JP2005140757A - Approximation bod5 measurement method, approximation bod5 measuring device, water quality monitoring apparatus using the device, and wastewater treatment system - Google Patents

Approximation bod5 measurement method, approximation bod5 measuring device, water quality monitoring apparatus using the device, and wastewater treatment system Download PDF

Info

Publication number
JP2005140757A
JP2005140757A JP2003380456A JP2003380456A JP2005140757A JP 2005140757 A JP2005140757 A JP 2005140757A JP 2003380456 A JP2003380456 A JP 2003380456A JP 2003380456 A JP2003380456 A JP 2003380456A JP 2005140757 A JP2005140757 A JP 2005140757A
Authority
JP
Japan
Prior art keywords
concentration
bods
bod
sample solution
standard solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003380456A
Other languages
Japanese (ja)
Other versions
JP4466046B2 (en
Inventor
Yoshiharu Isoda
義晴 五十田
Yasuharu Matsuoka
康晴 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujisawa Pharmaceutical Co Ltd
Original Assignee
Fujisawa Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujisawa Pharmaceutical Co Ltd filed Critical Fujisawa Pharmaceutical Co Ltd
Priority to JP2003380456A priority Critical patent/JP4466046B2/en
Publication of JP2005140757A publication Critical patent/JP2005140757A/en
Application granted granted Critical
Publication of JP4466046B2 publication Critical patent/JP4466046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an approximation BOD5 measuring apparatus and an approximation BOD<SB>5</SB>measurement method capable of quickly, precisely measuring the approximate BOD<SB>5</SB>concentration. <P>SOLUTION: The aging data of biosensor output (S) in BODs concentration measurement by a BODs measuring apparatus 10 are acquired for standard and sample solutions; organic carbon concentration (TOCin, TOCout), before and after the BODs concentration measurement for the standard and sample solutions, is measured by a TOC meter 13; index data (D) regarding BOD<SB>5</SB>are extracted form the biosensor output (S) for the standard and sample solutions; a TOC decomposition rate is calculated, based on the organic carbon concentration (TOCin, TOCout), before and after the BODs measurement; converted index data (E) which are converted to the index data, when entire organic carbon contents contained in the standard and sample solutions are decomposed are calculated, based on the TOC decomposition rate and the index data (D) for the standard and sample solutions; and BOD<SB>5</SB>concentration (F) is calculated, on the basis of the converted index data of the standard and sample solutions. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、生活廃水、工場廃水等の廃水処理、河川等の水質監視において有機物汚染の指標として用いられるBOD(生物化学的酸素要求量)濃度の測定方法、測定装置に関し、さらに詳細にはBODを短時間のうちに精度よく測定することができる近似BOD測定方法、近似BOD測定装置に関する。
また、本発明は、上記近似BOD測定装置を応用して水質監視や排水処理を行う水質監視装置、排水処理システムに関する。
The present invention relates to a method and apparatus for measuring BOD 5 (biochemical oxygen demand) concentration used as an indicator of organic contamination in wastewater treatment of domestic wastewater, factory wastewater, etc., and water quality monitoring of rivers, etc. The present invention relates to an approximate BOD 5 measurement method and an approximate BOD 5 measurement apparatus that can accurately measure BOD 5 in a short time.
The present invention also relates to a water quality monitoring device and a waste water treatment system that perform water quality monitoring and waste water treatment by applying the approximate BOD 5 measuring device.

通常、河川に放流している廃水の水質は、微生物を利用した管理指標のひとつであるBOD(生物化学的酸素要求量)で規制されている。
BODは、水中の好気性微生物により、有機性物質が分解される時に消費される溶存酸素量のことであり、JIS K0102に規定された公定法では、20℃、5日間に消費される溶存酸素量をppmあるいはOmg/Lで表したものである。
なおBODには、JIS K0102で規定された方法以外の簡易な測定方法で測定されたBOD(後述するBODs)があり、2つを区別するために、JIS K0102で定められた公定法で得られるBODを、以後、BODと呼ぶ。
Usually, the quality of wastewater discharged into rivers is regulated by BOD (Biochemical Oxygen Demand), which is one of the management indices using microorganisms.
BOD is the amount of dissolved oxygen consumed when an organic substance is decomposed by aerobic microorganisms in water. According to the official method stipulated in JIS K0102, dissolved oxygen consumed for 5 days at 20 ° C. The amount is expressed in ppm or O 2 mg / L.
BOD includes BOD (BODs described later) measured by a simple measurement method other than the method defined in JIS K0102, and is obtained by an official method defined in JIS K0102 to distinguish between the two. The BOD is hereinafter referred to as BOD 5 .

BOD測定方法は、測定結果を得るまでに5日間を要する。しかしながら廃水処理施設等では、現在廃水処理施設内を流れている廃水の水質についてリアルタイムな情報が求められることから、測定結果が出るまでに5日も要するBOD測定方法をそのまま利用して水質の管理することはできない。 The BOD 5 measurement method takes 5 days to obtain measurement results. However, since wastewater treatment facilities require real-time information about the quality of the wastewater currently flowing through the wastewater treatment facility, the water quality of the water can be measured by using the BOD 5 measurement method, which takes 5 days until the measurement results are obtained. It cannot be managed.

そのため、測定時間が短いTOC(有機体炭素量)計やTOD(全酸素消費量)計で廃水中の有機体炭素濃度等を定量し、過去に蓄積したBOD濃度とTOC濃度(あるいはTOD濃度)との対応関係データを用いて、BOD濃度/TOC濃度比、BOD濃度/TOD濃度比からBOD濃度を統計的に予測する管理手法が多用されている。 Therefore, TOC (organic carbon content) meter and TOD (total oxygen consumption) meter with short measurement time are used to quantify organic carbon concentration in wastewater, and BOD 5 concentration and TOC concentration (or TOD concentration) accumulated in the past. A management method for statistically predicting the BOD 5 concentration from the BOD 5 concentration / TOC concentration ratio and the BOD 5 concentration / TOD concentration ratio is frequently used.

一方、バイオセンサ(微生物を固定した膜と酸素電極で構成したものをいう)を使って短時間のうちにBOD濃度(以下、BOD濃度と区別するためバイオセンサによるBOD濃度をBODs濃度という)を簡易的に測定するBODs測定装置が普及している(特許文献1参照)。
特公昭61−7258号公報
On the other hand, BOD concentration (hereinafter referred to as BOD concentration by biosensor is referred to as BODs concentration in order to distinguish it from BOD 5 concentration) in a short time using a biosensor (referred to as a membrane composed of a microorganism-fixed membrane and an oxygen electrode). A BODs measuring apparatus that simply measures the above is widely used (see Patent Document 1).
Japanese Patent Publication No.61-7258

JIS K 3602には、BODs測定装置(例えば王子計測機器株式会社製のBF-2000を使用)でBODs濃度を測定する方法が規定されている。図3はこのBODs測定装置によりBODs濃度を測定するときの測定サイクルを説明する図であり、図4はBODs濃度の測定原理を説明する図(バイオセンサ出力からBODsを算出することを説明する図)である。   JIS K 3602 defines a method for measuring the BODs concentration with a BODs measuring device (for example, using BF-2000 manufactured by Oji Scientific Instruments). FIG. 3 is a diagram for explaining a measurement cycle when measuring the BODs concentration by this BODs measuring device, and FIG. 4 is a diagram for explaining a measurement principle of the BODs concentration (a diagram for explaining calculating BODs from biosensor output). ).

バイオセンサを装着したフローセルに、標準液(グルコース・グルタミン酸溶液、BOD濃度は20[mg/L])、および有機性物質などを含む試料液を順次供給する。これらの液がバイオセンサ先端の微生物膜に接触すると、標準液中のグルコース・グルタミン酸や試料中の有機性物質などが分解される。 A standard solution (glucose / glutamic acid solution, BOD 5 concentration is 20 [mg / L]) and a sample solution containing an organic substance and the like are sequentially supplied to a flow cell equipped with a biosensor. When these solutions come into contact with the microbial membrane at the tip of the biosensor, glucose / glutamic acid in the standard solution, organic substances in the sample, and the like are decomposed.

この微生物分解により、標準液および試料液中の溶存酸素が消費される。このとき溶存酸素の消費を酸素電極の出力として検知することができる。そして試料液およびBOD濃度が既知(例えば20[mg/L])である標準液について、出力変化量を検出することにより、BODs濃度を次式(1)により求めることができる。 This microbial degradation consumes dissolved oxygen in the standard solution and the sample solution. At this time, consumption of dissolved oxygen can be detected as the output of the oxygen electrode. The BODs concentration can be obtained by the following equation (1) by detecting the output change amount for the sample solution and the standard solution having a known BOD 5 concentration (for example, 20 [mg / L]).

BODs濃度=(試料液の最大出力変化量Y/標準液の最大出力変化量X)×20[mg/L]・・・・・(1)     BODs concentration = (maximum output change Y of sample solution / maximum output change X of standard solution) × 20 [mg / L] (1)

この(1)式に代入する試料液最大出力変化量(Y)および標準液最大出力変化量(X)を、図3に示すタイミングで順次測定する。
すなわち、まず、3分間試料液を供給し、続いて15分洗浄水を流して、フローセルなどを洗浄し、出力信号Sがベースラインに戻るのを待つ。
The sample solution maximum output change amount (Y) and the standard solution maximum output change amount (X) to be substituted into the equation (1) are sequentially measured at the timing shown in FIG.
That is, first, the sample solution is supplied for 3 minutes, and then the washing water is supplied for 15 minutes to wash the flow cell and the like, and waits for the output signal S to return to the baseline.

続いてフローセルに5分間標準液(図中STDで示す)を供給し、バイオセンサの出力をプロットする。そして5分間のバイオセンサ出力Sの最大差を「標準液出力値」(標準液の最大出力変化量X)として取得する。続いて15分洗浄水を流してベースラインに戻るのを待つ。   Subsequently, a standard solution (indicated by STD in the figure) is supplied to the flow cell for 5 minutes, and the output of the biosensor is plotted. Then, the maximum difference of the biosensor output S for 5 minutes is acquired as the “standard solution output value” (maximum output change amount X of the standard solution). Continue to flush for 15 minutes and wait for it to return to baseline.

続いてフローセルに5分間試料液(図中SPLで示す)を供給し、バイオセンサの出力をプロットする。そして5分間のバイオセンサ出力Sの最大差を「試料液出力値」(試料液の最大出力変化量Y)として取得する。続いて15分洗浄水を流してベースラインに戻るのを待つ。   Subsequently, a sample solution (indicated by SPL in the figure) is supplied to the flow cell for 5 minutes, and the output of the biosensor is plotted. Then, the maximum difference in biosensor output S for 5 minutes is acquired as “sample solution output value” (maximum output change amount Y of sample solution). Continue to flush for 15 minutes and wait for it to return to baseline.

そして取得した「標準液出力値」(標準液の最大出力変化量X)、「試料液出力値」(試料液の最大出力変化量Y)と(1)式とによりBODs濃度が算出される。   Then, the BODs concentration is calculated from the obtained “standard solution output value” (maximum output change amount X of standard solution), “sample solution output value” (maximum output change amount Y of sample solution), and equation (1).

上述したBODs測定装置を用いたJIS K3602によるBODs測定方法によれば、BODs濃度を1時間程度で測定することができるものの、測定対象となる廃水の性状、特に、含有される有機化合物(バイオセンサに用いられている微生物の活性を阻害する物質等)によって生分解の難易度が異なることから、必ずしもBODs濃度とBOD濃度とは一致しなかった。 According to the BODs measurement method according to JIS K3602 using the BODs measurement device described above, the concentration of BODs can be measured in about 1 hour, but the properties of waste water to be measured, particularly the organic compounds contained (biosensors) The BODs concentration and the BOD 5 concentration did not necessarily coincide with each other because the degree of difficulty in biodegradation varies depending on the substance that inhibits the activity of the microorganism used in the above.

例えば、BODs濃度算出のベースとなる標準液および試料液についての酸素電極出力値の最大変化量が同じでも、試料の性状により、外部プリンターに出力させたバイオセンサ出力の経時変化の曲線形状が個々に異なっており、経時変化曲線が異なる試料のBOD濃度をBODs濃度から予測することはできなかった。 For example, even if the maximum change amount of the oxygen electrode output value is the same for the standard solution and the sample solution that are the basis for calculating the BODs concentration, the curve shape of the change over time of the biosensor output output to the external printer depends on the properties of the sample. The BOD 5 concentration of samples with different time courses could not be predicted from the BODs concentration.

したがって、たとえBODs測定装置によりBODs濃度を測定した場合でも、BODs濃度はBOD濃度と異なるものとして扱い、TOC計やTOD計による場合と同様に、BOD濃度/BODs濃度比からBOD濃度を統計的に予測しなければならなかった。 Therefore, even if the BODS measuring device even when measured BODS concentration, BODS concentrations treated as different from the BOD 5 concentrations, as in the case of TOC meter or TOD meter, a BOD 5 concentration of BOD 5 concentration / BODS concentration ratio It had to be predicted statistically.

このように、過去の蓄積データを参照してBOD濃度/TOC濃度比、BOD濃度/TOD濃度比およびBOD濃度/BODs濃度比からBOD濃度を統計的に予測する手法は、日常の廃水処理や水質管理のリアルタイム性を要する測定において不可欠になっているが、その一方で、次のような短所があった。 As described above, the method of statistically predicting the BOD 5 concentration from the BOD 5 concentration / TOC concentration ratio, the BOD 5 concentration / TOD concentration ratio, and the BOD 5 concentration / BODs concentration ratio with reference to past accumulated data is Although it is indispensable in the measurement that requires real-time wastewater treatment and water quality management, it has the following disadvantages.

予め測定対象となる廃水のBOD濃度、TOD濃度、TOC濃度、BODs濃度の過去のデータを、データベースとして利用できるように蓄積しておかねばならなかった。
また、上記の各データを蓄積していたとしても、古い測定データと最新の測定データとを常に入れ換えて更新する必要があった。
また、工場等では事業活動の変更やトラブル等によって、過去の蓄積データが必ずしも再現される保証はなく、状況判断や対応に適切さを欠く場合があった。
そのため、過去からの蓄積データに基づいた統計的予測ではなく、近似BOD濃度(5日間かけて測定する本来のBOD濃度の値と近似している代替のBOD濃度)を測定できる方法が切望されていた。
The past data of the BOD 5 concentration, the TOD concentration, the TOC concentration, and the BODs concentration of the wastewater to be measured had to be accumulated so that it could be used as a database.
Further, even if each of the above data is accumulated, it is necessary to always replace the old measurement data with the latest measurement data for updating.
In addition, in factories and the like, past accumulated data is not necessarily reproduced due to changes in business activities, troubles, and the like, and there are cases where the situation judgment and response are not appropriate.
Therefore, a method that can measure approximate BOD 5 concentration (an alternative BOD concentration approximated to the original BOD 5 concentration value measured over 5 days), not statistical prediction based on accumulated data from the past, is eagerly desired. It had been.

そこで本発明は、BOD濃度を精度よく、しかも迅速に測定することができる新しい近似BOD測定方法および近似BOD測定装置を提供することを目的とする。
また、新しい近似BOD測定方法、近似BOD測定装置を用いた水質監視装置、廃水処理システムを提供することを目的とする。
Accordingly, an object of the present invention is to provide a new approximate BOD 5 measurement method and approximate BOD 5 measurement apparatus that can measure the BOD 5 concentration accurately and quickly.
It is another object of the present invention to provide a new approximate BOD 5 measurement method, a water quality monitoring device using the approximate BOD 5 measurement device, and a wastewater treatment system.

上記課題を解決するためになされた本発明の近似BOD測定方法は、BOD濃度が既知の標準液および測定対象の試料液のそれぞれについてバイオセンサを用いたBODs測定装置によるBODs濃度測定の際のバイオセンサ出力(S)の経時変化データを取得し、標準液および試料液それぞれについてBODs測定装置によるBODs濃度測定前後における有機体炭素濃度の変化に関係するデータを取得し、標準液および試料液それぞれについてバイオセンサ出力(S)の経時変化データからBOD濃度に関係する指標データを抽出し、標準液および試料液それぞれについて指標データと有機体炭素濃度の変化に関係するデータとに基づいて標準液や試料液に含まれる有機体炭素がすべて分解した場合の指標データに換算した換算指標データを算出し、標準液と試料液とのそれぞれの換算指標データに基づいてBOD濃度を算出するようにしている。 The approximate BOD 5 measurement method of the present invention, which has been made to solve the above-mentioned problems, is performed when measuring BODs concentration with a BODs measurement device using a biosensor for each of a standard solution with a known BOD 5 concentration and a sample solution to be measured. Change data of biosensor output (S) over time, obtain data related to changes in organic carbon concentration before and after measuring BODs concentration by BODs measuring device for each of standard solution and sample solution, and obtain standard solution and sample solution Index data related to BOD 5 concentration is extracted from the biosensor output (S) change data for each, and the standard is based on the index data and data related to the change in organic carbon concentration for each of the standard solution and the sample solution. Conversion converted into index data when all organic carbon contained in the liquid or sample liquid is decomposed Calculating a target data, and to calculate the BOD 5 concentration based on each conversion index data of the standard solution and the sample solution.

本発明の近似BOD測定方法では、BODs測定装置から得られる本来のBODs濃度を用いてBOD濃度を統計的に予測するのではなく、BODs測定装置のバイオセンサの出力(S)からBODの測定の指標となる指標データを直接抽出し、さらに抽出した指標データに基づいてBOD濃度を算出するという全く新しい方法でBOD濃度を測定するものである。 The approximate BOD 5 measurement method of the present invention, instead of statistically predict BOD 5 concentration using the original BODs concentration obtained from BODs measuring device, BOD from the output of the biosensor BODs measuring device (S) 5 The BOD 5 concentration is measured by a completely new method of directly extracting the index data serving as an index of the measurement and calculating the BOD 5 concentration based on the extracted index data.

すなわち、BODs測定装置のバイオセンサの出力(S)から指標データを直接抽出し、さらにBODs濃度測定前とBODs濃度測定後とにおける標準液中および試料液中の有機体炭素濃度の変化に関係するデータを取得する。
さらに抽出した指標データと有機体炭素濃度の変化に関係するデータとに基づいて、標準液や試料液に含まれる有機体炭素がすべて分解した場合の指標データに換算した換算指標データを算出する。これにより標準液や試料液に含まれる有機体炭素の分解の程度がばらつくことによる影響をなくした規格化したデータが得られる。
そして、標準液の換算指標データと試料液の換算指標データに基づいてBOD濃度を算出する。
That is, index data is directly extracted from the output (S) of the biosensor of the BODs measuring apparatus, and further, it is related to changes in the organic carbon concentration in the standard solution and the sample solution before and after the BODs concentration measurement. Get the data.
Further, based on the extracted index data and the data related to the change in the organic carbon concentration, the conversion index data converted into the index data when all the organic carbon contained in the standard solution and the sample liquid is decomposed is calculated. As a result, standardized data is obtained that eliminates the effects of variations in the degree of decomposition of organic carbon contained in the standard solution and sample solution.
Then, the BOD 5 concentration is calculated based on the conversion index data of the standard solution and the conversion index data of the sample solution.

この方法で算出したBOD濃度は、JIS K0102の公定法に基づいて実測されたBOD濃度とよく一致しており、後述するようにBOD濃度の迅速(約1時間程度で測定結果が得られる)かつ精度よい測定方法となりうることが実験的に確かめられた。 The BOD 5 concentration calculated by this method is in good agreement with the BOD 5 concentration actually measured based on the official method of JIS K0102, and as will be described later, the BOD 5 concentration is rapidly obtained (measurement results are obtained in about 1 hour). It has been experimentally confirmed that it can be an accurate measurement method.

また、本発明の近似BOD測定方法は、BOD濃度が既知の標準液および測定対象の試料液のそれぞれについてバイオセンサを用いたBODs測定装置によるBODs濃度測定の際のバイオセンサ出力(S)の経時変化データを取得し、標準液および試料液のそれぞれについてBODs測定装置によるBODs濃度測定前後の有機体炭素濃度に関係するデータを測定し、標準液および試料液のそれぞれについてバイオセンサ出力(S)の経時変化データからBOD濃度に関係する指標データを抽出し、標準液および試料液のそれぞれについてBODs濃度測定前後の有機体炭素濃度に関係するデータに基づいてTOC分解率を算出し、標準液および試料液のそれぞれについてTOC分解率と指標データとに基づいて標準液や試料液に含まれる有機体炭素がすべて分解した場合の指標データに換算した換算指標データを算出し、標準液と試料液とのそれぞれの換算指標データに基づいてBOD濃度を算出するようにしてもよい。
これによれば、有機体炭素濃度の変化に関係するデータとしてTOC分解率を利用することができ、TOC分解率を用いることにより精度のよい測定を行うことができる。
Further, the approximate BOD 5 measurement method of the present invention is the biosensor output (S) when measuring the BODs concentration by the BODs measurement device using the biosensor for each of the standard solution with known BOD 5 concentration and the sample solution to be measured. The time-dependent change data is obtained, and the data related to the organic carbon concentration before and after the BODs concentration measurement by the BODs measuring device is measured for each of the standard solution and the sample solution, and the biosensor output (S The index data related to the BOD 5 concentration is extracted from the time-dependent data of), and the TOC decomposition rate is calculated based on the data related to the organic carbon concentration before and after the BODs concentration measurement for each of the standard solution and the sample solution. Standard solution and sample solution based on TOC decomposition rate and index data Calculating a conversion index data in terms of the index data when Murrell organic carbon is decomposed all may be calculated BOD 5 concentration based on each conversion index data of the standard solution and the sample solution.
According to this, the TOC decomposition rate can be used as data relating to the change in the organic carbon concentration, and accurate measurement can be performed by using the TOC decomposition rate.

また、本発明の近似BOD測定方法は、BOD濃度が既知の標準液および測定対象の試料液のそれぞれについてバイオセンサを用いたBODs測定装置によるBODs濃度測定の際のバイオセンサ出力(S)の経時変化データを取得し、標準液および試料液のそれぞれについてBODs測定装置によるBODs濃度測定前の有機体炭素濃度(TOCin)をTOC計により測定し、BODs測定装置によりBODs濃度を測定した後の標準液および試料液それぞれについての有機体炭素濃度(TOCout)をTOC計により測定し、標準液および試料液のそれぞれについてバイオセンサ出力(S)の経時変化データからBOD濃度に関係する指標データを抽出し、標準液および試料液のそれぞれについてBODs濃度測定前後の有機体炭素濃度(TOCin、TOCout)に基づいて、TOC分解率を算出し、標準液および試料液のそれぞれについてTOC分解率と指標データとに基づいて標準液や試料液に含まれる有機体炭素がすべて分解した場合の指標データに換算した換算指標データを算出し、標準液と試料液とのそれぞれの換算指標データに基づいてBOD濃度を算出するようにしてもよい。
これによれば、TOC計による有機炭素体濃度測定で得た有機炭素体濃度を利用することができる。
Further, the approximate BOD 5 measurement method of the present invention is the biosensor output (S) when measuring the BODs concentration by the BODs measurement device using the biosensor for each of the standard solution with known BOD 5 concentration and the sample solution to be measured. After obtaining the time course data of the sample, the organic carbon concentration (TOCin) before measuring the BODs concentration with the BODs measuring device was measured with the TOC meter for each of the standard solution and the sample solution, and the BODs concentration was measured with the BODs measuring device. The organic carbon concentration (TOCout) for each of the standard solution and the sample solution is measured with a TOC meter, and the index data related to the BOD 5 concentration is obtained from the time-dependent data of the biosensor output (S) for each of the standard solution and the sample solution. Extraction of the standard solution and the sample solution before and after measuring the BODs concentration Calculate the TOC decomposition rate based on the body carbon concentration (TOCin, TOCout), and all the organic carbon contained in the standard solution and the sample solution based on the TOC decomposition rate and the index data for each of the standard solution and the sample solution Conversion index data converted into index data in the case of decomposition may be calculated, and the BOD 5 concentration may be calculated based on the respective conversion index data of the standard solution and the sample solution.
According to this, the organic carbon body density | concentration obtained by the organic carbon body density | concentration measurement by a TOC meter can be utilized.

また、本発明の近似BOD測定方法は、BODs濃度測定前後の有機体炭素濃度に関係するデータはTOC計、TOD計、COD計、吸光度検出器のいずれかにより測定されるようにしてもよい。
これによれば、有機体炭素濃度の変化に対応したデータをTOC計、TOD計、COD計、吸光度検出器のいずれかを用いて取得することができる。
In the approximate BOD 5 measurement method of the present invention, the data related to the organic carbon concentration before and after the BODs concentration measurement may be measured by any one of a TOC meter, a TOD meter, a COD meter, and an absorbance detector. .
According to this, the data corresponding to the change in the organic carbon concentration can be acquired using any one of the TOC meter, the TOD meter, the COD meter, and the absorbance detector.

また、本発明の近似BOD測定方法は、指標データとして、標準液又は試料液それぞれについて測定開始直後のバイオセンサ出力(S)が直線的に経時変化する領域のバイオセンサ出力の積分値を用いるようにしてもよい。
この方法で算出したBOD濃度は、JIS K0102の公定法に基づいて実測されたBOD濃度とよく一致しており、しかもBOD濃度の実測値に非常に近い値が試料の性状に関わらず得られることが実験的に確かめられた。
後述するようにBOD濃度の迅速(約1時間程度で測定結果が得られる)かつ精度よい測定方法となりうることが実験的に確かめられた。
The approximate BOD 5 measurement method of the present invention uses, as the index data, the integrated value of the biosensor output in the region where the biosensor output (S) immediately after the start of measurement for each of the standard solution and the sample solution changes linearly with time. You may do it.
The BOD 5 concentration calculated by this method is in good agreement with the BOD 5 concentration actually measured based on the official method of JIS K0102, and a value very close to the actually measured BOD 5 concentration is irrespective of the properties of the sample. It was confirmed experimentally that it was obtained.
As will be described later, it has been experimentally confirmed that it can be a rapid and accurate measurement method of BOD 5 concentration (a measurement result can be obtained in about 1 hour).

また、本発明の近似BOD測定方法は、BODs測定装置によるBODs濃度測定は、標準液についてのBODs濃度測定と試料液についてのBODs濃度測定とを交互に行うようにしてもよい。
バイオセンサの出力には、前回の測定の影響が次回の測定において履歴的に残る傾向がある。そこで、試料液ばかりを続けて測定するのではなく、試料液と標準液とを交互に測定するようにすることで、各試料液の測定直前には必ず標準液の測定が行われるようにして履歴的の影響を均等にすることができる。
Further, in the approximate BOD 5 measurement method of the present invention, the BODs concentration measurement by the BODs measurement device may alternately perform the BODs concentration measurement for the standard solution and the BODs concentration measurement for the sample solution.
The output of the biosensor has a tendency that the influence of the previous measurement remains historically in the next measurement. Therefore, instead of measuring the sample solution continuously, instead of measuring the sample solution and the standard solution alternately, the measurement of the standard solution is always performed immediately before the measurement of each sample solution. The historical influence can be equalized.

また、上記課題を解決するためになされた本発明の近似BOD測定装置は、少なくともBOD濃度が既知の標準液、測定対象の試料液を含む複数の流体を供給する流体供給部と、バイオセンサを使用して標準液および試料液それぞれのBODs濃度を測定するBODs測定装置と、BODs測定装置によりBODs濃度が測定された後の標準液および試料液を捕集する捕集部と、標準液および試料液それぞれのBODs測定装置によるBODs濃度測定前の有機炭素濃度に関係するデータおよびBODs濃度測定後の有機体炭素濃度に関係するデータを測定する検出器と、標準液および試料液のそれぞれについてBODs測定装置のバイオセンサ出力(S)の経時変化データからBOD濃度に関係する指標データを抽出する指標データ抽出部と、標準液および試料液のそれぞれについてBODs濃度測定前後の有機体炭素に関係するデータと指標データとに基づいて標準液や試料液に含まれる有機体炭素がすべて分解した場合の指標データに換算した換算指標データを算出する換算指標データ算出部と、標準液および試料液のそれぞれの換算指標データに基づいてBOD濃度を算出するBOD算出部とを備えるようにしている。
これによれば、上述したBOD測定方法を利用してBOD濃度を迅速かつ精度よく測定することができる画期的なBOD測定装置を提供することができる。
Further, an approximate BOD 5 measuring device of the present invention made to solve the above problems includes a fluid supply unit that supplies a plurality of fluids including at least a standard solution having a known BOD 5 concentration and a sample solution to be measured, A BODs measuring device for measuring the BODs concentration of each of the standard solution and the sample solution using a sensor, a collection unit for collecting the standard solution and the sample solution after the BODs concentration is measured by the BODs measuring device, and a standard solution For each of the standard solution and the sample solution, the detector for measuring the data related to the organic carbon concentration before the BODs concentration measurement by the BODs measuring device of each of the sample solution and the data related to the organic carbon concentration after the BODs concentration measurement, and the standard solution and the sample solution index data for extracting index data relating to the BOD 5 concentrations from aging data biosensor output (S) of the BODs measuring device Index data when all organic carbon contained in the standard solution and sample solution is decomposed based on the data related to the organic carbon before and after the BODs concentration measurement and the index data for each of the extraction unit, the standard solution, and the sample solution so that provided the terms of the index data calculation unit for calculating a conversion index data obtained by converting, a BOD 5 calculation unit for calculating a BOD 5 concentration based on each conversion metrics of standards and the sample solution to.
According to this, the epoch-making BOD 5 measuring apparatus which can measure a BOD 5 density | concentration rapidly and accurately using the BOD 5 measuring method mentioned above can be provided.

また、上記課題を解決するためになされた本発明の近似BOD測定装置は、少なくともBOD濃度が既知の標準液、測定対象の試料液を含む複数の流体を供給する流体供給部と、バイオセンサを使用して標準液および試料液それぞれのBODs濃度を測定するBODs測定装置と、BODs測定装置によりBODs濃度が測定された後の標準液および試料液を捕集する捕集部と、標準液および試料液それぞれのBODs測定装置によるBODs濃度測定前の有機炭素濃度に関係するデータおよびBODs濃度測定後の有機体炭素濃度に関係するデータを測定する検出器と、標準液および試料液のそれぞれについてBODs測定装置のバイオセンサ出力(S)の経時変化データからBOD濃度に関係する指標データを抽出する指標データ抽出部と、標準液および試料液のそれぞれについてBODs濃度測定前後の有機体炭素に関係するデータに基づいてTOC分解率を算出する変化率算出部と、標準液および試料液のそれぞれについてTOC分解率と指標データとに基づいて標準液や試料液に含まれる有機体炭素がすべて分解した場合の指標データに換算した換算指標データを算出する換算指標データ算出部と、標準液および試料液のそれぞれの換算指標データに基づいてBOD濃度を算出するBOD算出部とを備えるようにしてもよい。 Further, an approximate BOD 5 measuring device of the present invention made to solve the above problems includes a fluid supply unit that supplies a plurality of fluids including at least a standard solution having a known BOD 5 concentration and a sample solution to be measured, A BODs measuring device for measuring the BODs concentration of each of the standard solution and the sample solution using a sensor, a collection unit for collecting the standard solution and the sample solution after the BODs concentration is measured by the BODs measuring device, and a standard solution For each of the standard solution and the sample solution, the detector for measuring the data related to the organic carbon concentration before the BODs concentration measurement by the BODs measuring device of each of the sample solution and the data related to the organic carbon concentration after the BODs concentration measurement, and the standard solution and the sample solution index data for extracting index data relating to the BOD 5 concentrations from aging data biosensor output (S) of the BODs measuring device Extraction unit, change rate calculation unit for calculating TOC decomposition rate based on data related to organic carbon before and after BODs concentration measurement for each of standard solution and sample solution, and TOC decomposition rate for each of standard solution and sample solution Conversion index data calculation unit for calculating conversion index data converted into index data when all the organic carbon contained in the standard solution and the sample solution is decomposed based on the index data and the index data, and each of the standard solution and the sample solution based on the conversion index data may be provided with a BOD 5 calculation unit for calculating a BOD 5 concentrations.

また、本発明の近似BOD測定装置は、少なくともBOD濃度が既知の標準液、測定対象の試料液を含む複数の流体を供給する流体供給部と、バイオセンサを使用して標準液および試料液それぞれのBODs濃度を測定するBODs測定装置と、BODs測定装置によりBODs濃度が測定された後の標準液および試料液を捕集する捕集部と、標準液および試料液それぞれのBODs測定装置によるBODs濃度測定前の有機炭素濃度(TOCin)およびBODs濃度測定後の有機体炭素濃度(TOCout)を測定するTOC計と、標準液および試料液のそれぞれについてBODs測定装置のバイオセンサ出力(S)の経時変化データからBOD濃度に関係する指標データを抽出する指標データ抽出部と、標準液および試料液のそれぞれについてBODs濃度測定前後の有機体炭素濃度(TOCin、TOCout)に基づいてTOC分解率を算出する変化率算出部と、標準液および試料液のそれぞれについて算出したTOC分解率と指標データとに基づいて標準液や試料液に含まれる有機体炭素がすべて分解した場合の指標データに換算した換算指標データを算出する換算指標データ算出部と、標準液および試料液のそれぞれの換算指標データに基づいてBOD濃度を算出するBOD算出部とを備えるようにしてもよい。 Further, the approximate BOD 5 measuring device of the present invention includes at least a standard solution having a known BOD 5 concentration, a fluid supply unit that supplies a plurality of fluids including a sample solution to be measured, and a standard solution and sample using a biosensor. A BODs measuring device that measures the BODs concentration of each liquid, a collection unit that collects the standard solution and the sample solution after the BODs concentration is measured by the BODs measuring device, and a BODs measuring device for each of the standard solution and the sample solution The TOC meter for measuring the organic carbon concentration (TOCin) before measuring the BODs concentration and the organic carbon concentration (TOCout) after measuring the BODs concentration, and the biosensor output (S) of the BODs measuring device for each of the standard solution and the sample solution and index data extractor for extracting index data relating to the BOD 5 concentrations from aging data, of the standard solution and the sample solution A change rate calculation unit that calculates the TOC decomposition rate based on the organic carbon concentration (TOCin, TOCout) before and after measuring the BODs concentration, and the TOC decomposition rate and index data calculated for each of the standard solution and the sample solution, A conversion index data calculation unit that calculates conversion index data converted into index data when all organic carbon contained in the standard solution and sample solution is decomposed based on the A BOD 5 calculating unit that calculates the BOD 5 concentration based on the BOD 5 concentration may be provided.

また、本発明の近似BOD測定装置は、BODs濃度測定前後の有機体炭素濃度に関係するデータはTOC計、TOD計、COD計、吸光度検出器のいずれかにより測定されるようにしてもよい。 In the approximate BOD 5 measuring apparatus of the present invention, data related to the organic carbon concentration before and after measuring the BODs concentration may be measured by any of a TOC meter, a TOD meter, a COD meter, and an absorbance detector. .

また、本発明の近似BOD測定装置は、指標データとして、標準液又は試料液それぞれについて測定開始直後のバイオセンサ出力(S)が直線的に経時変化する領域のバイオセンサ出力の積分値を用いるようにしてもよい。 In addition, the approximate BOD 5 measuring apparatus of the present invention uses, as the index data, the integrated value of the biosensor output in the region where the biosensor output (S) immediately after the start of measurement for each of the standard solution and the sample solution linearly changes with time. You may do it.

また、本発明の近似BOD測定装置は、BODs測定装置によるBODs濃度測定において、標準液についてのBODs濃度測定と試料液についてのBODs濃度測定とを交互に行うようにしてもよい。 Further, the approximate BOD 5 measurement device of the present invention may alternately perform BODs concentration measurement for the standard solution and BODs concentration measurement for the sample solution in the BODs concentration measurement by the BODs measurement device.

また、別の観点からなされた本発明の水質監視装置は、上記記載の近似BOD測定装置と、水源から試料液を採取してBOD測定装置に送る試料液採取部と、BOD測定装置により算出したBOD濃度の値に基づいて水源の水質を監視し、監視結果を出力する水質監視部とを備えるようにしている。
これによれば、上述した近似BOD測定装置を利用してBOD濃度を迅速かつ精度よく測定することができるので、試料液供給部から供給される試料液について1時間程度の時間差で水質監視を行うことができる水質監視装置を提供することができる。
Moreover, water quality monitoring apparatus of the present invention made from a different aspect, an approximate BOD 5 measuring device described above, a sample fluid collecting part for sending and collecting a sample liquid from a water source to the BOD 5 measuring apparatus, BOD 5 measurement device The water quality of the water source is monitored based on the value of the BOD 5 concentration calculated by the above, and a water quality monitoring unit that outputs the monitoring result is provided.
According to this, since the BOD 5 concentration can be measured quickly and accurately using the above-described approximate BOD 5 measuring device, the water quality is monitored with a time difference of about 1 hour for the sample liquid supplied from the sample liquid supply unit. It is possible to provide a water quality monitoring device capable of performing the above.

さらに別の観点からなされた本発明の廃水処理システムは、上記記載の近似BOD測定装置と、外部から供給される廃水の廃水処理を行う廃水処理装置と、廃水処理装置から廃水を採取しBOD測定装置に試料液として送る試料液採取部と、BOD測定装置により算出したBODの値に基づいて廃水の水質を監視し、監視結果を出力する水質監視部と、水質監視部からの出力に基づいて廃水処理装置の運転を制御する廃水処理制御部とを備えるようにしている。
これによれば、上述した近似BOD測定装置を利用してBOD濃度を迅速かつ精度よく測定することができるので、試料液供給部から廃水処理装置の廃水を採取してBOD測定装置で1時間程度の短時間のうちにBOD濃度を測定し、測定したBOD濃度に基づいて水質監視部が監視結果を出力し、廃水処理制御部が水質監視部の出力結果に基づいて廃水処理装置の適切な制御を行うことができる。
Further, the wastewater treatment system of the present invention made from another point of view includes an approximate BOD 5 measuring device as described above, a wastewater treatment device for treating wastewater supplied from the outside, and collecting BOD from the wastewater treatment device. A sample solution collecting unit to be sent to the 5 measuring device as a sample solution, a water quality monitoring unit for monitoring the water quality of the waste water based on the value of BOD 5 calculated by the BOD 5 measuring device, and a monitoring result output from the water quality monitoring unit A wastewater treatment control unit that controls the operation of the wastewater treatment apparatus based on the output is provided.
According to this, since the BOD 5 concentration can be measured quickly and accurately using the above-mentioned approximate BOD 5 measuring device, the waste water of the waste water treatment device is collected from the sample liquid supply unit and the BOD 5 measuring device is used. The BOD 5 concentration is measured within a short time of about 1 hour, the water quality monitoring unit outputs the monitoring result based on the measured BOD 5 concentration, and the waste water treatment control unit is configured to treat the waste water based on the output result of the water quality monitoring unit. Appropriate control of the device can be performed.

(TOC分解率の測定)
最初に、本発明の近似BOD測定方法での演算処理について理解するため、各標準液や試料液について測定したTOC分解率とその分析結果について説明する。
(Measurement of TOC decomposition rate)
First, in order to understand the arithmetic processing in the approximate BOD 5 measurement method of the present invention, the TOC decomposition rate measured for each standard solution and sample solution and the analysis result thereof will be described.

従来のBODs測定装置により得られたBODs濃度は、必ずしもBOD濃度と一致せず、特に、含有有機化合物の存在によっては値が大きく異なっている。
そこで、この理由を解明するため、BODs濃度測定のためにフローセルに供給された標準液および試料液を、フローセルの出口に設置した補集器で全量回収するようにし、BODの主成分である有機体炭素濃度を、フローセル入口と出口とで別々に測定して、次式(2)でTOC分解率を算出した。
The BODs concentration obtained by a conventional BODs measuring apparatus does not necessarily match the BOD 5 concentration, and the value varies greatly depending on the presence of the contained organic compound.
Therefore, in order to elucidate this reason, the standard solution and the sample solution supplied to the flow cell for measuring the BODs concentration are all collected by a collector installed at the outlet of the flow cell, and it is the main component of BOD. Airframe carbon concentration was measured separately at the flow cell inlet and outlet, and the TOC decomposition rate was calculated by the following equation (2).

TOC分解率={[(入口濃度(TOCin)×係数(K))−(出口濃度(TOCout)−ブランク濃度)]/(入口濃度(TOCin)×係数(K))}×100 ・・・・・・・・(2)
ここで、係数Kは、リン酸緩衝液による希釈率を係数として組み込んだものであり(例えば標準液8.8ml/5分、リン酸緩衝液2.8ml/5分で流す場合はK=8.8/(8.8+2.8)となる)、ブランク濃度はリン酸緩衝液のみの場合のTOC濃度である。
TOC decomposition rate = {[(Inlet concentration (TOCin) × Coefficient (K)) − (Outlet concentration (TOCout) −Blank concentration)] / (Inlet concentration (TOCin) × Coefficient (K))} × 100 (2)
Here, the coefficient K is a value obtained by incorporating a dilution rate with a phosphate buffer as a coefficient (for example, K = 8.8 / (when flowing in a standard solution of 8.8 ml / 5 minutes and a phosphate buffer solution of 2.8 ml / 5 minutes). 8.8 + 2.8)), and the blank concentration is the TOC concentration in the case of only phosphate buffer.

表1は複数の異なる試料液についてのTOC分解率の算出結果である。これらの測定結果から標準液および試料液ともに、TOC分解率は一定でなく、完全に酸化分解されていないことが判明した。   Table 1 shows the calculation results of the TOC decomposition rate for a plurality of different sample solutions. From these measurement results, it was found that neither the standard solution nor the sample solution had a constant TOC decomposition rate and was not completely oxidized and decomposed.

TOC分解率が一定でなく、完全に酸化分解されない(生分解反応が完結しない)理由として、次の2点が上げられる。
(1)BODs測定装置では、標準液および試料液をフローセルに供給している5分間の酸素消費量を計測しているが、この時間は生分解反応時間としては短すぎる。(これに対してBOD測定では、試料中の有機体炭素などの生分解に伴って5日間に消費される酸素量を計測していることから、生分解反応はほとんど完結していると考えられる)。
(2)試料に含まれる有機性物質の種類やこれらの固定微生物への馴致度により、生分解の難易度が異なる。そのため、一定とならない。
The following two points can be cited as reasons why the TOC decomposition rate is not constant and the oxidative decomposition is not complete (the biodegradation reaction is not completed).
(1) The BODs measuring device measures the oxygen consumption for 5 minutes while supplying the standard solution and the sample solution to the flow cell, but this time is too short as a biodegradation reaction time. (On the other hand, in BOD 5 measurement, the amount of oxygen consumed for 5 days with the biodegradation of organic carbon in the sample is measured, so the biodegradation reaction is considered to be almost complete. ).
(2) The degree of difficulty in biodegradation varies depending on the type of organic substance contained in the sample and the degree of familiarity with these fixed microorganisms. Therefore, it is not constant.

つまり、JIS K3602に規定されているBODs測定装置での5分間の生分解反応により測定されるBODs濃度では、必ずしも微生物による生分解反応が完結しておらず、標準液や試料液に含まれる有機体炭素の分解率が測定ごとにばらついて一定ではないことがBODs濃度とBOD濃度との不一致に影響していると考えられる。

Figure 2005140757
In other words, at the BODs concentration measured by the biodegradation reaction for 5 minutes with the BODs measuring device stipulated in JIS K3602, the biodegradation reaction by microorganisms is not necessarily completed, and it is included in the standard solution or sample solution. It is considered that the fact that the decomposition rate of the body carbon varies from measurement to measurement and is not constant affects the discrepancy between the BODs concentration and the BOD 5 concentration.
Figure 2005140757

そこで、この分析結果を逆に利用すべく、TOC分解率を積極的に活用し、得られたBODs濃度を完全に生分解反応が完結したときの値に換算することが考えられる。
まず、5分間の生分解反応により測定された本来のBODs濃度(すなわちJIS K3602に規定された公定法によるBODs濃度)を換算計算の元となる指標データとし、これにTOC分解率を用いて有機体炭素が100%分解した場合に換算した換算BODs濃度(試行的なBODs濃度)を算出した結果、換算BODs濃度とBOD濃度との関係には改善が見られた。しかし、まだ一致度は十分ではないため、さらに一致度を上げることが望まれた。
Therefore, in order to use this analysis result in reverse, it is conceivable to actively utilize the TOC decomposition rate and convert the obtained BODs concentration to a value when the biodegradation reaction is completely completed.
First, the original BODs concentration measured by the biodegradation reaction for 5 minutes (that is, the BODs concentration according to the official method defined in JIS K3602) is used as index data for conversion calculation, and this is used by using the TOC decomposition rate. As a result of calculating the converted BODs concentration (trial BODs concentration) converted when the body carbon was decomposed 100%, the relationship between the converted BODs concentration and the BOD 5 concentration was improved. However, since the degree of coincidence is still not sufficient, it was desired to further increase the degree of coincidence.

それゆえ、さらにBOD濃度との一致度の高いデータを得ることができるようにするための指標データとして、どのような値が適切であるかを試行錯誤し、BODs濃度測定に伴って生じるバイオセンサの出力を検討した結果、標準液や試料液のTOC分解率(生分解反応率)の差は、バイオセンサの出力の経時変化曲線のうち、初期の直線部分に最も現れることを実験的に見出した。すなわち、経時変化曲線の直線部分の積分値を指標データとし、この指標データに対しTOC分解率を用いて換算することによりBOD濃度との一致度が高いデータを得ることができることを見出した。 Therefore, as an index data for making it possible to obtain data having a high degree of coincidence with the BOD 5 concentration, trials and errors are made as to what values are appropriate, and biologics generated by measuring the BODs concentration are obtained. As a result of examining the output of the sensor, it is experimentally shown that the difference in the TOC decomposition rate (biodegradation reaction rate) of the standard solution and the sample solution appears most in the initial linear portion of the biosensor output change curve over time. I found it. That is, it has been found that data having a high degree of coincidence with the BOD 5 concentration can be obtained by using the integral value of the linear portion of the time-varying curve as index data and converting the index data using the TOC decomposition rate.

以上のことから、BODs測定装置とTOC計とによるBODs濃度の測定(バイオセンサの出力測定)、BODs濃度測定前の標準液中、試料液中の有機体炭素濃度測定、BODs濃度が測定された後の標準液中、試料液中の有機体炭素濃度測定とを組み合わせて、以下に示すステップで演算処理することにより、簡易的に近似BOD濃度を測定できる方法を確立した。 From the above, measurement of BODs concentration (biosensor output measurement) using a BODs measuring device and a TOC meter, measurement of organic carbon concentration in the sample solution, measurement of BODs concentration, and BODs concentration were measured. In combination with later measurement of organic carbon concentration in the standard solution and sample solution, a calculation method for the approximate BOD 5 concentration was established by performing arithmetic processing in the following steps.

(近似BOD測定方法)
近似BOD濃度を測定するための測定方法は以下のステップからなる。
(a)BODs測定装置の出口側に捕集装置を用いて、BODs濃度を測定する過程でフローセルから排出される標準液および試料液を捕集する。
(b)標準液および試料液のTOC濃度と、(a)で捕集された標準液および試料液のTOC濃度を測定し、(2)式を用いTOC分解率を算出する。
(Approximate BOD 5 measurement method)
The measurement method for measuring the approximate BOD 5 concentration consists of the following steps.
(A) Using a collection device on the outlet side of the BODs measurement device, collect the standard solution and the sample solution discharged from the flow cell in the process of measuring the BODs concentration.
(B) The TOC concentration of the standard solution and the sample solution and the TOC concentration of the standard solution and the sample solution collected in (a) are measured, and the TOC decomposition rate is calculated using the equation (2).

(c)BODs濃度の測定において、標準液および試料液のバイオセンサの出力の経時変化データをデータ収集装置(例えば株式会社キーエンス製NR-1000)により取り込み、取り込んだ経時変化データからバイオセンサの出力が直線的に変化する初期の部分の出力を抽出する。抽出した直線部分の開始点をA、終了点をBとする。さらにA、B間の所要時間Cを標準液および試料液についてそれぞれ求める。このA点、B点について図を用いて説明する。   (C) In measuring the BODs concentration, the time-dependent change data of the biosensor output of the standard solution and the sample solution is captured by a data collection device (for example, NR-1000 manufactured by Keyence Corporation), and the biosensor output is obtained from the acquired time-change data Extract the output of the initial part where changes linearly. Let A be the start point and B be the end point of the extracted straight line portion. Further, the required time C between A and B is obtained for each of the standard solution and the sample solution. The points A and B will be described with reference to the drawings.

図6は標準液、試料液についてのバイオセンサ出力の経時変化データの一例を示す図である。図において横軸は一定間隔ごとに取り込むデータの取込み点数であり時間軸を示している。また、縦軸はバイオセンサの出力であり、ここでは2.1V付近にベースラインがあり、バイオセンサの出力が小さくなるにつれて出力が下側にシフトするようになっている。   FIG. 6 is a diagram showing an example of biosensor output temporal change data for the standard solution and the sample solution. In the figure, the horizontal axis indicates the number of data acquisition points at regular intervals, and indicates the time axis. The vertical axis represents the output of the biosensor. Here, there is a baseline near 2.1 V, and the output shifts downward as the output of the biosensor decreases.

測定サイクル(図3と同じ測定サイクル)が開始されると、標準液、試料液ともにベースラインの2.1V付近から直線的に変化し、しばらくすると傾斜が曲線になる。5分経過した時点で標準液や試料液の供給が停止されて洗浄水が供給されると、再び出力はベースラインまで戻るようになる。
この図において、測定開始初期の出力が直線的に変化する領域(破線で囲んだ領域)において開始点A、終了点Bの2点を定め、その2点の間の経過時間Cを求める。
なお、経時変化データから直線部分の抽出する作業は、データ処理ソフトにより自動的に行うことができる。
When the measurement cycle (the same measurement cycle as in FIG. 3) is started, both the standard solution and the sample solution change linearly from around 2.1 V of the baseline, and after a while, the slope becomes a curve. When the supply of the standard solution and the sample solution is stopped and the washing water is supplied when 5 minutes have elapsed, the output returns to the baseline again.
In this figure, two points of a start point A and an end point B are determined in a region where the output at the beginning of measurement changes linearly (region surrounded by a broken line), and an elapsed time C between the two points is obtained.
Note that the operation of extracting the straight line portion from the temporal change data can be automatically performed by data processing software.

(d)標準液および試料液についてのBOD濃度に関係するデータとして、次式(3)により定義される指標面積D(すなわち測定開始直後のバイオセンサ出力が直線的に経時変化する領域におけるバイオセンサ出力の積分値)を算出し、これを後述する換算計算の指標データとする。
D=(A−B)×C/2 ・・・・・(3)
(D) As data related to the BOD 5 concentration for the standard solution and the sample solution, the index area D defined by the following equation (3) (that is, the bio in the region where the biosensor output immediately after the measurement starts linearly changes with time) The integral value of the sensor output) is calculated and used as index data for conversion calculation described later.
D = (A−B) × C / 2 (3)

(e)標準液および試料液のTOC(TODも可)分解率を用いて100[%]分解した場合に換算した換算指標面積(換算指標データ)Eを次式(4)により算出する。
E=(100/TOC分解率)×(面積(D)) ・・・・・(4)
(E) The conversion index area (converted index data) E converted when the standard solution and the sample solution are decomposed 100% using the TOC (TOD is acceptable) decomposition rate is calculated by the following equation (4).
E = (100 / TOC decomposition rate) × (area (D)) (4)

(f)(e)で得た標準液および試料液の換算指標面積E(換算指標データ)から次式(5)を用いて計算BOD濃度Fを算出する。
F=(試料液の換算指標面積(Espl)/標準液の換算指標面積(Estd))×20[mg/L] ・・・・・(5)
(F) The calculated BOD 5 concentration F is calculated using the following equation (5) from the conversion index area E (conversion index data) of the standard solution and the sample solution obtained in (e).
F = (Conversion index area of sample solution (Espl) / Conversion index area of standard solution (Estd)) × 20 [mg / L] (5)

なお、この測定方法において、BODs濃度測定と、(BODs測定前の)標準液および試料液を測定する順番は、いずれが先でもよく、同時に並行して行ってもよい。
また、標準液と試料液とのBODs濃度測定は、交互に行うのが好ましい。これは、バイオセンサの性質として前回の生分解反応の影響が履歴として残る傾向があるため、試料液での測定前に必ず標準液での測定を挟むようにすることでそのような影響をできるだけ排除するためである。
In this measurement method, the order of measuring the BODs concentration, the standard solution (before measuring BODs), and the sample solution may be either first or may be performed in parallel.
Moreover, it is preferable to perform the BODs concentration measurement of the standard solution and the sample solution alternately. This is because the effect of the previous biodegradation reaction tends to remain as a history as a biosensor property, so be sure to insert the measurement with the standard solution before the measurement with the sample solution as much as possible. This is to eliminate it.

なお、上述した方法では、TOC計によるTOC濃度測定を行ったが、これに代えてTOD計を用いてTOD濃度を測定するようにしてもよい。要するに主として有機体炭素量を求めることができればよく、吸光度検出器やCOD濃度検出器等の他の検出器で代用してもよい。   In the above-described method, the TOC concentration is measured using a TOC meter. Alternatively, the TOD concentration may be measured using a TOD meter. In short, it is sufficient that the amount of organic carbon can be mainly obtained, and other detectors such as an absorbance detector and a COD concentration detector may be substituted.

(近似BOD測定装置)
次に、上述した近似BOD測定方法を実施するための近似BOD測定装置の一実施形態について図面を用いて説明する。
(Approximate BOD 5 measuring device)
Next, an embodiment of an approximate BOD 5 measuring apparatus for implementing the above-described approximate BOD 5 measuring method will be described with reference to the drawings.

図1は、本発明の一実施形態である近似BOD測定装置の構成を示す図である。この近似BOD測定装置1は、主にBODs測定装置10と、捕集器12と、TOC計13と、エアーポンプ14と、流体供給部20と、データ処理装置30とから構成される。 FIG. 1 is a diagram showing a configuration of an approximate BOD 5 measuring apparatus according to an embodiment of the present invention. The approximate BOD 5 measuring device 1 mainly includes a BODs measuring device 10, a collector 12, a TOC meter 13, an air pump 14, a fluid supply unit 20, and a data processing device 30.

BODs測定装置10は、JIS K3602に記載のBODs濃度測定方法に基づいてBODs濃度を測定するものであり、バイオセンサ11を備えている。バイオセンサ11はバイオセンサ先端の微生物膜と酸素電極とが組み合わされた構造をしており、微生物膜がフローセル内に装着されている。有機性物質を含む液体がフローセルに供給されることにより微生物膜と接触し、有機物質が分解される。この微生物分解の際に溶存酸素が消費され、その酸素消費に伴って発生する電流を酸素電極が検知し、外部に出力信号(S)として出力するようにしてある。ここではBODs測定装置10として王子計測機器株式会社製BF−2000を使用している。   The BODs measuring apparatus 10 measures BODs concentration based on the BODs concentration measuring method described in JIS K3602, and includes a biosensor 11. The biosensor 11 has a structure in which a microbial membrane at the tip of the biosensor and an oxygen electrode are combined, and the microbial membrane is mounted in the flow cell. When the liquid containing the organic substance is supplied to the flow cell, it comes into contact with the microbial membrane, and the organic substance is decomposed. Dissolved oxygen is consumed during the microbial decomposition, and the oxygen electrode detects the current generated along with the oxygen consumption and outputs it as an output signal (S). Here, BF-2000 manufactured by Oji Scientific Instruments Co., Ltd. is used as the BODs measuring device 10.

なお、バイオセンサ11に使用する微生物膜は、処理すべき廃水の活性汚泥を培養物により調製する。例えば、処理すべき廃水系から1Lの廃水を採取し、グルコース・グルタミン酸を各1.5mgとJIS K 0102に記載の緩衝液(pH7.2、A液)、硫酸マグネシウム溶液(B液)、塩化カルシウム溶液(C液)および塩化鉄(III)溶液(D液)各2mlをそれぞれ加え、pHを中性付近に保ちながら、25℃で曝気下に約15時間培養した後、培養液を遠心分離して沈殿物を取得し、この沈殿物を同一廃水系の廃水に懸濁する。このような培養工程を3回繰り返して、活性汚泥の培養物を得る。
そして、培養物の微量を多孔質のメンブレンフィルターのような固定膜に固定することにより、バイオセンサの微生物膜を調製する。
In addition, the microbial membrane used for the biosensor 11 prepares the activated sludge of the wastewater to be treated from the culture. For example, 1 L of waste water is collected from the waste water system to be treated, 1.5 mg each of glucose and glutamic acid, buffer solution (pH 7.2, solution A) described in JIS K 0102, magnesium sulfate solution (solution B), chloride Add 2 ml each of calcium solution (solution C) and iron chloride (III) solution (solution D), and incubate for about 15 hours under aeration at 25 ° C. while maintaining the pH near neutral, and then centrifuge the culture solution Then, a precipitate is obtained, and this precipitate is suspended in waste water of the same waste water system. Such a culture process is repeated three times to obtain a culture of activated sludge.
Then, a microbial membrane of the biosensor is prepared by fixing a trace amount of the culture to a fixed membrane such as a porous membrane filter.

捕集器12は、BODs測定装置10から流出してきた液体(標準液、試料液、洗浄水、リン酸緩衝液が流れる)からBODs測定後の標準液21を捕集したり、BODs測定後の試料液23を捕集したりする。
捕集器12は、標準液回収用と試料液回収用とを別々に用意し、図示しない容器切替機構により標準液と試料液とを別々に回収する。
なお、洗浄水22が流出している間は、切換バルブ40を操作することにより外部に廃棄される。
The collector 12 collects the standard solution 21 after measuring BODs from the liquid (standard solution, sample solution, washing water, and phosphate buffer solution flows) flowing out from the BODs measuring device 10 or after measuring BODs. Sample liquid 23 is collected.
The collector 12 prepares the standard solution collection and the sample solution collection separately, and collects the standard solution and the sample solution separately by a container switching mechanism (not shown).
In addition, while the washing water 22 is flowing out, it is discarded outside by operating the switching valve 40.

TOC計13は、測定対象液中の有機体炭素量を測定するものであり、具体的には島津製作所製TOC−5000を使用している。
ここでは、まず、標準液21原液および試料液23原液のTOC濃度が測定される。このTOC濃度は、BODs測定装置10におけるBODs測定前のTOC濃度(TOCin)として扱われる。
The TOC meter 13 measures the amount of organic carbon in the liquid to be measured, and specifically uses TOC-5000 manufactured by Shimadzu Corporation.
Here, first, the TOC concentrations of the standard solution 21 stock solution and the sample solution 23 stock solution are measured. This TOC concentration is handled as the TOC concentration (TOCin) before the BODs measurement in the BODs measuring apparatus 10.

TOC計13は、また、捕集器12に捕集された標準液、捕集器12に捕集された試料液のTOC濃度が測定される。このTOC濃度は、BODs測定装置10におけるBOD測定後のTOC濃度(TOCout)として扱われる。   The TOC meter 13 also measures the TOC concentration of the standard solution collected in the collector 12 and the sample solution collected in the collector 12. This TOC concentration is handled as the TOC concentration (TOCout) after the BOD measurement in the BODs measuring device 10.

流体供給部20は、標準液21(グルコース・グルタミン酸溶液、BOD濃度は20[mg/L])、洗浄水22、試料液23が用意されている。これらの液体はバルブ25、26、27およびポンプ28を適宜駆動することにより調製され、BODs測定装置10に供給される。また、液体供給部20にはリン酸緩衝液24が用意され、ポンプ29により常時供給される。リン酸緩衝液は微生物膜の活性のために用いられる。
エアーポンプ14は、流体供給部20とBODs測定装置10との間の流路に接続され、常時エアーレーションすることにより、微生物による有機体炭素の分解に利用される酸素を供給している。
The fluid supply unit 20 includes a standard solution 21 (glucose / glutamic acid solution, BOD 5 concentration is 20 [mg / L]), washing water 22 and a sample solution 23. These liquids are prepared by appropriately driving the valves 25, 26, 27 and the pump 28, and are supplied to the BODs measuring device 10. Further, a phosphate buffer solution 24 is prepared in the liquid supply unit 20 and is always supplied by a pump 29. Phosphate buffer is used for microbial membrane activity.
The air pump 14 is connected to a flow path between the fluid supply unit 20 and the BODs measuring apparatus 10 and supplies oxygen used for decomposing organic carbon by microorganisms by constantly aeration.

標準液21を測定する際にはバルブ25を開くとともにポンプ28を駆動し、さらにリン酸緩衝液24を送るポンプ29を駆動することにより、両ポンプの回転速度により定まる流量比の混合液体がBODs測定装置10に供給される。
同様に試料液23を測定する際にはバルブ26を開くとともにポンプ28を駆動し、さらにリン酸緩衝液24を送るポンプ29を駆動する。
BODs測定装置10を洗浄するときは、バルブ26を開いてポンプ28を駆動することにより洗浄水を供給する。
また、流体供給部20はTOC計13にも標準液21、試料液23が供給されるように流路接続してある。
When measuring the standard solution 21, the valve 25 is opened, the pump 28 is driven, and the pump 29 that sends the phosphate buffer solution 24 is further driven, so that the mixed liquid having a flow ratio determined by the rotational speed of both pumps is reduced to BODs. Supplied to the measuring device 10.
Similarly, when measuring the sample solution 23, the valve 26 is opened, the pump 28 is driven, and the pump 29 for feeding the phosphate buffer solution 24 is driven.
When cleaning the BODs measuring apparatus 10, cleaning water is supplied by opening the valve 26 and driving the pump 28.
The fluid supply unit 20 is connected to the TOC meter 13 so that the standard solution 21 and the sample solution 23 are supplied.

データ処理装置30は、標準液21および試料液23のそれぞれについて、バイオセンサ11からの出力(S)と、TOC計13からのBODs濃度測定前のTOC濃度(TOCin)と、BODs濃度測定後のTOC濃度(TOCout)の各データとに基づいて、演算処理を行うものである。
具体的にはBODs測定装置10のバイオセンサ11の出力(S)をサンプリングするキーエンス製データ収集システムNR−1000と、取得したデータに基づいて演算を行う汎用パーソナルコンピュータとにより構成される。
For each of the standard solution 21 and the sample solution 23, the data processing device 30 outputs the output (S) from the biosensor 11, the TOC concentration (TOCin) before the BODs concentration measurement from the TOC meter 13, and the BODs concentration after the measurement. Calculation processing is performed based on each data of the TOC concentration (TOCout).
Specifically, the data collection system NR-1000 manufactured by Keyence that samples the output (S) of the biosensor 11 of the BODs measurement apparatus 10 and a general-purpose personal computer that performs calculations based on the acquired data are configured.

データ処理装置30により実行される演算をさらに機能的に分類して説明すると、指標データ抽出部31、変化率算出部32、換算指標データ算出部33、BOD算出部34とに分類することができる。 When the operations executed by the data processing device 30 are further classified into functions, the index data extraction unit 31, the change rate calculation unit 32, the conversion index data calculation unit 33, and the BOD 5 calculation unit 34 can be classified. it can.

指標データ抽出部31では、標準液および試料液のそれぞれについて、BODs測定装置10のバイオセンサ11の出力(S)から指標データを抽出する演算を行う。すなわち、上述した(3)式で定義される指標面積D(測定開始直後のバイオセンサ出力が直線的に経時変化する領域におけるバイオセンサ出力の積分値)を指標データとして算出する。   The index data extraction unit 31 performs an operation of extracting index data from the output (S) of the biosensor 11 of the BODs measurement device 10 for each of the standard solution and the sample solution. That is, the index area D defined by the above-described equation (3) (the integrated value of the biosensor output in a region where the biosensor output immediately after the start of measurement linearly changes with time) is calculated as index data.

変化率算出部32では、標準液および試料液のそれぞれについて、BODs測定前後の有機体炭素濃度(TOCin、TOCout)に基づいて、上述した(2)式で定義されるTOC分解率を算出する。   The change rate calculation unit 32 calculates the TOC decomposition rate defined by the above-described equation (2) based on the organic carbon concentration (TOCin, TOCout) before and after the BODs measurement for each of the standard solution and the sample solution.

換算指標データ算出部33では、標準液および試料液のそれぞれについて、上述した(4)式に基づいて換算指標面積(換算指標データ)Eを算出する。   The conversion index data calculation unit 33 calculates a conversion index area (converted index data) E based on the above-described equation (4) for each of the standard solution and the sample solution.

BOD算出部34では、標準液および試料液の換算指標面積(換算指標データ)から上述した(5)式を用いて計算BOD濃度Fを算出する。 The BOD 5 calculation unit 34 calculates the calculated BOD 5 concentration F from the conversion index areas (conversion index data) of the standard solution and the sample solution using the above-described equation (5).

次に、この近似BODs測定装置1による測定動作について図5に示すフローチャートを用いて説明する。   Next, the measurement operation by the approximate BODs measurement apparatus 1 will be described with reference to the flowchart shown in FIG.

st101:
BODs測定装置10に標準液21とリン酸緩衝液24が送られ、BODs測定が行われる。このときのバイオセンサ11の出力(S)が測定される。
st102:
データ処理装置30により、(3)式に基づいて出力(S)から指標面積(Dstd)が算出され、記憶される。
st101:
The standard solution 21 and the phosphate buffer solution 24 are sent to the BODs measuring apparatus 10 and BODs measurement is performed. The output (S) of the biosensor 11 at this time is measured.
st102:
The data processing device 30 calculates and stores the index area (Dstd) from the output (S) based on the equation (3).

st103:
TOC計13に標準液21が送られ、標準液中の有機炭素濃度(TOCin)が測定され、記憶される。なお、この測定はs101と同時に並行して行う。
st104:
BODs測定装置10の出口側の捕集器12に、s101でBODs濃度が測定された後の標準液が全量回収された後、標準液中の残存有機体炭素濃度(TOCout)が測定される。
st105:
st103、st104で測定した有機体炭素濃度(TOCin、TOCout)から(2)式に基づいて、標準液のTOC分解率が算出され、記憶される。
st103:
The standard solution 21 is sent to the TOC meter 13, and the organic carbon concentration (TOCin) in the standard solution is measured and stored. This measurement is performed in parallel with s101.
st104:
After the total amount of the standard solution after the BODs concentration is measured in s101 is collected in the collector 12 on the outlet side of the BODs measuring device 10, the residual organic carbon concentration (TOCout) in the standard solution is measured.
st105:
Based on the organic carbon concentration (TOCin, TOCout) measured in st103 and st104, the TOC decomposition rate of the standard solution is calculated and stored.

st106:
BODs測定装置10に試料液23とリン酸緩衝液24が送られ、BODs測定が行われる。このときのバイオセンサ11の出力(S)が測定される。
st107:
データ処理装置30により、(3)式に基づいて出力(S)から指標面積(Dspl)が算出され、記憶される。
st106:
The sample solution 23 and the phosphate buffer solution 24 are sent to the BODs measuring apparatus 10 and BODs measurement is performed. The output (S) of the biosensor 11 at this time is measured.
st107:
The data processor 30 calculates and stores the index area (Dspl) from the output (S) based on the equation (3).

st108:
TOC計13に試料液23が送られ、試料液中の有機炭素濃度(TOCin)が測定され、記憶される。なお、この測定はs106と同時に並行して行う。
st109:
BODs測定装置10の出口側の捕集器12に、s106でBODs濃度が測定された後の試料液23が全量回収された後、試料液中の残存有機体炭素濃度(TOCout)が測定される。
st108:
The sample solution 23 is sent to the TOC meter 13, and the organic carbon concentration (TOCin) in the sample solution is measured and stored. This measurement is performed in parallel with s106.
st109:
After the total amount of the sample liquid 23 after the BODs concentration is measured in s106 is collected in the collector 12 on the outlet side of the BODs measuring device 10, the residual organic carbon concentration (TOCout) in the sample liquid is measured. .

st110:
st108、st109で測定した有機体炭素濃度(TOCin、TOCout)から(2)式に基づいて、試料液のTOC分解率が算出される。
st111:
st102、st105、st107、st110で求めたDstd、標準液のTOC分解率、Dspl、試料液のTOC分解率を用いて、(4)式に基づいて、TOC分解率が100[%]のときに換算した換算指標面積Estd(標準液)、Espl(試料液)が算出される。
st112:
st111で算出された換算試料面積Estd、Esplを用いて(5)式に基づいて、計算BOD濃度が算出される。
st110:
Based on the organic carbon concentration (TOCin, TOCout) measured in st108 and st109, the TOC decomposition rate of the sample solution is calculated based on the equation (2).
st111:
Using Dstd obtained in st102, st105, st107, and st110, the TOC decomposition rate of the standard solution, Dspl, and the TOC decomposition rate of the sample solution, when the TOC decomposition rate is 100% based on the equation (4) The converted conversion index areas Estd (standard solution) and Espl (sample solution) are calculated.
st112:
Based on the equation (5), the calculated BOD 5 concentration is calculated using the converted sample areas Estd and Espl calculated in st111.

以上の動作を順次実行することにより、短時間(約1時間)のうちにBOD濃度を算出することができる。 By sequentially executing the above operations, the BOD 5 concentration can be calculated within a short time (about 1 hour).

(測定例)
次に、上述した近似BOD測定装置による測定例について説明する。
数日間にわたって廃水を採取し、さらにBODs測定に影響がある有機化合物を不定期に添加するようにして試料液を調製し、これらの試料液についてJIS K0102で規定する公定法により測定したBOD濃度、JIS K3602で規定する公定法により測定したBODs濃度、本発明の近似BOD測定装置により求めた計算BOD濃度を測定し比較した。各試料液についてはガスクロマトグラフィー法により含有する有機溶媒についても測定した。
(Measurement example)
Next, a measurement example using the above-described approximate BOD 5 measuring apparatus will be described.
Sample liquids were collected over a period of several days, and organic compounds that affect BODs measurement were added irregularly, and BOD 5 concentrations measured for these sample liquids by the official method prescribed in JIS K0102 The BODs concentration measured by the official method specified in JIS K3602 and the calculated BOD 5 concentration obtained by the approximate BOD 5 measuring device of the present invention were measured and compared. About each sample liquid, it measured also about the organic solvent contained by the gas chromatography method.

測定結果を表2に示す。また、BODs濃度とBOD濃度の関係を図7に示し、計算BOD濃度とBOD濃度との関係を図8に示す(なお、表2に示す各データと表1の各データとは、同じ試料番号(試料No)のものは同じ試料液のデータである)。 The measurement results are shown in Table 2. Further, the relationship between the BODs concentration and the BOD 5 concentration is shown in FIG. 7, and the relationship between the calculated BOD 5 concentration and the BOD 5 concentration is shown in FIG. 8 (in addition, each data shown in Table 2 and each data in Table 1 are The same sample number (sample No.) is the data of the same sample solution).

表2および図7に見られるように、BOD濃度とBODs濃度との関係は相関係数Rが0.789であり弱い相関であることを示している。これらの関係を近似的に直線式で表した場合の直線式の傾きを示す定数は5.3306であり、BODs濃度とBOD濃度との一致度は決してよくない。特に、図7に見られるように、DMFを添加した3つの試料については完全に外れており、DMFのような有機化合物がBODs濃度とBOD濃度との関係に大きく影響を与えている。 As can be seen in Table 2 and FIG. 7, the relationship between the BOD 5 concentration and the BODs concentration indicates that the correlation coefficient R 2 is 0.789, indicating a weak correlation. The constant indicating the slope of the linear expression when these relationships are approximately expressed by a linear expression is 5.3306, and the degree of coincidence between the BODs concentration and the BOD 5 concentration is not good. In particular, as can be seen in FIG. 7, the three samples to which DMF was added are completely off, and organic compounds such as DMF have a great influence on the relationship between the BODs concentration and the BOD 5 concentration.

一方、表2および表8に見られるように、BOD濃度と計算BOD濃度との関係は、相関係数Rが0.9653であり、強い相関を示している。また、両者は比例関係にありかつ比例定数が1に非常に近い値を示しており、計算BOD濃度とBOD濃度との一致度はよい。したがって本発明の近似BOD測定装置で測定し算出した計算BOD濃度をBOD濃度と見なすことができ、廃水処理施設のモニタ等に役立たせることができる。

Figure 2005140757
On the other hand, as seen in Table 2 and Table 8, the relationship between BOD 5 concentration and calculated BOD 5 concentrations, the correlation coefficient R 2 is 0.9653, indicating a strong correlation. Moreover, both are proportional and the proportionality constant shows a value very close to 1, and the degree of coincidence between the calculated BOD 5 concentration and the BOD 5 concentration is good. Therefore, the calculated BOD 5 concentration measured and calculated by the approximate BOD 5 measuring apparatus of the present invention can be regarded as the BOD 5 concentration, and can be used for monitoring a wastewater treatment facility.
Figure 2005140757

(水質監視装置および廃水処理装置)
次に、本発明の他の実施形態である近似BOD測定装置を応用した水質監視装置および廃水処理システムについて図2を用いて説明する。この廃水処理システム50は、水質監視装置60と、廃水処理制御部64と、廃水処理装置70とから構成される。
(Water quality monitoring equipment and wastewater treatment equipment)
Next, a water quality monitoring apparatus and a wastewater treatment system to which an approximate BOD 5 measuring apparatus according to another embodiment of the present invention is applied will be described with reference to FIG. The wastewater treatment system 50 includes a water quality monitoring device 60, a wastewater treatment control unit 64, and a wastewater treatment device 70.

水質監視装置60は、近似BOD測定装置61と、水質監視部62と試料液採取部63とから構成される。 The water quality monitoring device 60 includes an approximate BOD 5 measurement device 61, a water quality monitoring unit 62, and a sample solution collecting unit 63.

近似BOD測定装置61は、図1の近似BOD測定装置1と同一であり、後述するように廃水処理装置70(水源)から採取した廃水を試料液23とすることができ、採取した試料液23を少なくとも1時間間隔で測定することができるようにしてある。 The approximate BOD 5 measuring device 61 is the same as the approximate BOD 5 measuring device 1 of FIG. 1, and the waste water collected from the waste water treatment device 70 (water source) can be used as the sample liquid 23 as will be described later. The liquid 23 can be measured at intervals of at least one hour.

水質監視部62は、近似BOD測定装置61で求めた計算BOD濃度の測定結果に基づいて水質を監視する。例えば判断基準となる計算BOD濃度の基準値や許容変動幅を記憶しておき、測定結果をこれらの基準値と比較する監視を継続的に行い、測定値を随時出力するとともに、測定値が基準値を超えたり、一定期間内に許容変動幅を超えたりした場合に警報信号を出力することにより水質の監視が行われる。 The water quality monitoring unit 62 monitors the water quality based on the measurement result of the calculated BOD 5 concentration obtained by the approximate BOD 5 measuring device 61. For example, the reference value of the calculated BOD 5 concentration and the allowable fluctuation range, which are judgment criteria, are memorized, the monitoring is continuously performed to compare the measurement result with these reference values, the measurement value is output at any time, and the measurement value is Water quality is monitored by outputting an alarm signal when the reference value is exceeded or the allowable fluctuation range is exceeded within a certain period.

試料液採取部63は、廃水処理装置70から廃水を採取して近似BOD測定装置61の流体供給部20(図1参照)に送るための配管流路で構成される。 The sample solution collecting unit 63 is configured by a piping channel for collecting waste water from the waste water treatment device 70 and sending it to the fluid supply unit 20 (see FIG. 1) of the approximate BOD 5 measuring device 61.

廃水処理制御部64は、水質監視部62から出力される測定値や警報信号等の監視結果を受けて、この監視結果に基づいて適切な制御信号を廃水処理装置70に送る。   The wastewater treatment control unit 64 receives monitoring results such as measurement values and alarm signals output from the water quality monitoring unit 62, and sends an appropriate control signal to the wastewater treatment device 70 based on the monitoring results.

廃水処理装置70は、廃水貯留槽71、廃水処理槽72、沈殿槽73、希釈水貯留槽74、工場等の廃水出口と廃水貯留槽71とを流路接続する配管75、廃水貯留槽71と廃水処理槽72とを流路接続する配管76、廃水処理槽72と沈殿槽73とを流路接続する配管77、沈殿槽73から廃水を排出する配管78、希釈水貯留槽74から廃水貯留槽71に希釈水を供給するための配管79、配管76の途中に設けられた流量調節弁81、配管78の途中に設けられた流量調節機能付の三方弁82、配管79の途中に設けられた流量調節弁83、三方弁82と廃水処理槽72とを流路接続する戻し配管80とから構成される。流量調節弁81、三方弁82、流量調節弁83は、廃水処理制御部64からの制御信号により制御されるようにしてある。   The wastewater treatment apparatus 70 includes a wastewater storage tank 71, a wastewater treatment tank 72, a sedimentation tank 73, a dilution water storage tank 74, a pipe 75 that connects the wastewater outlet of the factory and the wastewater storage tank 71, a wastewater storage tank 71, A pipe 76 that connects the wastewater treatment tank 72 to the flow path, a pipe 77 that connects the wastewater treatment tank 72 and the sedimentation tank 73 to the flow path, a pipe 78 that discharges waste water from the sedimentation tank 73, and a wastewater storage tank from the dilution water storage tank 74 A pipe 79 for supplying dilution water to 71, a flow control valve 81 provided in the middle of the pipe 76, a three-way valve 82 with a flow control function provided in the middle of the pipe 78, and provided in the middle of the pipe 79. The flow control valve 83, the three-way valve 82, and the wastewater treatment tank 72 are constituted by a return pipe 80 that connects the flow paths. The flow control valve 81, the three-way valve 82, and the flow control valve 83 are controlled by a control signal from the wastewater treatment control unit 64.

この廃水処理システム50では、工場等の廃水出口からの廃水が配管75を経て廃水貯留槽71に導かれ、処理量に応じて廃水貯留槽71から配管76および流量調節弁81を経て廃水処理槽72へ送られる。
廃水処理槽72では活性汚泥を用いて廃水が処理される。処理された廃水は配管77を経て沈殿槽73に送られる。沈殿槽73で一定時間滞留した処理水は配管78および三方弁82を経て外部に排出される。
In this wastewater treatment system 50, wastewater from a wastewater outlet of a factory or the like is led to a wastewater storage tank 71 via a pipe 75, and the wastewater treatment tank is passed from the wastewater storage tank 71 via a pipe 76 and a flow rate control valve 81 according to the processing amount. 72.
In the wastewater treatment tank 72, wastewater is treated using activated sludge. The treated waste water is sent to the sedimentation tank 73 through the pipe 77. The treated water staying in the settling tank 73 for a certain time is discharged to the outside through the pipe 78 and the three-way valve 82.

廃水処理装置70の配管76を流れる廃水は、一部が試料採取部63で採取され、BOD測定装置61に送られる。なお、試料採取部63は測定目的に応じて配管76の他に配管78、廃水処理槽72、三方弁82の出口側近傍(外部への排出口)等の適当な位置から試料を採取するようにしてもよい。 Part of the wastewater flowing through the pipe 76 of the wastewater treatment device 70 is collected by the sample collection unit 63 and sent to the BOD 5 measurement device 61. The sample collection unit 63 collects a sample from an appropriate position such as the pipe 78, the waste water treatment tank 72, the vicinity of the outlet side of the three-way valve 82 (external discharge port) in addition to the pipe 76 in accordance with the measurement purpose. It may be.

近似BOD測定装置61に送られた廃水は、1時間程度で測定を終え、計算BOD濃度が算出されて、水質監視部62に送られる。
水質監視部62は、計算BOD濃度の測定結果を廃水処理制御部64に随時出力するようにしてあり、さらに、あらかじめ記憶されてある基準値と現時点の測定値とが比較され、測定値が基準値を超えると警報信号が出力されるようにしてある。
The wastewater sent to the approximate BOD 5 measuring device 61 is measured in about one hour, the calculated BOD 5 concentration is calculated, and sent to the water quality monitoring unit 62.
The water quality monitoring unit 62 outputs the measurement result of the calculated BOD 5 concentration to the wastewater treatment control unit 64 at any time. Further, the reference value stored in advance is compared with the current measurement value, and the measurement value is An alarm signal is output when the reference value is exceeded.

廃水処理制御部64は、水質監視部62から送られる警報信号等の監視結果に基づいて制御信号を流量調節弁81、三方弁82、流量調節弁83に出力する。
流量調節弁81への制御信号が出力されると、廃水貯留槽71から廃水処理槽72への廃水の流れが増減され、または停止される。
三方弁82への制御信号が出力されると、外部(公共用水域)への排出が停止され、あるいは処理水が戻し配管80を経て廃水処理槽72に返送される。
流量調節弁83への制御信号が出力されると、希釈水貯留槽74から廃水貯留槽71へ希釈水が加えられて、廃水貯留槽71中の廃水が希釈される。
The wastewater treatment control unit 64 outputs a control signal to the flow rate adjustment valve 81, the three-way valve 82, and the flow rate adjustment valve 83 based on the monitoring result such as an alarm signal sent from the water quality monitoring unit 62.
When the control signal to the flow rate control valve 81 is output, the flow of waste water from the waste water storage tank 71 to the waste water treatment tank 72 is increased or decreased or stopped.
When the control signal is output to the three-way valve 82, the discharge to the outside (public water area) is stopped, or the treated water is returned to the wastewater treatment tank 72 via the return pipe 80.
When a control signal is output to the flow rate adjustment valve 83, dilution water is added from the dilution water storage tank 74 to the waste water storage tank 71, and the waste water in the waste water storage tank 71 is diluted.

本発明によれば、近似BOD濃度を迅速かつ精度よく測定することができるので、本来のBOD濃度と見なすことができる近似BOD濃度(計算BOD濃度)をリアルタイムで取得するときに利用することができる。また、上記近似BOD濃度を用いた近似BOD測定装置を提供する場合に利用することができる。また、このような近似BOD測定装置を応用した水質監視装置、廃水処理システムを提供する場合に利用することができる。 According to the present invention, since the approximate BOD 5 concentration can be measured quickly and accurately, the approximate BOD 5 concentration (calculated BOD concentration) that can be regarded as the original BOD 5 concentration is obtained in real time. Can do. Further, it can be utilized in providing the approximate BOD 5 measuring apparatus using the approximation BOD concentrations. Moreover, such a water quality monitoring system that applies the approximate BOD 5 measuring apparatus can be utilized in providing a wastewater treatment system.

本発明の一実施形態である近似BOD測定装置の構成を示す図。Shows the structure of approximate BOD 5 measuring apparatus according to an embodiment of the present invention. 本発明の一実施形態である近似BOD測定装置を応用した水質監視装置および廃水処理システムの構成を示す図。Shows a water quality monitoring device and the wastewater treatment system configuration which applies the approximate BOD 5 measuring apparatus according to an embodiment of the present invention. BODs測定装置による測定サイクルを説明する図。The figure explaining the measurement cycle by a BODs measuring device. バイオセンサ出力の経時変化を示す図。The figure which shows a time-dependent change of a biosensor output. 近似BOD測定装置による測定時のフローチャート。The flowchart at the time of the measurement by the approximate BOD 5 measuring apparatus. バイオセンサ出力の経時変化と指標データを説明する図。The figure explaining the time-dependent change of biosensor output, and index data. BODsとBODとの関係を示す図。Diagram showing the relationship between the BODs and BOD 5. BODとBODsからのBOD(計算BOD)との関係を示す図。Diagram showing the relationship between BOD 5 (calculated BOD 5) from BOD 5 and BODS.

符号の説明Explanation of symbols

1 近似BOD測定装置
10 BODs測定装置
11 バイオセンサ
12 捕集器(捕集部)
13 TOC計
20 流体供給部
21 標準液
23 試料液
30 データ処理装置
31 指標データ算出部
32 変化率算出部
33 換算指標データ算出部
34 BOD算出部
50 廃水処理システム
60 水質監視装置
61 近似BOD測定装置
62 水質監視部
63 試料液採取部
64 廃水処理制御部
70 廃水処理装置
DESCRIPTION OF SYMBOLS 1 Approximate BOD 5 measuring apparatus 10 BODs measuring apparatus 11 Biosensor 12 Collector (collecting part)
DESCRIPTION OF SYMBOLS 13 TOC meter 20 Fluid supply part 21 Standard solution 23 Sample solution 30 Data processing device 31 Index data calculation part 32 Change rate calculation part 33 Conversion index data calculation part 34 BOD 5 calculation part 50 Waste water treatment system 60 Water quality monitoring apparatus 61 Approximate BOD 5 Measuring device 62 Water quality monitoring unit 63 Sample liquid sampling unit 64 Wastewater treatment control unit 70 Wastewater treatment device

Claims (14)

BOD濃度が既知の標準液および測定対象の試料液のそれぞれについてバイオセンサを用いたBODs測定装置によるBODs濃度測定の際のバイオセンサ出力(S)の経時変化データを取得し、
標準液および試料液それぞれについてBODs測定装置によるBODs濃度測定前後における有機体炭素濃度の変化に関係するデータを取得し、
標準液および試料液それぞれについてバイオセンサ出力(S)の経時変化データからBOD濃度に関係する指標データを抽出し、
標準液および試料液それぞれについて指標データと有機体炭素濃度の変化に関係するデータとに基づいて標準液や試料液に含まれる有機体炭素がすべて分解した場合の指標データに換算した換算指標データを算出し、
標準液と試料液とのそれぞれの換算指標データに基づいてBOD濃度を算出することを特徴とする近似BOD測定方法。
Obtaining time-dependent data of biosensor output (S) at the time of measuring BODs concentration by a BODs measuring device using a biosensor for each of a standard solution with a known BOD 5 concentration and a sample solution to be measured,
For each of the standard solution and the sample solution, data related to changes in the organic carbon concentration before and after the BODs concentration measurement by the BODs measuring device is obtained,
Index data related to BOD 5 concentration is extracted from the time course data of biosensor output (S) for each of the standard solution and the sample solution,
Conversion index data converted into index data when all the organic carbon contained in the standard solution and sample liquid is decomposed based on the index data and data related to changes in the organic carbon concentration for each standard solution and sample solution Calculate
An approximate BOD 5 measurement method, wherein the BOD 5 concentration is calculated based on the respective conversion index data of the standard solution and the sample solution.
BOD濃度が既知の標準液および測定対象の試料液のそれぞれについてバイオセンサを用いたBODs測定装置によるBODs濃度測定の際のバイオセンサ出力(S)の経時変化データを取得し、
標準液および試料液のそれぞれについてBODs測定装置によるBODs濃度測定前後の有機体炭素濃度に関係するデータを測定し、
標準液および試料液のそれぞれについてバイオセンサ出力(S)の経時変化データからBOD濃度に関係する指標データを抽出し、
標準液および試料液のそれぞれについてBODs濃度測定前後の有機体炭素濃度に関係するデータに基づいてTOC分解率を算出し、
標準液および試料液のそれぞれについてTOC分解率と指標データとに基づいて標準液や試料液に含まれる有機体炭素がすべて分解した場合の指標データに換算した換算指標データを算出し、
標準液と試料液とのそれぞれの換算指標データに基づいてBOD濃度を算出することを特徴とする近似BOD測定方法。
Obtaining time-dependent data of biosensor output (S) at the time of measuring BODs concentration by a BODs measuring device using a biosensor for each of a standard solution with a known BOD 5 concentration and a sample solution to be measured,
For each of the standard solution and the sample solution, data related to the organic carbon concentration before and after the BODs concentration measurement by the BODs measuring device is measured,
Index data related to BOD 5 concentration is extracted from the time-dependent data of biosensor output (S) for each of the standard solution and the sample solution,
Calculate the TOC decomposition rate based on the data related to the organic carbon concentration before and after measuring the BODs concentration for each of the standard solution and the sample solution,
Based on the TOC decomposition rate and the index data for each of the standard solution and the sample solution, calculated conversion index data converted into index data when all the organic carbon contained in the standard solution and the sample solution is decomposed,
An approximate BOD 5 measurement method, wherein the BOD 5 concentration is calculated based on the respective conversion index data of the standard solution and the sample solution.
BOD濃度が既知の標準液および測定対象の試料液のそれぞれについてバイオセンサを用いたBODs測定装置によるBODs濃度測定の際のバイオセンサ出力(S)の経時変化データを取得し、
標準液および試料液のそれぞれについてBODs測定装置によるBODs濃度測定前の有機体炭素濃度(TOCin)をTOC計により測定し、
BODs測定装置によりBODs濃度を測定した後の標準液および試料液それぞれについての有機体炭素濃度(TOCout)をTOC計により測定し、
標準液および試料液のそれぞれについてバイオセンサ出力(S)の経時変化データからBOD濃度に関係する指標データを抽出し、
標準液および試料液のそれぞれについてBODs濃度測定前後の有機体炭素濃度(TOCin、TOCout)に基づいて、TOC分解率を算出し、
標準液および試料液のそれぞれについてTOC分解率と指標データとに基づいて標準液や試料液に含まれる有機体炭素がすべて分解した場合の指標データに換算した換算指標データを算出し、
標準液と試料液とのそれぞれの換算指標データに基づいてBOD濃度を算出することを特徴とする近似BOD測定方法。
Obtaining time-dependent data of biosensor output (S) at the time of measuring BODs concentration by a BODs measuring device using a biosensor for each of a standard solution with a known BOD 5 concentration and a sample solution to be measured,
For each of the standard solution and the sample solution, the organic carbon concentration (TOCin) before measuring the BODs concentration by the BODs measuring device is measured with a TOC meter.
The organic carbon concentration (TOCout) of each of the standard solution and the sample solution after measuring the BODs concentration with a BODs measuring device is measured with a TOC meter.
Index data related to BOD 5 concentration is extracted from the time-dependent data of biosensor output (S) for each of the standard solution and the sample solution,
Based on the organic carbon concentration (TOCin, TOCout) before and after measuring the BODs concentration for each of the standard solution and the sample solution, the TOC decomposition rate is calculated,
Based on the TOC decomposition rate and the index data for each of the standard solution and the sample solution, calculated conversion index data converted into index data when all the organic carbon contained in the standard solution and the sample solution is decomposed,
An approximate BOD 5 measurement method, wherein the BOD 5 concentration is calculated based on the respective conversion index data of the standard solution and the sample solution.
BODs濃度測定前後の有機体炭素濃度に関係するデータはTOC計、TOD計、COD計、吸光度検出器のいずれかにより測定されることを特徴とする請求項1または2のいずれかに記載の近似BOD測定方法。 3. The approximation according to claim 1, wherein the data related to the organic carbon concentration before and after the measurement of the BODs concentration is measured by any one of a TOC meter, a TOD meter, a COD meter, and an absorbance detector. BOD measurement method. 指標データとして、標準液又は試料液それぞれについて測定開始直後のバイオセンサ出力(S)が直線的に経時変化する領域のバイオセンサ出力の積分値を用いることを特徴とする請求項1〜4のいずれかに記載の近似BOD測定方法。 The integrated value of the biosensor output in a region where the biosensor output (S) immediately after the start of measurement for each of the standard solution and the sample solution linearly changes with time as the index data. Approximate BOD 5 measurement method according to claim 1. BODs測定装置によるBODs濃度測定は、標準液についてのBODs濃度測定と試料液についてのBODs濃度測定とを交互に行うことを特徴とする請求項1〜5の記載のいずれかに記載のBOD測定方法。 6. The BOD 5 concentration measurement according to claim 1, wherein the BODs concentration measurement by the BODs measuring device alternately performs BODs concentration measurement for a standard solution and BODs concentration measurement for a sample solution. Method. 少なくともBOD濃度が既知の標準液、測定対象の試料液を含む複数の流体を供給する流体供給部と、
バイオセンサを使用して標準液および試料液それぞれのBODs濃度を測定するBODs測定装置と、
BODs測定装置によりBODs濃度が測定された後の標準液および試料液を捕集する捕集部と、
標準液および試料液それぞれのBODs測定装置によるBODs濃度測定前の有機炭素濃度に関係するデータおよびBODs濃度測定後の有機体炭素濃度に関係するデータを測定する検出器と、
標準液および試料液のそれぞれについてBODs測定装置のバイオセンサ出力(S)の経時変化データからBOD濃度に関係する指標データを抽出する指標データ抽出部と、
標準液および試料液のそれぞれについて、BODs濃度測定前後の有機体炭素濃度に関係するデータと指標データとに基づいて標準液や試料液に含まれる有機体炭素がすべて分解した場合の指標データに換算した換算指標データを算出する換算指標データ算出部と、
標準液および試料液のそれぞれの換算指標データに基づいてBOD濃度を算出するBOD算出部とを備えたことを特徴とする近似BOD測定装置。
A fluid supply unit for supplying a plurality of fluids including at least a standard solution having a known BOD 5 concentration and a sample solution to be measured;
A BODs measuring device for measuring the BODs concentration of each of the standard solution and the sample solution using a biosensor;
A collection unit for collecting the standard solution and the sample solution after the BODs concentration is measured by the BODs measurement device;
A detector for measuring data related to the organic carbon concentration before measuring the BODs concentration by the BODs measuring device of each of the standard solution and the sample solution, and data related to the organic carbon concentration after measuring the BODs concentration;
An index data extraction unit that extracts index data related to the BOD 5 concentration from the time-dependent change data of the biosensor output (S) of the BODs measurement device for each of the standard solution and the sample solution;
For each of the standard solution and the sample solution, converted into index data when all the organic carbon contained in the standard solution and sample solution is decomposed based on the data related to the organic carbon concentration before and after the BODs concentration measurement and the index data. A conversion index data calculation unit for calculating the converted conversion index data,
Standards and approximate BOD 5 measuring apparatus characterized by comprising a BOD 5 calculation unit for calculating a BOD 5 concentration based on each conversion index data of the sample solution.
少なくともBOD濃度が既知の標準液、測定対象の試料液を含む複数の流体を供給する流体供給部と、
バイオセンサを使用して標準液および試料液それぞれのBODs濃度を測定するBODs測定装置と、
BODs測定装置によりBODs濃度が測定された後の標準液および試料液を捕集する捕集部と、
標準液および試料液それぞれのBODs測定装置によるBODs濃度測定前の有機炭素濃度に関係するデータおよびBODs濃度測定後の有機体炭素濃度に関係するデータを測定する検出器と、
標準液および試料液のそれぞれについてBODs測定装置のバイオセンサ出力(S)の経時変化データからBOD濃度に関係する指標データを抽出する指標データ抽出部と、
標準液および試料液のそれぞれについてBODs濃度測定前後の有機体炭素に関係するデータに基づいてTOC分解率を算出する変化率算出部と、
標準液および試料液のそれぞれについてTOC分解率と指標データとに基づいて標準液や試料液に含まれる有機体炭素がすべて分解した場合の指標データに換算した換算指標データを算出する換算指標データ算出部と、
標準液および試料液のそれぞれの換算指標データに基づいてBOD濃度を算出するBOD算出部とを備えたことを特徴とする近似BOD測定装置。
A fluid supply unit for supplying a plurality of fluids including at least a standard solution having a known BOD 5 concentration and a sample solution to be measured;
A BODs measuring device for measuring the BODs concentration of each of the standard solution and the sample solution using a biosensor;
A collection unit for collecting the standard solution and the sample solution after the BODs concentration is measured by the BODs measurement device;
A detector for measuring data related to the organic carbon concentration before measuring the BODs concentration by the BODs measuring device of each of the standard solution and the sample solution, and data related to the organic carbon concentration after measuring the BODs concentration;
An index data extraction unit that extracts index data related to the BOD 5 concentration from the time-dependent change data of the biosensor output (S) of the BODs measurement device for each of the standard solution and the sample solution;
A change rate calculation unit for calculating a TOC decomposition rate based on data related to organic carbon before and after measuring the BODs concentration for each of the standard solution and the sample solution;
Conversion index data calculation that calculates conversion index data converted into index data when all organic carbon contained in the standard solution and sample liquid is decomposed based on the TOC decomposition rate and the index data for each of the standard solution and the sample solution And
Standards and approximate BOD 5 measuring apparatus characterized by comprising a BOD 5 calculation unit for calculating a BOD 5 concentration based on each conversion index data of the sample solution.
少なくともBOD濃度が既知の標準液、測定対象の試料液を含む複数の流体を供給する流体供給部と、
バイオセンサを使用して標準液および試料液それぞれのBODs濃度を測定するBODs測定装置と、
BODs測定装置によりBODs濃度が測定された後の標準液および試料液を捕集する捕集部と、
標準液および試料液それぞれのBODs測定装置によるBODs濃度測定前の有機炭素濃度(TOCin)およびBODs濃度測定後の有機体炭素濃度(TOCout)を測定するTOC計と、
標準液および試料液のそれぞれについてBODs測定装置のバイオセンサ出力(S)の経時変化データからBOD濃度に関係する指標データを抽出する指標データ抽出部と、
標準液および試料液のそれぞれについてBODs濃度測定前後の有機体炭素濃度(TOCin、TOCout)に基づいてTOC分解率を算出する変化率算出部と、
標準液および試料液のそれぞれについて算出したTOC分解率と指標データとに基づいて標準液や試料液に含まれる有機体炭素がすべて分解した場合の指標データに換算した換算指標データを算出する換算指標データ算出部と、
標準液および試料液のそれぞれの換算指標データに基づいてBOD濃度を算出するBOD算出部とを備えたことを特徴とする近似BOD測定装置。
A fluid supply unit for supplying a plurality of fluids including at least a standard solution having a known BOD 5 concentration and a sample solution to be measured;
A BODs measuring device for measuring the BODs concentration of each of the standard solution and the sample solution using a biosensor;
A collection unit for collecting the standard solution and the sample solution after the BODs concentration is measured by the BODs measurement device;
A TOC meter for measuring the organic carbon concentration (TOCin) before measuring the BODs concentration and the organic carbon concentration (TOCout) after measuring the BODs concentration by the BODs measuring device of each of the standard solution and the sample solution;
An index data extraction unit that extracts index data related to the BOD 5 concentration from the time-dependent change data of the biosensor output (S) of the BODs measurement device for each of the standard solution and the sample solution;
A change rate calculation unit that calculates a TOC decomposition rate based on organic carbon concentrations (TOCin, TOCout) before and after measuring the BODs concentration for each of the standard solution and the sample solution;
Conversion index for calculating conversion index data converted to index data when all organic carbon contained in the standard solution and sample liquid is decomposed based on the TOC decomposition rate and index data calculated for each of the standard solution and the sample solution A data calculator;
Standards and approximate BOD 5 measuring apparatus characterized by comprising a BOD 5 calculation unit for calculating a BOD 5 concentration based on each conversion index data of the sample solution.
BODs濃度測定前後の有機体炭素濃度に関係するデータはTOC計、TOD計、COD計、吸光度検出器のいずれかにより測定されることを特徴とする請求項7または8のいずれかに記載の近似BOD測定装置。 9. The approximation according to claim 7, wherein the data related to the organic carbon concentration before and after the BODs concentration measurement is measured by any one of a TOC meter, a TOD meter, a COD meter, and an absorbance detector. BOD measuring device. 指標データとして、標準液又は試料液それぞれについて測定開始直後のバイオセンサ出力(S)が直線的に経時変化する領域のバイオセンサ出力の積分値を用いることを特徴とする請求項7〜10のいずれかに記載の近似BOD測定装置。 11. The integrated value of the biosensor output in a region where the biosensor output (S) immediately after the start of measurement for each of the standard solution and the sample solution linearly changes with time as the index data. An approximate BOD 5 measuring device according to claim 1. BODs測定装置によるBODs濃度測定は、標準液についてのBODs濃度測定と試料液についてのBODs濃度測定とを交互に行うことを特徴とする請求項7〜11のいずれかに記載のBOD測定装置。 BODs concentration measurement according BODs measuring apparatus, BOD 5 measuring apparatus according to any one of claims 7 to 11 characterized in that the BODs concentration measurement for BODs concentration measurement and the sample solution for the standard solution alternately. 請求項7〜12のいずれかに記載のBOD測定装置と、
水源から試料液を採取してBOD測定装置に送る試料液採取部と、
BOD測定装置により算出したBOD濃度の値に基づいて水源の水質を監視し、監視結果を出力する水質監視部とを備えたことを特徴とする水質監視装置。
The BOD 5 measuring device according to any one of claims 7 to 12,
A sample solution collecting unit for collecting a sample solution from a water source and sending it to the BOD 5 measuring device;
A water quality monitoring apparatus comprising: a water quality monitoring unit that monitors water quality of a water source based on a BOD 5 concentration value calculated by a BOD 5 measurement apparatus and outputs a monitoring result.
請求項7〜12のいずれかに記載のBOD測定装置と、
外部から供給される廃水の廃水処理を行う排水処理装置と、
廃水処理装置から廃水を採取しBOD測定装置に試料液として送る試料液採取部と、
BOD測定装置により算出したBODの値に基づいて廃水の水質を監視し、監視結果を出力する水質監視部と、
水質監視部からの出力に基づいて廃水処理装置の運転を制御する廃水処理制御部とを備えたことを特徴とする廃水処理システム。
The BOD 5 measuring device according to any one of claims 7 to 12,
Wastewater treatment equipment for treating wastewater supplied from outside;
A sample liquid collecting unit that collects waste water from the waste water treatment apparatus and sends it to the BOD 5 measuring apparatus as a sample liquid;
A water quality monitoring unit that monitors the quality of waste water based on the value of BOD 5 calculated by the BOD 5 measuring device, and outputs a monitoring result;
A wastewater treatment system comprising: a wastewater treatment control unit that controls operation of a wastewater treatment apparatus based on an output from a water quality monitoring unit.
JP2003380456A 2003-11-10 2003-11-10 Approximate BOD5 measurement method, approximate BOD5 measurement apparatus, water quality monitoring apparatus and wastewater treatment system using this apparatus Expired - Lifetime JP4466046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380456A JP4466046B2 (en) 2003-11-10 2003-11-10 Approximate BOD5 measurement method, approximate BOD5 measurement apparatus, water quality monitoring apparatus and wastewater treatment system using this apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380456A JP4466046B2 (en) 2003-11-10 2003-11-10 Approximate BOD5 measurement method, approximate BOD5 measurement apparatus, water quality monitoring apparatus and wastewater treatment system using this apparatus

Publications (2)

Publication Number Publication Date
JP2005140757A true JP2005140757A (en) 2005-06-02
JP4466046B2 JP4466046B2 (en) 2010-05-26

Family

ID=34690175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380456A Expired - Lifetime JP4466046B2 (en) 2003-11-10 2003-11-10 Approximate BOD5 measurement method, approximate BOD5 measurement apparatus, water quality monitoring apparatus and wastewater treatment system using this apparatus

Country Status (1)

Country Link
JP (1) JP4466046B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020675A1 (en) * 2005-08-12 2007-02-22 Ogawa Environmental Research Institute, Inc. Method and apparatus for measuring bod
CN101477105B (en) * 2009-01-16 2012-01-25 淮阴工学院 Rapid measuring method for high-salt industrial waste water BOD
JP2013166544A (en) * 2013-02-25 2013-08-29 Mitsubishi Heavy Ind Ltd Ballast water treatment system
CN105243256A (en) * 2015-08-27 2016-01-13 肖红军 Biochemical oxygen demand parameter online soft measurement method
JP2020128967A (en) * 2019-02-12 2020-08-27 栗田工業株式会社 Bod measuring system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020675A1 (en) * 2005-08-12 2007-02-22 Ogawa Environmental Research Institute, Inc. Method and apparatus for measuring bod
CN101477105B (en) * 2009-01-16 2012-01-25 淮阴工学院 Rapid measuring method for high-salt industrial waste water BOD
JP2013166544A (en) * 2013-02-25 2013-08-29 Mitsubishi Heavy Ind Ltd Ballast water treatment system
CN105243256A (en) * 2015-08-27 2016-01-13 肖红军 Biochemical oxygen demand parameter online soft measurement method
JP2020128967A (en) * 2019-02-12 2020-08-27 栗田工業株式会社 Bod measuring system

Also Published As

Publication number Publication date
JP4466046B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
KR102172981B1 (en) Smart sewage treatment Operation System
Vanrolleghem et al. On-line monitoring equipment for wastewater treatment processes: state of the art
US5160604A (en) Toxic substance-detecting system with fixed microorganism membrane for water quality-monitoring
Spanjers Respirometry in activated sludge
JP2008032691A (en) Water quality monitoring system and method
US9611160B2 (en) Wastewater treatment apparatus and method
US20150053612A1 (en) Method and system for treating waste material
EP1992946A1 (en) Automated sampler device to carry out analytical experiments, particularly in waste water treatment plants
JP4466046B2 (en) Approximate BOD5 measurement method, approximate BOD5 measurement apparatus, water quality monitoring apparatus and wastewater treatment system using this apparatus
Haas et al. Microbial alterations in water distribution systems and their relationship to physical–chemical characteristics
JP2007244949A (en) Control procedure of nitrification process indexed by nitrous oxide
JP2014004550A (en) Method and program for controlling water treatment facility and water treatment system
JP4840229B2 (en) Method and apparatus for maintaining appropriate concentration of reducing agent in waste water after reduction treatment of waste water containing hexavalent chromium
Guwy et al. An automated instrument for monitoring oxygen demand in polluted waters
JP6191404B2 (en) Sludge activity measuring apparatus and sludge activity measuring method
Jin et al. A study on the relationship between BOD5 and COD in a coastal seawater environment with a rapid BOD measurement system
JP4132921B2 (en) Anaerobic treatment facility and monitoring method thereof
JP3181911B2 (en) Continuous RBCOD measurement
Jin et al. A study on the relationship between BOD5 and COD in coastal seawater environment with a rapid BOD measurement system
Jeong et al. Performance of an electrochemical COD (chemical oxygen demand) sensor with an electrode-surface grinding unit
JP2021192896A (en) Treatment method of wastewater including cyanogen compound and automatic control system of chemical agent for treatment of wastewater including cyanogen compound
Häck et al. Online load measurement in combined sewer systems–possibilities of an integrated management of waste water transportation and treatment
JP2007298309A (en) System for inspecting water quality
JPH09229923A (en) Pollution load meter
CN115093036B (en) Intelligent water service system for automatically controlling scale prevention of thermal power plant and implementation method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3