JP2005142602A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2005142602A
JP2005142602A JP2005056044A JP2005056044A JP2005142602A JP 2005142602 A JP2005142602 A JP 2005142602A JP 2005056044 A JP2005056044 A JP 2005056044A JP 2005056044 A JP2005056044 A JP 2005056044A JP 2005142602 A JP2005142602 A JP 2005142602A
Authority
JP
Japan
Prior art keywords
light emitting
electrode
layer
semiconductor layer
emitting semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005056044A
Other languages
Japanese (ja)
Other versions
JP3953070B2 (en
Inventor
Kazunari Kuzuhara
一功 葛原
Nobuyuki Takakura
信之 高倉
Masaharu Yasuda
正治 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005056044A priority Critical patent/JP3953070B2/en
Publication of JP2005142602A publication Critical patent/JP2005142602A/en
Application granted granted Critical
Publication of JP3953070B2 publication Critical patent/JP3953070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device where emission uniformity can be improved to achieve a greater luminous efficiency. <P>SOLUTION: This semiconductor light emitting device comprises a support substrate 1, a first contact layer 3 formed on the support substrate 1 and two clad layers (first layer 4a and second layer 4c) laminated via a light emission junction layer 4b; it also contains a first electrode 6 formed on a first contact layer 3 in such a way that a constant distance is maintained among a light emitting semiconductor layer 4 formed on the first contact layer 3, a second contact layer 5 formed on the light emitting semiconductor layer 4 and a light emitting semiconductor layer 4 and a second electrode 7 formed on a second contact layer 5 in such a way that edges are positioned with a constant distance inward from the periphery of the second contact layer 5. In the light emitting semiconductor layer 4 and first electrode 6, there are two convexities 41 and 61 projecting ahead in a trapezoidal shape and two concavities 43 and 63 projecting aback in a trapezoidal shape which engage with each other, and both convexities 41 and 61 are positioned with a constant distance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体発光素子に関し、特に発光半導体層に電圧を印加するための電極をそれぞれ支持基板の同一面側に形成した構造を有する半導体発光素子に関するものである。   The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device having a structure in which electrodes for applying a voltage to a light emitting semiconductor layer are formed on the same side of a support substrate.

従来の半導体発光素子として、特開平10−93138(特許文献1)に提案されているものを図3に示す。このものは、サファイアからなる支持基板101にバッファ層102を介してn型コンタクト層103を積層し、さらに窒化物半導体からなる発光接合層(活性層)104cを有する発光半導体層104と、p型コンタクト層105と、第2電極(正電極)106を順次積層させた層構造をなしている。このうち、発光半導体層104は、窒化物半導体からなるn型クラッド層104a,104bとp型クラッド層104d,104eがそれぞれ発光接合層104cの下位と上位に配された構造をなしている。また、第2電極(正電極)106は、平面視において略長四角形をなす短冊体をしている。さらに、n型コンタクト層103の露出した領域には、平面視において略長四角形をなす第1電極(負電極)107が発光半導体層104と間隔をあけて第2電極(正電極)106と平面視において略平行に形成されている。   FIG. 3 shows a conventional semiconductor light emitting device proposed in JP-A-10-93138 (Patent Document 1). In this structure, an n-type contact layer 103 is laminated on a support substrate 101 made of sapphire via a buffer layer 102, and further a light emitting semiconductor layer 104 having a light emitting junction layer (active layer) 104c made of a nitride semiconductor, and a p-type. A contact layer 105 and a second electrode (positive electrode) 106 are sequentially stacked. Among these, the light-emitting semiconductor layer 104 has a structure in which n-type cladding layers 104a and 104b and p-type cladding layers 104d and 104e made of a nitride semiconductor are arranged below and above the light-emitting junction layer 104c, respectively. In addition, the second electrode (positive electrode) 106 is a strip having a substantially rectangular shape in plan view. Further, in the exposed region of the n-type contact layer 103, a first electrode (negative electrode) 107 having a substantially long square shape in plan view is spaced apart from the light emitting semiconductor layer 104 and is planar with the second electrode (positive electrode) 106. It is formed substantially parallel in view.

そして、この半導体発光素子によれば、両電極106,107間に順方向(第2電極(正電極)106から第1電極(負電極)107に向かって電流が流れる方向)の電流を流すことにより、p型クラッド層104d,104eの多数キャリアである正孔とn型クラッド層104a,104bの多数キャリアである電子が発光接合層104cへ移動し、そこで正孔と電子が再結合することにより発光するのである。
特開平10−93138号公報(第5頁〜第8頁、図1)
According to this semiconductor light emitting device, a current in the forward direction (direction in which current flows from the second electrode (positive electrode) 106 to the first electrode (negative electrode) 107) flows between the electrodes 106 and 107. As a result, holes that are majority carriers in the p-type cladding layers 104d and 104e and electrons that are majority carriers in the n-type cladding layers 104a and 104b move to the light-emitting junction layer 104c, where holes and electrons recombine. It emits light.
JP-A-10-93138 (pages 5-8, FIG. 1)

ところで、このような半導体発光素子において、発光半導体層104の中を流れる電流は、その発光半導体層104内で抵抗値が比較的小さくなる領域を主として流れる傾向がある。すなわち、第2電極(正電極)106から第1電極(負電極)107へ至るまでの電流経路が短くなる領域に電流が集中することになる。この領域は、発光半導体層104を断面視したときに第2電極(正電極)106の形成位置を境にして第1電極(負電極)に近い側の領域(図3における発光半導体層104の右半分)と略同等であり、この領域の発光接合層104cで正孔と電子の再結合が多量に発生して強く発光することになる。したがって、発光接合層104cの全体を発光領域として使用できず、結果的に、均一に発光させることが困難になってしまう。   By the way, in such a semiconductor light emitting device, the current flowing in the light emitting semiconductor layer 104 tends to flow mainly in a region where the resistance value is relatively small in the light emitting semiconductor layer 104. That is, the current concentrates in a region where the current path from the second electrode (positive electrode) 106 to the first electrode (negative electrode) 107 becomes short. This region is a region closer to the first electrode (negative electrode) with respect to the formation position of the second electrode (positive electrode) 106 when the light emitting semiconductor layer 104 is viewed in cross section (the light emitting semiconductor layer 104 in FIG. 3). This is substantially equivalent to the right half), and a large amount of recombination of holes and electrons occurs in the light-emitting bonding layer 104c in this region, so that strong light emission occurs. Therefore, the entire light emitting bonding layer 104c cannot be used as a light emitting region, and as a result, it becomes difficult to emit light uniformly.

この問題を解決するために、第2電極(正電極)106の形成位置を第1電極(負電極)107から遠い位置(図3の左方)に形成すれば第2電極(正電極)106から第1電極(負電極)107へ至るまでの電流経路が短くなる領域が増大し、結果的に、発光領域として使用できる発光接合層104cの領域は拡大するが、その反面、電路(最短距離)が長くなることにより抵抗値が大きくなって電力損失が増加し、発光効率が低減するという問題が生じてしまう。   In order to solve this problem, the second electrode (positive electrode) 106 can be formed by forming the second electrode (positive electrode) 106 far from the first electrode (negative electrode) 107 (left side in FIG. 3). As a result, the region where the current path from the first electrode (negative electrode) 107 to the first electrode (negative electrode) 107 is shortened increases, and as a result, the region of the light emitting bonding layer 104c that can be used as the light emitting region is enlarged. ) Becomes longer, the resistance value becomes larger, the power loss increases, and the light emission efficiency is reduced.

本発明は、上記の点に鑑みてなしたものであり、その目的とするところは、発光の均一性を向上させるとともに発光効率を上昇させることができる半導体発光素子を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor light-emitting element that can improve the uniformity of light emission and increase the light emission efficiency.

上記目的を達成するために、請求項1に係る発明の半導体発光素子は、支持基板と、支持基板に設けられた第1コンタクト層と、発光接合層を介して第1クラッド層及び第2クラッド層とを積層したものであって第1コンタクト層に設けられた発光半導体層と、発光半導体層に設けられた第2コンタクト層と、第1コンタクト層に設けられて前記発光半導体層と相対する第1電極と、第2コンタクト層の周縁部から内方に略一定の距離を有して端面が位置して第2コンタクト層に設けられた第2電極と、を備えた半導体発光素子であって、前記発光半導体層及び前記第1電極は、それぞれの互いに相対する周縁部が一定の間隔を空けて噛合する凹凸形状に設けてなり、前記第1電極の凹凸形状における凸部を前記発光半導体層に向かって幅の狭くなる形状に設けるとともに前記発光半導体層の凹凸形状における凸部を前記第1電極に向かって幅の狭くなる形状に設けて前記発光半導体層の凹凸形状における凸部に流れる電流密度を一定にしたことを特徴としている。   To achieve the above object, a semiconductor light emitting device according to a first aspect of the present invention includes a support substrate, a first contact layer provided on the support substrate, and a first cladding layer and a second cladding via the light emitting bonding layer. A light emitting semiconductor layer provided in the first contact layer, a second contact layer provided in the light emitting semiconductor layer, and provided in the first contact layer and opposed to the light emitting semiconductor layer. A semiconductor light emitting device comprising: a first electrode; and a second electrode provided on the second contact layer having a substantially constant distance inward from the peripheral edge of the second contact layer and having an end face located on the second contact layer. In addition, the light emitting semiconductor layer and the first electrode are provided in a concavo-convex shape in which peripheral edges of each of the light emitting semiconductor layer and the first electrode are engaged with each other with a certain interval, and the convex portion in the concavo-convex shape of the first electrode is provided in the light emitting semiconductor. Width towards layer And a convex portion in the concavo-convex shape of the light emitting semiconductor layer is provided in a shape that becomes narrower toward the first electrode, and the current density flowing in the convex portion in the concavo-convex shape of the light emitting semiconductor layer is made constant. It is characterized by that.

請求項2に係る発明の半導体発光素子は、請求項1記載の構成において、前記発光半導体層の凸部は、その先端の幅が前記第1電極の凸部の先端の幅より大きいものとしている。   According to a second aspect of the present invention, there is provided the semiconductor light emitting device according to the first aspect, wherein the convex portion of the light emitting semiconductor layer has a tip width greater than a tip width of the first electrode convex portion. .

請求項3に係る発明の半導体発光素子は、請求項1又は2記載の構成において、前記発光半導体層及び前記第1電極の凸部は、その隅角部が面取りされたものとしている。   According to a third aspect of the present invention, in the semiconductor light emitting device according to the first or second aspect, the convex portions of the light emitting semiconductor layer and the first electrode are chamfered at the corners.

請求項4に係る発明の半導体発光素子は、請求項1乃至3いずれかに記載の構成において、前記発光半導体層は、所定部位が反射膜で覆われたものとしている。   According to a fourth aspect of the present invention, there is provided the semiconductor light emitting device according to any one of the first to third aspects, wherein a predetermined portion of the light emitting semiconductor layer is covered with a reflective film.

請求項5に係る発明の半導体発光素子は、請求項1乃至4いずれかに記載の構成において、前記反射膜は、第1電極及び第2電極を構成する材料と同等若しくはより高い反射率を有する材料より形成されてものとしている。   According to a fifth aspect of the present invention, in the semiconductor light emitting device according to the first aspect, the reflective film has a reflectance equal to or higher than that of the material constituting the first electrode and the second electrode. It is supposed to be made of material.

請求項1に係る発明の半導体発光素子は、発光半導体層及び第1電極を、それぞれの互いに相対する周縁部が一定の間隔を空けて噛合する凹凸形状に設け、第1電極の凹凸形状における凸部を発光半導体層に向かって幅の狭くなる形状に設けるとともに発光半導体層の凹凸形状における凸部を第1電極に向かって幅の狭くなる形状に設けた構成としているので、第2電極内での電流損失等により発光半導体層の凸部の先端で電流量が減少しても電流密度を一定に保つことが可能となり、発光の均一性を向上させることができる。また、第2電極から第1電極へ向かう電流経路が特定箇所に偏ることなく略均一に形成され、電極間の距離も短くすることが可能となり、発光効率を上昇させることができる。   According to a first aspect of the present invention, a light emitting semiconductor layer and a first electrode are provided in a concave and convex shape in which peripheral edges of each of the light emitting semiconductor layers and the first electrode are engaged with each other with a certain interval, and the convexity of the concave and convex shape of the first electrode is provided. Since the convex portion in the concavo-convex shape of the light emitting semiconductor layer is provided in a shape that becomes narrower toward the first electrode, the portion is provided in a shape that becomes narrower toward the light emitting semiconductor layer. Even if the amount of current decreases at the tip of the convex portion of the light emitting semiconductor layer due to current loss or the like, the current density can be kept constant, and the uniformity of light emission can be improved. Further, the current path from the second electrode to the first electrode is formed substantially uniformly without being biased to a specific location, the distance between the electrodes can be shortened, and the luminous efficiency can be increased.

請求項2に係る発明の半導体発光素子は、請求項1記載の効果に加えて、発光半導体層の凸部は、その先端の幅を第1電極の凸部の先端の幅より大きくしているので、発光半導体層の凸部の面積を第1電極の凸部の面積より大きくなり、発光する面積を広くとることができて発光効率をより向上させることができる。   In the semiconductor light-emitting device according to the second aspect of the invention, in addition to the effect of the first aspect, the convex portion of the light-emitting semiconductor layer has a tip width larger than a tip width of the first electrode convex portion. Therefore, the area of the convex part of the light emitting semiconductor layer is larger than the area of the convex part of the first electrode, and the light emitting area can be widened, so that the luminous efficiency can be further improved.

請求項3に係る発明の半導体発光素子は、請求項1又は2記載の効果に加えて、発光半導体層及び第1電極の凸部は、その隅角部を面取りしているので、その部位での電流集中を緩和することができ、局所的な発熱を抑制して発光効率をさらに向上させることができる。   In the semiconductor light emitting device according to the third aspect of the invention, in addition to the effect of the first or second aspect, the convex portions of the light emitting semiconductor layer and the first electrode have chamfered corners. Current concentration can be relaxed, and local light generation can be suppressed to further improve luminous efficiency.

請求項4に係る発明の半導体発光素子は、請求項1乃至3いずれかに記載の効果に加えて、発光半導体層の所定部位を反射膜で覆っているので、発光接合層で発生した光をほぼ支持基板の方向へ出力することができる。   In addition to the effect of any one of claims 1 to 3, the semiconductor light emitting device of the invention according to claim 4 covers a predetermined portion of the light emitting semiconductor layer with a reflective film, so that light generated in the light emitting junction layer is The output can be substantially in the direction of the support substrate.

請求項5に係る発明の半導体発光素子は、請求項1乃至4いずれかに記載の効果に加えて、反射膜は、第1電極及び第2電極を構成する材料と同等若しくはより高い反射率を有する材料より形成されているので、光の反射性が向上して発光効率をさらに向上させることができる。   According to a fifth aspect of the present invention, in addition to the effect of any one of the first to fourth aspects, the reflective film has a reflectance equal to or higher than that of the material constituting the first electrode and the second electrode. Since it is formed from the material which has, it can improve the light reflectivity and can further improve luminous efficiency.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1の実施形態]
図1は、本実施形態に係る半導体発光素子を示すものであり、(a)はその平面図、(b)はA−A線に沿って切断したときの断面図である。
[First Embodiment]
1A and 1B show a semiconductor light emitting device according to the present embodiment, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line AA.

この実施形態の半導体発光素子は、バッファ層2を有する支持基板1と、第1コンタクト層3と、発光半導体層4と、第2コンタクト層5と、第1電極6と、第2電極7とを構成要素としている。   The semiconductor light emitting device of this embodiment includes a support substrate 1 having a buffer layer 2, a first contact layer 3, a light emitting semiconductor layer 4, a second contact layer 5, a first electrode 6, a second electrode 7, Is a component.

支持基板1は、半導体発光素子のベースとなるものであり、例えば、サファイアからなる絶縁基板にて形成されている。また、この支持基板1上には、例えば、GaNからなるバッファ層2が積層されている。このバッファ層2は、支持基板1と後述する第1コンタクト層3との間に介在しており、両者の線膨張係数の違いにより発生する応力を緩和する機能を有している。   The support substrate 1 is a base of the semiconductor light emitting device, and is formed of an insulating substrate made of sapphire, for example. On the support substrate 1, for example, a buffer layer 2 made of GaN is stacked. The buffer layer 2 is interposed between the support substrate 1 and a first contact layer 3 described later, and has a function of relieving stress generated due to the difference in linear expansion coefficient between the two.

第1コンタクト層3及び第2コンタクト層5は、後述する発光半導体層4に電極を形成した際に、その界面に生じる接触障壁(ショットキバリア)を小さくしてオーミック接触を実現するためのものである。このものは、例えば、GaNから形成されており、第1コンタクト層3はn型の導電型に、第2コンタクト層5はp型の導電型になるように不純物が添加されている。また、第1コンタクト層3は、平面視において支持基板1と略同等の大きさでバッファ層2の上部(図1(b)の上方)に積層されており、発光半導体層4の第1クラッド層4aと後述する第1電極6との接触障壁を低減している。また、第2コンタクト層5は、発光半導体層4と平面視において略同等の大きさで発光半導体層4の第2クラッド層4cの上部(図1(b)の上方)に積層されており、後述する第2電極7との接触障壁を低減している。   The first contact layer 3 and the second contact layer 5 are for realizing ohmic contact by reducing a contact barrier (Schottky barrier) generated at the interface when an electrode is formed on the light emitting semiconductor layer 4 described later. is there. This is made of, for example, GaN. Impurities are added so that the first contact layer 3 is n-type conductivity and the second contact layer 5 is p-type conductivity. The first contact layer 3 has a size substantially the same as that of the support substrate 1 in plan view and is stacked on the upper portion of the buffer layer 2 (above FIG. 1B), and the first cladding layer of the light emitting semiconductor layer 4 The contact barrier between the layer 4a and the first electrode 6 described later is reduced. In addition, the second contact layer 5 has a size substantially equal to that of the light emitting semiconductor layer 4 in a plan view and is stacked on the upper part of the second cladding layer 4c of the light emitting semiconductor layer 4 (above FIG. 1B). The contact barrier with the 2nd electrode 7 mentioned later is reduced.

発光半導体層4は、多層構造をしたものであって、上層及び下層に存在する多数キャリアを所定の中間層で再結合させることにより発光を実現するものである。このものは、発光接合層4bと、第1クラッド層4aと、第2クラッド層4cの3層から構成されており、発光接合層4bを介して第1クラッド層4aと第2クラッド層4cとを積層して形成したものである。また、その形状は、平面視において略四角形状をなす領域から第1コンタクト層3に沿って突出し、第1電極6の方向に向かうにしたがって幅が小さくなる略台形状の凸部41,41,…と、これらに対応する略逆台形状の凹部43,43,…を交互に複数有した形状をしている。また、この凸部41,41,…は、その先端の幅(図1(a)の左右方向)を後述する第1電極6の凸部61,61,…の先端の幅より広く形成することにより、平面視における凸部41,41,…の形状を凸部61,61,…より大きく形成している。さらに、凸部41,41,…は、その隅角部42,42,…に所定の曲率で面取りを施してある。   The light emitting semiconductor layer 4 has a multilayer structure, and realizes light emission by recombining majority carriers existing in an upper layer and a lower layer in a predetermined intermediate layer. This is composed of three layers of a light emitting bonding layer 4b, a first cladding layer 4a, and a second cladding layer 4c, and the first cladding layer 4a, the second cladding layer 4c, and the like via the light emitting bonding layer 4b. Are formed by laminating. Further, the shape protrudes along the first contact layer 3 from a region having a substantially rectangular shape in plan view, and has substantially trapezoidal convex portions 41, 41, 41 having a width that decreases toward the first electrode 6. .. And a plurality of substantially inverted trapezoidal concave portions 43, 43,. In addition, the convex portions 41, 41,... Are formed so that the width of the tips (the left-right direction in FIG. 1A) is wider than the width of the tips of the convex portions 61, 61,. Thus, the shape of the convex portions 41, 41,... In plan view is larger than the convex portions 61, 61,. Further, the convex portions 41, 41,... Are chamfered with a predetermined curvature at the corner portions 42, 42,.

このうち、発光接合層4bは、In(インジウム)を含有する窒化物半導体で構成されており、例えば、InGaNにて形成されている。また、発光接合層4bのInとGaの混晶比を調整したり、或いはSi(シリコン)、Ge(ゲルマニウム)、Te(テルル)、S(イオウ)等の不純物を適宜ドープしてn型の導電型にしたり、又はMg(マグネシウム)、Zn(亜鉛)、Cd(カドミウム)、Be(ベリリウム)、Ca(カルシウム)等の不純物をドープしてp型の導電型にすることにより、バンドギャップを変化させて発光波長を変化させることができる。   Among these, the light emitting bonding layer 4b is made of a nitride semiconductor containing In (indium), and is made of, for example, InGaN. In addition, the mixed crystal ratio of In and Ga in the light emitting bonding layer 4b is adjusted, or impurities such as Si (silicon), Ge (germanium), Te (tellurium), and S (sulfur) are appropriately doped to form an n-type. By making it conductive type or by doping impurities such as Mg (magnesium), Zn (zinc), Cd (cadmium), Be (beryllium), Ca (calcium), etc., the band gap can be increased. The emission wavelength can be changed by changing.

また、第1クラッド層4aは、発光接合層4bよりバンドギャップの大きい窒化物半導体で構成されており、例えば、AlGaNにて形成されている。また、このものは、不純物を添加することによりn型の導電型に形成されている。   The first cladding layer 4a is made of a nitride semiconductor having a band gap larger than that of the light emitting bonding layer 4b, and is made of, for example, AlGaN. In addition, this is formed into an n-type conductivity type by adding impurities.

また、第2クラッド層4cは、第1クラッド層4aと略同様に発光接合層4bよりバンドギャップの大きい窒化物半導体で構成されており、例えば、AlGaNにて形成されている。また、このものは、不純物を添加することによりp型の導電型に形成されている。   Further, the second cladding layer 4c is made of a nitride semiconductor having a band gap larger than that of the light emitting bonding layer 4b in substantially the same manner as the first cladding layer 4a, and is made of, for example, AlGaN. Moreover, this thing is formed in the p-type conductivity type by adding an impurity.

第1電極6は、発光半導体層4の低電位側と外部との電気的な接続を実現するものである。このものは、例えば、Al(アルミニウム)にて形成されており、その形状は、平面視において略四角形状をなす領域から発光半導体層4の凸部41,41,…の間に向かうにしたがって幅が小さくなる略台形状の凸部61,61,…を略逆台形状の凹部63,63,…を介して複数有した形状をしている。また、凸部61,61,…は凹部43,43,…と、凹部63,63,…は凸部41,41,…と略一定の間隔を有してかみ合うように形成されている。また、この第1電極6は、第1コンタクト層3に積層されており、発光半導体層4とその平面方向(図1(b)の左右方向)に略一定の間隔を有して設けられている。また、この凸部61,61,…の平面視における形状は、凸部41,41,…よりも小さく形成しており、その隅角部62,62,…は所定の曲率で面取りを施してある。   The first electrode 6 realizes electrical connection between the low potential side of the light emitting semiconductor layer 4 and the outside. This is made of, for example, Al (aluminum), and the shape has a width from the region having a substantially rectangular shape in plan view to the distance between the convex portions 41, 41,... Of the light emitting semiconductor layer 4. Has a plurality of substantially trapezoidal convex portions 61, 61,... Through substantially inverted trapezoidal concave portions 63, 63,. In addition, the convex portions 61, 61,... Are formed to engage with the concave portions 43, 43,... And the concave portions 63, 63,. The first electrode 6 is stacked on the first contact layer 3 and is provided with a substantially constant interval between the light emitting semiconductor layer 4 and the planar direction thereof (the left-right direction in FIG. 1B). Yes. Further, the shape of the convex portions 61, 61, ... in plan view is smaller than the convex portions 41, 41, ..., and the corner portions 62, 62, ... are chamfered with a predetermined curvature. is there.

第2電極7は、発光半導体層4の高電位側と外部との電気的な接続を実現するものである。このものは、第1電極6と同じくAlにて形成されており、その形状は、平面視において発光半導体層4と略同等の形状をしているが、第1電極6と対向する周縁部において所定の距離だけ発光半導体層4から内方に形成されている。   The second electrode 7 realizes electrical connection between the high potential side of the light emitting semiconductor layer 4 and the outside. This is formed of Al like the first electrode 6, and the shape thereof is substantially the same as that of the light-emitting semiconductor layer 4 in plan view, but at the peripheral edge facing the first electrode 6. The light emitting semiconductor layer 4 is formed inwardly by a predetermined distance.

その動作は、発光半導体素子に順方向のバイアス、すなわち、第2電極7に正の電圧、第1電極6に負の電圧を印加すると第2クラッド層4cの多数キャリアである正孔と第1クラッド層4aの多数キャリアである電子が発光接合層4bに注入される。そこで正孔と電子が再結合して消滅するときにエネルギーを放出するが、このエネルギーが光となって発光する。このとき、第2電極7と第1電極6との間に電流経路が形成されることになるが、第1電極6及び第2電極7は、互いの方向に向かって幅が小さくなる略台形状をしており、その間隔は略一定に保たれていることから、発光半導体層4に流れる電流密度は全領域でほぼ一定になっている。   The operation is as follows. When a forward bias is applied to the light emitting semiconductor element, that is, when a positive voltage is applied to the second electrode 7 and a negative voltage is applied to the first electrode 6, the holes that are the majority carriers of the second cladding layer 4 c and the first Electrons that are majority carriers of the cladding layer 4a are injected into the light emitting junction layer 4b. Therefore, energy is released when holes and electrons recombine and disappear, and this energy is emitted as light. At this time, a current path is formed between the second electrode 7 and the first electrode 6, but the first electrode 6 and the second electrode 7 are substantially bases that become smaller in width toward each other. Since it has a shape and the interval is kept substantially constant, the current density flowing through the light emitting semiconductor layer 4 is substantially constant in the entire region.

以上説明した実施形態の半導体発光素子によると、発光半導体層4は、略四角形状をなす領域から第1コンタクト層3に沿って幅を狭めながら(小さくしながら)突出する略台形状の凸部41,41,…と略逆台形状の凹部43,43,…を交互に複数有しているので、第2電極7内での電流損失等によりその略台形状の先端で電流量が減少しても、凸部41,41,…の断面積がそれに応じて減少しているため、結果的に電流密度をほぼ一定に保つことが可能となり、発光の均一性を向上させることができる。また、第1電極6は、凹部43,43,…の間に突出して略台形状をなす凸部61,61,…を発光半導体層4から略一定の間隔を有して形成しているので、第2電極7から第1電極6へ向かう電流経路が特定箇所に偏ることなく略均一に形成され、電極間の距離も短くすることが可能となり、発光の効率を上昇させることができる。また、凸部41,41,…の先端の幅を凸部61,61,…のそれより大きくしているので、凸部41,41,…の平面視における面積は、凸部61,61,…の面積より大きくなり、発光する部位を広くとることができてより発光効率をより向上させることができる。また、第1凸部41,41,…及び第2凸部61,61,…のそれぞれの隅角部42,…,62,…を面取りしているので、その位置での電流集中を緩和することができ、局所的な発熱を抑制してさらに発光効率をさらに向上させることができる。   According to the semiconductor light emitting device of the embodiment described above, the light emitting semiconductor layer 4 has a substantially trapezoidal convex portion that protrudes while narrowing (decreasing) the width along the first contact layer 3 from a substantially rectangular region. .. And alternating inverted trapezoidal concave portions 43, 43,... Are alternately provided, so that the current amount is reduced at the substantially trapezoidal tip due to current loss in the second electrode 7 and the like. However, since the cross-sectional area of the convex portions 41, 41,... Decreases accordingly, the current density can be kept substantially constant as a result, and the uniformity of light emission can be improved. Further, the first electrode 6 has convex portions 61, 61,... That protrude between the concave portions 43, 43,. The current path from the second electrode 7 to the first electrode 6 is formed substantially uniformly without being biased to a specific location, the distance between the electrodes can be shortened, and the light emission efficiency can be increased. Moreover, since the width | variety of the front-end | tip of convex part 41,41, ... is made larger than that of convex part 61,61, ..., the area in planar view of convex part 41,41, ... is convex part 61,61, ... ..., And the light emission efficiency can be further improved. Moreover, since each corner part 42, ..., 62, ... of the 1st convex part 41,41, ... and the 2nd convex part 61,61, ... is chamfered, the current concentration in the position is eased. It is possible to suppress the local heat generation and further improve the light emission efficiency.

なお、バッファ層2の材料は、GaNに限定されるものではなく、例えば、AlGaNやAlN等、支持基板1と第1コンタクト層3との間に生ずる応力を緩和できるものであればよい。   The material of the buffer layer 2 is not limited to GaN, and may be any material that can relieve stress generated between the support substrate 1 and the first contact layer 3, such as AlGaN or AlN.

また、第1電極6及び第2電極7の材料は、Alに限定されるものではなく、例えば、Ni(ニッケル)、Ti(チタン)、Au(金)でもよい。   The material of the first electrode 6 and the second electrode 7 is not limited to Al, and may be, for example, Ni (nickel), Ti (titanium), or Au (gold).

また、第1クラッド層4a及び第2クラッド層4cの材料は、窒素−三族元素化合物半導体(InxAlyGa1−x−yN,0≦x、0≦y、x+y≦1)から構成されるものであれば、AlGaNに限定されるものではない。   The material of the first clad layer 4a and the second clad layer 4c is composed of a nitrogen-group III element compound semiconductor (InxAlyGa1-xyN, 0 ≦ x, 0 ≦ y, x + y ≦ 1). For example, it is not limited to AlGaN.

[第2の実施形態]
図2は、本実施形態に係る半導体発光素子を示すものであり、(a)はその平面図、(b)はA−A線に沿って切断したときの断面図である。
[Second Embodiment]
2A and 2B show a semiconductor light emitting device according to this embodiment, in which FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along the line AA.

この実施形態の半導体発光素子は、反射膜8を追加した点が第1の実施形態と異なるものであり、他の構成要素は第1の実施形態のものと実質的に同一であるので、同一部材には同一の番号を付して説明を省略する。   The semiconductor light emitting device of this embodiment is different from that of the first embodiment in that a reflective film 8 is added, and the other components are substantially the same as those of the first embodiment. The same reference numerals are given to the members and the description thereof is omitted.

反射膜8は、発光接合層4bで発生した光が発光接合層4bの上面(図2(b)の上方)や側面から外部に散乱することを低減するものである。このものは、例えば、Auより形成されており、発光半導体層4の第1電極6と対向する側面や第2コンタクト層5の第2電極7が形成されていない箇所といった所定の部位を覆うように絶縁膜9を介して設けられている。この絶縁膜9は、例えば、酸化膜にて形成されており、発光半導体層4と反射膜8とを電気的に絶縁している。   The reflective film 8 reduces the scattering of light generated in the light emitting bonding layer 4b from the upper surface (above FIG. 2B) and side surfaces of the light emitting bonding layer 4b. This is made of, for example, Au, and covers a predetermined portion such as a side surface of the light emitting semiconductor layer 4 facing the first electrode 6 or a portion where the second electrode 7 of the second contact layer 5 is not formed. Is provided via an insulating film 9. The insulating film 9 is formed of an oxide film, for example, and electrically insulates the light emitting semiconductor layer 4 and the reflective film 8 from each other.

以上説明した実施形態の半導体発光素子によると、第1の実施形態で説明した効果に加えて、発光半導体層4の露出面を第1電極6及び第2電極7を構成する材料と同等若しくはより高い反射率を有するAuにより覆っているので、発光接合層4bで発生した光をほぼ支持基板1の方向へ出力することができ、発光効率を向上させることができる。   According to the semiconductor light emitting device of the embodiment described above, in addition to the effects described in the first embodiment, the exposed surface of the light emitting semiconductor layer 4 is equal to or more than the material constituting the first electrode 6 and the second electrode 7. Since it is covered with Au having a high reflectance, the light generated in the light emitting bonding layer 4b can be output almost in the direction of the support substrate 1, and the light emission efficiency can be improved.

本発明の第1の実施形態に係る半導体発光素子を示すものであり、(a)はその平面図、(b)はA−A線に沿って切断したときの断面図である。BRIEF DESCRIPTION OF THE DRAWINGS The semiconductor light-emitting device concerning the 1st Embodiment of this invention is shown, (a) is the top view, (b) is sectional drawing when cut | disconnecting along an AA line. 本発明の第2の実施形態に係る半導体発光素子を示すものであり、(a)はその平面図、(b)はA−A線に沿って切断したときの断面図である。The semiconductor light-emitting device concerning the 2nd Embodiment of this invention is shown, (a) is the top view, (b) is sectional drawing when cut | disconnecting along an AA line. 従来の半導体発光素子を示すものであり、(a)はその平面図、(b)はA−A線に沿って切断したときの断面図である。The conventional semiconductor light-emitting device is shown, (a) is the top view, (b) is sectional drawing when cut | disconnecting along an AA line.

符号の説明Explanation of symbols

1 支持基板
3 第1コンタクト層
4 発光半導体層
4a 第1クラッド層
4b 発光接合層
4c 第2クラッド層
41 凸部
42 隅角部
43 凹部
5 第2コンタクト層
6 第1電極
61 凸部
62 隅角部
63 凹部
7 第2電極
8 反射膜
DESCRIPTION OF SYMBOLS 1 Support substrate 3 1st contact layer 4 Light-emitting-semiconductor layer 4a 1st clad layer 4b Light-emitting joining layer 4c 2nd clad layer 41 Convex part 42 Corner part 43 Concave part 5 2nd contact layer 6 1st electrode 61 Convex part 62 Corner angle Part 63 concave part 7 second electrode 8 reflective film

Claims (5)

支持基板と、
支持基板に設けられた第1コンタクト層と、
発光接合層を介して第1クラッド層及び第2クラッド層とを積層したものであって第1コンタクト層に設けられた発光半導体層と、
発光半導体層に設けられた第2コンタクト層と、
第1コンタクト層に設けられて前記発光半導体層と相対する第1電極と、
第2コンタクト層の周縁部から内方に略一定の距離を有して端面が位置して第2コンタクト層に設けられた第2電極と、
を備えた半導体発光素子であって、
前記発光半導体層及び前記第1電極は、それぞれの互いに相対する周縁部が一定の間隔を空けて噛合する凹凸形状に設けてなり、前記第1電極の凹凸形状における凸部を前記発光半導体層に向かって幅の狭くなる形状に設けるとともに前記発光半導体層の凹凸形状における凸部を前記第1電極に向かって幅の狭くなる形状に設けて前記発光半導体層の凹凸形状における凸部に流れる電流密度を一定にしたことを特徴とする半導体発光素子。
A support substrate;
A first contact layer provided on the support substrate;
A light emitting semiconductor layer formed by laminating a first clad layer and a second clad layer via a light emitting bonding layer, and provided in the first contact layer;
A second contact layer provided on the light emitting semiconductor layer;
A first electrode provided on the first contact layer and facing the light emitting semiconductor layer;
A second electrode provided on the second contact layer with a substantially constant distance inward from the peripheral edge of the second contact layer and having an end face located;
A semiconductor light emitting device comprising:
The light emitting semiconductor layer and the first electrode are provided in a concavo-convex shape in which peripheral edges of the light emitting semiconductor layer and the first electrode are engaged with each other with a certain interval, and a convex portion in the concavo-convex shape of the first electrode is provided in the light emitting semiconductor layer. Current density flowing in the convex portion in the concavo-convex shape of the light emitting semiconductor layer by providing the convex portion in the concavo-convex shape of the light emitting semiconductor layer in a shape narrowing toward the first electrode A semiconductor light emitting element characterized by having a constant value.
前記発光半導体層の凸部は、その先端の幅が前記第1電極の凸部の先端の幅より大きいものである請求項1記載の半導体発光素子。 2. The semiconductor light emitting element according to claim 1, wherein the convex portion of the light emitting semiconductor layer has a width at a tip thereof larger than a width of a tip of the convex portion of the first electrode. 前記半導体層及び前記第1電極の凸部は、その隅角部が面取りされている請求項1又は2記載の半導体発光素子。 The semiconductor light emitting element according to claim 1, wherein the convex portions of the semiconductor layer and the first electrode have chamfered corners. 前記発光半導体層は、所定部位が反射膜で覆われている請求項1乃至3いずれかに記載の半導体発光素子。 4. The semiconductor light emitting element according to claim 1, wherein a predetermined portion of the light emitting semiconductor layer is covered with a reflective film. 前記反射膜は、第1電極及び第2電極を構成する材料と同等若しくはより高い反射率を有する材料より形成されている請求項1乃至4いずれかに記載の半導体発光素子。 5. The semiconductor light emitting element according to claim 1, wherein the reflective film is formed of a material having a reflectance equal to or higher than that of the material constituting the first electrode and the second electrode.
JP2005056044A 2005-03-01 2005-03-01 Semiconductor light emitting device Expired - Fee Related JP3953070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005056044A JP3953070B2 (en) 2005-03-01 2005-03-01 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005056044A JP3953070B2 (en) 2005-03-01 2005-03-01 Semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002169622A Division JP3671938B2 (en) 2002-06-11 2002-06-11 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2005142602A true JP2005142602A (en) 2005-06-02
JP3953070B2 JP3953070B2 (en) 2007-08-01

Family

ID=34698328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005056044A Expired - Fee Related JP3953070B2 (en) 2005-03-01 2005-03-01 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3953070B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094476A1 (en) * 2006-02-14 2007-08-23 Showa Denko K.K. Light-emitting diode
JP2007220709A (en) * 2006-02-14 2007-08-30 Showa Denko Kk Light emitting diode
KR101047720B1 (en) 2010-04-23 2011-07-08 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package using the light emitting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094476A1 (en) * 2006-02-14 2007-08-23 Showa Denko K.K. Light-emitting diode
JP2007220709A (en) * 2006-02-14 2007-08-30 Showa Denko Kk Light emitting diode
CN101490858B (en) * 2006-02-14 2011-06-08 昭和电工株式会社 Light-emitting diode
US8097892B2 (en) 2006-02-14 2012-01-17 Showa Denko K.K. Light-emitting diode
KR101047720B1 (en) 2010-04-23 2011-07-08 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package using the light emitting device
US8431944B2 (en) 2010-04-23 2013-04-30 Lg Innotek Co., Ltd. Light emitting device, light emitting device package, and lighting system
US8748927B2 (en) 2010-04-23 2014-06-10 Lg Innotek Co., Ltd. Light emitting device, light emitting device package, and lighting system

Also Published As

Publication number Publication date
JP3953070B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP5032130B2 (en) Thin film LED having current diffusion structure
JP5284365B2 (en) LED with current spreading layer
US8003974B2 (en) LED semiconductor element having increased luminance
JP4476912B2 (en) Semiconductor light emitting device and manufacturing method thereof
US20100006885A1 (en) Arrangement of electrodes for light emitting device
JP2006245532A (en) Nitride semiconductor light-emitting device
JP5377725B1 (en) Semiconductor light emitting device
JP3979378B2 (en) Semiconductor light emitting device
JP2012099700A (en) Semiconductor light-emitting device
JP5428684B2 (en) Semiconductor light emitting device
JP5141086B2 (en) Semiconductor light emitting device
JP2005276899A (en) Light-emitting element
JP5125795B2 (en) Semiconductor light emitting element and light emitting device
JP3953070B2 (en) Semiconductor light emitting device
JP2004311677A (en) Semiconductor light emitting device
KR20060104510A (en) Group iii-nitride light-emitting device
JP3671938B2 (en) Semiconductor light emitting device
JP2004172217A (en) Semiconductor light emitting element
JP5865870B2 (en) Semiconductor light emitting device
JP2012227289A (en) Semiconductor light-emitting device
JP2005064072A (en) Semiconductor light emitting element
JP2004186368A (en) Semiconductor epitaxial structure and semiconductor light-emitting device
JP2005347493A (en) Semiconductor light emitting element
KR101056422B1 (en) High efficiency light emitting diode
JP6029912B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees