JP2005142101A - Manufacturing method for electrode substrate, deflector using the electrode substrate and charged particle beam exposure device using the deflector - Google Patents

Manufacturing method for electrode substrate, deflector using the electrode substrate and charged particle beam exposure device using the deflector Download PDF

Info

Publication number
JP2005142101A
JP2005142101A JP2003379407A JP2003379407A JP2005142101A JP 2005142101 A JP2005142101 A JP 2005142101A JP 2003379407 A JP2003379407 A JP 2003379407A JP 2003379407 A JP2003379407 A JP 2003379407A JP 2005142101 A JP2005142101 A JP 2005142101A
Authority
JP
Japan
Prior art keywords
electrodes
pair
charged particle
substrate
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003379407A
Other languages
Japanese (ja)
Inventor
Masaki Okuyama
正樹 奥山
Ippei Sawayama
一平 沢山
Yasuhiro Yoshimura
保廣 吉村
Takanori Aono
宇紀 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Canon Inc
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Canon Inc, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2003379407A priority Critical patent/JP2005142101A/en
Publication of JP2005142101A publication Critical patent/JP2005142101A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the cost and to improve the reliability of a charged particle beam deflector. <P>SOLUTION: A metal other than gold is filled in an opening of the substrate corresponding at least to configuration and arrangement of a pair of electrodes of the deflector to form at least a pair of metal bodies used as the electrodes. The substrate part between the pair of metal bodies is removed to exposure opposed surfaces of the pair of metal bodies, and oxidation-protective films comprising several layers of gold or the like are formed on the opposed surfaces. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子ビームやイオンビーム等の荷電ビームの偏向器に用いて好適な電極基板およびその製造方法に関する。   The present invention relates to an electrode substrate suitable for use in a deflector for a charged beam such as an electron beam or an ion beam, and a manufacturing method thereof.

従来、電子ビームやイオンビーム等の荷電粒子線を複数本用いてレジストを塗布された半導体ウエハ等に直接描画するマルチ荷電粒子線露光装置が知られている。このような装置においては、複数の荷電粒子線を個別にオン・オフするブランカアレイや、複数の荷電粒子線の像を個別に所望の位置に結像させる電子レンズアレイ等に、偏向器アレイが用いられる。   2. Description of the Related Art Conventionally, a multi-charged particle beam exposure apparatus that directly draws a resist on a semiconductor wafer using a plurality of charged particle beams such as an electron beam and an ion beam is known. In such an apparatus, a deflector array is used for a blanker array for individually turning on / off a plurality of charged particle beams, an electron lens array for individually forming images of a plurality of charged particle beams at desired positions, and the like. Used.

特許文献1には、ブランキングアパーチャアレイの製造方法として、シリコンなどの半導体結晶の基板に複数の開口を所定間隔で2次元的に形成し、各開口周囲に偏向電極対を形成する方法が開示されている。電極主材料としては、金もしくは金の抵抗率に相当する金属を用いる。   Patent Document 1 discloses a method of manufacturing a blanking aperture array by forming a plurality of openings two-dimensionally at a predetermined interval on a semiconductor crystal substrate such as silicon and forming a deflection electrode pair around each opening. Has been. As the electrode main material, gold or a metal corresponding to the resistivity of gold is used.

特許文献2には、電子ビーム偏向装置の製造方法として、X線レジストを絶縁体として複数の配線回路層を有する積層体を形成し、該積層体のX線レジストを露光および現像して偏向電極等となる部分に開口部を形成し、電解めっきにより金等の金属材料を各開口部に充填し、1対の偏向電極の間の部分のX線レジストを露光および現像により除去してアパーチャを形成する方法が開示されている。
特開平7−297107号公報 特開2002−217089号公報
In Patent Document 2, as a manufacturing method of an electron beam deflection apparatus, a laminated body having a plurality of wiring circuit layers is formed using an X-ray resist as an insulator, and the X-ray resist of the laminated body is exposed and developed to obtain a deflection electrode. An opening is formed in the portion to be the same, a metal material such as gold is filled in each opening by electrolytic plating, the X-ray resist in the portion between the pair of deflection electrodes is removed by exposure and development, and the aperture is formed. A method of forming is disclosed.
JP 7-297107 A JP 2002-217089 A

上述の従来例においては、レジストにより形成された一端のみ開口する孔内に、金を、直接、めっきすることにより、電極を形成していた。しかし、この場合、金めっきの電流効率が悪いため、水素ガスの発生により、析出される金属体にボイド等が発生し、ボイドレスの金属体を得ることが困難であった。   In the above-described conventional example, an electrode is formed by directly plating gold in a hole formed by a resist and opening only at one end. However, in this case, since the current efficiency of the gold plating is poor, voids or the like are generated in the deposited metal body due to the generation of hydrogen gas, and it is difficult to obtain a voidless metal body.

また、特許文献1の偏向電極対は、(1)各開口周囲で基板上に自立して形成されるため、すなわち荷電粒子線の進行方向(以下、光軸方向という)と垂直な方向へ支持する手段がないため、変形し易い、また、(2)絶縁体(基板表面の絶縁膜)が荷電ビーム近くに露出されているため、絶縁体表面でチャージアップを引き起こし、開口を通過する荷電ビームに影響を与え、荷電ビームの適切な偏向および位置制御が行われない可能性があった。
また、特許文献2の基板は、X線レジストの未露光部分が基板となるため、耐熱性が不十分であり、かつ経時変化や荷電粒子線の照射による劣化および寸法変化の可能性があった。
Further, the deflection electrode pair of Patent Document 1 is (1) supported on a substrate around each opening, that is, supported in a direction perpendicular to the traveling direction of the charged particle beam (hereinafter referred to as the optical axis direction). Since there is no means to perform the deformation, it is easy to deform. (2) Since the insulator (insulating film on the substrate surface) is exposed near the charged beam, the charged beam is caused to charge up on the surface of the insulator and passes through the opening. There is a possibility that proper deflection and position control of the charged beam may not be performed.
In addition, the substrate of Patent Document 2 has insufficient heat resistance because an unexposed portion of the X-ray resist becomes a substrate, and there is a possibility of deterioration due to aging, charged particle beam irradiation, and dimensional changes. .

また、多層プリント配線基板等においては、金属ペーストを用いてスクリーン印刷やディスペンスノズル等によりスルーホールが形成される。つまり、φ0.1mm〜φ0.2mmの丸穴に金属ペーストを埋め込む。しかし、マルチ荷電粒子線露光装置の偏向器アレイのように埋め込み高さ/開口の比(アスペクト比)が4.0以上となる形状に埋め込むために、真空引き等の方法をとった場合、厚みが0.4mm以下となるようなシリコン基板では、機械的強度が小さく、埋め込み中に該シリコン基板が破損する問題があった。
なお、所望の形状が厚み方向に露出している金属に酸化しにくい金属保護膜を付ける方法としては、プリント基板(アスペクト比1.0以下)の例があるが、本発明が対象とするアスペクト比4.0以上の先行例は見当たらない。
In a multilayer printed wiring board or the like, a through hole is formed by screen printing or a dispensing nozzle using a metal paste. That is, a metal paste is embedded in a circular hole with a diameter of φ0.1 mm to φ0.2 mm. However, when a method such as evacuation is used to embed in a shape in which the ratio of embedment height / aperture (aspect ratio) is 4.0 or more as in a deflector array of a multi-charged particle beam exposure apparatus, In the case of a silicon substrate having a thickness of 0.4 mm or less, the mechanical strength is low, and there is a problem that the silicon substrate is damaged during embedding.
In addition, as a method of attaching a metal protective film which is difficult to oxidize to a metal whose desired shape is exposed in the thickness direction, there is an example of a printed circuit board (aspect ratio of 1.0 or less). There is no previous example with a ratio of 4.0 or more.

本発明の課題は、上記従来例における問題点を解決するもので、安価で信頼性の高い電極基板を製造する方法を提供することにある。   An object of the present invention is to solve the above-described problems in the conventional example, and to provide a method of manufacturing an inexpensive and highly reliable electrode substrate.

上記課題を達成するため本発明の製造方法は、貫通孔と、該貫通孔の内壁に配置された1組の電極とを有する電極基板の製造方法であって、前記1組の電極の形状および配置に対応する複数の第1開孔を基板材料に形成する第1の工程と、前記複数の第1開孔のそれぞれに金以外の金属を充填して前記電極となる金属体を形成する第2の工程と、前記貫通孔に前記1組の電極を配置した形状に対応する第2開孔を前記複数の第1開孔の間およびその近傍を含む部分に形成して前記貫通孔内に前記金属体の表面を露出させる第3の工程と、前記金属体の表面に酸化防止用の金属保護膜を単数または複数層形成する第4の工程とを備えることを特徴とする。   In order to achieve the above object, a manufacturing method of the present invention is a manufacturing method of an electrode substrate having a through hole and a set of electrodes arranged on the inner wall of the through hole, and the shape of the set of electrodes and A first step of forming a plurality of first openings corresponding to the arrangement in the substrate material, and a first step of forming a metal body to be the electrode by filling each of the plurality of first openings with a metal other than gold. A second opening corresponding to the shape of the step 2 and the shape in which the one set of electrodes is arranged in the through hole is formed in a portion including between and in the vicinity of the plurality of first openings. The method includes a third step of exposing the surface of the metal body, and a fourth step of forming one or more layers of an anti-oxidation metal protective film on the surface of the metal body.

本発明によれば、信頼性の高い電極基板を安価に製造することができる。   According to the present invention, a highly reliable electrode substrate can be manufactured at low cost.

以下に、本発明の実施の形態を列挙する。
[実施形態1] 貫通孔と、該貫通孔の内壁に配置された1組の電極とを有する電極基板の製造方法であって、
前記1組の電極の形状および配置に対応する複数の第1開孔を基板材料に形成する第1の工程と、
前記複数の第1開孔のそれぞれに金以外の金属を充填して前記電極となる金属体を形成する第2の工程と、
前記貫通孔に前記1組の電極を配置した形状に対応する第2開孔を前記複数の第1開孔の間およびその近傍を含む部分に形成して前記貫通孔内に前記金属体の側面を露出させる第3の工程と、
前記金属体の表面に酸化防止用の金属保護膜を単数または複数層形成する第4の工程と
を備えることを特徴とする電極基板の製造方法。
The embodiments of the present invention are listed below.
[Embodiment 1] A method for producing an electrode substrate having a through hole and a set of electrodes arranged on the inner wall of the through hole,
A first step of forming a plurality of first apertures in the substrate material corresponding to the shape and arrangement of the set of electrodes;
A second step of forming a metal body serving as the electrode by filling each of the plurality of first openings with a metal other than gold;
A second opening corresponding to a shape in which the one set of electrodes is arranged in the through hole is formed in a portion including between and in the vicinity of the plurality of first openings, and a side surface of the metal body is formed in the through hole. A third step of exposing
And a fourth step of forming one or more metal protective films for preventing oxidation on the surface of the metal body.

[実施形態2] 前記基板材料は、シリコン基板であり、前記第1の工程の後に、少なくとも前記第1開孔の内壁に絶縁層を形成する第5の工程をさらに含むことを特徴とする請求項1に記載の製造方法。
[実施形態3] 前記第2の工程は、めっきにより前記金属体を形成する工程である実施形態1〜3のいずれか1つに記載の製造方法。
[実施形態4] 前記第2の工程は、前記第1開孔に金属ペーストを埋め込み、それを乾燥、焼成することにより前記金属体を形成する工程である実施形態1〜3のいずれか1つに記載の製造方法。
[実施形態5] 前記1組の電極は、互いに対面する少なくとも1対の電極を含み、前記第1開孔のうち該1対の電極に対応する開孔は、該1対の電極それぞれの互いに対面する側面に対応する辺を上底として該上底が下底より短い台形状であることを特徴とする実施形態1〜4のいずれか1つに記載の製造方法。
[Embodiment 2] The substrate material is a silicon substrate, and further includes a fifth step of forming an insulating layer on at least an inner wall of the first hole after the first step. Item 2. The manufacturing method according to Item 1.
[Embodiment 3] The manufacturing method according to any one of Embodiments 1 to 3, wherein the second step is a step of forming the metal body by plating.
[Embodiment 4] Any one of Embodiments 1 to 3, wherein the second step is a step of forming the metal body by embedding a metal paste in the first opening, drying and firing the paste. The manufacturing method as described in.
[Embodiment 5] The one set of electrodes includes at least one pair of electrodes facing each other, and the openings corresponding to the one pair of electrodes among the first openings are each of the pair of electrodes. The manufacturing method according to any one of Embodiments 1 to 4, wherein the side corresponding to the side surface facing is an upper base, and the upper base is trapezoidal shorter than the lower base.

上述において、1組の電極とは、上記電極基板が偏向器に適用される電極基板であれば、対向する少なくとも1対の偏向電極であり、必要に応じて貫通孔の内壁に形成されるシールド電極等の補助電極を含むものである。
本発明の好ましい実施の形態では、金以外の金属をめっき法または埋め込み法により第1開孔に充填し、電極となる金属形状(金属体)を形成する。より具体的には、めっき法では、電流効率の良好な(100%に近い)銅を採用し、埋め込み法の場合は、微粒子銀粉(2μm以下)を樹脂バインダーに混錬した、体積収縮の小さい(乾燥焼成後2%以下)ペーストを採用する。これにより、金属体形成時にボイド発生を減少させ、所定の金属物性を有する信頼性の高い金属体を形成する。
さらに、金属体間のシリコンおよびシリコン酸化膜を除去して露出させた銅金属表面へ金の多層保護膜をめっき、または銅金属体とシリコン酸化膜の絶縁体の表面エネルギーの差を利用した活性化処理、または金ナノ粒子分散液により形成する。
In the above description, the pair of electrodes is at least one pair of deflecting electrodes facing each other if the electrode substrate is an electrode substrate applied to a deflector, and a shield formed on the inner wall of the through hole as necessary. An auxiliary electrode such as an electrode is included.
In a preferred embodiment of the present invention, a metal shape (metal body) to be an electrode is formed by filling the first opening with a metal other than gold by a plating method or a filling method. More specifically, the plating method employs copper having a good current efficiency (near 100%), and in the case of the embedding method, fine silver powder (2 μm or less) is kneaded into a resin binder, resulting in small volume shrinkage. (2% or less after dry firing) Adopt paste. As a result, the generation of voids is reduced during the formation of the metal body, and a highly reliable metal body having predetermined metal properties is formed.
Furthermore, by removing the silicon and silicon oxide film between the metal bodies, plating a gold multilayer protective film on the exposed copper metal surface, or using the surface energy difference between the copper metal body and the silicon oxide insulator Or a gold nanoparticle dispersion.

本実施形態の製造方法をさらに具体的に説明する。
基板材料としては、例えば通常のシリコン基板を使用する。その基板材料に、所望の形状の第1開孔を形成する(第1の工程)。所望の形状は、電極基板完成品を構成する1組(少なくとも1対)の電極の形状および配置に対応する形状である。第1開孔の形成には、湿式エッチングによる化学処理、レーザもしくはプラズマまたはD−RIEなどによる物理処理、ドリル等による機械処理など何れも使用可能である。その後、第1開孔の内壁を含むシリコン基板表面に、熱処理によりまたはCVD等の方法によりSiOの絶縁皮膜を形成する(第5の工程)。その膜厚は0.1〜2.0μmが好ましい範囲である。
なお、予め第1開孔等の所望の形状が形成され、かつ該形状の壁面および表面が絶縁化されているシリコン基板が入手可能であれば、上記第1および第5の工程は省略することができる。
The manufacturing method of this embodiment will be described more specifically.
As the substrate material, for example, a normal silicon substrate is used. First holes having a desired shape are formed in the substrate material (first step). The desired shape is a shape corresponding to the shape and arrangement of one set (at least one pair) of electrodes constituting the finished electrode substrate. For the formation of the first hole, any of chemical treatment by wet etching, physical treatment by laser or plasma or D-RIE, mechanical treatment by a drill or the like can be used. Thereafter, an insulating film of SiO 2 is formed on the surface of the silicon substrate including the inner wall of the first hole by a heat treatment or a method such as CVD (fifth step). The film thickness is preferably in the range of 0.1 to 2.0 μm.
If a silicon substrate in which a desired shape such as the first opening is previously formed and the wall surface and surface of the shape are insulated is available, the first and fifth steps are omitted. Can do.

次いで、第1開孔内に銅、銀、すず、アルミニウム等の金属を水溶液または非水溶液系から電解処理(めっき)により析出させることによりシリコン基板内に電極となる三次元金属構造体(金属体)を形成する(第2の工程)。または、銀等の体積収縮の小さい金属ペーストをスクリーン印刷またはディスペンス法等を繰り返し行うことにより第1開孔に隙間無く埋め込むことにより前記金属体を形成してもよい。後者の場合、ペーストの加熱焼成時の熱収縮が小さい(2〜3%)材料を常圧にて埋め込むことにより、基板の破損を防止することができる。
その後、前記金属体を形成したシリコン基板表面を必要に応じてCMPなどの手法で研摩し平滑化する。次いで、対となる金属体間(電極間)のシリコン酸化膜(SiO)およびシリコンを、ケミカルエッチングまたはプラズマもしくはD−RIE等の物理的エッチングによって除去し、対となる電極が対向するように前記金属体のシリコン基板の厚み方向に平行な面を露出させる(第3の工程)。
Next, a metal such as copper, silver, tin, or aluminum is deposited in the first opening by electrolytic treatment (plating) from an aqueous solution or non-aqueous solution system to form an electrode in the silicon substrate (metal body) ) Is formed (second step). Alternatively, the metal body may be formed by embedding a metal paste having a small volume shrinkage, such as silver, in the first opening without gaps by repeatedly performing screen printing or a dispensing method. In the latter case, the substrate can be prevented from being damaged by embedding a material having a small thermal shrinkage (2 to 3%) at the normal pressure when the paste is heated and fired.
Thereafter, the surface of the silicon substrate on which the metal body is formed is polished and smoothed by a technique such as CMP as necessary. Next, the silicon oxide film (SiO 2 ) and silicon between the paired metal bodies (between the electrodes) and silicon are removed by chemical etching or physical etching such as plasma or D-RIE so that the paired electrodes face each other. A surface parallel to the thickness direction of the silicon substrate of the metal body is exposed (third step).

次いで、露出した金属体表面に活性化処理を行い、その後、金めっき(電解または無電解)または金ナノ分散液中への浸漬によるコーティングを繰り返し行うことにより複数層の電極保護膜を形成する(第4の工程)。活性化処理は、UV光を照射してOにより金属表面に付着した有機物または酸化物を除去する方法、またはプラズマによるライトエッチング、または酸性水溶液等によるケミカルエッチングにより行うことができる。
表面を覆う金保護膜が単層の場合、その金保護膜が熱処理等により下地となる電極金属間に拡散が起こることが考えられるが、複数層の処理をすることにより電極金属上の第1層の保護膜は電極金属と保護膜の金との合金層を形成させて、この層を拡散防止のためのバリア膜として機能させることができ、高真空下での使用環境でも変質のない、信頼性の高い電極構造とすることが可能となる。金属体表面の酸化保護膜の一層あたりの膜厚は0.1μm〜3μmである。
Next, an activation treatment is performed on the exposed metal body surface, and then a plurality of electrode protection films are formed by repeatedly performing gold plating (electrolysis or electroless) or coating by immersion in a gold nanodispersion ( Fourth step). The activation treatment can be performed by irradiating UV light to remove organic substances or oxides attached to the metal surface by O 3 , or by light etching using plasma or chemical etching using an acidic aqueous solution.
In the case where the gold protective film covering the surface is a single layer, it is considered that the gold protective film diffuses between the underlying electrode metals by heat treatment or the like. The protective film of the layer can form an alloy layer of electrode metal and gold of the protective film, and this layer can function as a barrier film for preventing diffusion, and there is no change in use environment under high vacuum. A highly reliable electrode structure can be obtained. The film thickness per layer of the oxidation protection film on the surface of the metal body is 0.1 μm to 3 μm.

[実施形態6] 実施形態1〜5のいずれか1つに記載の方法で製造された少なくとも1対の電極を有する電極基板と、前記1対の電極の少なくとも一方に他の電極とは独立に電位を印加する電位印加手段とを有することを特徴とする偏向器。
[実施形態7] 荷電粒子線が通過する貫通孔および該貫通孔の内壁に配置された互いに平行に対面する少なくとも1対の電極を有する電極基板と、該1対の電極の少なくとも一方に他の電極とは独立に電位を印加する電位印加手段とを備える偏向器であって、
前記1対の電極は、それぞれの横断面形状が台形であることを特徴とする偏向器。
[Embodiment 6] An electrode substrate having at least one pair of electrodes manufactured by the method according to any one of Embodiments 1 to 5, and at least one of the pair of electrodes independently of other electrodes And a potential applying means for applying a potential.
[Embodiment 7] An electrode substrate having a through-hole through which a charged particle beam passes and at least one pair of electrodes facing each other arranged on the inner wall of the through-hole, and at least one of the pair of electrodes has another A deflector comprising a potential applying means for applying a potential independently of an electrode,
Each of the pair of electrodes has a trapezoidal cross-sectional shape.

[実施形態8] 荷電粒子線を用いて被露光基板を露光する荷電粒子線露光装置であって、
荷電粒子線を放射する荷電粒子源と、
前記荷電粒子源の中間像を複数形成する第1の電子光学系と、
前記第1の電子光学系によって形成される複数の中間像を被露光基板上に投影する第2の電子光学系と、
前記被露光基板を保持し所定の位置に駆動して位置決めする位置決め装置とを有し、
前記第1の電子光学系が、実施形態6または7に記載の偏向器を含むことを特徴とする荷電粒子線露光装置。
[実施形態9] 実施形態8に記載の荷電粒子線露光装置を用いてデバイスを製造することを特徴とするデバイス製造方法。
[Embodiment 8] A charged particle beam exposure apparatus for exposing a substrate to be exposed using a charged particle beam,
A charged particle source emitting a charged particle beam;
A first electron optical system for forming a plurality of intermediate images of the charged particle source;
A second electron optical system that projects a plurality of intermediate images formed by the first electron optical system onto a substrate to be exposed;
A positioning device for holding and positioning the substrate to be exposed and driving to a predetermined position;
The charged particle beam exposure apparatus, wherein the first electron optical system includes the deflector according to the sixth or seventh embodiment.
[Embodiment 9] A device manufacturing method, wherein a device is manufactured using the charged particle beam exposure apparatus according to Embodiment 8.

以下、本発明の実施例を図面を参照しながら説明する。
[実施例1]
図1は本発明の実施例1に係る荷電粒子線の偏向器100の概観図であり、(a)が上面図、(b)が(a)におけるA−A’断面図、(c)が(a)における偏向電極1の寸法図である。
Embodiments of the present invention will be described below with reference to the drawings.
[Example 1]
1A and 1B are schematic views of a charged particle beam deflector 100 according to a first embodiment of the present invention, in which FIG. 1A is a top view, FIG. 1B is a cross-sectional view taken along line AA ′ in FIG. It is a dimension figure of the deflection electrode 1 in (a).

先ず、偏向器100の構造について説明する。この偏向器100は、シリコン基板4、シリコン基板4の厚み方向に設けられた荷電粒子線を通過させるための貫通孔5、貫通孔5の内壁に配置された1対の偏向電極1、1および偏向電極1、1に不図示の電源から任意の電位を印加するための駆動配線3、3を備えている。また、シリコン基板4と偏向電極1、1および駆動配線3、3との間には絶縁膜2を備えており、偏向器としての動作時、偏向電極1、1に安定して電位を与えることができるようにしてある。   First, the structure of the deflector 100 will be described. The deflector 100 includes a silicon substrate 4, a through-hole 5 for passing a charged particle beam provided in the thickness direction of the silicon substrate 4, a pair of deflection electrodes 1, 1 disposed on the inner wall of the through-hole 5, and Drive wirings 3 and 3 for applying an arbitrary potential to the deflection electrodes 1 and 1 from a power source (not shown) are provided. Further, an insulating film 2 is provided between the silicon substrate 4 and the deflection electrodes 1 and 1 and the drive wirings 3 and 3 so that a potential can be stably applied to the deflection electrodes 1 and 1 when operating as a deflector. It is made to be able to.

偏向器100において、シリコン基板4の厚さは主に必要な偏向感度により決定されるが、ここでは、厚さ200μmのシリコン基板を用いた。偏向電極1、1は、図1(b)および(c)に示すように、貫通孔5の軸(光軸)8に垂直な断面において、上底が約50μm、下底が約70μm、高さが約15μmの台形状に形成されている。また、偏向電極1、1は、その電極金属11部分がCu、Sn、Ag、Al等の低抵抗な金属で上記台形状に形成され、その露出面(貫通孔内壁に接する面の反対側の面)には、金などの酸化しにくい金属からなる保護膜12が1層の膜厚0.1〜3μmで2層形成されている。すなわち、貫通孔内壁における偏向電極1、1は厚みが約15μm、高さが貫通孔5と同じ約200μmである。1対の偏向電極1、1の間隔は30μmである。駆動配線3、3はAu、Cu、Al等の低抵抗な金属を、絶縁膜2にはシリコン窒化膜やシリコン酸化膜等を用いる。   In the deflector 100, the thickness of the silicon substrate 4 is mainly determined by the necessary deflection sensitivity. Here, a silicon substrate having a thickness of 200 μm was used. As shown in FIGS. 1B and 1C, the deflection electrodes 1, 1 have an upper base of about 50 μm, a lower base of about 70 μm, and a high height in a cross section perpendicular to the axis (optical axis) 8 of the through-hole 5. Is formed in a trapezoidal shape of about 15 μm. Further, the deflection electrodes 1 and 1 are formed such that the electrode metal 11 portion is made of a low resistance metal such as Cu, Sn, Ag, Al and the like in the trapezoidal shape, and its exposed surface (on the opposite side of the surface in contact with the inner wall of the through hole). Two protective films 12 made of a metal that is difficult to oxidize, such as gold, are formed in a thickness of 0.1 to 3 μm. That is, the deflection electrodes 1 and 1 on the inner wall of the through hole have a thickness of about 15 μm and a height of about 200 μm, which is the same as the through hole 5. The distance between the pair of deflection electrodes 1 and 1 is 30 μm. The drive wirings 3 and 3 are made of a low resistance metal such as Au, Cu or Al, and the insulating film 2 is made of a silicon nitride film or a silicon oxide film.

この偏向器100においては、不図示の荷電粒子線をその光軸(貫通孔5の軸)8方向に通過するように照射した場合、偏向電極1、1のそれぞれを電気的に接地したときには荷電粒子線は貫通孔5を軌道を変えることなく通過する。しかし、偏向電極1、1のそれぞれに異なる電位を与えたときには貫通孔5に電界が発生し、荷電粒子線を所望の方向に偏向することができる。   In this deflector 100, when a charged particle beam (not shown) is irradiated so as to pass in the direction of its optical axis (axis of the through hole 5) 8, it is charged when each of the deflection electrodes 1 and 1 is electrically grounded. The particle beam passes through the through hole 5 without changing its trajectory. However, when different potentials are applied to the deflection electrodes 1 and 1, an electric field is generated in the through hole 5, and the charged particle beam can be deflected in a desired direction.

次に、図1の偏向器100の製造方法を図2により説明する。
図2(a)に示すように、200μmの厚さの絶縁性を有するシリコン基板4に図1の電極金属11の断面形状および配置に対応する幅15μmの第1開孔(アスペクト比13.3)15をD−RIEにより形成し(第1の工程)、シリコン基板4の表面および第1開孔15の壁面に熱酸化膜(絶縁膜)2を〜2μm形成した(第5の工程)。
Next, a manufacturing method of the deflector 100 of FIG. 1 will be described with reference to FIG.
As shown in FIG. 2A, a first opening (aspect ratio of 13.3) having a width of 15 μm corresponding to the cross-sectional shape and arrangement of the electrode metal 11 of FIG. 1 is formed in the insulating silicon substrate 4 having a thickness of 200 μm. ) 15 was formed by D-RIE (first step), and a thermal oxide film (insulating film) 2 was formed to 2 μm on the surface of the silicon substrate 4 and the wall surface of the first opening 15 (fifth step).

次いで、図2(b)に示すように、シリコン基板4の第1開孔15内に、硫酸銅5水塩95g/Lと硫酸180g/Lの硫酸銅メッキ浴にて1.5A/dmの電解条件で銅を15時間析出させ(第2の工程)、図2(c)に示すように、析出させた銅からなる金属体16のシリコン基板4の表面から突出した部分をCMP研磨により平坦化した。
次に、図2(d)に示すように、対向する電極金属11(金属体16)の表面を露出するため再度D−RIEにて金属体16、16間をエッチングした(第3の工程)。すなわち、第2開孔17を形成した。第2開孔形成用のマスクにおいて、金属体16、16の間隔は30μmとした。開口間隔を変える場合、必要に応じてマスクの寸法、エッチング条件および後述するAu保護膜の厚みを調節すればよい。
Next, as shown in FIG. 2B, 1.5 A / dm 2 in a copper sulfate plating bath of 95 g / L of copper sulfate pentahydrate and 180 g / L of sulfuric acid in the first opening 15 of the silicon substrate 4. The copper was deposited for 15 hours under the electrolytic conditions (second step), and as shown in FIG. 2C, the portion of the deposited metal body 16 protruding from the surface of the silicon substrate 4 was subjected to CMP polishing. Flattened.
Next, as shown in FIG. 2D, the metal bodies 16 and 16 are etched again by D-RIE to expose the surface of the opposing electrode metal 11 (metal body 16) (third step). . That is, the second opening 17 was formed. In the mask for forming the second opening, the distance between the metal bodies 16 and 16 was 30 μm. When changing the opening interval, the dimensions of the mask, the etching conditions, and the thickness of the Au protective film described later may be adjusted as necessary.

表面を露出した電極金属11(金属体16)の最表面をOプラズマにより活性化させ、金濃度2g/l、PH=5.0、めっき液温度75℃±5℃の無電解めっき液により処理して0.2μmの保護膜を形成し、さらに、金ナノ分散液中に浸漬して2層目の保護膜を形成する(第4の工程)ことにより、図2(e)に示すような、電極金属11の表面に保護膜12を有する偏向電極1を形成した。Au保護膜の厚みは〜1.5μmとした。 The outermost surface of the electrode metal 11 (metal body 16) whose surface is exposed is activated by O 2 plasma, and an electroless plating solution having a gold concentration of 2 g / l, PH = 5.0, and a plating solution temperature of 75 ° C. ± 5 ° C. As shown in FIG. 2 (e), a 0.2 μm protective film is formed by treatment, and further, a second protective film is formed by immersion in a gold nanodispersion (fourth step). The deflection electrode 1 having the protective film 12 on the surface of the electrode metal 11 was formed. The thickness of the Au protective film was set to ˜1.5 μm.

また、表面を露出させた電極が銅の場合は、脱脂剤により表面の洗浄を行い、ついで金濃度〜1.2g/l、PH=7.0、めっき温度85℃の無電解金めっき液により、0.05μmの下地(銅置換の)金めっき膜を形成し、引き続き、亜硫酸金ナトリウムを用いた金濃度3.0g/l、PH=7.0、めっき温度50℃の還元金めっきにより、前記同様1.5μmのAu保護膜を形成することもできる。    In addition, when the electrode whose surface is exposed is copper, the surface is washed with a degreasing agent, and then with an electroless gold plating solution having a gold concentration of 1.2 g / l, PH = 7.0, and a plating temperature of 85 ° C. , A 0.05 μm-base (copper-substituted) gold plating film was formed, followed by reduction gold plating with a gold concentration of 3.0 g / l, PH = 7.0, plating temperature of 50 ° C. using sodium gold sulfite, Similarly to the above, a 1.5 μm Au protective film can be formed.

[比較例]
比較例として、保護膜不要のプロセスで偏向器を製造した。すなわち、実施例1の第2の工程で実施例1の第1および5の工程で得られたシリコン基板の開孔15内に、偏向電極1(=金属体16)として直接、金をめっきにより200μmの厚さに埋め込んだ後、第4の工程を行わないことを除き、実施例1と同様にして偏向器を作成した。
めっき中に水素ガスが発生し、得られた金電極膜金属体16にボイドが観察され、所望の偏向電極1を得ることが出来なかった。
[Comparative example]
As a comparative example, a deflector was manufactured by a process that does not require a protective film. That is, gold is directly plated as the deflection electrode 1 (= metal body 16) in the opening 15 of the silicon substrate obtained in the first and fifth steps of the first embodiment in the second step of the first embodiment. After embedding in a thickness of 200 μm, a deflector was produced in the same manner as in Example 1 except that the fourth step was not performed.
Hydrogen gas was generated during plating, and voids were observed in the obtained gold electrode film metal body 16, and the desired deflection electrode 1 could not be obtained.

[実施例2]
200μmの厚さの絶縁性を有するシリコン基板に対し、D−RIEにより15μmの孔あけを(アスペクト比13.3)行い、基板表面および孔壁面に熱酸化膜を〜2μm形成したシリコン基板(図2(a))に、硫酸銅5水塩95g/Lと硫酸180g/Lの硫酸銅メッキ浴にて1.5A/dmの電解条件にて銅を15時間析出させた(図2(b))。次に、基板表面の突起部(金属体16)をCMP研磨により平坦化し(図2(c))、次いで、対向する電極金属11(金属体16)の対向面を露出するため、再度D−RIEにて電極金属11間をエッチングした(図2(d))。
[Example 2]
A silicon substrate having a thickness of 2 μm formed on the surface of the substrate and the hole wall surface by punching a hole of 15 μm by D-RIE (aspect ratio 13.3) on an insulating silicon substrate having a thickness of 200 μm (see FIG. 2 (a)), copper was precipitated for 15 hours under an electrolytic condition of 1.5 A / dm 2 in a copper sulfate plating bath of 95 g / L of copper sulfate pentahydrate and 180 g / L of sulfuric acid (FIG. 2B). )). Next, the protrusion (metal body 16) on the substrate surface is flattened by CMP polishing (FIG. 2C), and then the opposing surface of the opposing electrode metal 11 (metal body 16) is exposed. The space between the electrode metals 11 was etched by RIE (FIG. 2D).

光軸方向に延びて露出した電極金属11を、硫酸−過酸化水素10%水溶液によりソフトエッチングして、銅最表面を活性化させ、金ナノ分散液中に浸漬して1層目の保護膜形成を行い、乾燥焼成後さらに同液にて、2層目の保護膜形成を行った(図2(e))。この際の保護膜の厚みは、1層目0.2μm、2層目0.2μmの膜厚を得た。その結果、実施例1と同様の偏向電極1を得ることが出来た。   The exposed electrode metal 11 extending in the optical axis direction is soft-etched with a 10% aqueous solution of sulfuric acid-hydrogen peroxide to activate the outermost surface of the copper, and is immersed in a gold nano-dispersion to form a first protective film After forming and drying and baking, a second protective film was formed with the same solution (FIG. 2 (e)). In this case, the thickness of the protective film was 0.2 μm for the first layer and 0.2 μm for the second layer. As a result, a deflection electrode 1 similar to that in Example 1 was obtained.

[実施例3]
実施例2同様に、200μmの厚さの絶縁性を有するシリコン基板に15μmの孔(アスペクト比13.3)をD−RIEにより形成し、基板表面および孔壁面に熱酸化膜を〜2μm形成したシリコン基板(図2(a))に、硫酸銅5水塩95g/Lと硫酸180g/Lの硫酸銅メッキ浴で1.5A/dmの電解条件にて銅を15時間析出させた(図2(b))。次に、析出させた銅(金属体16)による基板表面の突起部をCMP研磨により平坦化し(図2(c))、次いで、対向する電極金属11(金属体16)の対向面を露出するため、再度D−RIEにて電極間をエッチングした(図2(d))。
厚み方向に露出した電極金属11の最表面をOプラズマにより活性化させ、実施例2と同様に、金ナノ分散液中への浸漬と、乾燥焼成を2回以上複数回行った(図2(e))。結果として、実施例2と同様の保護膜12を得ることが出来た。
[Example 3]
As in Example 2, a 15 μm hole (aspect ratio of 13.3) was formed in a silicon substrate having an insulating property of 200 μm thickness by D-RIE, and a thermal oxide film was formed on the substrate surface and the hole wall surface by 2 μm. Copper was deposited on a silicon substrate (FIG. 2 (a)) for 15 hours under an electrolytic condition of 1.5 A / dm 2 in a copper sulfate plating bath of 95 g / L copper sulfate pentahydrate and 180 g / L sulfuric acid (FIG. 2). 2 (b)). Next, the protrusion on the substrate surface by the deposited copper (metal body 16) is flattened by CMP polishing (FIG. 2C), and then the opposing surface of the opposing electrode metal 11 (metal body 16) is exposed. Therefore, the space between the electrodes was again etched by D-RIE (FIG. 2D).
The outermost surface of the electrode metal 11 exposed in the thickness direction was activated by O 2 plasma, and in the same manner as in Example 2, immersion in a gold nanodispersion and drying and firing were performed two or more times (FIG. 2). (E)). As a result, the same protective film 12 as in Example 2 was obtained.

以上のように絶縁性を有するシリコン基板体に所望の形状に金属体を安価にかつ高い信頼性を有する複合体を形成することができ、半導体やLSI等のSiウエハの3次元集積化への応用に可能となった。   As described above, it is possible to form a metal body in a desired shape on a silicon substrate body having insulation properties at low cost and with high reliability, and to achieve three-dimensional integration of Si wafers such as semiconductors and LSIs. It became possible to apply.

[実施例4]
次に上記説明した電極基板をブランカに用いた電子ビーム露光装置を利用したデバイスの生産方法の実施例を説明する。
図3は微小デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造のフローを示す。ステップ1(回路設計)では微小デバイス、例えば半導体デバイスの回路設計を行う。ステップ2(EBデータ変換)では設計した回路パターンに基づいて露光装置の露光制御データを作成する。一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記用意した露光制御データが入力された露光装置とウエハを用いて、リソグラフィ技術によってウエハ上に実際の回路を形成する。次のステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ7)される。
[Example 4]
Next, an embodiment of a device production method using an electron beam exposure apparatus using the electrode substrate described above as a blanker will be described.
FIG. 3 shows a flow of manufacturing a microdevice (a semiconductor chip such as an IC or LSI, a liquid crystal panel, a CCD, a thin film magnetic head, a micromachine, etc.). In step 1 (circuit design), circuit design of a micro device, for example, a semiconductor device is performed. In step 2 (EB data conversion), exposure control data for the exposure apparatus is created based on the designed circuit pattern. On the other hand, in step 3 (wafer manufacture), a wafer is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the wafer and the exposure apparatus to which the prepared exposure control data is input. The next step 5 (assembly) is referred to as a post-process, and is a process for forming a semiconductor chip using the wafer produced in step 4, such as an assembly process (dicing, bonding), a packaging process (chip encapsulation), and the like. including. In step 6 (inspection), the semiconductor device manufactured in step 5 undergoes inspections such as an operation confirmation test and a durability test. Through these steps, the semiconductor device is completed and shipped (step 7).

図4は上記ウエハプロセスの詳細なフローを示す。ステップ11(酸化)ではウエハの表面を酸化させる。ステップ12(CVD)ではウエハ表面に絶縁膜を形成する。ステップ13(電極形成)ではウエハ上に電極を蒸着によって形成する。ステップ14(イオン打込み)ではウエハにイオンを打ち込む。ステップ15(レジスト処理)ではウエハに感光剤を塗布する。ステップ16(露光)では上記説明した露光装置によって回路パターンをウエハに焼付露光する。ステップ17(現像)では露光したウエハを現像する。ステップ18(エッチング)では現像したレジスト像以外の部分を削り取る。ステップ19(レジスト剥離)ではエッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンが形成される。本実施形態の製造方法を用いれば、従来は製造が難しかった高集積度の微小デバイスを低コストに製造することができる。   FIG. 4 shows a detailed flow of the wafer process. In step 11 (oxidation), the wafer surface is oxidized. In step 12 (CVD), an insulating film is formed on the wafer surface. In step 13 (electrode formation), an electrode is formed on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted into the wafer. In step 15 (resist process), a photosensitive agent is applied to the wafer. In step 16 (exposure), the circuit pattern is printed onto the wafer by exposure using the exposure apparatus described above. In step 17 (development), the exposed wafer is developed. In step 18 (etching), portions other than the developed resist image are removed. In step 19 (resist stripping), unnecessary resist after etching is removed. By repeatedly performing these steps, multiple circuit patterns are formed on the wafer. By using the manufacturing method of the present embodiment, a highly integrated microdevice that has been difficult to manufacture can be manufactured at low cost.

本発明の実施例1に係る偏向器の構造を説明する図である。It is a figure explaining the structure of the deflector which concerns on Example 1 of this invention. 図1の偏向器の作製方法を説明する図である。It is a figure explaining the manufacturing method of the deflector of FIG. 本発明を適用した露光装置によるデバイスの製造プロセスのフローを説明する図である。It is a figure explaining the flow of the manufacturing process of the device by the exposure apparatus to which this invention is applied. 図4におけるウエハプロセスを説明する図である。It is a figure explaining the wafer process in FIG.

符号の説明Explanation of symbols

1 偏向電極
2 絶縁膜
3 駆動配線
4 シリコン基板
5 貫通孔
11 電極金属
12 保護膜
15 第1開孔
16 金属体
17 第2開孔
100 偏向器
DESCRIPTION OF SYMBOLS 1 Deflection electrode 2 Insulating film 3 Drive wiring 4 Silicon substrate 5 Through-hole 11 Electrode metal 12 Protective film 15 1st opening 16 Metal body 17 2nd opening 100 Deflector

Claims (7)

貫通孔と、該貫通孔の内壁に配置された1組の電極とを有する電極基板の製造方法であって、
前記1組の電極の形状および配置に対応する複数の第1開孔を基板材料に形成する第1の工程と、
前記複数の第1開孔のそれぞれに金以外の金属を充填して前記電極となる金属体を形成する第2の工程と、
前記貫通孔に前記1組の電極を配置した形状に対応する第2開孔を前記複数の第1開孔の間およびその近傍を含む部分に形成して前記金属体の前記貫通孔に面する表面を露出させる第3の工程と、
前記金属体の表面に酸化防止用の金属保護膜を単数または複数層形成する第4の工程と
を備えることを特徴とする電極基板の製造方法。
A method of manufacturing an electrode substrate having a through hole and a set of electrodes disposed on an inner wall of the through hole,
A first step of forming a plurality of first apertures in the substrate material corresponding to the shape and arrangement of the set of electrodes;
A second step of forming a metal body serving as the electrode by filling each of the plurality of first openings with a metal other than gold;
A second opening corresponding to a shape in which the one set of electrodes is arranged in the through hole is formed in a portion including between and near the plurality of first openings to face the through hole of the metal body. A third step of exposing the surface;
And a fourth step of forming one or more metal protective films for preventing oxidation on the surface of the metal body.
前記基板材料は、シリコン基板であり、前記第1の工程の後に、少なくとも前記第1開孔の内壁に絶縁層を形成する第5の工程をさらに含むことを特徴とする請求項1に記載の製造方法。   2. The substrate material according to claim 1, wherein the substrate material is a silicon substrate, and further includes a fifth step of forming an insulating layer on at least an inner wall of the first hole after the first step. Production method. 前記1組の電極は、互いに対面する少なくとも1対の電極を含み、前記第1開孔のうち該1対の電極に対応する開孔は、断面が該1対の電極それぞれの互いに対面する側面に対応する辺を上底として該上底が下底より短い台形状であることを特徴とする請求項1または2に記載の製造方法。   The pair of electrodes includes at least one pair of electrodes facing each other, and the openings corresponding to the pair of electrodes of the first openings are side surfaces facing each other of the pair of electrodes. The manufacturing method according to claim 1, wherein the side corresponding to is an upper base and the upper base is trapezoidal shorter than the lower base. 請求項1〜3のいずれか1つに記載の方法で製造された少なくとも1対の電極を有する電極基板と、前記1対の電極の少なくとも一方に他の電極とは独立に電位を印加する電位印加手段とを有することを特徴とする偏向器。   An electrode substrate having at least one pair of electrodes manufactured by the method according to any one of claims 1 to 3, and a potential for applying a potential to at least one of the pair of electrodes independently of other electrodes And a deflecting device. 荷電粒子線が通過する貫通孔および該貫通孔の内壁に配置された互いに平行な面で対向する少なくとも1対の電極を有する電極基板と、該1対の電極の少なくとも一方に他の電極とは独立に電位を印加する電位印加手段とを備える偏向器であって、
前記1対の電極は、それぞれの断面が台形状であることを特徴とする偏向器。
An electrode substrate having a through-hole through which a charged particle beam passes and at least one pair of electrodes opposed to each other in parallel planes disposed on an inner wall of the through-hole, and at least one of the pair of electrodes as another electrode A deflector comprising a potential applying means for independently applying a potential,
Each of the pair of electrodes has a trapezoidal cross section.
荷電粒子線を用いて被露光基板を露光する荷電粒子線露光装置であって、
荷電粒子線を放射する荷電粒子源と、
前記荷電粒子源の中間像を複数形成する第1の電子光学系と、
前記第1の電子光学系によって形成される複数の中間像を被露光基板上に投影する第2の電子光学系と、
前記被露光基板を保持し所定の位置に駆動して位置決めする位置決め装置とを有し、
前記第1の電子光学系が、請求項4または5に記載の偏向器を含むことを特徴とする荷電粒子線露光装置。
A charged particle beam exposure apparatus that exposes a substrate to be exposed using a charged particle beam,
A charged particle source emitting a charged particle beam;
A first electron optical system for forming a plurality of intermediate images of the charged particle source;
A second electron optical system that projects a plurality of intermediate images formed by the first electron optical system onto a substrate to be exposed;
A positioning device for holding and positioning the substrate to be exposed and driving to a predetermined position;
6. A charged particle beam exposure apparatus, wherein the first electron optical system includes the deflector according to claim 4 or 5.
請求項6に記載の荷電粒子線露光装置を用いてデバイスを製造することを特徴とするデバイス製造方法。   A device manufacturing method, wherein a device is manufactured using the charged particle beam exposure apparatus according to claim 6.
JP2003379407A 2003-11-10 2003-11-10 Manufacturing method for electrode substrate, deflector using the electrode substrate and charged particle beam exposure device using the deflector Pending JP2005142101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003379407A JP2005142101A (en) 2003-11-10 2003-11-10 Manufacturing method for electrode substrate, deflector using the electrode substrate and charged particle beam exposure device using the deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003379407A JP2005142101A (en) 2003-11-10 2003-11-10 Manufacturing method for electrode substrate, deflector using the electrode substrate and charged particle beam exposure device using the deflector

Publications (1)

Publication Number Publication Date
JP2005142101A true JP2005142101A (en) 2005-06-02

Family

ID=34689464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003379407A Pending JP2005142101A (en) 2003-11-10 2003-11-10 Manufacturing method for electrode substrate, deflector using the electrode substrate and charged particle beam exposure device using the deflector

Country Status (1)

Country Link
JP (1) JP2005142101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150456A (en) * 2020-03-18 2021-09-27 株式会社ニューフレアテクノロジー Blanking device for multi-beam and multi-charged particle beam drawing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150456A (en) * 2020-03-18 2021-09-27 株式会社ニューフレアテクノロジー Blanking device for multi-beam and multi-charged particle beam drawing device
JP7359050B2 (en) 2020-03-18 2023-10-11 株式会社ニューフレアテクノロジー Multi-beam blanking device and multi-charged particle beam lithography device

Similar Documents

Publication Publication Date Title
TWI291221B (en) Printed circuit board, flip chip ball grid array board and method of fabricating the same
JP5641391B2 (en) A method of manufacturing a multi-beam deflector array apparatus having electrodes, a multi-beam deflector array apparatus, and an irradiation lithography system.
TW544904B (en) Semiconductor device and method of production of same
JP5329733B2 (en) Electrical connection and manufacturing process between two sides of the substrate
FI116867B (en) Connection and installation technology for multi-chip modules
US6370768B1 (en) Circuit board, a method for manufacturing same, and a method of electroless plating
JP2005150329A (en) Wiring structure and its forming method
JPH06505833A (en) Integrated circuit board with multichip module and planarized patterned surface
US9173291B2 (en) Circuit board and method for manufacturing the same
JP6889773B2 (en) A method for patterning a substrate and a layer arranged on the substrate, and a method for forming a device structure.
KR0138009B1 (en) Method for fabricating a semiconductor device
JP6217465B2 (en) Wiring structure manufacturing method, wiring structure, and electronic device using the same
JP2007220959A (en) Semiconductor device and its manufacturing method
KR20080063781A (en) A method of manufacturing a structure
JP2005142101A (en) Manufacturing method for electrode substrate, deflector using the electrode substrate and charged particle beam exposure device using the deflector
JP4704702B2 (en) Blanking aperture array and manufacturing method thereof
JP6375249B2 (en) Wiring substrate, manufacturing method thereof, and semiconductor package
JP2004103911A (en) Method for forming wiring
US6387574B1 (en) Substrate for transfer mask and method for manufacturing transfer mask by use of substrate
KR20170123241A (en) Manufacturing method of semiconductor package
JP2001210540A (en) Method of manufacturing electromagnetic coil, charged particle beam exposure system using the same, and method of manufacturing semiconductor device
JP2006054240A (en) Method of manufacturing device for multi-electron beam lithographic equipment
JP2004022898A (en) Semiconductor device and its manufacturing method
JP2008085238A (en) Substrate having through electrode, and manufacturing method thereof
JP2011258871A (en) Circuit board and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090401

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090413