaving exceeds a set threshold value until the operation of the welding torch switches from forward to backward. The welding method according to 1. 溶接トーチを溶接線とほぼ垂直方向にウィービングさせながら溶接線方向に進退させて溶接ビードを形成する突合せアーク溶接の溶接装置において、
電極ワイヤを挿通した溶接トーチと、
この溶接トーチを溶接線とほぼ垂直方向にウィービングさせながら溶接線方向に進退させる溶接ロボットと、
前記溶接トーチと母材の開先表面との間で溶接アークが発生する期間の、ウィービング中心から等しい位相期間におけるウィービング中心を境界とした左右両側での溶接電流値、溶接電圧値の積分値をそれぞれ比較し、それら左右両側での溶接電流値、溶接電圧値の差が小さくなる方向に前記溶接トーチのウィービング中心を移動させるように前記溶接ロボットを制御する制御装置と
を備えたことを特徴とする溶接装置。
In a welding apparatus for butt arc welding in which a welding bead is formed by advancing and retreating in the welding line direction while weaving the welding torch substantially perpendicular to the welding line,
A welding torch inserted through an electrode wire;
A welding robot that advances and retreats in the welding line direction while weaving the welding torch substantially perpendicular to the welding line;
The integrated value of the welding current value and the welding voltage value on both the left and right sides of the weaving center in the same phase period from the weaving center during the period in which the welding arc is generated between the welding torch and the groove surface of the base metal. And a control device for controlling the welding robot so as to move the weaving center of the welding torch in a direction in which the difference between the welding current value and the welding voltage value on both the left and right sides becomes smaller. Welding equipment to do.
JP2003381114A 2003-11-11 2003-11-11 Welding method and welding apparatus Expired - Fee Related JP4768222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003381114A JP4768222B2 (en) 2003-11-11 2003-11-11 Welding method and welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003381114A JP4768222B2 (en) 2003-11-11 2003-11-11 Welding method and welding apparatus

Publications (2)

Publication Number Publication Date
JP2005144458A true JP2005144458A (en) 2005-06-09
JP4768222B2 JP4768222B2 (en) 2011-09-07

Family

ID=34690590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003381114A Expired - Fee Related JP4768222B2 (en) 2003-11-11 2003-11-11 Welding method and welding apparatus

Country Status (1)

Country Link
JP (1) JP4768222B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039144A (en) * 2015-08-19 2017-02-23 株式会社安川電機 Arc welding system and arc welding method
JP2020124719A (en) * 2019-02-01 2020-08-20 株式会社小松製作所 Welding device and welding method
EP3613530A4 (en) * 2017-04-20 2021-04-07 Daihen Corporation Arc welding device and arc welding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072677A (en) * 1983-09-29 1985-04-24 Shin Meiwa Ind Co Ltd Method and device for following up weld line
JPS6448677A (en) * 1987-08-19 1989-02-23 Fanuc Ltd Weaving welding method using arc sensor
JPH0947870A (en) * 1995-08-07 1997-02-18 Nkk Corp Oscillating high speed rotating arc welding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072677A (en) * 1983-09-29 1985-04-24 Shin Meiwa Ind Co Ltd Method and device for following up weld line
JPS6448677A (en) * 1987-08-19 1989-02-23 Fanuc Ltd Weaving welding method using arc sensor
JPH0947870A (en) * 1995-08-07 1997-02-18 Nkk Corp Oscillating high speed rotating arc welding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039144A (en) * 2015-08-19 2017-02-23 株式会社安川電機 Arc welding system and arc welding method
EP3613530A4 (en) * 2017-04-20 2021-04-07 Daihen Corporation Arc welding device and arc welding method
JP2020124719A (en) * 2019-02-01 2020-08-20 株式会社小松製作所 Welding device and welding method
JP7272807B2 (en) 2019-02-01 2023-05-12 株式会社小松製作所 Welding equipment and welding method

Also Published As

Publication number Publication date
JP4768222B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
US8653417B2 (en) Method and system to start and use a combination filler wire feed and high intensity energy source
US7999208B2 (en) Robot control unit for controlling tandem arc welding system, and arc-sensor control method using the unit
JP4844564B2 (en) Arc welding control method
WO2018193896A1 (en) Arc welding device and arc welding method
JP4058099B2 (en) Two-electrode arc welding end method
JP7303383B2 (en) Method and apparatus for welding weld seams
JP4768222B2 (en) Welding method and welding apparatus
JP4615779B2 (en) Tandem arc automatic welding system
JP2001113373A5 (en)
JP4864232B2 (en) Consumable two-electrode arc welding end method, welding end control method, and welding robot
JP2002160059A (en) Arc starting method and welding apparatus in consumable electrode arc welding
WO2021153011A1 (en) Output control method for gas-shielded arc welding, welding system, welding power source, and welding control device
JP2005028411A (en) Welding equipment and welding method
JP4640908B2 (en) Welding apparatus and welding method
JP4864233B2 (en) Consumable two-electrode arc welding end method, welding end control method, and welding robot
JP2003145270A (en) Method for terminating consumable two-electrode arc welding
JP2002239732A (en) Weld line profile control method
JP2004148367A (en) Welding equipment and welding method
KR102186992B1 (en) Arc welding control method
US12122001B2 (en) Asynchronous preheating system, method, and apparatus
JP5577210B2 (en) Two-electrode arc welding method and two-electrode arc welding system
JP2004314164A (en) Welding equipment and welding method
JP2023064534A (en) Lap fillet welding method and welding device
JP2004276055A (en) Welding apparatus and welding method
JPS61186171A (en) Control method of tig arc welding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Ref document number: 4768222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees