JP2005144206A - Fine ozone bubble liquid generator - Google Patents
Fine ozone bubble liquid generator Download PDFInfo
- Publication number
- JP2005144206A JP2005144206A JP2003380716A JP2003380716A JP2005144206A JP 2005144206 A JP2005144206 A JP 2005144206A JP 2003380716 A JP2003380716 A JP 2003380716A JP 2003380716 A JP2003380716 A JP 2003380716A JP 2005144206 A JP2005144206 A JP 2005144206A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- ozone
- bubble
- fine
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
本発明は、オゾン気泡液生成装置に関し、さらに詳しくは農業用、漁業用、医療用などの分野での殺菌の用途あるいは排水処理などに利用されるものであり、医療器具殺菌水生成装置、産業用殺菌水生成装置、魚調理室の殺菌防臭水生成装置、店舗臭気除去水生成装置、少量有害有機物分解装置などとして利用されるものである。 The present invention relates to an ozone bubble liquid generation device, and more particularly, is used for sterilization use or wastewater treatment in fields such as agriculture, fishery, and medical, and a medical instrument sterilization water generation device, industrial It is used as a sterilizing water generating device, a sterilizing and deodorizing water generating device in a fish cooking room, a store odor removing water generating device, a small amount of harmful organic matter decomposing device, and the like.
従来より、オゾン含有ガスと水とポンプを使用したオゾン水生成法としては、ポンプ出口にエジェクターを設けるか、キャビテーションポンプに直接吸込ませ、オゾン含有ガスと水とを混合してオゾンを溶解させ、水槽内に吹出しオゾン気泡を除去した後、オゾン水を生成するという方法が採用されている。
特許文献1のオゾン水生成装置においては、ミキシングポンプによってオゾンガスと水を混合し脱泡器でオゾンガス気泡を除去してオゾン水を得ている。
しかしながら、これらの従来の方法では、気泡を除去した溶解オゾンのみによる作用のため、余剰オゾンが活用されず酸化力が弱く、また、溶解オゾンによる直接酸化のため反応速度が遅いという欠点がある。
In the ozone water generator of
However, these conventional methods have the disadvantages that, due to the action of only dissolved ozone from which bubbles are removed, surplus ozone is not utilized and the oxidizing power is weak, and the reaction rate is slow due to direct oxidation by dissolved ozone.
オゾン利用効率及び酸化力を向上させたオゾン気泡液生成装置を提供するものである。 The present invention provides an ozone bubble liquid generating device with improved ozone utilization efficiency and oxidizing power.
すなわち、本発明は、以下の構成を採用するものである。
1.オゾン生成手段から供給されたオゾン含有気体が、液体循環ポンプの液体流入管路を経由して液体循環ポンプ内に供給されて気液混合液体となり、該気液混合液体が、前記液体循環ポンプの液体流出管路に接続されてオゾン気泡液生成槽内に配設された微細気泡生成手段に供給され、かつ液体を満たしたオゾン気泡液生成槽内に放出されるオゾン気泡液生成装置であって、前記微細気泡生成手段に至る前記気液混合液体の圧力が0.1〜0.5MPaの範囲に保持されることを特徴とする微細オゾン気泡液生成装置。
2.前記微細気泡生成手段から放出される気泡径の最頻値が20mμ以下であることを特徴とする第1の発明に記載の微細オゾン気泡液生成装置。
3.前記液体循環ポンプの液体流入管路が気液混合装置を具備することを特徴とする第1または2の発明に記載の微細オゾン気泡液生成装置。
4.前記オゾン気泡液生成槽の上部に排気出口と微細オゾン気泡液出口を有することを特徴とする第1〜3の発明のいずれかに記載の微細オゾン気泡液生成装置。
That is, the present invention employs the following configuration.
1. The ozone-containing gas supplied from the ozone generating means is supplied into the liquid circulation pump via the liquid inflow line of the liquid circulation pump to become a gas-liquid mixed liquid, and the gas-liquid mixed liquid is supplied to the liquid circulation pump. An ozone bubble liquid generating apparatus connected to a liquid outflow pipe and supplied to a fine bubble generating means disposed in an ozone bubble liquid generating tank and discharged into an ozone bubble liquid generating tank filled with a liquid. The fine ozone bubble liquid generating apparatus, wherein the pressure of the gas-liquid mixed liquid reaching the fine bubble generating means is maintained in a range of 0.1 to 0.5 MPa.
2. The mode of the bubble diameter discharged from the fine bubble generating means is 20 mμ or less, The fine ozone bubble liquid generating device according to the first invention, characterized in that:
3. The fine ozone bubble liquid generation device according to the first or second invention, wherein the liquid inflow conduit of the liquid circulation pump includes a gas-liquid mixing device.
4). The fine ozone bubble liquid generation device according to any one of the first to third aspects, further comprising an exhaust outlet and a fine ozone bubble liquid outlet at an upper part of the ozone bubble liquid generation tank.
本発明におけるオゾン気泡水生成装置で生成されるオゾン気泡の平均的直径は約15μm程度以下の微細気泡であるため、気泡の表面積が大きく、気泡数が多く、かつ気泡存在時間が長く、酸化力の持続時間が長く酸化力に優れる。また、溶解オゾンによる直接酸化と気泡表面およびオゾンが酸素ガスに変化する過程で発生する活性酸素種による間接酸化の総合効果により大きな酸化力を有する。このため、本発明の微細オゾン気泡水生成装置は、種々の産業分野での殺菌水生成の実用機として優れた能力を発揮する事が可能である。 Since the average diameter of ozone bubbles generated by the ozone bubble water generator in the present invention is a fine bubble of about 15 μm or less, the surface area of the bubbles is large, the number of bubbles is large, the bubble existence time is long, and the oxidizing power It has a long duration and excellent oxidizing power. Moreover, it has a large oxidizing power due to the combined effect of direct oxidation by dissolved ozone and indirect oxidation by active oxygen species generated in the process of changing the bubble surface and ozone into oxygen gas. For this reason, the fine ozone bubble water production | generation apparatus of this invention can demonstrate the capability outstanding as a practical machine of the sterilization water production | generation in various industrial fields.
本発明における液体とは、オゾン含有気体を微細気体として含有でき、オゾンによる酸化作用を発現可能な液体であれば特に限定されるものではないが、水道水、純水、有機物含有水、工業排水、農業、水産、畜産業排水、医療排水、生活排水などの水が好ましく、淡水でも海水などでもよい。
本発明におけるオゾン生成手段とは、市販されている一般的なオゾン発生装置であればよく、これらの装置から供給されるオゾン含有気体とは、オゾンを含んだ空気、又はオゾンを含んだ酸素ガスなどである。
オゾン生成手段から供給されたオゾン含有気体は、液体循環ポンプの液体流入管路を経由して液体循環ポンプ内に供給されて気液混合液体となる。
ポンプの吸込み側羽根車付近に供給されると、ポンプ内部の攪拌作用により気液混合状態とすることができるが、液体流入管路に気液混合装置を具備させることが好ましい。気液混合装置は、内部がハニカム格子状になった短管であることが好ましい。これによりポンプが空転する事なく安定的に供給される。
The liquid in the present invention is not particularly limited as long as it can contain an ozone-containing gas as a fine gas and can exhibit an oxidizing action by ozone, but tap water, pure water, organic matter-containing water, industrial wastewater Water such as agriculture, fisheries, livestock industry drainage, medical drainage, and domestic wastewater is preferable, and fresh water or seawater may be used.
The ozone generation means in the present invention may be a commercially available general ozone generator, and the ozone-containing gas supplied from these devices is air containing ozone or oxygen gas containing ozone. Etc.
The ozone-containing gas supplied from the ozone generating means is supplied into the liquid circulation pump via the liquid inflow conduit of the liquid circulation pump to become a gas-liquid mixed liquid.
When supplied near the suction side impeller of the pump, a gas-liquid mixing state can be brought about by the stirring action inside the pump, but it is preferable to provide a gas-liquid mixing device in the liquid inflow conduit. The gas-liquid mixing device is preferably a short tube having an internal honeycomb lattice shape. As a result, the pump is stably supplied without idling.
オゾン含有気液混合液体は、液体循環ポンプの液体流出管路からオゾン気泡液生成槽内下部に配設された微細気泡生成手段に供給されて液体を満たしたオゾン気泡液生成槽内に放出される。
微細気泡生成手段に到達する直前の気液混合液体の直前の圧力は、0.1〜0.5MPaの範囲に保持することが必要である。0.1MPaを下回ると酸化力が低下する傾向があり、0.05MPa以下では気泡が大きく酸化力が低下する。0.5MPaを越えると気泡同士の衝突により気泡が合成され大きくなり酸化力は低下する。最大の酸化力は0.3MPa 程度の圧力において発生するので0.3MPa 前後で使用するのが最適である。微細オゾン気泡は生成後10分から20分間は存在し、気泡表面で間接酸化を行い酸化作用が強力でかつ速いため、上記課題を解決できる。
The ozone-containing gas-liquid mixed liquid is supplied from the liquid outflow line of the liquid circulation pump to the fine bubble generating means disposed in the lower part of the ozone bubble liquid generation tank and released into the ozone bubble liquid generation tank filled with the liquid. The
The pressure immediately before the gas-liquid mixed liquid immediately before reaching the fine bubble generating means needs to be maintained in the range of 0.1 to 0.5 MPa. When the pressure is less than 0.1 MPa, the oxidizing power tends to decrease. When the pressure is 0.05 MPa or less, the bubbles are large and the oxidizing power is decreased. If the pressure exceeds 0.5 MPa, the bubbles are synthesized and enlarged due to the collision between the bubbles, and the oxidizing power is reduced. Since the maximum oxidizing power is generated at a pressure of about 0.3 MPa, it is optimal to use it at around 0.3 MPa. The fine ozone bubbles are present for 10 to 20 minutes after generation, and the indirect oxidation is performed on the surface of the bubbles and the oxidizing action is strong and fast, so that the above problem can be solved.
本発明における微細気泡生成手段としては、市販の微細気泡発生装置を使用することができるが、圧力流体を装置内に送り込み、送り込まれた流体で装置内に旋回流を発生させるものが好ましく、旋回流の回転せん断力、遠心力と旋回流中心部の陰圧の吸引力と利用して、混合気体をせん断するものがより好ましい。
かかる微細気泡生成手段を用いることにより、気泡径が10〜20mμ程度となり、気泡の上昇速度は極めて小さくなるため、長時間液体中に留まり、溶存効率が高くなる。また、僅かな流れに乗って拡がるため、水平方向の拡散性能に優れる。
本発明における気泡径は、平均径が15mμ程度が好ましい。気泡径がmμオーダーにまで小さくなりすぎると、気体の液中への溶出が促進されるため、本発明のオゾンの直接酸化と間接酸化との総合効果による酸化力の発現は得られにくくなる。
As the fine bubble generating means in the present invention, a commercially available fine bubble generating device can be used, but it is preferable that a pressure fluid is fed into the device and a swirling flow is generated in the device by the fed fluid. It is more preferable that the mixed gas is sheared by using the rotational shear force of the flow, the centrifugal force, and the suction force of the negative pressure at the center of the swirling flow.
By using such fine bubble generating means, the bubble diameter becomes about 10 to 20 mμ and the rising speed of the bubbles becomes extremely small, so that it stays in the liquid for a long time and the dissolution efficiency is increased. Moreover, since it spreads on a slight flow, it has excellent horizontal diffusion performance.
The bubble diameter in the present invention is preferably about 15 mμ in average diameter. When the bubble diameter becomes too small to the order of mμ, elution of gas into the liquid is promoted, and therefore it is difficult to obtain the expression of oxidizing power by the combined effect of direct oxidation and indirect oxidation of ozone of the present invention.
低濃度の微細オゾン気泡含有液を生成する場合は一過性としてユーザープロセスへ送り、高濃度の微細オゾン気泡含有液を生成する場合は反応槽からポンプの吸込み配管へ一部戻す配管を設けることができる。 When producing a low-concentration fine ozone bubble-containing liquid, send it to the user process as a transient, and when creating a high-concentration fine ozone bubble-containing liquid, install a pipe that partially returns from the reaction tank to the pump suction pipe. Can do.
以下、本発明の実施の形態について図面と共に説明する。
図1は本発明の微細オゾン気泡液生成装置の概略模式図である。槽(容器)1へ液注入装置2を通して所定の水位まで液を満たす。液体循環ポンプ3により液は循環される。一方、オゾン発生装置4からオゾンを含んだ空気、又はオゾンを含んだ酸素ガスが、液体流入管路を経由して液体循環ポンプ内、すなわち、ポンプの吸込み側羽根車付近に供給され、ポンプ内部の攪拌作用により気液混合状態となる。次に、液はポンプ液体流出管路に接続されて容器1の内部に配設された微細気泡発生装置5から微細気泡として放出される。運転開始から5分以内に容器内部のオゾン濃度は飽和に達する。最適な酸化力を得るために微細気泡発生装置5の直前に取付けられた圧力計7の数値(微細気泡発生装置前圧力)により循環量を調整する。余剰オゾンガスは容器上部に配置された活性炭オゾン処理装置6によって無害化される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of a fine ozone bubble liquid generator of the present invention. The tank (container) 1 is filled with liquid through the
以下、本発明を実施例によって具体的に説明するが、本発明は下記の実施例に限定されるものではない。
(1)オゾン濃度の測定方法
中性ヨウ化カリウム溶液からオゾンによって遊離したI3 -の吸光度を測定して定量する方法を採用した。当分析は衛生試験方法・注解 P.1040 4.4.11.1中性ヨウ化カリウム法による定量を参考に、オゾン水用に改良した分析方法である。
試薬として、標準液:0.05mol/L I2溶液10.0mlを採り、HCL0.5mlを加え、でんぷんを指示薬として0.01mol/L Na2S2O3溶液で滴定する。この滴定液をYmlとする。0.05mol/L I2溶液89.3/(Y×f)ml(fは0.1mol/L溶液のファクター)を採り、水を加えて100.0mlとし、さらに希釈液で100倍に希釈して標準溶液とする。(標準溶液1.0ml=1μlO3)
希釈液:KH2PO413.61g、Na2HPO4 ・12H2O 35.82gおよびKI10.0gを、純水に溶かして800mlとし、10%NaOH溶液および10% H3PO4溶液を用いてpHを6.8〜7.2に調整し、水を加えて1000mlとする。
検量線として、標準溶液を段階的に希釈したものと、希釈液を1:1で混合し350nm付近の極大波長における吸光度を測定する。
試験操作として、試料であるオゾン水と希釈液を1:1で混合し、検量線と同様に吸光度を測定し、オゾン濃度を求めた。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to the following Example.
(1) Measuring method of ozone concentration A method of measuring and quantifying the absorbance of I 3 − liberated by ozone from a neutral potassium iodide solution was adopted. This analysis is based on hygiene test methods and commentary. 1040 4.4.1.11 This is an analytical method improved for ozone water with reference to the determination by the neutral potassium iodide method.
As a reagent, take 10.0 ml of a standard solution: 0.05 mol / LI 2 solution, add 0.5 ml of HCL, and titrate with 0.01 mol / L Na 2 S 2 O 3 solution using starch as an indicator. This titrant is designated as Yml. Take 89.3 / (Y × f) ml of 0.05mol / LI 2 solution (f is a factor of 0.1mol / L solution), add water to make 100.0ml, and further dilute 100 times with diluent to make a standard solution . (Standard solution 1.0ml = 1μlO 3 )
Diluent: KH 2 PO413.61 g, Na 2 HPO 4 · 12H 2 O 35.82 g and KI 10.0 g are dissolved in pure water to 800 ml, and pH is adjusted using 10% NaOH solution and 10% H 3 PO 4 solution. Adjust to 6.8-7.2 and add water to make 1000ml.
As a calibration curve, the standard solution is diluted stepwise and the diluted solution is mixed 1: 1, and the absorbance at the maximum wavelength near 350 nm is measured.
As a test operation, ozone water as a sample and a diluent were mixed at a ratio of 1: 1, and the absorbance was measured in the same manner as the calibration curve to determine the ozone concentration.
(2)気泡径の測定方法
微細気泡を所定の条件で発生させて安定したところで装置を停止し、透明な装置側面から光を照射しながら透明な壁面にデジタルカメラを接写させ撮影した。画像にはスケールが同一画面に写し込んであり、縦横比から泡の径を測定した(n=100)。
(2) Method for measuring bubble diameter When fine bubbles were generated under a predetermined condition and the device was stabilized, the device was stopped, and a digital camera was photographed on a transparent wall while irradiating light from the side of the transparent device. In the image, the scale was imprinted on the same screen, and the bubble diameter was measured from the aspect ratio (n = 100).
[比較例1]
図1の装置において、オゾン発生装置は住友精密機械社製、微細気泡発生装置はバブルタンク社製を使用し、オゾン含有ガス流量50ml/min、オゾン供給量0.1g/10分、ポンプ循環量10L/minで10分間運転後、ポンプと同時に停止したオゾン供給停止から3分後のオゾン濃度は1ppmで、かつ20分後のオゾン濃度は0.1ppmであった。なお、気泡径の最頻値(最も数の多いもの)は、10〜20mμであった。また、ポンプ圧力は0.07MPaであった。結果を表1に記す。
[Comparative Example 1]
In the apparatus shown in FIG. 1, the ozone generator is manufactured by Sumitomo Precision Machinery Co., Ltd., and the fine bubble generator is manufactured by Bubble Tank. The ozone-containing gas flow rate is 50 ml / min, the ozone supply amount is 0.1 g / 10 minutes, and the pump circulation rate. After 10 minutes of operation at 10 L / min, the ozone concentration after 3 minutes from the stop of ozone supply simultaneously with the pump was 1 ppm, and the ozone concentration after 20 minutes was 0.1 ppm. In addition, the mode value (the one with the largest number) of the bubble diameter was 10 to 20 mμ. The pump pressure was 0.07 MPa. The results are shown in Table 1.
[実施例1]
図1の装置において、オゾン発生装置は住友精密機械製、微細気泡発生装置を使用し、オゾン含有ガス流量200ml/min,オゾン供給量0.3g/10分、ポンプ循環量15L/minで10分間運転後、ポンプと同時に停止したオゾン供給停止から3分後のオゾン濃度は16ppmで、かつ20分後のオゾン濃度は11.3ppmであった。なお、気泡径の最頻値は、10〜20mμであった。また、ポンプ圧力は0.1MPaであった。結果を表1に記す。
[Example 1]
In the apparatus of FIG. 1, the ozone generator uses a fine bubble generator manufactured by Sumitomo Precision Machinery, and the ozone-containing gas flow rate is 200 ml / min, the ozone supply rate is 0.3 g / 10 minutes, and the pump circulation rate is 15 L / min for 10 minutes. After the operation, the ozone concentration after 3 minutes from the stop of ozone supply simultaneously with the pump was 16 ppm, and the ozone concentration after 20 minutes was 11.3 ppm. The mode value of the bubble diameter was 10 to 20 mμ. The pump pressure was 0.1 MPa. The results are shown in Table 1.
[実施例2]
実施例1において、ポンプ循環量を20L/minに変更する以外は実施例1と同様にして微細オゾン気泡水を生成させて評価したところ、3分後のオゾン濃度は31ppmで、かつ20分後のオゾン濃度は21ppmであった。また、気泡径の最頻値は、10〜20mμであり、ポンプ圧力は0.2MPaであった。結果を表1に記す。
[Example 2]
In Example 1, fine ozone bubble water was generated and evaluated in the same manner as in Example 1 except that the pump circulation rate was changed to 20 L / min. The ozone concentration after 3 minutes was 31 ppm and after 20 minutes. The ozone concentration of was 21 ppm. Further, the mode value of the bubble diameter was 10 to 20 mμ, and the pump pressure was 0.2 MPa. The results are shown in Table 1.
[実施例3]
実施例1において、ポンプ循環量を30L/minに変更する以外は実施例1と同様にして微細オゾン気泡水を生成させて評価したところ、3分後のオゾン濃度は41ppmで、かつ20分後のオゾン濃度は27ppmであった。また、気泡径の最頻値は、10〜20mμであり、ポンプ圧力は0.3MPaであった。結果を表1に記す。
[Example 3]
In Example 1, fine ozone bubble water was generated and evaluated in the same manner as in Example 1 except that the pump circulation rate was changed to 30 L / min. The ozone concentration after 3 minutes was 41 ppm, and after 20 minutes. The ozone concentration of was 27 ppm. The mode value of the bubble diameter was 10 to 20 mμ, and the pump pressure was 0.3 MPa. The results are shown in Table 1.
[実施例4]
実施例1において、ポンプ循環量を40L/minに変更する以外は実施例1と同様にして微細オゾン気泡水を生成させて評価したところ、3分後のオゾン濃度は31ppmで、かつ20分後のオゾン濃度は23ppmであった。また、気泡径の最頻値は、10〜20mμであり、ポンプ圧力は0.4MPaであった。結果を表1に記す。
[Example 4]
In Example 1, fine ozone bubble water was generated and evaluated in the same manner as in Example 1 except that the pump circulation rate was changed to 40 L / min. The ozone concentration after 3 minutes was 31 ppm and after 20 minutes. The ozone concentration of was 23 ppm. The mode value of the bubble diameter was 10 to 20 mμ, and the pump pressure was 0.4 MPa. The results are shown in Table 1.
[実施例5]
実施例1において、ポンプ循環量を45L/minに変更する以外は実施例1と同様にして微細オゾン気泡水を液生成させて評価したところ、3分後のオゾン濃度は24ppmで、かつ20分後のオゾン濃度は18ppmであった。また、気泡径の最頻値は、10〜20mμであり、ポンプ圧力は0.5であった。結果を表1に記す。
[Example 5]
In Example 1, except that the pump circulation rate was changed to 45 L / min, and evaluation was made by generating fine ozone bubble water in the same manner as in Example 1, the ozone concentration after 3 minutes was 24 ppm and 20 minutes. The later ozone concentration was 18 ppm. The mode value of the bubble diameter was 10 to 20 mμ, and the pump pressure was 0.5. The results are shown in Table 1.
[比較例2]
実施例1において、ポンプ循環量を50L/minに変更する以外は実施例1と同様にして微細オゾン気泡水を生成させて評価したところ、3分後のオゾン濃度は15ppmで、かつ20分後のオゾン濃度は8ppmであった。また、気泡径の最頻値は、10〜20mμであり、ポンプ圧力は0.55MPaであった。結果を表1に記す。
[Comparative Example 2]
In Example 1, fine ozone bubble water was generated and evaluated in the same manner as in Example 1 except that the pump circulation rate was changed to 50 L / min. The ozone concentration after 3 minutes was 15 ppm and after 20 minutes. The ozone concentration of was 8 ppm. The mode value of the bubble diameter was 10 to 20 mμ, and the pump pressure was 0.55 MPa. The results are shown in Table 1.
本発明におけるオゾン気泡液生成装置により得られたオゾン気泡含有水は、気泡存在時間が長く、酸化力の持続時間が長く酸化力に優れ、溶解オゾンによる直接酸化と気泡表面による間接酸化の総合効果により大きな酸化力を有する。このため、本発明の微細オゾン気泡水生成装置は、水道水、純水、有機物含有水、工業排水、農業、水産、畜産業排水、医療排水、生活排水など、淡水、海水をとわず、単独であるいは他の殺菌手段、浄化手段などと併用されて、種々の産業分野での殺菌水生成装置や排水処理設備などに利用する事が可能である。 The ozone bubble-containing water obtained by the ozone bubble liquid generator in the present invention has a long bubble existence time, a long duration of oxidation power and excellent oxidation power, and a comprehensive effect of direct oxidation by dissolved ozone and indirect oxidation by the bubble surface Has greater oxidizing power. For this reason, the fine ozone bubble water generator of the present invention is not limited to tap water, pure water, organic substance-containing water, industrial wastewater, agriculture, fisheries, livestock industry wastewater, medical wastewater, domestic wastewater, etc. It can be used alone or in combination with other sterilization means, purification means, etc., and can be used for sterilization water generators and wastewater treatment facilities in various industrial fields.
1:槽
2:薬注装置
3:循環ポンプ
4:オゾン発生装置
5:微細気泡発生装置
6:活性炭オゾン処理装置
7:圧力計
1: Tank 2: Chemical injection device 3: Circulation pump 4: Ozone generator 5: Fine bubble generator 6: Activated carbon ozone treatment device 7: Pressure gauge
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003380716A JP2005144206A (en) | 2003-11-11 | 2003-11-11 | Fine ozone bubble liquid generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003380716A JP2005144206A (en) | 2003-11-11 | 2003-11-11 | Fine ozone bubble liquid generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005144206A true JP2005144206A (en) | 2005-06-09 |
Family
ID=34690302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003380716A Pending JP2005144206A (en) | 2003-11-11 | 2003-11-11 | Fine ozone bubble liquid generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005144206A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008126110A (en) * | 2006-11-17 | 2008-06-05 | Hitachi Ltd | Process controller of water treatment facility |
JP2010227780A (en) * | 2009-03-26 | 2010-10-14 | Panasonic Electric Works Co Ltd | Gas dissolving apparatus |
JP2011218308A (en) * | 2010-04-12 | 2011-11-04 | Asupu:Kk | Gas-dissolved liquid generating apparatus and method for generation |
-
2003
- 2003-11-11 JP JP2003380716A patent/JP2005144206A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008126110A (en) * | 2006-11-17 | 2008-06-05 | Hitachi Ltd | Process controller of water treatment facility |
JP4711937B2 (en) * | 2006-11-17 | 2011-06-29 | 株式会社日立製作所 | Process control equipment for water treatment facilities |
JP2010227780A (en) * | 2009-03-26 | 2010-10-14 | Panasonic Electric Works Co Ltd | Gas dissolving apparatus |
JP2011218308A (en) * | 2010-04-12 | 2011-11-04 | Asupu:Kk | Gas-dissolved liquid generating apparatus and method for generation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW482744B (en) | Process for enriching a liquid with oxygen and apparatus for enriching a liquid with oxygen to an oxygen concentration of at least 40 mg/l. | |
JP2016221513A (en) | Measurable ultra-fine bubble water having oxidizing radical or reducing radical, and ultra-fine bubble solution | |
CN101721929A (en) | Nanobubble-containing liquid producing apparatus and nanobubble-containing liquid producing method | |
JP2009082903A (en) | Microbubble generator | |
JP2008023491A (en) | Waste water treatment apparatus using advanced oxidation process | |
CN104876375A (en) | Deep oxidization water treatment method and deep oxidization water treatment device | |
WO2008007631A1 (en) | Fine bubble generating unit | |
JP2008094662A (en) | Pipeline-coupled chlorine dioxide water production apparatus | |
JP2010162519A (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
CN206359390U (en) | A kind of high ammonia nitrogen micro-polluted raw processing system of high algae | |
CN1974431A (en) | Water processing method containing surface active agent and processing device | |
JP4884737B2 (en) | Liquid processing equipment | |
CN105875483A (en) | Oxygenating and sterilizing integrated special equipment for aquaculture water | |
JP2005144206A (en) | Fine ozone bubble liquid generator | |
JP4890957B2 (en) | Organic wastewater levitation separation treatment method and levitation separation treatment apparatus | |
EP1670574A1 (en) | Method and apparatus for mixing of two fluids | |
CN107055931A (en) | A kind of high ammonia nitrogen micro-polluted raw processing system of high algae | |
JP2009066467A (en) | Manufacturing method of aqueous solution of dissolved ozone and supersaturated dissolved oxygen of three or more times of saturated concentration, and use method thereof | |
JP2008119609A (en) | Gas diffusion system and gas diffusion method | |
CN205794518U (en) | A kind of ecological balanced system of the aquatic animal density culture acting on oxygen consumption | |
JP2005218955A (en) | Gas/liquid contactor | |
Nkudede et al. | Treatment of simulated printing and dyeing wastewater using ozone microbubble | |
JPH0611118Y2 (en) | Gas-liquid mixing nozzle | |
JP2881529B2 (en) | Ozone water production equipment | |
CN105900913A (en) | Ecological balance system for oxygen consuming aquatic animal density cultivation |