JP2005144363A - Hydrogen separation membrane structure and its manufacturing method - Google Patents

Hydrogen separation membrane structure and its manufacturing method Download PDF

Info

Publication number
JP2005144363A
JP2005144363A JP2003387017A JP2003387017A JP2005144363A JP 2005144363 A JP2005144363 A JP 2005144363A JP 2003387017 A JP2003387017 A JP 2003387017A JP 2003387017 A JP2003387017 A JP 2003387017A JP 2005144363 A JP2005144363 A JP 2005144363A
Authority
JP
Japan
Prior art keywords
substrate
particles
hole
holes
membrane structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003387017A
Other languages
Japanese (ja)
Inventor
Katsuya Kobayashi
克也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003387017A priority Critical patent/JP2005144363A/en
Publication of JP2005144363A publication Critical patent/JP2005144363A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the falling-off, positional shift and volumetric change of particles are caused when the pore parts of a metal base material are filled with particles of ceramics or the like to bake the particles and an expected capacity is not obtained as a hydrogen permeable membrane. <P>SOLUTION: Through-holes 12 filled with ceramics particles 13 are formed to a substrate 11 so that the opening areas thereof become different mutually at both end opening parts and the hydrogen permeable membrane 14 is formed on the surface on the side large in opening area of each of the through-holes. Since the hydrogen permeable membrane is formed on the side large in opening area of each of the through-holes formed to the substrate, the falling-off of the particles can be suppressed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は燃料電池等に供給する水素含有ガスから不純物を除去するための水素分離膜およびその製造方法に関する。   The present invention relates to a hydrogen separation membrane for removing impurities from a hydrogen-containing gas supplied to a fuel cell or the like, and a method for manufacturing the same.

水素分離膜の従来技術として特許文献1に示したようなものが知られている。これは水素透過性および耐久性を向上させることを目的として、金属製基材に設けた多数の孔部に金属またはセラミクスの粒子を埋め込み、その表面にPdを含有する水素透過性膜をイオンプレーティング等の化学めっき法により形成したものである。
特開2002−239352公報
A conventional hydrogen separation membrane as shown in Patent Document 1 is known. The purpose of this is to improve hydrogen permeability and durability, by embedding metal or ceramic particles in a large number of holes provided in a metal base material, and forming a hydrogen permeable membrane containing Pd on its surface. It is formed by a chemical plating method such as tinting.
JP 2002-239352 A

金属製基材の孔部にセラミック等の粒子を充填、焼成した場合に粒子の脱落や位置ずれが起こり、または体積変化によるめっき面粗度の悪化が生じることから、水素透過膜として所期の性能が得られないことがある。   When particles such as ceramics are filled and fired in the holes of a metal substrate, the particles may fall off or be displaced, or the plating surface roughness may deteriorate due to volume changes. Performance may not be obtained.

本発明は次のような水素分離膜構造体を形成する点を特徴とする。すなわち、金属またはセラミクスの粒子を充填する貫通孔をその開口面積が両端開口部にて互いに異なるように基板に形成する。
この基板には、前記貫通孔の開口面積が大である側の表面に水素透過性膜を形成したものとする。
The present invention is characterized in that the following hydrogen separation membrane structure is formed. That is, through-holes filled with metal or ceramic particles are formed in the substrate so that the opening areas thereof are different from each other at the opening portions at both ends.
In this substrate, a hydrogen permeable film is formed on the surface on the side where the opening area of the through hole is large.

また、本発明は次の工程からなる前記水素分離膜構造体の製造方法を提供する。
貫通孔がその開口面積が両端開口部にて互いに異なるように形成された基板に、前記貫通孔の開口面積が大である側の表面にフィルムを被覆する。
前記貫通孔の開口面積が小である開口部から金属またはセラミクスの粒子を充填する。
前記粒子を貫通孔内に充填した基板に加振力および前記粒子に前記フィルム方向への付勢力が作用するように遠心力を付与する。
前記フィルムを剥離したのち焼成処理を施す。
当該基板のフィルム剥離面に水素透過性膜を形成する。
The present invention also provides a method for producing the hydrogen separation membrane structure comprising the following steps.
A substrate on which the through holes are formed so that the opening areas thereof are different from each other at the opening portions at both ends is coated with a film on the surface of the through hole having the large opening area.
Metal or ceramic particles are filled from an opening having a small opening area of the through hole.
A centrifugal force is applied so that an excitation force and a biasing force in the direction of the film act on the substrate filled with the particles in the through holes.
After the film is peeled off, a baking treatment is performed.
A hydrogen permeable film is formed on the film peeling surface of the substrate.

本発明による水素分離膜構造体では、基板に形成した貫通孔の開口面積の大きい側に水素分離膜を形成したので、粒子の脱落を抑えることができる。   In the hydrogen separation membrane structure according to the present invention, since the hydrogen separation membrane is formed on the side of the through-hole formed in the substrate that has a large opening area, it is possible to suppress the dropping of particles.

本発明による水素分離膜構造体の製造方法によれば、基板の貫通孔に充填した粒子に加振と遠心力を作用させてから焼成するので、焼結後の体積変化を少なくすることができる。   According to the method for producing a hydrogen separation membrane structure according to the present invention, the particles filled in the through holes of the substrate are fired after being subjected to vibration and centrifugal force, so that the volume change after sintering can be reduced. .

図1に本発明による水素分離膜構造体の第1の実施形態を示す。図において11は金属製基板であり、その表裏を貫通する貫通孔12が多数形成してある。貫通孔12は基板11の表面側と裏面側とでその開口面積が大小異なるように、この場合半球形状もしくはテーパ孔状に形成してある。   FIG. 1 shows a first embodiment of a hydrogen separation membrane structure according to the present invention. In the figure, reference numeral 11 denotes a metal substrate having a large number of through holes 12 penetrating its front and back. In this case, the through hole 12 is formed in a hemispherical shape or a tapered hole shape so that the opening areas of the front surface side and the back surface side of the substrate 11 are different.

前記貫通孔12にはセラミクスからなる粒子13を充填したうえで、該貫通孔12の開口面積が大である側の基板表面にPd等の水素分離機能を有する水素透過性膜14が被覆してある。粒子13の材料としては、セラミクスのほか、鉄、ステンレス、ニッケル等の金属材料またはこれらの酸化物を適用することもできる。水素分離機能を持つ水素透過性膜14の材料としてはPdの他にNb、V、Ta、Zr、Fe、Ni、Pt等があり、それらを組み合わせ、またはさらに前記材料にAg、Au、Cu、B、Ni、Ru、Ce、Y等を組み合わせて使用してもよい。水素透過性膜14の被覆方法としては、めっき、スパッタ、真空蒸着等、乾式、湿式問わず、各種の成膜加工法を適用することができる。   The through holes 12 are filled with ceramic particles 13 and the surface of the substrate having the large opening area of the through holes 12 is covered with a hydrogen permeable membrane 14 having a hydrogen separation function such as Pd. is there. As a material for the particles 13, in addition to ceramics, a metal material such as iron, stainless steel, nickel, or an oxide thereof can be used. As a material of the hydrogen permeable membrane 14 having a hydrogen separation function, there are Nb, V, Ta, Zr, Fe, Ni, Pt, etc. in addition to Pd, and combinations thereof, or further, Ag, Au, Cu, B, Ni, Ru, Ce, Y, etc. may be used in combination. As a method for coating the hydrogen permeable film 14, various film forming methods such as plating, sputtering, vacuum deposition, and the like can be applied regardless of whether they are dry or wet.

この実施形態によれば、開口面積が大きい側の基板表面に水素透過性膜を形成するようにしたので、粒子の脱落を防止することができる。   According to this embodiment, since the hydrogen permeable film is formed on the surface of the substrate having the larger opening area, it is possible to prevent the particles from falling off.

図2は本発明による水素分離膜構造体の第2の実施形態である。これは、前記金属基板11を、前記貫通孔12の開口面積が大である側が外側となるように円筒状に形成したものである。この場合、水素透過性膜14は、貫通孔12の開口面積が大である円筒状基板11の外側面に形成する。   FIG. 2 shows a second embodiment of the hydrogen separation membrane structure according to the present invention. In this configuration, the metal substrate 11 is formed in a cylindrical shape so that the side where the opening area of the through hole 12 is large is the outside. In this case, the hydrogen permeable membrane 14 is formed on the outer surface of the cylindrical substrate 11 in which the opening area of the through hole 12 is large.

この実施形態によれば、円筒状基板11の外側に水素透過性膜14を形成してあるので、水素透過膜14に作用する張力により膜14自体および粒子13が脱落を起こしにくく、粒子13の保持をより確実に行わせることができる。   According to this embodiment, since the hydrogen permeable film 14 is formed outside the cylindrical substrate 11, the film 14 itself and the particles 13 are less likely to fall off due to the tension acting on the hydrogen permeable film 14. The holding can be performed more reliably.

図3は本発明による水素分離膜構造体の第3の実施形態である。これは、前記金属基板11の貫通孔12に互いに粒径の異なる数種類の粒子13を充填したものである。ただし、図示したように粒子13は貫通孔12の開口面積が小さい側ほど平均粒径が大となるように層状に充填してある。   FIG. 3 shows a third embodiment of the hydrogen separation membrane structure according to the present invention. In this case, the through holes 12 of the metal substrate 11 are filled with several kinds of particles 13 having different particle sizes. However, as shown in the figure, the particles 13 are packed in layers so that the average particle diameter becomes larger as the opening area of the through-hole 12 is smaller.

この実施形態によれば、粒径の小さい粒子で水素透過性膜14に近い側の平滑度を確保しつつ、粒径の大きい粒子を設けたことで貫通孔12を水素ガスが流れる際の圧力損失を軽減することができる。   According to this embodiment, the pressure when hydrogen gas flows through the through-holes 12 by providing particles having a large particle size while ensuring smoothness near the hydrogen permeable membrane 14 with particles having a small particle size. Loss can be reduced.

図4に前記水素分離膜構造体の製造方法に関する実施例を示す。図には、以下に説明する製造工程順に(1)〜(5)の数字を付してある。
(1)貫通孔12がその開口面積が両端開口部にて互いに異なるように形成された基板11に、前記貫通孔12の開口面積が大である側の表面にフィルム15を被覆する。
(2)前記貫通孔12内に、その開口面積が小である開口部側からスラリー化したセラミクスの粒子13を流し込んで充填する。
(3)前記粒子13を貫通孔12内に充填した基板11を、該基板のフィルム被覆面に面接触するように形成した治具16上に固定し、この治具16と共に面方向(図の左右方向)に振動させて貫通孔12内の粒子13に加振力を付与する。前記加振力の付与と共にまたはこれに前後して、前記粒子13に前記フィルム15方向への付勢力が作用する方向に遠心力を与える。この工程は、例えば基板11を固定した治具16を回転機で旋回させることにより実施する。
(4)貫通孔12内のスラリーを乾燥させたのち前記フィルム15を剥離し、高温で焼成する。
(5)その後基板11のフィルム剥離面に水素透過性膜14を成膜する。
FIG. 4 shows an embodiment relating to a method for producing the hydrogen separation membrane structure. The figures are numbered (1) to (5) in the order of the manufacturing process described below.
(1) A film 15 is coated on the surface of the through hole 12 on the side where the opening area of the through hole 12 is large, on the substrate 11 in which the opening areas of the through holes 12 are different from each other at the opening portions at both ends.
(2) Slurry ceramic particles 13 are poured into the through holes 12 from the opening side having a small opening area and filled.
(3) The substrate 11 filled with the particles 13 in the through-holes 12 is fixed on a jig 16 formed so as to come into surface contact with the film-coated surface of the substrate, and the surface direction (in the drawing) A vibration force is applied to the particles 13 in the through-holes 12 by vibrating in the horizontal direction. A centrifugal force is applied to the particles 13 in a direction in which an urging force in the direction of the film 15 acts together with or before and after the application of the excitation force. This step is performed, for example, by turning the jig 16 to which the substrate 11 is fixed using a rotating machine.
(4) After drying the slurry in the through-hole 12, the film 15 is peeled off and baked at a high temperature.
(5) Thereafter, a hydrogen permeable film 14 is formed on the film peeling surface of the substrate 11.

前記水素分離膜構造体の製造方法によれば、基板11の貫通孔12に充填した粒子13に加振と遠心力を作用させてから焼成するので、焼結後の体積変化を抑制することができる。前記加工時に治具16を用いることで、基板11に加振力および遠心力を作用させる際のフィルム15の保持強度を確保することができる。   According to the method for manufacturing the hydrogen separation membrane structure, since the particles 13 filled in the through holes 12 of the substrate 11 are fired after being subjected to vibration and centrifugal force, the volume change after sintering can be suppressed. it can. By using the jig 16 at the time of the processing, it is possible to ensure the holding strength of the film 15 when the exciting force and the centrifugal force are applied to the substrate 11.

基板11に遠心力を作用させる場合、図2に示したように基板11を円筒状に形成した場合には、円筒状基板11をその中心線の周りに回転させることにより、貫通孔12に充填した粒子に容易にかつ効果的に遠心力を付与することができる。   When a centrifugal force is applied to the substrate 11, when the substrate 11 is formed in a cylindrical shape as shown in FIG. 2, the through-hole 12 is filled by rotating the cylindrical substrate 11 around its center line. Centrifugal force can be easily and effectively applied to the particles.

図5は水素分離膜構造体の製造方法に関する第2の実施例である。これは図3に示した異なる粒径の粒子13を層状に充填した構造の水素透過膜構造体を製造するための工程に関する実施例であり、工程上は図4の(2)に対応するので、工程順に(2−1)〜(2−4)の数字を付して示してある。
(2−1)図4と同様のフィルム15を被覆した基板11を治具16上に固定し、その貫通孔12に粒径が最も小さいセラミクス粒子13aのスラリーを貫通孔12の途中まで流し込み、加振力および遠心力を加えたのち乾燥させて第1の粒子層13Aを形成する。
(2−2)次に前記第1の粒子層13Aの上から、2番目に粒径の小さいセラミクス粒子13bのスラリーを途中まで流し込み、加振力および遠心力を加えたのち乾燥させて第2の粒子層13Bを形成する。
(2−3)次に前記第2の粒子層13Bの上から、最も粒径の大きいセラミクス粒子13cのスラリーを貫通孔12がいっぱいになるまで流し込み、加振力および遠心力を加えたのち乾燥させて第3の粒子層13Cを形成する。
(2−4)フィルム15を剥離し、高温で焼成する。その後は図4の(5)と同様に水素透過性膜を被覆して完成する。なおフィルム15の剥離は、前記(2−1)の工程が終了した後であればいつでもよい。
FIG. 5 shows a second embodiment relating to a method for manufacturing a hydrogen separation membrane structure. This is an embodiment relating to a process for producing a hydrogen permeable membrane structure having a structure in which particles 13 having different particle sizes shown in FIG. 3 are packed in layers, and the process corresponds to (2) in FIG. The numbers (2-1) to (2-4) are given in the order of the steps.
(2-1) A substrate 11 coated with the same film 15 as in FIG. 4 is fixed on a jig 16, and a slurry of ceramic particles 13 a having the smallest particle size is poured into the through hole 12 to the middle of the through hole 12. The first particle layer 13A is formed by applying an excitation force and a centrifugal force and then drying.
(2-2) Next, a slurry of ceramic particles 13b having the second smallest particle diameter is poured halfway from above the first particle layer 13A, and after applying an excitation force and a centrifugal force, the slurry is dried to be second. The particle layer 13B is formed.
(2-3) Next, a slurry of ceramic particles 13c having the largest particle size is poured from above the second particle layer 13B until the through hole 12 is filled, and after applying an excitation force and a centrifugal force, drying is performed. Thus, the third particle layer 13C is formed.
(2-4) The film 15 is peeled off and fired at a high temperature. Thereafter, as in (5) of FIG. 4, a hydrogen permeable membrane is coated and completed. The film 15 may be peeled off at any time after the step (2-1) is completed.

この水素分離膜構造体の製造方法によれば、図3に示した複数の異なる粒径を有する粒子を積層構造とする際に種類の異なる粒子同士が混ざり合わないように確実に層状化することができる。   According to this method for producing a hydrogen separation membrane structure, when particles having a plurality of different particle sizes shown in FIG. 3 are formed into a laminated structure, the particles are surely layered so that different types of particles do not mix with each other. Can do.

本発明による水素分離膜構造体の第1の実施形態の要部縦断面図。The principal part longitudinal cross-sectional view of 1st Embodiment of the hydrogen separation membrane structure by this invention. 本発明による水素分離膜構造体の第2の実施形態の要部縦断面図。The principal part longitudinal cross-sectional view of 2nd Embodiment of the hydrogen separation membrane structure by this invention. 本発明による水素分離膜構造体の第3の実施形態の要部縦断面図。The principal part longitudinal cross-sectional view of 3rd Embodiment of the hydrogen separation membrane structure by this invention. 本発明による水素分離膜構造体の製造方法に関する第1の実施例の工程説明図。Process explanatory drawing of the 1st Example regarding the manufacturing method of the hydrogen separation membrane structure by this invention. 本発明による水素分離膜構造体の製造方法に関する第2の実施例の工程説明図。Process explanatory drawing of the 2nd Example regarding the manufacturing method of the hydrogen separation membrane structure by this invention.

符号の説明Explanation of symbols

11 基板
12 貫通孔
13 粒子
14 水素透過性膜
15 フィルム
16 治具
11 Substrate 12 Through-hole 13 Particle 14 Hydrogen-permeable membrane 15 Film 16 Jig

Claims (9)

多数の貫通孔を有する基板と、前記貫通孔に充填される金属またはセラミクスの粒子と、前記粒子を貫通孔に充填した状態で前記基板に被覆される水素透過性膜とを備えた水素分離膜構造体において、
前記貫通孔をその開口面積が両端開口部にて互いに異なるように形成すると共に、
前記基板には、前記貫通孔の開口面積が大である側の表面に前記水素透過性膜を形成したこと
を特徴とする水素分離膜構造体。
A hydrogen separation membrane comprising a substrate having a large number of through holes, metal or ceramic particles filled in the through holes, and a hydrogen permeable membrane coated on the substrate in the state where the particles are filled in the through holes In the structure,
While forming the through-holes so that their opening areas are different from each other at the openings at both ends,
The hydrogen separation membrane structure, wherein the hydrogen permeable membrane is formed on the surface of the substrate on the side where the opening area of the through hole is large.
前記粒子は、前記貫通孔の開口面積が小さい側ほど平均粒径が大となるように異なる粒径のものを充填した請求項1に記載の水素分離膜構造体。   2. The hydrogen separation membrane structure according to claim 1, wherein the particles are filled with particles having different particle sizes such that the smaller the opening area of the through-hole, the larger the average particle size. 前記基板を、前記貫通孔の開口面積が大である側が外側となるように円筒状に形成した請求項1に記載の水素透過膜構造体。   2. The hydrogen permeable membrane structure according to claim 1, wherein the substrate is formed in a cylindrical shape so that a side where the opening area of the through hole is large is an outside. 前記貫通孔をテーパ孔状に形成した請求項1に記載の水素透過膜構造体。   The hydrogen permeable membrane structure according to claim 1, wherein the through hole is formed in a tapered hole shape. 前記貫通孔を半球形状に形成した請求項1に記載の水素透過膜構造体。   The hydrogen permeable membrane structure according to claim 1, wherein the through hole is formed in a hemispherical shape. 貫通孔がその開口面積が両端開口部にて互いに異なるように形成された基板に、前記貫通孔の開口面積が大である側の表面にフィルムを被覆したのち、
前記貫通孔の開口面積が小である開口部から金属またはセラミクスの粒子を充填し、
前記粒子を貫通孔内に充填した基板に、加振力および前記粒子に前記フィルム方向への付勢力が作用する方向に遠心力を付与し、
前記フィルムを剥離したのち焼成処理を施し、
その後当該基板のフィルム剥離面に水素透過性膜を形成することを特徴とする水素分離膜構造体の製造方法。
After the substrate is formed so that the opening area of the through hole is different from each other at the opening at both ends, a film is coated on the surface on the side where the opening area of the through hole is large,
Filling metal or ceramic particles from an opening having a small opening area of the through-hole,
A centrifugal force is applied to the substrate filled with the particles in the through-holes in a direction in which an excitation force and a biasing force in the film direction act on the particles,
After peeling off the film, it is fired.
Thereafter, a hydrogen permeable membrane is formed on the film peeling surface of the substrate, and a method for producing a hydrogen separation membrane structure.
前記貫通孔に粒子を充填するにあたり、粒径の異なるセラミクス粒子をそれぞれスラリー化したものを、粒径毎に充填、乾燥を繰り返して貫通孔内に積層してゆくようにした請求項6に記載の水素分離膜構造体の製造方法。   7. When filling the through holes with particles, ceramic particles having different particle diameters, which are slurried, are stacked in the through holes by repeatedly filling and drying for each particle diameter. Method for producing a hydrogen separation membrane structure. 前記基板を、前記貫通孔の開口面積が大である側が外側となるように円筒状に形成し、この円筒状基板をその中心線の周りに回転させることにより、貫通孔に充填した粒子に遠心力を付与するようにした請求項6に記載の水素分離膜構造体の製造方法。   The substrate is formed in a cylindrical shape so that the side with the large opening area of the through-hole is on the outside, and the cylindrical substrate is rotated around its center line, whereby the particles filled in the through-hole are centrifuged. The method for producing a hydrogen separation membrane structure according to claim 6, wherein force is applied. 前記加振力または遠心力を付与する際に、前記基板をそのフィルム被覆面に面接触するように形成した治具上に支持して行うようにした請求項6に記載の水素分離膜構造体の製造方法。   The hydrogen separation membrane structure according to claim 6, wherein when applying the excitation force or centrifugal force, the substrate is supported on a jig formed so as to be in surface contact with the film coating surface. Manufacturing method.
JP2003387017A 2003-11-17 2003-11-17 Hydrogen separation membrane structure and its manufacturing method Pending JP2005144363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387017A JP2005144363A (en) 2003-11-17 2003-11-17 Hydrogen separation membrane structure and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387017A JP2005144363A (en) 2003-11-17 2003-11-17 Hydrogen separation membrane structure and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005144363A true JP2005144363A (en) 2005-06-09

Family

ID=34694537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387017A Pending JP2005144363A (en) 2003-11-17 2003-11-17 Hydrogen separation membrane structure and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005144363A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007172848A (en) * 2005-12-19 2007-07-05 Toyota Motor Corp Fuel cell and method of manufacturing same
EP2995368A1 (en) * 2014-09-12 2016-03-16 Korea Institute Of Machinery & Materials Method for manufacturing nanoholes and filter manufactured by the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007172848A (en) * 2005-12-19 2007-07-05 Toyota Motor Corp Fuel cell and method of manufacturing same
EP2995368A1 (en) * 2014-09-12 2016-03-16 Korea Institute Of Machinery & Materials Method for manufacturing nanoholes and filter manufactured by the same

Similar Documents

Publication Publication Date Title
JP4879883B2 (en) Multistage nanohole array metal membrane production method and gas / ion species selective membrane production method supported by the membrane structure
EP2045001B1 (en) Ceramic filter
JP2007536071A (en) Device having a membrane on a carrier and method for producing such a membrane
US7125440B2 (en) Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use
JP2006095521A (en) Composite membrane, process for producing the same, and hydrogen separation membrane
JP6185391B2 (en) Porous sintered body and method for producing porous sintered body
JP2007301514A (en) Hydrogen separation material and its manufacturing method
JP2005144363A (en) Hydrogen separation membrane structure and its manufacturing method
US7144444B2 (en) Hydrogen separation membrane, hydrogen separation unit, and manufacturing method for hydrogen separation membrane
JP5822094B2 (en) Electrode plate, wound electrode group and cylindrical battery
JP2005013853A (en) Hydrogen separation body and its production method
US7749305B1 (en) Composite structure for high efficiency hydrogen separation containing preformed nano-particles in a bonded layer
JP4429318B2 (en) Hydrogen gas separator having a composite structure for separating hydrogen with high efficiency, and method for producing and using the same
JP4514560B2 (en) Cylindrical ceramic porous body, manufacturing method thereof, and ceramic filter using the same
US9222168B2 (en) Forming method of laminated structure by internal oxidation
KR20110108921A (en) Membrane module for hydrogen separation and binding method thereof
JP2002052326A (en) Manufacturing method for hydrogen separation membrane
JP2016048724A (en) Manufacturing method of electronic component and film forming device
JP2010188262A (en) Hydrogen separation base material and method for manufacturing the same
WO2021235116A1 (en) Filter
CN101563482B (en) Porous titanium having low contact resistance
JPH06114247A (en) Metallic separation membrane
KR20070019723A (en) Gas/ion Species Selective Membrane Supported by Multi-Stage Nano-Hole Array Metal Structure
JP2004034414A (en) Porous metallic material and its production method
JP2006055831A (en) Hydrogen separation membrane and its manufacturing method