JP2003145270A - Method for terminating consumable two-electrode arc welding - Google Patents
Method for terminating consumable two-electrode arc weldingInfo
- Publication number
- JP2003145270A JP2003145270A JP2001348633A JP2001348633A JP2003145270A JP 2003145270 A JP2003145270 A JP 2003145270A JP 2001348633 A JP2001348633 A JP 2001348633A JP 2001348633 A JP2001348633 A JP 2001348633A JP 2003145270 A JP2003145270 A JP 2003145270A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- wire
- trailing
- torch
- leading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 title claims abstract description 500
- 238000000034 method Methods 0.000 title claims abstract description 93
- 238000011282 treatment Methods 0.000 claims description 31
- 239000011324 bead Substances 0.000 abstract description 32
- 238000007796 conventional method Methods 0.000 abstract description 9
- 230000007423 decrease Effects 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract description 3
- 230000035515 penetration Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 26
- 239000002184 metal Substances 0.000 description 17
- 230000007547 defect Effects 0.000 description 8
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000000994 depressogenic effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Landscapes
- Arc Welding In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、消耗電極アーク溶
接において、1トーチ内で2本の消耗電極(以下、ワイ
ヤという)を送給して溶接するアーク溶接の終了方法の
改善に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method of terminating arc welding in which two consumable electrodes (hereinafter referred to as wires) are fed and welded in one torch in consumable electrode arc welding. .
【0002】[0002]
【従来の技術】各種溶接構造物の建造において、薄板高
速溶接又は厚板高溶着溶接を行うことによって作業能率
の向上を図っているが、さらに向上させるために、図2
に示すように、1本のトーチから2本のワイヤを送給す
る2電極1トーチ方式の消耗電極アーク溶接方法が採用
されている。同図において、先行チップ1及び後行チッ
プ2と被溶接物8との間に図示しない溶接用電源から電
力を供給し、先行チップ1及び後行チップ2からそれぞ
れ送給される先行ワイヤ先端3a及び後行ワイヤ先端4
aからアーク5及び6がそれぞれ発生している。ノズル
10は先行チップ1及び後行チップ2を囲繞して、ノズ
ル10の内部にシールドガス11を供給する。2. Description of the Related Art In the construction of various welded structures, thin plate high-speed welding or thick plate high-welding welding is performed to improve work efficiency.
As shown in FIG. 1, a two-electrode one-torch type consumable electrode arc welding method of feeding two wires from one torch is adopted. In the same drawing, electric power is supplied from a welding power source (not shown) between the leading tip 1 and the trailing tip 2 and the object 8 to be welded, and the leading wire tip 3a is fed from the leading tip 1 and the trailing tip 2 respectively. And trailing wire tip 4
Arcs 5 and 6 are generated from a. The nozzle 10 surrounds the leading tip 1 and the trailing tip 2 and supplies the shield gas 11 to the inside of the nozzle 10.
【0003】図2において、先行ワイヤ3から発生して
いるアーク5によって形成される溶融池7の溶融金属が
表面張力又は先行ワイヤ3のアークのアーク力によって
後方へ流れていこうとするが、後行ワイヤ4から発生し
ているアーク力がこの後方へ流れようとする溶融金属を
先行ワイヤ3から発生するアーク5の方へ押し戻して、
各溶接位置における溶融金属量を均一にしている。In FIG. 2, the molten metal in the molten pool 7 formed by the arc 5 generated from the leading wire 3 tries to flow backward due to the surface tension or the arc force of the arc of the leading wire 3. The arc force generated from the row wire 4 pushes the molten metal, which tends to flow backward, toward the arc 5 generated from the preceding wire 3,
The amount of molten metal at each welding position is made uniform.
【0004】図3は前述した2電極1トーチ方式の溶接
ロボットの一般的な構成を示す図である。同図におい
て、先行チップ1及び後行チップ2を有する溶接用トー
チ14がマニピュレータ21の先端に取付けられ、先行
チップ1に供給する先行ワイヤ溶接用電源装置23及び
後行チップ2に供給する後行ワイヤ溶接用電源装置24
が先行チップ1及び後行チップ2と被溶接物8との間に
それぞれ溶接用電力を供給する。先行ワイヤ送給装置2
5及び後行ワイヤ送給装置26が先行チップ1及び後行
チップ2にそれぞれワイヤを送給する。ロボット制御装
置27がマニピュレータ21及び先行ワイヤ溶接用電源
装置23及び後行ワイヤ溶接用電源装置24を制御す
る。なお、溶接方向を変更すると先行と後行とが入れ代
わるので、先行チップ1、先行ワイヤ3、先行ワイヤ送
給装置25及び先行ワイヤ溶接用電源装置23と後行チ
ップ2、後行ワイヤ4、後行ワイヤ送給装置26及び後
行ワイヤ溶接用電源装置24との各符号の説明の先行と
後行とが入れ代わる。FIG. 3 is a diagram showing a general configuration of the welding robot of the two-electrode one-torch type described above. In the figure, a welding torch 14 having a leading tip 1 and a trailing tip 2 is attached to the tip of a manipulator 21, and a leading wire welding power supply device 23 for feeding the leading tip 1 and a trailing wire for feeding the trailing tip 2 are supplied. Power source for wire welding 24
Supplies welding electric power between the leading tip 1 and the trailing tip 2 and the workpiece 8. Leading wire feeder 2
5 and the trailing wire feeding device 26 feeds the wires to the leading tip 1 and the trailing tip 2, respectively. The robot controller 27 controls the manipulator 21, the power supply device 23 for leading wire welding, and the power supply device 24 for trailing wire welding. It should be noted that when the welding direction is changed, the leading and trailing parts are replaced with each other. Therefore, the leading tip 1, leading wire 3, leading wire feeding device 25, leading wire welding power supply device 23, trailing tip 2, trailing wire 4, and trailing wire 4, The preceding and following explanations of the reference numerals of the row wire feeding device 26 and the trailing wire welding power source device 24 are replaced with each other.
【0005】[従来技術1]従来から提案されている2
電極1トーチ方式の溶接ロボットを使用した溶接終了方
法(以下、従来技術1という)を、図4及び図5を参照
して説明する。説明を簡略化するために、先行ワイヤ3
及び後行ワイヤ4を送給する場合とする。図4は、従来
技術1の2電極1トーチ方式の消耗電極アーク溶接の終
了方法を説明する図であり、図5は図4に続く従来技術
1の2電極1トーチ方式の消耗電極アーク溶接の終了方
法を説明する図である。[Prior Art 1] 2 conventionally proposed
A welding termination method using a welding robot of the electrode 1 torch method (hereinafter referred to as prior art 1) will be described with reference to FIGS. 4 and 5. To simplify the description, the leading wire 3
And the case where the trailing wire 4 is fed. FIG. 4 is a diagram for explaining a method of terminating the consumable electrode arc welding of the two-electrode one-torch method of the conventional technique 1, and FIG. 5 is a diagram of the two-electrode one-torch type consumable electrode arc welding of the conventional technique 1 following FIG. It is a figure explaining an end method.
【0006】図4(A)は2電極1トーチ方式の消耗電
極アーク溶接中の状態である。同図において、ノズル1
0から先行ワイヤ3及び後行ワイヤ4が突出し、図3に
示した先行ワイヤ溶接用電源装置23及び後行ワイヤ溶
接用電源装置24から先行ワイヤ3及び後行ワイヤ4と
被溶接物8との間にそれぞれ電力が供給されて、先行ワ
イヤ先端3a及び後行ワイヤ先端4aからアーク5及び
6がそれぞれ発生し、溶接ビード9が形成されている。FIG. 4 (A) shows a state in which the two-electrode one-torch type consumable electrode arc welding is being performed. In the figure, the nozzle 1
The leading wire 3 and the trailing wire 4 protrude from 0, and the leading wire 3 and the trailing wire 4 and the work piece 8 are welded from the leading wire welding power source device 23 and the trailing wire welding power source device 24 shown in FIG. Electric power is respectively supplied between them, arcs 5 and 6 are respectively generated from the leading wire tip 3a and the trailing wire tip 4a, and the welding bead 9 is formed.
【0007】そして、図4(B)に示すように、先行ワ
イヤ3が形成する溶接ビードの終端部である溶接終了位
置P2に先行ワイヤ先端3aが達したときに、図3に示
すロボット制御装置27が、先行ワイヤ先端3aが溶接
終了位置P2に到達したことを判別して、先行ワイヤ溶
接用電源装置23及び後行ワイヤ溶接用電源装置24に
クレータ処理指令信号を出力する。Then, as shown in FIG. 4 (B), when the leading wire tip 3a reaches the welding end position P2, which is the end portion of the welding bead formed by the leading wire 3, the robot controller shown in FIG. 27 determines that the leading wire tip 3a has reached the welding end position P2, and outputs a crater processing command signal to the leading wire welding power supply device 23 and the trailing wire welding power supply device 24.
【0008】ここで、クレータ処理を説明する。溶接ビ
ード終端部においては、アーク直下の溶融池にアーク力
によって窪んだ部分、いわゆるクレータが生じる。この
クレータには、割れ、収縮孔等の欠陥が生じ易い。これ
を防止するために、クレータを小さくしたり無くす操作
をクレータ処理という。一般的に溶接ビード終端部で溶
接電流を連続的又は段階的に下げたり、溶接電流を断続
するなどの方法が用いられる。なお、上記の従来技術1
のクレータ処理を本発明において、第2クレータ処理と
する。Here, the crater processing will be described. At the end of the weld bead, a so-called crater is formed in the molten pool immediately below the arc due to the arc force. Defects such as cracks and shrinkage holes are likely to occur in this crater. To prevent this, the operation of reducing or eliminating the crater is called crater processing. Generally, a method such as continuously or stepwise decreasing the welding current at the terminal end of the welding bead, or interrupting the welding current is used. The above-mentioned conventional technique 1
In the present invention, the crater process of is referred to as a second crater process.
【0009】その後、クレータ処理を終了したときに、
図3に示すロボット制御装置27が、先行ワイヤ溶接用
電源装置23及び後行ワイヤ溶接用電源装置24に溶接
終了指令信号を入力されて、図4(C)に示すように、
溶接を終了する。After that, when the crater processing is completed,
The robot control device 27 shown in FIG. 3 inputs a welding end command signal to the power supply device 23 for leading wire welding and the power supply device 24 for trailing wire welding, and as shown in FIG.
Finish welding.
【0010】図5は、従来技術1の2電極1トーチ方式
の消耗電極アーク溶接の終了方法による溶接ビード終端
部の外観を示す図である。同図に示すように、先行ワイ
ヤ3と後行ワイヤ4との両方がクレータ処理を行うため
に、クレータ処理跡15、16が2箇所生じる。また、
先行ワイヤと後行ワイヤのアーク力によって大きな溶融
池跡を生じ、これが大きな窪み13であるために、溶接
ビード外観が不良になるだけでなく、溶接継手強度が弱
くなり、割れ、収縮孔等の欠陥が生じ易い。FIG. 5 is a view showing the external appearance of the welding bead end portion by the method of terminating the consumable electrode arc welding of the two-electrode one-torch method of the prior art 1. As shown in the figure, since both the leading wire 3 and the trailing wire 4 perform crater processing, two crater processing traces 15 and 16 are generated. Also,
A large molten pool mark is generated by the arc force of the leading wire and the trailing wire, and since this is a large depression 13, not only the appearance of the weld bead is poor, but also the weld joint strength is weakened, cracks, shrinkage holes, etc. Defects are likely to occur.
【0011】[従来技術2]上記の不具合を解決するた
めに特開2001−113373「タンデムアーク溶接
の制御方法」(以下、従来技術2という)が提案されて
いる。図6は、従来技術2のタンデムアーク溶接を行う
ための装置を示す図である。同図において、先行チップ
41及び後行チップ42と被溶接物2との間に先行ワイ
ヤ溶接用電源装置44及び後行ワイヤ溶接用電源装置4
5が電力をそれぞれ供給する。先行ワイヤ送給装置46
及び後行ワイヤ送給装置47が先行チップ41及び後行
チップ42に先行ワイヤ48及び後行ワイヤ49をそれ
ぞれ供給してアーク50及びアーク51を発生してい
る。アーク50及びアーク51によって溶融池52が形
成され、その後方に溶接ビード53が形成される。溶接
制御装置54が溶接ロボット55の動作制御と先行ワイ
ヤ溶接用電源装置44及び後行ワイヤ溶接用電源装置4
5の出力制御とを行う。[Prior Art 2] In order to solve the above problems, Japanese Patent Laid-Open No. 2001-113373 "Tandem Arc Welding Control Method" (hereinafter referred to as Prior Art 2) has been proposed. FIG. 6 is a diagram showing an apparatus for performing tandem arc welding according to the related art 2. In the figure, a leading wire welding power source device 44 and a trailing wire welding power source device 4 are provided between the leading tip 41 and the trailing tip 42 and the workpiece 2.
5 supply electric power, respectively. Leading wire feeder 46
The trailing wire feeding device 47 supplies the leading wire 48 and the trailing wire 49 to the leading tip 41 and the trailing tip 42, respectively, to generate the arc 50 and the arc 51. The arc 50 and the arc 51 form a molten pool 52, and a weld bead 53 is formed behind the molten pool 52. The welding control device 54 controls the operation of the welding robot 55 and the power supply device 44 for leading wire welding and the power supply device 4 for trailing wire welding.
5 output control.
【0012】図7は、従来技術2の溶接終了時の制御方
法を説明するタイムチャートであり、同図(A)は先行
ワイヤ通電電流の時間の経過tを示し、同図(B)は先
行ワイヤ印加電圧の時間の経過tを示し、同図(C)は
先行チップ41及び後行チップ42の移動速度の時間の
経過tを示し、同図(D)は後行ワイヤ通電電流の時間
の経過tを示し、同図(E)は後行ワイヤ印加電圧の時
間の経過tを示す。FIG. 7 is a time chart for explaining the control method at the end of welding according to the prior art 2. FIG. 7A shows the time t of the leading wire energizing current, and FIG. The time t of the wire applied voltage is shown, the time t of the moving speed of the leading tip 41 and the trailing tip 42 is shown in the same figure (C), and the time of the trailing wire conducting current is shown in the same figure (D). The time t is shown, and the same figure (E) shows the time t of the trailing wire applied voltage.
【0013】図7に示す時刻t1において、先行チップ
41が溶接終了位置P2に達した時、同図(A)に示す
ように、先行ワイヤ48の通電電流をI1からI2に減
少させ、また、同図(B)に示すように、先行ワイヤ4
8の印加電圧をE1からE2に減少させる。その後、待
ち時間Td1経過後に先行ワイヤ48のアークを停止し
て溶融池を縮小させる。At time t1 shown in FIG. 7, when the leading tip 41 reaches the welding end position P2, the energizing current of the leading wire 48 is reduced from I1 to I2 as shown in FIG. As shown in FIG.
The applied voltage of 8 is reduced from E1 to E2. After that, after the waiting time Td1 has elapsed, the arc of the leading wire 48 is stopped to reduce the molten pool.
【0014】同図の時刻t2において、後行チップ42
が溶接終了位置P2に達した時、同図(C)に示すよう
に、先行チップ41及び後行チップ42の移動を停止す
る。そして、同図(D)に示すように、後行ワイヤ49
の通電電流をI3からI4に減少させ、また、同図
(E)に示すように、後行ワイヤ49の印加電圧をE3
からE4に減少させる。その後、待ち時間Td2経過後
に後行ワイヤ49のアークを停止する。At time t2 in the figure, the trailing chip 42
When the welding end position P2 is reached, the movement of the leading tip 41 and the trailing tip 42 is stopped as shown in FIG. Then, as shown in FIG.
The current flowing through the wire is reduced from I3 to I4, and as shown in FIG.
To E4. After that, after the waiting time Td2 has elapsed, the arc of the trailing wire 49 is stopped.
【0015】上記のアークを停止する前に減少させた通
電電流I2及びI4は、溶接用トーチが溶接終了位置に
達するまでの溶接(以下、通常の溶接という)の溶接電
流I1及びI2のそれぞれ半分程度が適切である。ま
た、アークを停止する前に減少させた印加電圧E2及び
E4は、減少させた通電電流I2及びI4に適した値に
それぞれ設定すれば良い。The energizing currents I2 and I4 reduced before the arc is stopped are half of the welding currents I1 and I2 of welding until the welding torch reaches the welding end position (hereinafter referred to as normal welding). The degree is appropriate. Further, the applied voltages E2 and E4 reduced before the arc is stopped may be set to values suitable for the reduced energizing currents I2 and I4, respectively.
【0016】このように従来技術2においては、溶接終
了時に先行ワイヤ48及び後行ワイヤ49に通電する電
流及び印加する電圧を減少させ、待ち時間後に停止させ
ることによって、溶融金属の飛散防止、溶融池の安定凝
固が図れるばかりでなく、凹凸、ピット、割れ等溶接欠
陥のない良好な溶接終了部を得ることができるが、下記
に示すような課題を有している。As described above, in the prior art 2, the current flowing to the leading wire 48 and the trailing wire 49 and the applied voltage are reduced at the end of welding, and stopped after a waiting time, thereby preventing the molten metal from scattering and melting. Not only the stable solidification of the pond can be achieved, but also a good welding end portion without unevenness, pits, cracks and other welding defects can be obtained, but it has the following problems.
【0017】[0017]
【発明が解決しようとする課題】上述した従来技術2に
おいて第1の課題は、図7に示すように、先行ワイヤ4
8に通電する電流及び電圧を減少させた後に、後行ワイ
ヤ49のみによって溶接を行っている。この時の溶接速
度は、同図(C)に示すように、高速溶接を行う速度で
ある。したがって、先行ワイヤ48に通電する電流及び
電圧を減少させた後、後行ワイヤ49のアークのみで溶
接を行うには先行チップ41及び後行チップ42の移動
速度が早過ぎるために、溶接ビード幅が減少したり、溶
け込み不足が発生したり、ハンピングビードが生じる場
合があり、溶接終了位置付近の溶接ビードが均一で美麗
な外観を得ることができない。また、溶接速度が2[m
/分]を超える高速溶接では、均一な溶接ビードを得る
ためには、先行ワイヤ48に通電する平均電流と後行ワ
イヤ49に通電する平均電流との比が2対1程度であ
る。したがって、高速溶接の速度を維持したままで先行
ワイヤ48に通電する電流を減少して停止させると、先
行ワイヤ48と後行ワイヤ49とに通電する電流比が適
切比率でなくなり、高速溶接を行うには後行ワイヤ49
のアーク力が過大になり、このアーク力が溶融池を吹き
飛ばして溶接ビードが不均一になり、溶接欠陥が発生す
る。また、高溶着溶接の場合、先行ワイヤ3と後行ワイ
ヤ4のアーク力によって溶融池が大きく窪み、その窪み
は追従ワイヤ4後方まで広がる。このため従来の技術2
で溶接速度が一定のため、この窪みを溶接金属で埋める
ことはできない。この窪みが凝固して溶融池跡となり、
割れ、収縮区孔等欠陥が生じ易い。The first problem in the above-mentioned prior art 2 is that, as shown in FIG.
After reducing the current and voltage applied to No. 8, welding is performed only by the trailing wire 49. The welding speed at this time is a speed for performing high-speed welding, as shown in FIG. Therefore, since the moving speed of the leading tip 41 and the trailing tip 42 is too fast to perform welding only by the arc of the trailing wire 49 after reducing the current and voltage applied to the leading wire 48, the welding bead width May decrease, insufficient melting may occur, or a humping bead may occur, and the weld bead near the welding end position may not be uniform and have a beautiful appearance. Also, the welding speed is 2 [m
In high-speed welding in excess of 1 / min.], In order to obtain a uniform weld bead, the ratio of the average current flowing through the leading wire 48 and the average current flowing through the trailing wire 49 is about 2: 1. Therefore, if the current supplied to the leading wire 48 is reduced and stopped while maintaining the high speed welding speed, the ratio of the currents supplied to the leading wire 48 and the trailing wire 49 is not an appropriate ratio, and high speed welding is performed. A trailing wire 49
Arc force becomes excessive, the arc force blows away the molten pool, the weld beads become non-uniform, and welding defects occur. Further, in the case of high welding, the molten pool is largely dented by the arc force of the leading wire 3 and the trailing wire 4, and the dent extends to the rear of the following wire 4. Therefore, the conventional technique 2
Since the welding speed is constant, it is not possible to fill this recess with weld metal. These depressions solidify to form molten pool marks,
Defects such as cracks and shrinkage holes easily occur.
【0018】さらに、従来の技術2において第2の課題
は、例えば、図8に示すように、被溶接物8の形状が箱
形で溶接終了位置P2の溶接方向の前面に壁が有る底板
の隅肉溶接を行う場合、先行チップ41が溶接終了位置
P2に達して先行チップ41が壁に当たり、先行チップ
41及び後行チップ42を溶接方向に移動させることが
できないために、従来技術2のタンデムアーク溶接の制
御方法を実施することができない。図8は、被溶接物8
の形状が箱形で、底板の隅肉溶接を行う場合を説明する
ために図である。したがって、後行チップ42が溶接終
了位置P2に達することができないために、図9に示す
ように、溶接終了位置P2近傍の溶接が先行ワイヤ48
のみによる溶接になるために、溶接終了位置P2近傍の
溶接ビード9aが細くなったり、溶接ビード9が不均一
になり、溶接欠陥が発生する。図9は、従来技術2によ
って被溶接物8の形状が箱形で、底板の隅肉溶接を行う
場合の溶接終了位置P2における溶接ビード9が不均一
になることを説明するための図である。Further, the second problem in the conventional technique 2 is that, for example, as shown in FIG. 8, the shape of the object 8 to be welded is a box-shaped bottom plate having a wall in front of the welding end position P2 in the welding direction. When fillet welding is performed, the leading tip 41 reaches the welding end position P2, the leading tip 41 hits the wall, and the leading tip 41 and the trailing tip 42 cannot be moved in the welding direction. The control method of arc welding cannot be implemented. FIG. 8 shows an object to be welded 8
Is a box-like shape and is a diagram for explaining a case where fillet welding of the bottom plate is performed. Therefore, since the trailing tip 42 cannot reach the welding end position P2, as shown in FIG.
Since the welding is performed only by the welding bead 9a in the vicinity of the welding end position P2, the welding bead 9 becomes non-uniform, and a welding defect occurs. FIG. 9 is a diagram for explaining that the welding bead 9 at the welding end position P2 in the case of performing fillet welding of the bottom plate becomes non-uniform according to the related art 2 when the shape of the workpiece 8 is a box shape. .
【0019】[0019]
【課題を解決するための手段】出願時の請求項1に記載
の発明は、従来技術2の第1及び第2の課題を同時に解
決するために、図10及び図11に示す実施例1の先行
ワイヤ3及び後行ワイヤ4がクレータ処理を行う場合の
発明であって、1トーチ内で2本のワイヤを送給して溶
接する消耗2電極アーク溶接終了方法において、溶接終
了近傍位置P1で先行ワイヤ3及び後行ワイヤ4に通電
する電流を通常の溶接電流よりも低電流にし溶接用トー
チ14を溶接方向に通常の溶接速度よりも遅い速度で移
動させ、溶接終了位置P2で溶接用トーチ14の移動を
停止して先行ワイヤ3及び後行ワイヤ4がクレータ処理
を行う消耗2電極アーク溶接終了方法である。In order to solve the first and second problems of the prior art 2 at the same time, the invention according to claim 1 at the time of filing of the invention is based on the first embodiment shown in FIGS. 10 and 11. It is an invention in the case where the preceding wire 3 and the following wire 4 perform crater treatment, and in the consumable two-electrode arc welding ending method of feeding and welding two wires in one torch, at the welding end vicinity position P1. The welding torch 14 is moved at a speed slower than the normal welding speed in the welding direction by setting the current passing through the leading wire 3 and the trailing wire 4 to be lower than the normal welding current, and at the welding end position P2. This is a consumable two-electrode arc welding ending method in which the movement of 14 is stopped and the leading wire 3 and the trailing wire 4 perform crater processing.
【0020】出願時の請求項2に記載の発明は、従来技
術2の第1の課題を解決するために、図13及び図14
に示す実施例2の後行ワイヤ4が第1及び第2クレータ
処理を行う場合の発明であって、1トーチ内で2本のワ
イヤを送給して溶接する消耗2電極アーク溶接終了方法
において、溶接終了近傍位置P1で先行ワイヤ3及び後
行ワイヤ4に通電する電流を通常の溶接電流よりも低電
流にし溶接用トーチ14を溶接方向に通常の溶接速度よ
りも遅い速度で移動させ、溶接終了位置P2で先行ワイ
ヤ3の送給及び通電を停止して、溶接用トーチ14を溶
接方向に通常の溶接速度よりも遅い速度で後行ワイヤ第
1クレータ処理距離D1だけ移動させながら後行ワイヤ
4が第1クレータ処理を行い、次に溶接用トーチ14の
移動を停止して後行ワイヤ4が第2クレータ処理を行う
消耗2電極アーク溶接終了方法である。In order to solve the first problem of the prior art 2, the invention according to claim 2 at the time of filing of the present invention has the advantage of FIG. 13 and FIG.
In the invention for the case where the trailing wire 4 of Embodiment 2 shown in FIG. 2 performs the first and second crater treatments, the method for terminating consumable two-electrode arc welding in which two wires are fed and welded in one torch. At the position P1 near the end of welding, the current to be passed through the leading wire 3 and the trailing wire 4 is made lower than the normal welding current, and the welding torch 14 is moved in the welding direction at a speed slower than the normal welding speed to perform welding. At the end position P2, the feeding and energization of the leading wire 3 are stopped and the welding torch 14 is moved in the welding direction at a speed slower than the normal welding speed by the trailing wire first crater processing distance D1. 4 is a consumable two-electrode arc welding ending method in which the first crater process is performed, the movement of the welding torch 14 is stopped, and the trailing wire 4 performs the second crater process.
【0021】出願時の請求項3に記載の発明は、従来技
術2の第1及び第2の課題を同時に解決するために、図
17及び図18に示す実施例3の先行ワイヤ3が第1及
び第2クレータ処理を行う場合の発明であって、1トー
チ内で2本のワイヤを送給して溶接する消耗2電極アー
ク溶接終了方法において、溶接終了近傍位置P1で先行
ワイヤ3及び後行ワイヤ4に通電する電流を通常の溶接
電流よりも低電流にし溶接用トーチ14を溶接方向に通
常の溶接速度よりも遅い速度で移動させ、溶接終了位置
P2で後行ワイヤ4の送給及び通電を停止して、溶接用
トーチ14を通常の溶接方向とは逆方向に通常の溶接速
度よりも遅い速度で先行ワイヤ第1クレータ処理距離D
2だけ移動させながら先行ワイヤ3が第1クレータ処理
を行い、次に溶接用トーチ14の移動を停止して先行ワ
イヤ3が第2クレータ処理を行う消耗2電極アーク溶接
終了方法である。In order to solve the first and second problems of the prior art 2 at the same time, the invention described in claim 3 at the time of application has the first wire 3 of the third embodiment shown in FIGS. 17 and 18 as the first wire. In the invention for performing the second crater treatment, in the consumable two-electrode arc welding ending method of feeding and welding two wires in one torch, the leading wire 3 and the trailing wire are provided at a position P1 near the end of welding. The current to be applied to the wire 4 is made lower than the normal welding current, the welding torch 14 is moved in the welding direction at a speed slower than the normal welding speed, and the trailing wire 4 is fed and energized at the welding end position P2. And the welding torch 14 is moved in the direction opposite to the normal welding direction at a speed slower than the normal welding speed and the preceding wire first crater processing distance D is reached.
This is a consumable two-electrode arc welding ending method in which the leading wire 3 performs the first crater treatment while moving only two, and then the movement of the welding torch 14 is stopped and the leading wire 3 performs the second crater treatment.
【0022】[0022]
【発明の実施の形態】図1は、本出願に係る発明の特徴
を最もよく表す図である。後述する図10と同じなの
で、説明は図10で後述する。発明の実施の形態は、出
願時の請求項1に記載の消耗2電極アーク溶接終了方法
であって、1トーチ内で2本のワイヤを送給して溶接す
る消耗2電極アーク溶接終了方法において、溶接終了近
傍位置P1で先行ワイヤ3及び後行ワイヤ4に通電する
電流を通常の溶接電流よりも低電流にし溶接用トーチを
溶接方向に通常の溶接速度よりも遅い速度で移動させ、
溶接終了位置P2で溶接用トーチの移動を停止して先行
ワイヤ3及び後行ワイヤ4がクレータ処理を行う消耗2
電極アーク溶接終了方法である。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram best representing the features of the invention according to the present application. Since it is the same as FIG. 10 described later, the description will be described later with reference to FIG. 10. The embodiment of the invention is the consumable two-electrode arc welding ending method according to claim 1 at the time of filing, wherein the two consumable two-electrode arc welding ending method includes feeding and welding two wires in one torch. , At the position P1 near the end of welding, the current flowing through the leading wire 3 and the trailing wire 4 is made lower than the normal welding current, and the welding torch is moved in the welding direction at a speed slower than the normal welding speed,
At the welding end position P2, the movement of the welding torch is stopped and the leading wire 3 and the trailing wire 4 perform crater processing.
This is the method of ending electrode arc welding.
【0023】[0023]
【実施例】[実施例1]図10は、本発明の消耗2電極
アーク溶接終了方法において、先行ワイヤ3及び後行ワ
イヤ4を送給し、先行ワイヤ3及び後行ワイヤ4がクレ
ータ処理を行う実施例1を説明する図である。同図
(A)は2電極1トーチ方式消耗電極アーク溶接中の状
態であって、図4(A)に示す同一の機能に同一の符号
を付し、説明を省略する。[Embodiment 1] FIG. 10 shows a method for terminating consumable two-electrode arc welding according to the present invention, in which a leading wire 3 and a trailing wire 4 are fed, and the leading wire 3 and the trailing wire 4 are subjected to cratering. It is a figure explaining Example 1 to perform. FIG. 4A shows a state during consumable electrode arc welding of the two-electrode 1-torch system, in which the same reference numerals are given to the same functions shown in FIG. 4A, and description thereof will be omitted.
【0024】そして、図10(B)に示すように、先行
ワイヤ先端3aが予め定めた溶接終了近傍位置P1に達
したときに、図3に示すロボット制御装置27が、先行
ワイヤ先端3aが溶接終了近傍位置P1に到達するまで
の位置信号の出力を完了するか、又は位置P1に到達し
たことを検出(以下、到達したことを判別という)し
て、先行ワイヤ溶接用電源装置23及び後行ワイヤ溶接
用電源装置24に溶接終了近傍位置電流通電指令信号を
出力する。そして、先行ワイヤ溶接用電源装置23が、
通常の溶接電流よりも低い先行ワイヤ溶接終了近傍位置
通電電流を先行ワイヤ3に通電し、後行ワイヤ溶接用電
源装置24が、通常の溶接電流値よりも低い後行ワイヤ
溶接終了近傍位置通電電流を後行ワイヤ4に通電する。
また、先行ワイヤ先端3aが溶接終了近傍位置P1に達
したときに、図3に示すロボット制御装置27が、マニ
ピュレータ21に溶接終了近傍位置溶接速度移動指令信
号を出力する。そして、マニピュレータ21が通常の溶
接速度よりも遅い溶接終了近傍位置溶接速度で溶接用ト
ーチ14を移動させるので、溶接用トーチ14は低速度
で移動する。Then, as shown in FIG. 10B, when the leading wire tip 3a reaches the predetermined welding end vicinity position P1, the robot controller 27 shown in FIG. 3 causes the leading wire tip 3a to weld. The output of the position signal until reaching the end vicinity position P1 is completed, or the arrival at the position P1 is detected (hereinafter, it is determined that the position signal is reached), and the power supply device 23 for leading wire welding and the following The power supply device 24 for wire welding outputs a near-welding position current energization command signal. Then, the power supply device 23 for the preceding wire welding is
A leading wire welding near end position energizing current that is lower than the normal welding current is applied to the preceding wire 3, and the trailing wire welding power supply device 24 causes the following wire welding end near energizing current that is lower than the normal welding current value. Is applied to the trailing wire 4.
When the leading wire tip 3a reaches the welding end vicinity position P1, the robot controller 27 shown in FIG. 3 outputs a welding end vicinity position welding speed movement command signal to the manipulator 21. Then, since the manipulator 21 moves the welding torch 14 at the welding end vicinity position welding speed which is slower than the normal welding speed, the welding torch 14 moves at a low speed.
【0025】上記の先行ワイヤ溶接終了近傍位置通電電
流、後行ワイヤ溶接終了近傍位置通電電流及び溶接終了
近傍位置溶接速度は、単位長さ当たりの溶着金属量を通
常の溶接時と略同じ量とするように予め設定する。ま
た、溶接終了近傍位置P1は、溶接終了位置P2から溶
接方向と逆方向にワイヤ先端間距離L2の5倍以内程度
の距離の位置が適当である。The above-mentioned energizing current near the end of the preceding wire welding, the energizing current near the end of the following wire welding, and the welding speed near the end of welding are the same as the amount of deposited metal per unit length as in normal welding. Is set in advance. Further, it is suitable that the position P1 near the end of welding is located at a distance from the end position P2 of welding within 5 times the distance L2 between the wire tips in the direction opposite to the welding direction.
【0026】その後、図10(C)に示すように、先行
ワイヤ先端3aが溶接終了位置P2に達したときに、図
3に示すロボット制御装置27が、先行ワイヤ先端3a
が溶接終了位置P2に到達したことを判別して、先行ワ
イヤ溶接用電源装置23及び後行ワイヤ溶接用電源装置
24にクレータ処理指令信号を出力する。Thereafter, as shown in FIG. 10C, when the leading wire tip 3a reaches the welding end position P2, the robot controller 27 shown in FIG.
Has reached the welding end position P2, and outputs a crater processing command signal to the preceding wire welding power source device 23 and the following wire welding power source device 24.
【0027】そして、図11(A)に示すように、先行
ワイヤ3及び後行ワイヤ4がクレータ処理を終了して溶
接を終了する。図11は、図10に続く本発明の消耗2
電極アーク溶接終了方法において、先行ワイヤ3及び後
行ワイヤ4を送給し、先行ワイヤ3及び後行ワイヤ4が
クレータ処理を行う実施例1を説明する図である。Then, as shown in FIG. 11A, the leading wire 3 and the trailing wire 4 finish the crater process and finish the welding. FIG. 11 shows the exhaustion 2 of the present invention following FIG.
It is a figure explaining Example 1 in which the preceding wire 3 and the following wire 4 are fed, and the preceding wire 3 and the following wire 4 perform the crater process in the electrode arc welding termination method.
【0028】上記のように実施例1は、溶接終了近傍位
置P1で通常の溶接電流値よりも低い電流を先行ワイヤ
3及び後行ワイヤ4に通電するので、アーク力による溶
融池の窪みは縮小し、溶接用トーチ14は低速度で移動
するので、単位長さあたりの溶着量は一定のままであ
る。したがって、図11(B)に示すように、図5に示
した溶融池跡の窪み13が生じることがなく、溶接ビー
ド9の外観が良好である。また、溶接終了近傍位置P1
でマニピュレータ21が通常の溶接速度よりも遅い速度
で溶接用トーチ14を移動させ、通常の溶接電流値より
も低い電流を後行ワイヤ4に通電するので、溶接終了位
置P2で先行ワイヤ3及び後行ワイヤ4が同時にクレー
タ処理を行っても、先行ワイヤ3によって発生する溶融
金属が後行ワイヤ4によって発生するクレータ処理跡を
ある程度埋めるので、図11(B)に示すように、後行
ワイヤ4によって発生するクレータ処理跡は殆ど見られ
ず、クレータ処理跡が一つしか生じない。As described above, in the first embodiment, since a current lower than the normal welding current value is applied to the leading wire 3 and the trailing wire 4 at the position P1 near the end of welding, the depression of the molten pool due to the arc force is reduced. However, since the welding torch 14 moves at a low speed, the amount of welding per unit length remains constant. Therefore, as shown in FIG. 11 (B), the recess 13 of the molten pool trace shown in FIG. 5 does not occur, and the appearance of the weld bead 9 is good. Also, the position P1 near the end of welding
Then, the manipulator 21 moves the welding torch 14 at a speed slower than the normal welding speed and energizes the trailing wire 4 with a current lower than the normal welding current value. Even if the row wires 4 simultaneously perform the crater treatment, the molten metal generated by the leading wire 3 fills the crater treatment traces generated by the trailing wire 4 to some extent. Almost no crater processing trace is generated, and only one crater processing trace is generated.
【0029】図12は本発明の実施例1のロボット制御
装置27が出力する信号と溶接用トーチ14の移動速度
とを示す図である。同図において、同図(A)は先行ワ
イヤ及び後行ワイヤ溶接開始指令信号の時間の経過tを
示し、同図(B)は先行ワイヤ及び後行ワイヤ溶接終了
近傍位置電流通電指令信号の経過tを示し、同図(C)
は溶接用トーチ移動速度の経過tを示し、同図(D)は
先行ワイヤ及び後行ワイヤクレータ処理指令信号の経過
tを示す。FIG. 12 is a diagram showing signals output by the robot controller 27 according to the first embodiment of the present invention and the moving speed of the welding torch 14. In the same figure, (A) shows the lapse of time t of the leading wire and trailing wire welding start command signals, and (B) shows the progress of the preceding wire and trailing wire welding end vicinity position current conduction command signals. The same figure (C) is shown.
Shows the progress t of the welding torch moving speed, and FIG. 7D shows the progress t of the leading wire and trailing wire crater processing command signals.
【0030】図12の時刻t1において、溶接用トーチ
14が溶接開始位置に移動して、同図(A)に示すよう
に、ロボット制御装置27が先行ワイヤ溶接用電源装置
23及び後行ワイヤ溶接用電源装置24に溶接開始指令
信号を出力して先行ワイヤ3及び後行ワイヤ4の通電が
開始される。そして、時刻t2において、先行ワイヤ先
端3aが溶接終了近傍位置P1に達すると、図3に示す
ロボット制御装置27が、先行ワイヤ先端3aが溶接終
了近傍位置P1に到達したことを判別して、図12
(B)に示すように、先行ワイヤ溶接用電源装置23及
び後行ワイヤ溶接用電源装置24に溶接終了近傍位置電
流通電指令信号を出力する。そして、先行ワイヤ溶接用
電源装置23が、通常の溶接電流値よりも低い先行ワイ
ヤ溶接終了近傍位置通電電流を先行ワイヤ3に通電し、
後行ワイヤ溶接用電源装置24が、通常の溶接電流値よ
りも低い後行ワイヤ溶接終了近傍位置通電電流を後行ワ
イヤ4に通電する。また、時刻t2において、図3に示
すロボット制御装置27が、マニピュレータ21に溶接
終了近傍位置溶接速度移動指令信号を出力して、図12
(C)に示すように、溶接用トーチ14は低速度で移動
する。At time t1 in FIG. 12, the welding torch 14 moves to the welding start position, and the robot controller 27 causes the power supply device 23 for leading wire welding and the trailing wire welding as shown in FIG. A welding start command signal is output to the power supply device 24 and the energization of the leading wire 3 and the trailing wire 4 is started. Then, at time t2, when the leading wire tip 3a reaches the welding end vicinity position P1, the robot control device 27 shown in FIG. 3 determines that the leading wire tip 3a reaches the welding end vicinity position P1, and 12
As shown in (B), a welding end vicinity position current energization command signal is output to the preceding wire welding power supply device 23 and the following wire welding power supply device 24. Then, the preceding wire welding power source device 23 supplies the preceding wire 3 with a leading wire welding end vicinity energizing current lower than the normal welding current value,
The trailing wire welding power source device 24 supplies the trailing wire 4 with a passing current near the trailing wire welding end that is lower than the normal welding current value. Further, at the time t2, the robot control device 27 shown in FIG. 3 outputs a welding end vicinity position welding speed movement command signal to the manipulator 21, and FIG.
As shown in (C), the welding torch 14 moves at a low speed.
【0031】そして、時刻t3において先行ワイヤ先端
3aが溶接終了位置P2に到達すると、同図(D)に示
すように、図3に示すロボット制御装置27が、先行ワ
イヤ先端3aが溶接終了位置P2に到達したことを判別
して、先行ワイヤ溶接用電源装置23、後行ワイヤ溶接
用電源装置24及びマニピュレータ21に先行ワイヤ及
び後行ワイヤクレータ処理指令信号を出力する。この結
果、溶接用トーチ14の移動が停止され、先行ワイヤ及
び後行ワイヤがクレータ処理を行い、溶接を終了する。When the leading wire tip 3a reaches the welding end position P2 at time t3, the robot controller 27 shown in FIG. 3 causes the leading wire tip 3a to finish welding position P2 as shown in FIG. When the power supply device 23 for leading wire welding, the power supply device 24 for trailing wire welding, and the manipulator 21 are output, the leading wire and trailing wire crater processing command signals are output. As a result, the movement of the welding torch 14 is stopped, the leading wire and the trailing wire perform the crater process, and the welding is completed.
【0032】[実施例2]図13は、本発明の消耗2電
極アーク溶接終了方法において、先行ワイヤ3及び後行
ワイヤ4を送給し、後行ワイヤ4が第1及び第2クレー
タ処理を行う実施例2を説明する図である。同図(A)
は2電極1トーチ方式消耗電極アーク溶接中の状態であ
って、図4(A)に示す同一の機能に同一の符号を付
し、説明を省略する。[Embodiment 2] FIG. 13 shows a method of terminating consumable two-electrode arc welding according to the present invention, in which the leading wire 3 and the trailing wire 4 are fed, and the trailing wire 4 performs the first and second crater treatments. It is a figure explaining Example 2 to perform. Same figure (A)
Is a state in which two-electrode one-torch method consumable electrode arc welding is being performed, and the same reference numerals are given to the same functions shown in FIG.
【0033】そして、図13(B)に示すように、先行
ワイヤ先端3aが溶接終了近傍位置P1に達したとき
に、図3に示すロボット制御装置27が、先行ワイヤ先
端3aが溶接終了近傍位置P1に到達したことを判別し
て、先行ワイヤ溶接用電源装置23及び後行ワイヤ溶接
用電源装置24に溶接終了近傍位置電流通電指令信号を
出力する。そして、先行ワイヤ溶接用電源装置23が、
通常の溶接電流値よりも低い先行ワイヤ溶接終了近傍位
置通電電流を先行ワイヤ3に通電し、後行ワイヤ溶接用
電源装置24が、通常の溶接電流値よりも低い後行ワイ
ヤ溶接終了近傍位置通電電流を後行ワイヤ4に通電す
る。また、先行ワイヤ先端3aが溶接終了近傍位置P1
に達したときに、溶接用トーチ14は低速度で移動す
る。Then, as shown in FIG. 13B, when the leading wire tip 3a reaches the welding end vicinity position P1, the robot controller 27 shown in FIG. Upon determining that P1 has been reached, a welding end vicinity position current energization command signal is output to the preceding wire welding power supply device 23 and the following wire welding power supply device 24. Then, the power supply device 23 for the preceding wire welding is
A leading wire welding end position energizing current lower than a normal welding current value is applied to the leading wire 3, and the trailing wire welding power supply device 24 energizes a trailing wire welding end position energizing value lower than a normal welding current value. A current is applied to the trailing wire 4. Further, the leading wire tip 3a is positioned near the welding end position P1
Welding torch 14 moves at a low speed.
【0034】そして、図13(C)に示すように、先行
ワイヤ先端3aが溶接終了位置P2に達したときに、図
3に示すロボット制御装置27が、先行ワイヤ先端3a
が溶接終了位置P2に到達したことを判別して、先行ワ
イヤ溶接用電源装置23に溶接終了指令信号を出力し、
後行ワイヤ溶接用電源装置24に第1クレータ処理指令
信号を出力する。同図(B)に示したワイヤ先端間距離
L2は、後述する後行ワイヤ第1クレータ処理距離D1
として使用することができる。その後、図14(A)に
示すように、溶接用トーチ14を溶接方向に後行ワイヤ
第1クレータ処理距離D1だけ移動させながら後行ワイ
ヤ4が第1クレータ処理を行う。図14は、図13に続
く本発明の消耗2電極アーク溶接終了方法において、先
行ワイヤ3及び後行ワイヤ4を送給し、後行ワイヤ4が
第1及び第2クレータ処理を行う実施例2を説明する図
である。Then, as shown in FIG. 13C, when the leading wire tip 3a reaches the welding end position P2, the robot controller 27 shown in FIG.
Has reached the welding end position P2 and outputs a welding end command signal to the preceding wire welding power source device 23,
The first crater processing command signal is output to the trailing wire welding power supply device 24. The wire end-to-end distance L2 shown in FIG. 3B is the trailing wire first crater processing distance D1 described later.
Can be used as Then, as shown in FIG. 14 (A), the trailing wire 4 performs the first crater treatment while moving the welding torch 14 in the welding direction by the trailing wire first crater treatment distance D1. FIG. 14 is an embodiment 2 in which the leading wire 3 and the trailing wire 4 are fed and the trailing wire 4 performs the first and second crater treatments in the consumable two-electrode arc welding termination method of the present invention following FIG. 13. It is a figure explaining.
【0035】ここで第1クレータ処理とは、先行ワイヤ
3の送給及び通電を停止して、後行ワイヤ4のみに通電
して溶接用トーチを溶接方向に移動させながら溶接終了
処理を行うことである。第1クレータ処理期間の溶接電
流値、溶接電圧値及び溶接速度を任意に設定でき、通常
の溶接の溶接電流値、溶接電圧値及び溶接速度よりも低
い値で行う。Here, the first crater process is to stop the feeding and energization of the leading wire 3 and energize only the trailing wire 4 to move the welding torch in the welding direction to carry out the welding end process. Is. The welding current value, the welding voltage value, and the welding speed in the first crater treatment period can be arbitrarily set, and the welding current value, the welding voltage value, and the welding speed for normal welding are lower than the values.
【0036】そして、溶接用トーチが後行ワイヤ第1ク
レータ処理距離D1、例えば、ワイヤ先端間距離L2を
移動し終わると溶接用トーチ14が停止して、図3に示
すロボット制御装置27が、後行ワイヤ溶接用電源装置
24に第2クレータ処理指令信号を出力し、図14
(B)に示すように、後行ワイヤ4が第2クレータ処理
を行う。ここで、第2クレータ処理とは、後行ワイヤ4
が溶接用トーチ14の移動を停止した状態でクレータを
処理することであって、溶接電流値及び溶接電圧値を任
意に設定できる。従来技術1で説明したクレータ処理に
該当する。When the welding torch finishes moving the trailing wire first crater processing distance D1, for example, the wire tip distance L2, the welding torch 14 stops and the robot controller 27 shown in FIG. The second crater processing command signal is output to the power supply device for trailing wire welding 24, as shown in FIG.
As shown in (B), the trailing wire 4 performs the second crater process. Here, the second crater process is the trailing wire 4
Is to process the crater while stopping the movement of the welding torch 14, and the welding current value and the welding voltage value can be arbitrarily set. This corresponds to the crater processing described in Related Art 1.
【0037】そして、後行ワイヤ4が第2クレータ処理
を終了したときに、図3に示すロボット制御装置27
が、後行ワイヤ溶接用電源装置24に溶接終了指令信号
を出力し、図14(C)に示すように溶接を終了する。Then, when the trailing wire 4 finishes the second crater process, the robot controller 27 shown in FIG.
Outputs a welding end command signal to the trailing wire welding power source device 24, and ends welding as shown in FIG. 14 (C).
【0038】上記のように実施例2は、第2クレータ処
理で後行ワイヤ4のみが従来技術1で説明したクレータ
処理を行うので、図15に示すように、クレータ処理跡
15が一つしか生じない。図15は、本発明の消耗2電
極アーク溶接終了方法における実施例2による溶接終了
部を示す図である。また、溶接終了近傍位置P1で通常
の溶接電流値よりも低い電流を先行ワイヤ3及び後行ワ
イヤ4に通電し、マニピュレータ21が通常の溶接速度
よりも遅い速度で溶接用トーチ14を移動させるので、
後行ワイヤ4を移動させながら発生する溶融金属がアー
ク力によって後方へ押されて、この溶融金属が後行ワイ
ヤ4のアーク力によって窪んだ溶融池を埋めることがで
きる。したがって、図15に示すように、図5に示した
溶融池跡13が生じることがなく、溶接ビード9の外観
が良好である。As described above, in the second embodiment, since only the trailing wire 4 performs the crater processing described in the prior art 1 in the second crater processing, as shown in FIG. 15, there is only one crater processing trace 15. Does not happen. FIG. 15 is a diagram showing a welding end portion according to a second embodiment in the consumable two-electrode arc welding end method of the present invention. Further, at the position P1 near the end of welding, a current lower than the normal welding current value is applied to the leading wire 3 and the trailing wire 4, and the manipulator 21 moves the welding torch 14 at a speed slower than the normal welding speed. ,
The molten metal generated while moving the trailing wire 4 is pushed backward by the arc force, and this molten metal can fill the recessed molten pool by the arc force of the trailing wire 4. Therefore, as shown in FIG. 15, the weld pool trace 13 shown in FIG. 5 does not occur, and the appearance of the weld bead 9 is good.
【0039】図16は、実施例2のロボット制御装置2
7が出力する信号と溶接用トーチ14の移動速度とを示
す図である。同図において、同図(A)は先行ワイヤ及
び後行ワイヤ溶接開始指令信号の時間の経過tを示し、
同図(B)は先行ワイヤ及び後行ワイヤ溶接終了近傍位
置電流通電指令信号の経過tを示し、同図(C)は溶接
用トーチ移動速度の経過tを示し、同図(D)は先行ワ
イヤ溶接終了処理指令信号の経過tを示し、同図(E)
は後行ワイヤ第1クレータ処理指令信号の経過tを示
し、同図(F)は後行ワイヤ第2クレータ処理指令信号
の経過tを示す。FIG. 16 shows a robot controller 2 of the second embodiment.
It is a figure which shows the signal which 7 outputs, and the moving speed of the torch 14 for welding. In the same figure, (A) shows the elapsed time t of the leading wire and trailing wire welding start command signals,
FIG. 7B shows the progress t of the preceding wire and trailing wire welding near-end position current energization command signal, FIG. 6C shows the progress t of the welding torch moving speed, and FIG. The progress t of the wire welding end processing command signal is shown in FIG.
Shows the lapse t of the trailing wire first crater processing command signal, and FIG. 6F shows the lapse t of the trailing wire second crater processing command signal.
【0040】図16の時刻t1において、溶接用トーチ
14が溶接開始位置に移動して、同図(A)に示すよう
に、ロボット制御装置27が先行ワイヤ溶接用電源装置
23及び後行ワイヤ溶接用電源装置24に溶接開始指令
信号を出力して先行ワイヤ3及び後行ワイヤ4の通電が
開始される。そして、時刻t2において、先行ワイヤ先
端3aが溶接終了近傍位置P1に達すると、図3に示す
ロボット制御装置27が、先行ワイヤ先端3aが溶接終
了近傍位置P1に到達したことを判別して、図16
(B)に示すように、先行ワイヤ溶接用電源装置23及
び後行ワイヤ溶接用電源装置24に溶接終了近傍位置電
流通電指令信号を出力する。そして、先行ワイヤ溶接用
電源装置23が、通常の溶接電流値よりも低い先行ワイ
ヤ溶接終了近傍位置通電電流を先行ワイヤ3に通電し、
後行ワイヤ溶接用電源装置24が、通常の溶接電流値よ
りも低い後行ワイヤ溶接終了近傍位置通電電流を後行ワ
イヤ4に通電する。また、時刻t2において、図3に示
すロボット制御装置27が、マニピュレータ21に溶接
終了近傍位置溶接速度移動指令信号を出力して、図16
(C)に示すように、マニピュレータ21が通常の溶接
速度よりも遅い溶接終了近傍位置溶接速度で溶接用トー
チ14を移動させる。At time t1 in FIG. 16, the welding torch 14 moves to the welding start position, and the robot controller 27 causes the power source device 23 for leading wire welding and the trailing wire welding as shown in FIG. A welding start command signal is output to the power supply device 24 and the energization of the leading wire 3 and the trailing wire 4 is started. Then, at time t2, when the leading wire tip 3a reaches the welding end vicinity position P1, the robot control device 27 shown in FIG. 3 determines that the leading wire tip 3a reaches the welding end vicinity position P1, and 16
As shown in (B), a welding end vicinity position current energization command signal is output to the preceding wire welding power supply device 23 and the following wire welding power supply device 24. Then, the preceding wire welding power source device 23 supplies the preceding wire 3 with a leading wire welding end vicinity energizing current lower than the normal welding current value,
The trailing wire welding power source device 24 supplies the trailing wire 4 with a passing current near the trailing wire welding end that is lower than the normal welding current value. Further, at the time t2, the robot control device 27 shown in FIG. 3 outputs a welding end vicinity position welding speed movement command signal to the manipulator 21, and FIG.
As shown in (C), the manipulator 21 moves the welding torch 14 at the welding end vicinity position welding speed slower than the normal welding speed.
【0041】そして、時刻t3において先行ワイヤ先端
3aが溶接終了位置P2に到達すると、同図(D)に示
すように、図3に示すロボット制御装置27が、先行ワ
イヤ先端3aが溶接終了位置P2に到達したことを判別
して、先行ワイヤ溶接用電源装置23に先行ワイヤ溶接
終了処理指令信号を出力して、先行ワイヤ3の送給及び
通電を終了する。また時刻t3において、図3に示すロ
ボット制御装置27が、後行ワイヤ溶接用電源装置24
及びマニピュレータ21に後行ワイヤ第1クレータ処理
指令信号を出力して、マニピュレータ21が通常の溶接
速度よりも遅い後行ワイヤ第1クレータ処理移動速度で
溶接用トーチ14を移動させて、後行ワイヤ4が第1ク
レータ処理を行う。そして溶接用トーチ14が後行ワイ
ヤ第1クレータ処理移動距離D1だけ移動して時刻t4
において、図3に示すロボット制御装置27が、後行ワ
イヤ溶接用電源装置24及びマニピュレータ21に後行
ワイヤ第2クレータ処理指令信号を出力して、マニピュ
レータ21が溶接用トーチ14を停止させて、後行ワイ
ヤ4が第2クレータ処理を行う。そして時刻t5におい
て、溶接を終了する。When the leading wire tip 3a reaches the welding end position P2 at time t3, the robot controller 27 shown in FIG. 3 causes the leading wire tip 3a to finish the welding end position P2 as shown in FIG. When it is determined that the preceding wire has been reached, a preceding wire welding end processing command signal is output to the preceding wire welding power supply device 23, and the feeding and energization of the preceding wire 3 are ended. Further, at the time t3, the robot control device 27 shown in FIG.
And the trailing wire first crater processing command signal is output to the manipulator 21, and the manipulator 21 moves the welding torch 14 at the trailing wire first crater processing moving speed slower than the normal welding speed to move the trailing wire. 4 performs the first crater process. Then, the welding torch 14 moves by the trailing wire first crater processing moving distance D1 and time t4.
3, the robot controller 27 shown in FIG. 3 outputs the trailing wire second crater processing command signal to the trailing wire welding power source device 24 and the manipulator 21, and the manipulator 21 stops the welding torch 14. The trailing wire 4 performs the second crater process. Then, at time t5, welding is completed.
【0042】[実施例3]図17は、本発明の消耗2電
極アーク溶接終了方法において、先行ワイヤ3及び後行
ワイヤ4を送給し、先行ワイヤ3が第1及び第2クレー
タ処理を行う実施例3を説明する図である。同図(A)
は2電極1トーチ方式の消耗電極アーク溶接中の状態で
あって、図4(A)に示す同一の機能に同一の符号を付
し、説明を省略する。[Embodiment 3] FIG. 17 shows the method of terminating consumable two-electrode arc welding according to the present invention, in which the leading wire 3 and the trailing wire 4 are fed, and the leading wire 3 performs the first and second crater treatments. It is a figure explaining Example 3. Same figure (A)
Is a state during consumable electrode arc welding of the two-electrode one-torch system, and the same reference numerals are given to the same functions shown in FIG.
【0043】そして、図17(B)に示すように、先行
ワイヤ先端3aが溶接終了近傍位置P1に達したとき
に、図3に示すロボット制御装置27が、先行ワイヤ先
端3aが溶接終了近傍位置P1に到達したことを判別し
て、先行ワイヤ溶接用電源装置23及び後行ワイヤ溶接
用電源装置24に溶接終了近傍位置電流通電指令信号を
出力する。そして、先行ワイヤ溶接用電源装置23が、
通常の溶接電流値よりも低い先行ワイヤ溶接終了近傍位
置通電電流を先行ワイヤ3に通電し、後行ワイヤ溶接用
電源装置24が、通常の溶接電流値よりも低い後行ワイ
ヤ溶接終了近傍位置通電電流を後行ワイヤ4に通電す
る。また、先行ワイヤ先端3aが溶接終了近傍位置P1
に達したときに、溶接用トーチ14は低速度で移動す
る。Then, as shown in FIG. 17B, when the leading wire tip 3a reaches the welding end vicinity position P1, the robot controller 27 shown in FIG. Upon determining that P1 has been reached, a welding end vicinity position current energization command signal is output to the preceding wire welding power supply device 23 and the following wire welding power supply device 24. Then, the power supply device 23 for the preceding wire welding is
A leading wire welding end position energizing current lower than a normal welding current value is applied to the leading wire 3, and the trailing wire welding power supply device 24 energizes a trailing wire welding end position energizing value lower than a normal welding current value. A current is applied to the trailing wire 4. Further, the leading wire tip 3a is positioned near the welding end position P1.
Welding torch 14 moves at a low speed.
【0044】そして、図17(C)に示すように、先行
ワイヤ先端3aが溶接終了位置P2に達したときに、図
3に示すロボット制御装置27が、先行ワイヤ先端3a
が溶接終了位置P2に到達したことを判別して、後行ワ
イヤ溶接用電源装置24に溶接終了指令信号を出力し、
先行ワイヤ溶接用電源装置23に先行ワイヤ第1クレー
タ処理指令信号を出力する。図17(B)に示したワイ
ヤ先端間距離L2は、後述する先行ワイヤ第1クレータ
処理距離D2として使用することができる。Then, as shown in FIG. 17C, when the leading wire tip 3a reaches the welding end position P2, the robot controller 27 shown in FIG.
Has reached the welding end position P2, and outputs a welding end command signal to the power supply device for trailing wire welding 24,
The preceding wire first crater processing command signal is output to the preceding wire welding power source device 23. The wire tip distance L2 shown in FIG. 17B can be used as a preceding wire first crater processing distance D2 described later.
【0045】図18は、図17に続く本発明の消耗2電
極アーク溶接終了方法において、先行ワイヤ3及び後行
ワイヤ4を送給し、先行ワイヤ3が第1及び第2クレー
タ処理を行う実施例3を説明する図である。その後、図
18(A)に示すように、溶接用トーチ14が通常の溶
接方向とは逆方向に先行ワイヤ第1クレータ処理距離D
2、例えば、ワイヤ先端間距離L2を移動しながら先行
ワイヤ3が先行ワイヤ第1クレータ処理を行う。そし
て、溶接用トーチ14が通常の溶接方向とは逆方向に先
行ワイヤ第1クレータ処理距離D2、例えば、ワイヤ先
端間距離L2を移動し終わると溶接用トーチ14が停止
して、図3に示すロボット制御装置27が、先行ワイヤ
溶接用電源装置23に先行ワイヤ第2クレータ処理指令
信号を出力し、図18(B)に示すように、先行ワイヤ
3が第2クレータ処理を行う。FIG. 18 shows a method of terminating the consumable two-electrode arc welding of the present invention following FIG. 17, in which the leading wire 3 and the trailing wire 4 are fed, and the leading wire 3 performs the first and second crater treatments. It is a figure explaining Example 3. Then, as shown in FIG. 18 (A), the welding torch 14 moves the preceding wire first crater processing distance D in the direction opposite to the normal welding direction.
2. For example, the leading wire 3 performs the leading wire first crater process while moving the distance L2 between the wire tips. Then, when the welding torch 14 has finished moving the preceding wire first crater processing distance D2, for example, the wire tip distance L2, in the direction opposite to the normal welding direction, the welding torch 14 stops and is shown in FIG. The robot controller 27 outputs a leading wire second crater processing command signal to the leading wire welding power source device 23, and the leading wire 3 performs the second crater processing as shown in FIG. 18 (B).
【0046】そして、先行ワイヤ3が第2クレータ処理
を終了したときに、図3に示すロボット制御装置27
が、先行ワイヤ溶接用電源装置23に溶接終了指令信号
を出力し、図18(C)に示すように溶接を終了する。Then, when the preceding wire 3 finishes the second crater process, the robot controller 27 shown in FIG.
Outputs a welding end command signal to the preceding wire welding power source device 23, and ends welding as shown in FIG. 18 (C).
【0047】上記のように実施例3は、第2クレータ処
理で先行ワイヤ3のみが従来技術1で説明したクレータ
処理を行うので、図19に示すように、クレータ処理跡
15が一つしか生じない。図19は、本発明の消耗2電
極アーク溶接終了方法における実施例3による溶接終了
部を示す図である。また、溶接終了近傍位置P1で通常
の溶接電流値よりも低い電流を先行ワイヤ3及び後行ワ
イヤ4に通電し、マニピュレータ21が通常の溶接速度
よりも遅い速度で溶接用トーチ14を移動させるので、
後行ワイヤ4を移動させながら発生する溶融金属がアー
ク力によって後方へ押されて、この溶融金属が後行ワイ
ヤ4のアーク力によって窪んだ溶融池を埋めることがで
きる。したがって、図19に示すように、図5に示した
溶融池跡13が生じることがなく、溶接ビードの外観が
良好である。As described above, in the third embodiment, since only the preceding wire 3 performs the crater processing described in the prior art 1 in the second crater processing, only one crater processing trace 15 is generated as shown in FIG. Absent. FIG. 19 is a view showing a welding end portion according to the third embodiment in the consumable two-electrode arc welding end method of the present invention. Further, at the position P1 near the end of welding, a current lower than the normal welding current value is applied to the leading wire 3 and the trailing wire 4, and the manipulator 21 moves the welding torch 14 at a speed slower than the normal welding speed. ,
The molten metal generated while moving the trailing wire 4 is pushed backward by the arc force, and this molten metal can fill the recessed molten pool by the arc force of the trailing wire 4. Therefore, as shown in FIG. 19, the weld pool trace 13 shown in FIG. 5 does not occur, and the appearance of the weld bead is good.
【0048】さらに、図20に示した被溶接物8の形状
が箱形で溶接終了位置P2の溶接方向の前面に壁が有る
底板の隅肉溶接を行う場合においても、先行ワイヤ3が
溶接終了位置P2に達した後、後行ワイヤ4の通電を停
止した後に、先行ワイヤ3及び後行ワイヤ4を溶接方向
と逆方向に移動させて先行ワイヤ3が第1クレータ処理
を行い、先行ワイヤ3及び後行ワイヤ4が先行ワイヤ第
1クレータ処理距離D2を移動した後、先行ワイヤ3が
第2クレータ処理を行うので、図20に示すように均一
な溶接ビード9を得ることができる。図20は、実施例
3の溶接終了方法によって被溶接物8の形状が箱形で、
底板の隅肉溶接を行う場合を説明するための図である。Further, even when the fillet welding of the bottom plate having the box-like shape of the object 8 to be welded shown in FIG. 20 and having the wall at the front of the welding end position P2 in the welding direction is performed, the leading wire 3 finishes welding. After reaching the position P2, after the energization of the trailing wire 4 is stopped, the leading wire 3 and the trailing wire 4 are moved in the direction opposite to the welding direction, and the leading wire 3 performs the first crater process, and the leading wire 3 Further, since the trailing wire 4 moves the first wire crater treatment distance D2 and the leading wire 3 performs the second crater treatment distance, it is possible to obtain a uniform weld bead 9 as shown in FIG. FIG. 20 shows that the welding object 8 has a box shape according to the welding termination method of the third embodiment.
It is a figure for demonstrating the case where fillet welding of a bottom plate is performed.
【0049】また、発明者らの実験によると、従来技術
1の図5に示すように溶融池跡13が形成される程度に
溶融池が窪んでいるとき、先行ワイヤの溶融金属が窪ん
だ溶融池を埋めるために、先行ワイヤ3をワイヤ先端間
距離L2よりも溶接方向と逆方向に移動させる必要があ
る。したがって、先行ワイヤ第1クレータ処理距離D2
は、ワイヤ先端間距離L2よりも長くする。Further, according to the experiments by the inventors, when the molten pool is depressed to the extent that the molten pool trace 13 is formed as shown in FIG. 5 of the prior art 1, the molten metal of the preceding wire is depressed. In order to fill the pond, the leading wire 3 needs to be moved in the direction opposite to the welding direction with respect to the wire tip distance L2. Therefore, the preceding wire first crater processing distance D2
Is longer than the distance L2 between the wire tips.
【0050】図21は本発明の実施例3のロボット制御
装置27が出力する信号と溶接用トーチ14の移動速度
とを示す図である。同図において、同図(A)は先行ワ
イヤ及び後行ワイヤ溶接開始指令信号の時間の経過tを
示し、同図(B)は先行ワイヤ及び後行ワイヤ溶接終了
近傍位置電流通電指令信号の経過tを示し、同図(C)
は溶接用トーチ移動速度の経過tを示し、同図(D)は
先行ワイヤ第1クレータ処理指令信号の経過tを示し、
同図(E)は先行ワイヤ第2クレータ処理指令信号の経
過tを示し、同図(F)は後行ワイヤ溶接終了処理指令
信号の経過tを示す。FIG. 21 is a diagram showing signals output by the robot controller 27 of the third embodiment of the present invention and the moving speed of the welding torch 14. In the same figure, (A) shows the lapse of time t of the leading wire and trailing wire welding start command signals, and (B) shows the progress of the preceding wire and trailing wire welding end vicinity position current conduction command signals. The same figure (C) is shown.
Shows the progress t of the welding torch moving speed, and FIG. 6D shows the progress t of the preceding wire first crater processing command signal,
FIG. 6E shows the progress t of the preceding wire second crater processing command signal, and FIG. 6F shows the progress t of the trailing wire welding end processing command signal.
【0051】図21の時刻t1において、溶接用トーチ
14が溶接開始位置に移動して、同図(A)に示すよう
に、ロボット制御装置27が先行ワイヤ溶接用電源装置
23及び後行ワイヤ溶接用電源装置24に溶接開始指令
信号を出力して先行ワイヤ3及び後行ワイヤ4の通電が
開始される。そして、時刻t2において、先行ワイヤ先
端3aが溶接終了近傍位置P1に達すると、図3に示す
ロボット制御装置27が、先行ワイヤ先端3aが溶接終
了近傍位置P1に到達したことを判別して、図21
(B)に示すように、先行ワイヤ溶接用電源装置23及
び後行ワイヤ溶接用電源装置24に溶接終了近傍位置電
流通電指令信号を出力する。そして、先行ワイヤ溶接用
電源装置23が、通常の溶接電流値よりも低い先行ワイ
ヤ溶接終了近傍位置通電電流を先行ワイヤ3に通電し、
後行ワイヤ溶接用電源装置24が、通常の溶接電流値よ
りも低い後行ワイヤ溶接終了近傍位置通電電流を後行ワ
イヤ4に通電する。また、時刻t2において、図3に示
すロボット制御装置27が、マニピュレータ21に溶接
終了近傍位置溶接速度移動指令信号を出力して、図21
(C)に示すように、マニピュレータ21が通常の溶接
速度よりも遅い溶接終了近傍位置溶接速度で溶接用トー
チ14を移動させる。At time t1 in FIG. 21, the welding torch 14 moves to the welding start position, and the robot controller 27 causes the power source device 23 for leading wire welding and the trailing wire welding as shown in FIG. A welding start command signal is output to the power supply device 24 and the energization of the leading wire 3 and the trailing wire 4 is started. Then, at time t2, when the leading wire tip 3a reaches the welding end vicinity position P1, the robot control device 27 shown in FIG. 3 determines that the leading wire tip 3a reaches the welding end vicinity position P1, and 21
As shown in (B), a welding end vicinity position current energization command signal is output to the preceding wire welding power supply device 23 and the following wire welding power supply device 24. Then, the preceding wire welding power source device 23 supplies the preceding wire 3 with a leading wire welding end vicinity energizing current lower than the normal welding current value,
The trailing wire welding power source device 24 supplies the trailing wire 4 with a passing current near the trailing wire welding end that is lower than the normal welding current value. Further, at the time t2, the robot control device 27 shown in FIG. 3 outputs the welding end vicinity position welding speed movement command signal to the manipulator 21, and FIG.
As shown in (C), the manipulator 21 moves the welding torch 14 at the welding end vicinity position welding speed slower than the normal welding speed.
【0052】そして、時刻t3において先行ワイヤ先端
3aが溶接終了位置P2に到達すると、図3に示すロボ
ット制御装置27が、先行ワイヤ溶接用電源装置23及
びマニピュレータ21に先行ワイヤ第1クレータ処理指
令信号を出力して、図21(C)に示すように、マニピ
ュレータ21が通常の溶接速度よりも遅い先行ワイヤ第
1クレータ処理移動速度で溶接用トーチ14を通常の溶
接方向とは逆方向に移動させて、先行ワイヤ3が第1ク
レータ処理を行う。また時刻t3において、同図(F)
に示すように、図3に示すロボット制御装置27が、先
行ワイヤ先端3aが溶接終了位置P2に到達したことを
判別して、後行ワイヤ溶接用電源装置24に後行ワイヤ
溶接終了処理指令信号を出力して、後行ワイヤ4の送給
及び通電を終了する。そして溶接用トーチ14が先行ワ
イヤ第1クレータ処理移動距離D2だけ移動して時刻t
4において、図3に示すロボット制御装置27が、先行
ワイヤ溶接用電源装置23及びマニピュレータ21に先
行ワイヤ第2クレータ処理指令信号を出力して、マニピ
ュレータ21が溶接用トーチ14を停止させて、先行ワ
イヤ4が第2クレータ処理を行う。そして時刻t5にお
いて、溶接を終了する。When the leading wire tip 3a reaches the welding end position P2 at time t3, the robot controller 27 shown in FIG. 3 causes the leading wire welding power source device 23 and the manipulator 21 to send the leading wire first crater processing command signal. 21C, the manipulator 21 moves the welding torch 14 in the direction opposite to the normal welding direction at the leading wire first crater processing moving speed slower than the normal welding speed. Then, the leading wire 3 performs the first crater process. Further, at time t3, FIG.
3, the robot controller 27 shown in FIG. 3 determines that the leading wire tip 3a has reached the welding end position P2, and sends the trailing wire welding end processing command signal to the trailing wire welding power supply device 24. Is output to terminate the feeding and energization of the trailing wire 4. Then, the welding torch 14 moves by the preceding wire first crater processing movement distance D2, and the time t
4, the robot control device 27 shown in FIG. 3 outputs the leading wire second crater processing command signal to the leading wire welding power source device 23 and the manipulator 21, and the manipulator 21 stops the welding torch 14 to advance. The wire 4 performs the second crater process. Then, at time t5, welding is completed.
【0053】[0053]
【発明の効果】出願時の請求項1に記載の本発明の消耗
2電極アーク溶接終了方法は、2電極1トーチ方式の消
耗電極アーク溶接の終了方法において、溶接終了近傍位
置P1で通常の溶接電流値よりも低い電流を先行ワイヤ
3及び後行ワイヤ4に通電するので、アーク力による溶
融池の窪みは縮小し、溶接用トーチ14は低速度で移動
するので、単位長さあたりの溶着量は一定のままであ
る。したがって、図11(B)に示すように、図5に示
した溶融池跡の窪み13が生じることがなく、溶接ビー
ド9の外観が良好である。また、溶接終了近傍位置P1
でマニピュレータ21が通常の溶接速度よりも遅い速度
で溶接用トーチ14を移動させ、通常の溶接電流値より
も低い電流を後行ワイヤ4に通電するので、溶接終了位
置P2で先行ワイヤ3及び後行ワイヤ4が同時にクレー
タ処理を行っても、先行ワイヤ3によって発生する溶融
金属が後行ワイヤ4によって発生するクレータ処理跡を
ある程度埋めるので、図11(B)に示すように、後行
ワイヤ4によって発生するクレータ処理跡は殆ど見られ
ず、クレータ処理跡が一つしか生じない。The consumable two-electrode arc welding ending method of the present invention according to claim 1 at the time of application is a normal welding at the welding end vicinity position P1 in the two-electrode one-torch method consumable electrode arc welding ending method. Since a current lower than the current value is applied to the leading wire 3 and the trailing wire 4, the depression of the molten pool due to the arc force is reduced, and the welding torch 14 moves at a low speed, so the welding amount per unit length Remains constant. Therefore, as shown in FIG. 11 (B), the recess 13 of the molten pool trace shown in FIG. 5 does not occur, and the appearance of the weld bead 9 is good. Also, the position P1 near the end of welding
Then, the manipulator 21 moves the welding torch 14 at a speed slower than the normal welding speed and energizes the trailing wire 4 with a current lower than the normal welding current value. Even if the row wires 4 simultaneously perform the crater treatment, the molten metal generated by the leading wire 3 fills the crater treatment traces generated by the trailing wire 4 to some extent. Almost no crater processing trace is generated, and only one crater processing trace is generated.
【0054】出願時の請求項2に記載の本発明の消耗2
電極アーク溶接終了方法は、2電極1トーチ方式の消耗
電極アーク溶接の終了方法において、溶接終了近傍位置
P1で先行ワイヤ3及び後行ワイヤ4に通常の溶接電流
値よりも低い電流を通電し、溶接用トーチ14を通常の
溶接速度よりも遅い速度で移動させるので、後行ワイヤ
4を移動させながら発生する溶融金属がアーク力によっ
て後方へ押されて、この溶融金属が後行ワイヤ4のアー
ク力によって窪んだ溶融池を埋めることができる。した
がって、溶接終了位置に従来技術で発生した溶融池跡1
3が生じることがなく、溶接ビードの外観が良好であ
り、割れ、収縮孔等の欠陥が生じることがない。また、
溶接終了位置P2で先行ワイヤ3の送給及び通電を停止
して、後行ワイヤ4で通常の溶接時よりも遅い溶接速度
で第1クレータ処理を行い、その後、溶接トーチの移動
を略停止させて第2クレータ処理を行うので、クレータ
処理跡が一箇所だけになり、溶接終了位置においても、
溶接ビード幅が減少したり、溶け込み不足が発生したり
することがなく溶接ビード9の外観が良好になり、溶接
継手強度も確保することができる。Consumption 2 of the present invention according to claim 2 at the time of application
The electrode arc welding ending method is a method of ending the consumable electrode arc welding of the two-electrode one-torch method, in which a current lower than the normal welding current value is applied to the leading wire 3 and the trailing wire 4 at the position P1 near the welding end, Since the welding torch 14 is moved at a speed slower than the normal welding speed, the molten metal generated while moving the trailing wire 4 is pushed backward by the arc force, and the molten metal is arced by the trailing wire 4. The force can fill the recessed molten pool. Therefore, the weld pool trace 1 generated by the conventional technique at the welding end position
3 does not occur, the appearance of the weld bead is good, and defects such as cracks and shrinkage holes do not occur. Also,
At the welding end position P2, the feeding and energization of the leading wire 3 are stopped, the first crater process is performed on the trailing wire 4 at a welding speed slower than that during normal welding, and then the movement of the welding torch is substantially stopped. Since the second crater process is performed by the second crater process, there is only one crater process trace, and even at the welding end position,
The appearance of the weld bead 9 is improved and the weld joint strength can be secured without decreasing the weld bead width or causing insufficient penetration.
【0055】出願時の請求項3に記載の本発明の消耗2
電極アーク溶接終了方法は、2電極1トーチ方式の消耗
電極アーク溶接の終了方法において、溶接終了近傍位置
P1で先行ワイヤ3及び後行ワイヤ4に通常の溶接電流
値よりも低い電流を通電し、溶接用トーチ14を通常の
溶接速度よりも遅い速度で移動させるので、後行ワイヤ
4を移動させながら発生する溶融金属がアーク力によっ
て後方へ押されて、この溶融金属が後行ワイヤ4のアー
ク力によって窪んだ溶融池を埋めることができる。した
がって、溶接終了位置に従来技術で発生した溶融池跡1
3が生じることがなく、溶接ビード9の外観が良好であ
り、割れ、収縮孔等の欠陥が生じることがない。また、
溶接終了位置P2で後行ワイヤ4の送給及び通電を停止
して、溶接用トーチ14を通常の溶接時よりも遅い溶接
速度で溶接速度とは逆の方向に移動させて先行ワイヤ3
のみで第1クレータ処理を行い、その後、溶接用トーチ
14の移動を略停止させて第2クレータ処理を行うの
で、クレータ処理跡が一箇所だけになり、溶接終了位置
においても、溶接ビード幅が減少したり、溶け込み不足
が発生したりすることがなく溶接ビード9の外観が良好
になり、溶接継手強度も確保することができる。さら
に、被溶接物8の形状が箱形で溶接終了位置P2の溶接
方向の前面に壁が有る底板の隅肉溶接を行う場合におい
ても、均一な溶接ビード9を得ることができる。Consumption of the present invention according to claim 3 at the time of application 2
The electrode arc welding ending method is a method of ending the consumable electrode arc welding of the two-electrode one-torch method, in which a current lower than the normal welding current value is applied to the leading wire 3 and the trailing wire 4 at the position P1 near the welding end, Since the welding torch 14 is moved at a speed slower than the normal welding speed, the molten metal generated while moving the trailing wire 4 is pushed backward by the arc force, and the molten metal is arced by the trailing wire 4. The force can fill the recessed molten pool. Therefore, the weld pool trace 1 generated by the conventional technique at the welding end position
3 does not occur, the appearance of the weld bead 9 is good, and defects such as cracks and shrinkage holes do not occur. Also,
At the welding end position P2, the feeding and energization of the trailing wire 4 are stopped, and the welding torch 14 is moved at a welding speed slower than that at the time of normal welding in the direction opposite to the welding speed to move the leading wire 3
The first crater process is performed only by using the first crater process, and thereafter, the movement of the welding torch 14 is substantially stopped and the second crater process is performed. Therefore, only one crater process mark is left, and the welding bead width is reduced at the welding end position. The appearance of the weld bead 9 is improved without any decrease or insufficient melting, and the weld joint strength can be secured. Further, even when the fillet welding of the bottom plate having the box-shaped object 8 to be welded and having the wall at the front of the welding end position P2 in the welding direction is performed, the uniform weld bead 9 can be obtained.
【図1】本出願に係る発明の特徴を最もよく表す図であ
る。FIG. 1 is a diagram best representing the features of the invention according to the present application.
【図2】2電極1トーチ方式の消耗電極アーク溶接終了
方法を説明する図である。FIG. 2 is a diagram illustrating a consumable electrode arc welding ending method of a two-electrode one-torch method.
【図3】2電極1トーチ方式の溶接ロボットの一般的な
構成を示す図である。FIG. 3 is a diagram showing a general configuration of a two-electrode one-torch welding robot.
【図4】従来技術1の2電極1トーチ方式の消耗電極ア
ーク溶接の終了方法を説明する図である。FIG. 4 is a diagram illustrating a method of terminating the consumable electrode arc welding of the two-electrode one-torch method of the related art 1.
【図5】図4に続く従来技術1の2電極1トーチ方式の
消耗電極アーク溶接の終了方法を説明する図である。5 is a diagram illustrating a method of terminating the consumable electrode arc welding of the two-electrode one-torch method of the related art 1 following FIG.
【図6】従来技術2のタンデムアーク溶接を行うための
装置を示す図である。FIG. 6 is a view showing an apparatus for performing tandem arc welding of Prior Art 2.
【図7】従来技術2の溶接終了時の制御方法を説明する
タイムチャートである。FIG. 7 is a time chart explaining a control method at the end of welding according to the related art 2.
【図8】被溶接物8の形状が箱形で、底板の隅肉溶接を
行う場合を説明するための図である。FIG. 8 is a diagram for explaining a case where the object to be welded 8 has a box shape and fillet welding of the bottom plate is performed.
【図9】従来技術2によって被溶接物8の形状が箱形
で、底板の隅肉溶接を行う場合の溶接終了位置P2にお
ける溶接ビード9が不均一になることを説明するための
図である。FIG. 9 is a diagram for explaining that the welding bead 9 is uneven at the welding end position P2 in the case of performing fillet welding of the bottom plate when the shape of the object to be welded 8 is box-shaped according to Conventional Technique 2. .
【図10】本発明の消耗2電極アーク溶接終了方法にお
いて、先行ワイヤ3及び後行ワイヤ4を送給し、先行ワ
イヤ3及び後行ワイヤ4がクレータ処理を行う実施例1
を説明する図である。FIG. 10 is a first embodiment in which the leading wire 3 and the trailing wire 4 are fed and the leading wire 3 and the trailing wire 4 perform crater treatment in the consumable two-electrode arc welding termination method of the present invention.
It is a figure explaining.
【図11】図10に続く本発明の消耗2電極アーク溶接
終了方法において、先行ワイヤ3及び後行ワイヤ4を送
給し、先行ワイヤ3及び後行ワイヤ4がクレータ処理を
行う実施例1を説明する図である。FIG. 11 shows Example 1 in which the leading wire 3 and the trailing wire 4 are fed and the leading wire 3 and the trailing wire 4 perform the crater treatment in the consumable two-electrode arc welding termination method of the present invention following FIG. 10. It is a figure explaining.
【図12】本発明の実施例1のロボット制御装置27が
出力する信号と溶接用トーチ4の移動速度とを示す図で
ある。FIG. 12 is a diagram showing a signal output by the robot controller 27 and a moving speed of the welding torch 4 according to the first embodiment of the present invention.
【図13】本発明の消耗2電極アーク溶接終了方法にお
いて、先行ワイヤ3及び後行ワイヤ4を送給し、後行ワ
イヤ4が第1及び第2クレータ処理を行う実施例2を説
明する図である。FIG. 13 is a diagram for explaining a second embodiment in which the leading wire 3 and the trailing wire 4 are fed and the trailing wire 4 performs the first and second crater treatments in the consumable two-electrode arc welding termination method of the present invention. Is.
【図14】図13に続く本発明の消耗2電極アーク溶接
終了方法において、先行ワイヤ3及び後行ワイヤ4を送
給し、後行ワイヤ4が第1及び第2クレータ処理を行う
実施例2を説明する図である。FIG. 14 is an embodiment 2 in which the leading wire 3 and the trailing wire 4 are fed and the trailing wire 4 performs the first and second crater treatments in the consumable two-electrode arc welding termination method of the present invention following FIG. It is a figure explaining.
【図15】本発明の消耗2電極アーク溶接終了方法にお
ける実施例2による溶接終了部を示す図である。FIG. 15 is a diagram showing a welding end portion according to a second embodiment in the consumable two-electrode arc welding end method of the present invention.
【図16】実施例2のロボット制御装置27が出力する
信号と溶接用トーチ4の移動速度とを示す図である。FIG. 16 is a diagram showing a signal output by the robot controller 27 and a moving speed of the welding torch 4 according to the second embodiment.
【図17】本発明の消耗2電極アーク溶接終了方法にお
いて、先行ワイヤ3及び後行ワイヤ4を送給し、先行ワ
イヤ3が第1及び第2クレータ処理を行う実施例3を説
明する図である。FIG. 17 is a diagram for explaining a third embodiment in which the leading wire 3 and the trailing wire 4 are fed and the leading wire 3 performs the first and second crater treatments in the consumable two-electrode arc welding termination method of the present invention. is there.
【図18】図17に続く本発明の消耗2電極アーク溶接
終了方法において、先行ワイヤ3及び後行ワイヤ4を送
給し、先行ワイヤ3が第1及び第2クレータ処理を行う
実施例3を説明する図である。FIG. 18 shows Example 3 in which, in the consumable two-electrode arc welding termination method of the present invention following FIG. 17, the preceding wire 3 and the following wire 4 are fed, and the preceding wire 3 performs the first and second crater treatments. It is a figure explaining.
【図19】本発明の消耗2電極アーク溶接終了方法にお
ける実施例3による溶接終了部を示す図である。FIG. 19 is a diagram showing a welding end portion according to a third embodiment in the consumable two-electrode arc welding end method of the present invention.
【図20】実施例3の溶接終了方法によって被溶接物8
の形状が箱形で、底板の隅肉溶接を行う場合を説明する
ための図である。FIG. 20 is a diagram showing an object to be welded 8 according to the welding termination method of the third embodiment.
Is a box-like shape, and is a diagram for explaining a case where fillet welding of the bottom plate is performed.
【図21】本発明の実施例3のロボット制御装置27が
出力する信号と溶接用トーチ14の移動速度とを示す図
である。FIG. 21 is a diagram showing a signal output by the robot controller 27 and a moving speed of the welding torch 14 according to the third embodiment of the present invention.
1 先行チップ
2 後行チップ
3 先行ワイヤ
3a 先行ワイヤ先端
4 後行ワイヤ
4a 後行ワイヤ先端
5、6 アーク
7 溶融池
8 被溶接物
9 溶接ビード
10 ノズル
11 シールドガス
13 溶融池跡
14 溶接用トーチ
15、16 クレータ処理跡
21 マニピュレータ
23 先行ワイヤ溶接用電源装置
24 後行ワイヤ溶接用電源装置
25 先行ワイヤ送給装置
26 後行ワイヤ送給装置
27 ロボット制御装置
41 (従来技術2)先行チップ
42 (従来技術2)後行チップ
44 (従来技術2)先行ワイヤ溶接用電源装置
45 (従来技術2)後行ワイヤ溶接用電源装置
46 (従来技術2)先行ワイヤ送給装置
47 (従来技術2)後行ワイヤ送給装置
48 (従来技術2)先行ワイヤ
49 (従来技術2)後行ワイヤ
50、51 (従来技術2)アーク
52 (従来技術2)溶融池
53 (従来技術2)溶接ビード
54 溶接制御装置
55 溶接ロボット
D1 後行ワイヤ第1クレータ処理距離
D2 先行ワイヤ第1クレータ処理距離
L1 溶接終了位置P2と溶接終了近傍位置P1との距
離
L2 ワイヤ先端間距離
P1 溶接終了近傍位置
P2 溶接終了位置1 Leading Tip 2 Trailing Tip 3 Leading Wire 3a Leading Wire Tip 4 Trailing Wire 4a Trailing Wire Tip 5, 6 Arc 7 Molten Pool 8 Welding Object 9 Weld Bead 10 Nozzle 11 Shield Gas 13 Molten Pool Trace 14 Welding Torch 15, 16 Crater processing trace 21 Manipulator 23 Power supply device for leading wire welding 24 Power supply device for trailing wire welding 25 Leading wire feeding device 26 Trailing wire feeding device 27 Robot controller 41 (Prior art 2) Leading tip 42 ( Prior Art 2) Trailing Tip 44 (Prior Art 2) Power Supply Device 45 for Leading Wire Welding (Prior Art 2) Power Supply Device 46 for Trailing Wire Welding (Prior Art 2) Leading Wire Feeding Device 47 (Prior Art 2) Row wire feeder 48 (Prior art 2) Lead wire 49 (Prior art 2) Trailing wires 50, 51 (Prior art 2) Arc 52 ( Prior art 2) Weld pool 53 (Conventional art 2) Weld bead 54 Welding controller 55 Welding robot D1 Trailing wire first crater treatment distance D2 Leading wire first crater treatment distance L1 Welding end position P2 and welding end vicinity position P1 Distance L2 Distance between wire tips P1 Welding end position P2 Welding end position
Claims (3)
接する消耗2電極アーク溶接終了方法において、溶接終
了近傍位置で先行ワイヤ及び後行ワイヤに通電する電流
を通常の溶接電流よりも低電流にし溶接用トーチを溶接
方向に通常の溶接速度よりも遅い速度で移動させ、溶接
終了位置で前記溶接用トーチの移動を停止して前記先行
ワイヤ及び前記後行ワイヤがクレータ処理を行う消耗2
電極アーク溶接終了方法。1. A consumable two-electrode arc welding ending method of feeding and welding two wires in one torch, wherein the current applied to the preceding wire and the following wire at a position near the end of welding is higher than that of a normal welding current. To a low current and the welding torch is moved in the welding direction at a speed slower than the normal welding speed, the movement of the welding torch is stopped at the welding end position, and the preceding wire and the trailing wire perform crater processing. Consumption 2
How to finish electrode arc welding.
接する消耗2電極アーク溶接終了方法において、溶接終
了近傍位置で先行ワイヤ及び後行ワイヤに通電する電流
を通常の溶接電流よりも低電流にし溶接用トーチを溶接
方向に通常の溶接速度よりも遅い速度で移動させ、溶接
終了位置で前記先行ワイヤの送給及び通電を停止して、
前記溶接用トーチを溶接方向に通常の溶接速度よりも遅
い速度で後行ワイヤ第1クレータ処理距離だけ移動させ
ながら前記後行ワイヤが第1クレータ処理を行い、次に
前記溶接用トーチの移動を停止して前記後行ワイヤが第
2クレータ処理を行う消耗2電極アーク溶接終了方法。2. In a consumable two-electrode arc welding ending method of feeding and welding two wires in one torch, the current applied to the leading wire and the trailing wire at a position near the end of welding is changed from a normal welding current. Low current to move the welding torch in the welding direction at a speed slower than the normal welding speed, and stop feeding and energizing the preceding wire at the welding end position,
While moving the welding torch in the welding direction at a speed slower than the normal welding speed by the trailing wire first crater treatment distance, the trailing wire performs the first crater treatment, and then moves the welding torch. A consumable two-electrode arc welding ending method in which the trailing wire is stopped and the second crater process is performed.
接する消耗2電極アーク溶接終了方法において、溶接終
了近傍位置で先行ワイヤ及び後行ワイヤに通電する電流
を通常の溶接電流よりも低電流にし溶接用トーチを溶接
方向に通常の溶接速度よりも遅い速度で移動させ、溶接
終了位置で前記後行ワイヤの送給及び通電を停止して、
前記溶接用トーチを通常の溶接方向とは逆方向に通常の
溶接速度よりも遅い速度で先行ワイヤ第1クレータ処理
距離だけ移動させながら前記先行ワイヤが第1クレータ
処理を行い、次に前記溶接用トーチの移動を停止して前
記先行ワイヤが第2クレータ処理を行う消耗2電極アー
ク溶接終了方法。3. In a consumable two-electrode arc welding termination method of feeding and welding two wires in one torch, the current applied to the preceding wire and the trailing wire at a position near the end of welding is set to be lower than the normal welding current. Low current to move the welding torch in the welding direction at a speed slower than the normal welding speed, and stop feeding and energizing the trailing wire at the welding end position,
The preceding wire performs the first crater treatment while moving the welding torch in the direction opposite to the normal welding direction at a speed slower than the normal welding speed by the first crater treatment distance, and then for the welding. A consumable two-electrode arc welding ending method in which the movement of the torch is stopped and the preceding wire performs the second crater treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001348633A JP2003145270A (en) | 2001-11-14 | 2001-11-14 | Method for terminating consumable two-electrode arc welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001348633A JP2003145270A (en) | 2001-11-14 | 2001-11-14 | Method for terminating consumable two-electrode arc welding |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003145270A true JP2003145270A (en) | 2003-05-20 |
Family
ID=19161427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001348633A Pending JP2003145270A (en) | 2001-11-14 | 2001-11-14 | Method for terminating consumable two-electrode arc welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003145270A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005254242A (en) * | 2004-03-09 | 2005-09-22 | Yaskawa Electric Corp | Welding system |
WO2007144997A1 (en) * | 2006-06-14 | 2007-12-21 | Panasonic Corporation | Method of controlling arc welding |
JP2009119501A (en) * | 2007-11-16 | 2009-06-04 | Panasonic Corp | Welding equipment |
JP2009154173A (en) * | 2007-12-26 | 2009-07-16 | Daihen Corp | Ending control method of two-wire welding |
JP2013059767A (en) * | 2011-09-12 | 2013-04-04 | Daihen Corp | Method for controlling crater in two-wire welding |
JP2013075303A (en) * | 2011-09-30 | 2013-04-25 | Daihen Corp | Method for controlling crater of two-wire welding |
CN103157898A (en) * | 2011-12-15 | 2013-06-19 | 日铁住金溶接工业株式会社 | Welding method employing dual-electrode plasma torch |
CN115488468A (en) * | 2022-09-27 | 2022-12-20 | 江苏科技大学 | Method for optimizing surface flatness of deposited layer in double-tungsten-electrode argon arc additive manufacturing |
-
2001
- 2001-11-14 JP JP2001348633A patent/JP2003145270A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005254242A (en) * | 2004-03-09 | 2005-09-22 | Yaskawa Electric Corp | Welding system |
JP4501105B2 (en) * | 2004-03-09 | 2010-07-14 | 株式会社安川電機 | Welding system |
WO2007144997A1 (en) * | 2006-06-14 | 2007-12-21 | Panasonic Corporation | Method of controlling arc welding |
US8742291B2 (en) | 2006-06-14 | 2014-06-03 | Panasonic Corporation | Method of controlling arc welding in a tandem arc welding system |
JP2009119501A (en) * | 2007-11-16 | 2009-06-04 | Panasonic Corp | Welding equipment |
JP2009154173A (en) * | 2007-12-26 | 2009-07-16 | Daihen Corp | Ending control method of two-wire welding |
JP2013059767A (en) * | 2011-09-12 | 2013-04-04 | Daihen Corp | Method for controlling crater in two-wire welding |
JP2013075303A (en) * | 2011-09-30 | 2013-04-25 | Daihen Corp | Method for controlling crater of two-wire welding |
CN103157898A (en) * | 2011-12-15 | 2013-06-19 | 日铁住金溶接工业株式会社 | Welding method employing dual-electrode plasma torch |
CN115488468A (en) * | 2022-09-27 | 2022-12-20 | 江苏科技大学 | Method for optimizing surface flatness of deposited layer in double-tungsten-electrode argon arc additive manufacturing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5278426B2 (en) | Composite welding method and composite welding apparatus | |
JP5206831B2 (en) | Arc welding control method | |
KR102134045B1 (en) | Adaptable rotating arc welding method and system | |
JPH0655268A (en) | Welding robot | |
JP4058099B2 (en) | Two-electrode arc welding end method | |
JP2003145270A (en) | Method for terminating consumable two-electrode arc welding | |
JP4864232B2 (en) | Consumable two-electrode arc welding end method, welding end control method, and welding robot | |
JP4864233B2 (en) | Consumable two-electrode arc welding end method, welding end control method, and welding robot | |
JP2001113373A (en) | Control method of tandem arc welding | |
JP2001113373A5 (en) | ||
JP4391877B2 (en) | Heat input control DC arc welding / pulse arc welding switching welding method | |
JP4322431B2 (en) | Consumable electrode arc welding method | |
JP3367791B2 (en) | High-speed horizontal fillet welding method | |
KR101138659B1 (en) | Consumable electrode arc welding method | |
JP2010064086A (en) | Composite welding method and composite welding apparatus | |
JP2005028411A (en) | Welding apparatus and welding method | |
JP2004223584A (en) | Welding device and welding method | |
JPS6048271B2 (en) | Arc welding method | |
JP4571346B2 (en) | Tandem arc welding method | |
JP2004276084A (en) | Consumable electrode gas shielded arc welding torch | |
CN101837505B (en) | Arc ending control method of double-electrode arc welding | |
JPH054185B2 (en) | ||
JP2010207882A5 (en) | ||
JP2004042121A (en) | Consumable electrode type gas shielded arc welding method | |
JP2024006194A (en) | Laser arc hybrid welding method |