JP2005140685A - Range finder and range finding method - Google Patents

Range finder and range finding method Download PDF

Info

Publication number
JP2005140685A
JP2005140685A JP2003378698A JP2003378698A JP2005140685A JP 2005140685 A JP2005140685 A JP 2005140685A JP 2003378698 A JP2003378698 A JP 2003378698A JP 2003378698 A JP2003378698 A JP 2003378698A JP 2005140685 A JP2005140685 A JP 2005140685A
Authority
JP
Japan
Prior art keywords
light emitting
light
wavelength band
distance measuring
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003378698A
Other languages
Japanese (ja)
Inventor
Shinji Nakada
真二 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2003378698A priority Critical patent/JP2005140685A/en
Publication of JP2005140685A publication Critical patent/JP2005140685A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure the distance from an object in a shorter time. <P>SOLUTION: PSD1(2 and 3), as a plurality of light receiving elements, are provided in which optical filters FIL1(2 and 3) are formed, as a pair, and to one, with a plurality of light emitting elements have different light emitting positions and light emitting wavelength bands, with the transmission characteristics of such transmission wavelength band as matches with the light emission wavelength band of the corresponding light emitting element. A plurality of pairs of light emitting elements and light receiving elements having different wavelength bands are driven at the same timing, to acquire a plurality of range finding information from the reception signals at the plurality of light receiving elements. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えばAF(自動合焦)機能を有するプロジェクタ装置や銀塩/デジタルカメラ等に好適な測距装置及び測距方法に関する。   The present invention relates to a distance measuring device and a distance measuring method suitable for, for example, a projector device having an AF (autofocus) function, a silver salt / digital camera, or the like.

図5に、プロジェクタ装置に適用される、PSD(Position Senitive photo Detector:半導体位置検出素子)方式の測距センサの原理を示す。同図で、投影系レンズ鏡筒11を挟んで、赤外線ランプであるLED(発光ダイオード)12から上記投影系レンズ鏡筒11の投影方向に出射された赤外光が、投影面13で反射された後に、受光素子であるPSD14に入射される。   FIG. 5 shows the principle of a PSD (Position Sensitive Photo Detector) type distance measuring sensor applied to the projector apparatus. In the figure, the infrared light emitted in the projection direction of the projection system lens barrel 11 from the LED (light emitting diode) 12 which is an infrared lamp across the projection system lens barrel 11 is reflected by the projection surface 13. After that, the light enters the PSD 14 which is a light receiving element.

PSD14では、孔14aを介して入射したスポット状の赤外光が、一次元PSD14bに投影されるもので、この一次元PSD14bではその投影位置によって、出力されるアナログ値の電流信号が変化するものとなる。   In the PSD 14, the spot-like infrared light incident through the hole 14a is projected onto the one-dimensional PSD 14b. In the one-dimensional PSD 14b, the output current signal of the analog value varies depending on the projection position. It becomes.

しかして、LED12と投影面13との距離が変化することで、その反射角度により一次元PSD14bに投影される赤外光の位置は変化し、加えてLED12とPSD14との間の正確な距離は既知であるため、結果として、三角測量の原理に従い、一次元PSD14bの出力する電流信号を検出することでLED12、PSD14と投影面13との距離を測定することが可能となる。   As the distance between the LED 12 and the projection surface 13 changes, the position of the infrared light projected onto the one-dimensional PSD 14b changes depending on the reflection angle. In addition, the exact distance between the LED 12 and the PSD 14 is Since it is known, as a result, according to the principle of triangulation, the distance between the LED 12, PSD 14 and the projection plane 13 can be measured by detecting the current signal output from the one-dimensional PSD 14b.

上述したLED12とPSD14でなる測距センサは、予め投影系レンズ鏡筒11の投影方向に合わせて固定して設置されるものであり、原理的には投影面13上の1点との間の距離を測定できるにすぎない。   The distance measuring sensor composed of the above-described LED 12 and PSD 14 is fixed in advance according to the projection direction of the projection lens barrel 11, and in principle, between one point on the projection surface 13. It can only measure distance.

したがって、投影面13上の複数の点位置との距離を測定したい場合には、予め複数組の測距センサを用意しておく必要がある。   Therefore, when it is desired to measure the distance to a plurality of point positions on the projection surface 13, it is necessary to prepare a plurality of distance measuring sensors in advance.

図6は、複数、例えば3組の測距センサ15a〜15cを用いて投影面13の3点の位置までの距離をそれぞれ測定する測距装置の構成を例示するものである。各測距センサ15a〜15cは、同様の特性を有するLED(1〜3)とPSD(1〜3)とが上記図5と同じくそれぞれ1対となって構成される。   FIG. 6 illustrates the configuration of a distance measuring device that measures the distances to three positions on the projection surface 13 using a plurality of, for example, three sets of distance measuring sensors 15a to 15c. Each of the distance measuring sensors 15a to 15c includes a pair of LEDs (1 to 3) and PSDs (1 to 3) having the same characteristics as in FIG.

このように3組の測距センサ15a〜15cを用いて投影面13の異なる3点までの距離を測定することにより、投影面13の傾き等を検出することができ、1点のみの距離を求める場合に比べて、適正な投影距離を得ることができる。   Thus, by measuring the distance to three different points on the projection surface 13 using the three sets of distance measuring sensors 15a to 15c, the inclination of the projection surface 13 can be detected, and the distance of only one point can be determined. An appropriate projection distance can be obtained as compared with the case of obtaining.

また、複数の発光素子に対し、受光素子であるPSDを1つとして構成の簡略化を図りながら、所定範囲内の複数位置の距離を測定するようにした測距センサの技術が考えられている。(例えば、特許文献1)
特開平09−203631号公報
In addition, a distance measuring sensor technique has been considered in which the distance between a plurality of positions within a predetermined range is measured while simplifying the configuration with one PSD as a light receiving element for a plurality of light emitting elements. . (For example, Patent Document 1)
JP 09-203631 A

上記図6に示した3組の測距センサ15a〜15cにより測距を行なう場合、各測距センサ15a〜15cは同一の送受光特性を有している。そのため、例えば測距センサ15aのLED1から発した光を測距センサ15cのPSD3で受光すると誤った測距結果が出力されてしまうので、これら3組の測距センサ15a〜15cは図7に示すように時分割駆動する必要がある。   When ranging is performed by the three sets of ranging sensors 15a to 15c shown in FIG. 6, the ranging sensors 15a to 15c have the same transmission / reception characteristics. Therefore, for example, if the light emitted from the LED 1 of the distance measuring sensor 15a is received by the PSD 3 of the distance measuring sensor 15c, an erroneous distance measurement result is output. Therefore, these three sets of distance measuring sensors 15a to 15c are shown in FIG. It is necessary to drive in a time division manner.

この点は、受光側の素子を共有化した上記特許文献1の技術でも同様であり、同文献中の図3の説明でも明らかな如く、5個の発光素子を順次時分割駆動することで測距を実行していることがわかる。   This is also the case with the technique of Patent Document 1 in which the light receiving side element is shared, and as is apparent from the description of FIG. 3 in the same document, measurement is performed by sequentially driving five light emitting elements in a time-sharing manner. You can see that the distance is being executed.

このように、測距位置の点数を増やせば、その分だけ投影対象となる面の傾き等を正確に知ることができ、且つ個々の素子の誤差等も吸収して正確な測距を行なうことができる反面、測距に要する時間が長くなってしまうという不具合がある。   In this way, if the number of distance measurement positions is increased, it is possible to accurately know the inclination of the surface to be projected, and to accurately measure the distance by absorbing errors of individual elements. However, there is a problem that the time required for ranging becomes long.

本発明は上記のような実情に鑑みてなされたもので、その目的とするところは、より短時間のうちに対象物までの距離を正確に測定することが可能な測距装置及び測距方法を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to provide a distance measuring device and a distance measuring method capable of accurately measuring the distance to an object in a shorter time. Is to provide.

請求項1記載の発明は、それぞれ発光位置及び発光波長帯域が異なる複数の発光素子と、これら発光素子とそれぞれ1対1に設けられて組となり、対応する発光素子の発光波長帯域に合致した透過波長帯域の透過特性を有するフィルタを形成した複数の受光素子と、これらそれぞれ波長帯域が異なる複数組の発光素子及び受光素子を同一のタイミングで駆動して複数の受光素子での受信信号から複数の測距情報を得る駆動制御手段とを具備したことを特徴とする。   According to the first aspect of the present invention, a plurality of light emitting elements each having a different light emitting position and light emitting wavelength band and a pair of these light emitting elements that are provided in a one-to-one relationship and corresponding to the light emitting wavelength band of the corresponding light emitting element A plurality of light receiving elements in which filters having transmission characteristics in wavelength bands are formed, and a plurality of sets of light emitting elements and light receiving elements having different wavelength bands are driven at the same timing to receive a plurality of signals from received signals at the plurality of light receiving elements. Drive control means for obtaining distance measurement information.

請求項2記載の発明は、上記請求項1記載の発明において、上記複数の発光素子は、それぞれ発光波長帯域が異なるLEDでなることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the plurality of light emitting elements are LEDs each having a different emission wavelength band.

請求項3記載の発明は、上記請求項1記載の発明において、上記それぞれ対応する組となる発光素子と受光素子は、同一の透過波長帯域の透過特性を有するフィルタを介して光の送受を行なうことを特徴とする。   According to a third aspect of the present invention, in the first aspect of the present invention, the light emitting element and the light receiving element that correspond to each other perform light transmission and reception through a filter having transmission characteristics in the same transmission wavelength band. It is characterized by that.

請求項4記載の発明は、それぞれ発光位置及び発光波長帯域が異なる複数の発光素子、及びこれら発光素子とそれぞれ1対1に設けられて組となり、対応する発光素子の発光波長帯域に合致した透過波長帯域の透過特性を有するフィルタを形成した複数の受光素子に対し、これらそれぞれ波長帯域が異なる複数組の発光素子及び受光素子を同一タイミングで駆動して複数の受光素子での受信信号から複数の測距情報を得ることを特徴とする。   According to the fourth aspect of the present invention, a plurality of light emitting elements having different light emitting positions and light emitting wavelength bands, and a pair of these light emitting elements that are provided in a one-to-one relationship, and transmission that matches the light emitting wavelength band of the corresponding light emitting elements. For a plurality of light receiving elements in which filters having transmission characteristics in wavelength bands are formed, a plurality of sets of light emitting elements and light receiving elements having different wavelength bands are driven at the same timing, and a plurality of signals are received from signals received by the plurality of light receiving elements. Ranging information is obtained.

請求項1記載の発明によれば、発光素子と受光素子の組数に関係なくそれらを一括して同時駆動することにより複数の測距情報を得ることができるため、より短時間のうちに対象物までの距離を正確に測定することが可能となる。   According to the first aspect of the present invention, a plurality of ranging information can be obtained by simultaneously driving the light emitting element and the light receiving element at the same time regardless of the number of sets of the light emitting element and the light receiving element. It becomes possible to accurately measure the distance to an object.

請求項2記載の発明によれば、上記請求項1記載の発明の効果に加えて、種類が豊富で発光波長帯域や発光輝度など必要な発光特性の選択の幅が広いLEDを発光素子に用いることで、受光素子側に用いるフィルタとのマッチングも考え合わせて、コストや感度など設計の自由度が高く、各種の光学機器により容易に適用できる。   According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, LEDs having a wide variety of types and a wide range of selection of necessary emission characteristics such as emission wavelength band and emission luminance are used for the light emitting element. Thus, considering the matching with the filter used on the light receiving element side, the degree of freedom in design such as cost and sensitivity is high, and it can be easily applied by various optical devices.

請求項3記載の発明によれば、上記請求項1記載の発明の効果に加えて、対応する組になる発光素子と受光素子に同一の透過波長帯域の透過特性を有するフィルタを配することにより、発光素子と受光素子の送受光特性をより容易に揃えることができる。   According to the invention described in claim 3, in addition to the effect of the invention described in claim 1, the filter having the transmission characteristics of the same transmission wavelength band is arranged in the corresponding light emitting element and light receiving element. The light transmission / reception characteristics of the light emitting element and the light receiving element can be more easily aligned.

請求項4記載の発明によれば、発光素子と受光素子の組数に関係なくそれらを一括して同時駆動することにより複数の測距情報を得ることができるため、より短時間のうちに対象物までの距離を正確に測定することが可能となる。   According to the fourth aspect of the present invention, a plurality of distance measurement information can be obtained by simultaneously driving the light emitting elements and the light receiving elements at the same time regardless of the number of pairs of the light emitting elements and the light receiving elements. It becomes possible to accurately measure the distance to an object.

以下本発明の実施の一形態に係る測距装置について図面を参照して説明する。   A distance measuring apparatus according to an embodiment of the present invention will be described below with reference to the drawings.

なお、本発明に係る測距装置の基本的な構成は上記図6と同様であるのでその図示は省略するが、複数、例えば3組の測距センサ15a′〜15c′を用いて投影面13の3点の位置までの距離をそれぞれ測定する測距装置の構成を例示するものとし、各測距センサ15a′〜15c′は、LED(1〜3)とPSD(1〜3)とがそれぞれ組となって構成されるものとする。   The basic configuration of the distance measuring apparatus according to the present invention is the same as that shown in FIG. 6 and is not shown. However, a plurality of, for example, three sets of distance measuring sensors 15a ′ to 15c ′ are used to project the projection surface 13. The distance measuring devices 15a ′ to 15c ′ each have LEDs (1 to 3) and PSDs (1 to 3), respectively. It shall be configured in pairs.

ここで、測距センサ15a′〜15c′の発光素子である各LED1〜3は、発光波長帯域が互いに異なり、且つ重複しないものを選定しているものとする。   Here, it is assumed that the LEDs 1 to 3 which are the light emitting elements of the distance measuring sensors 15a ′ to 15c ′ are selected so that the light emission wavelength bands are different from each other and do not overlap.

これに対応して受光素子であるPSD1〜3は、図1に示すようにスポット光を作成するための孔部に光学フィルタFIL1〜3を配設し、この光学フィルタFIL1〜3を透過して波長帯域が制限された光のみがPSD1〜3の受光面内のいずれかの位置に入射するものとしている。   Corresponding to this, PSDs 1 to 3 which are light receiving elements are provided with optical filters FIL1 to FIL1 in holes for creating spot light as shown in FIG. Only light having a limited wavelength band is incident on any position within the light receiving surfaces of PSDs 1 to 3.

上記のような構成にあって、上記測距センサ15a′〜15c′のLED1〜3が図2に示すように上述した如く発光波長帯域が互いに異なり、且つ重複していないものとする。ここでは、LED1、LED2、LED3の順で波長が長い(周波数が低い)帯域となっており、上述した如く互いの帯域は分離して重複しないように設定している。   In the above configuration, the LEDs 1 to 3 of the distance measuring sensors 15a 'to 15c' have different emission wavelength bands as described above as shown in FIG. Here, the bands are longer in the order of LED1, LED2, and LED3 (lower in frequency), and are set so as not to overlap each other as described above.

これに対して、各PSD1、PSD2、PSD3への入射光を透過させる光学フィルタFIL1、FIL2、FIL3の透過特性を、図3に示すように上記図2で示したLED1〜3の発光波長帯域とほぼ一致させるものとする。   On the other hand, the transmission characteristics of the optical filters FIL1, FIL2, and FIL3 that transmit the incident light to each PSD1, PSD2, and PSD3 are shown in FIG. 3 as the emission wavelength bands of the LEDs 1 to 3 shown in FIG. It shall be almost matched.

すなわち、ここでは光学フィルタFIL1、FIL2、FIL3の順で透過波長が長い(周波数が低い)帯域となっており、互いの帯域は分離して重複せず、且つ上記図2で示したLED1〜3の発光波長帯域とほぼ一致するものとしている。   That is, here, the optical filters FIL1, FIL2, and FIL3 are bands in which the transmission wavelength is long (frequency is low), the bands are separated and do not overlap, and the LEDs 1 to 3 shown in FIG. It is assumed that it substantially coincides with the emission wavelength band.

したがって、各測距センサ15a′〜15c′では、送受光する波長帯域が互いに異なり、干渉しないので、これらを同時に駆動したとしても誤動作を生じる虞は全くない。
そのため、図4に示すように測距センサ15a′〜15c′を一括して同時に駆動し、上記測距センサ15a′〜15c′により対象物の3点との距離を同時に測定することが可能となり、対象物の測距に余有する時間を大幅に短縮することができる。
Accordingly, the distance measuring sensors 15a 'to 15c' have different wavelength bands for transmission and reception and do not interfere with each other, so that there is no possibility of malfunction even if they are driven simultaneously.
Therefore, as shown in FIG. 4, it is possible to simultaneously drive the distance measuring sensors 15a 'to 15c' and simultaneously measure the distance to the three points of the object by the distance measuring sensors 15a 'to 15c'. The time required for ranging of the object can be greatly shortened.

このことは、対象物の測距位置点数が増えるほど顕著であり、対象物の多数の位置を測距して、対象物の傾き具合などの状態をより正確に把握する場合にも、測距に要する時間自体が長引いてしまうことはない。   This is more conspicuous as the number of distance measurement positions of the object increases, and even when measuring the position of many objects and more accurately grasping the state of inclination of the object, the distance measurement The time required for this will not be prolonged.

このように本実施の形態の測距装置によれば、発光素子と受光素子の組数に関係なくそれらを一括して同時駆動することにより、複数の測距情報を得ることができるため、より短時間のうちに対象物までの距離を正確に測定することが可能となる。   As described above, according to the distance measuring apparatus of the present embodiment, a plurality of distance measurement information can be obtained by simultaneously driving them collectively regardless of the number of light emitting elements and light receiving elements. It is possible to accurately measure the distance to the object in a short time.

なお、上記実施の形態にあっては、発光素子として、種類が豊富で発光波長帯域や発光輝度など必要な発光特性の選択の幅が広いLEDを用いているため、受光素子側に用いるフィルタとのマッチングも考え合わせて、コストや感度など設計の自由度が高く、各種の光学機器により容易に適用できる。   In the above embodiment, since the light emitting element is an LED having a wide variety of types and a wide range of selection of necessary light emission characteristics such as a light emission wavelength band and light emission luminance, the filter used on the light receiving element side Considering this matching, the design flexibility such as cost and sensitivity is high, and it can be easily applied by various optical devices.

また、実施の形態にあっては、受光素子としてPSDを用いるものとしたが、これは三角測量の原理に基づいた測距を行なうためのものであり、他に、発光素子で発光してから反射波を受信までの時間を検出して対象物までの距離に換算する伝播時間検出方式に伴う受光素子としてフォトダイオードやフォトトランジスタ等を用いるものとしてもよい。   Further, in the embodiment, PSD is used as the light receiving element, but this is for performing distance measurement based on the principle of triangulation. A photodiode, a phototransistor, or the like may be used as a light receiving element in the propagation time detection method in which the time until reception of the reflected wave is detected and converted into the distance to the object.

さらに、上記実施の形態では、受光素子の側にのみ、発光素子の発光波長帯域とほぼ同様の透過特性を有する光学フィルタを配設するものとして説明したが、あえて発光素子側に発光波長帯域が非常に広いものを用い、組になる発光素子と受光素子の双方に同一の波長帯域の透過特性を有する光学フィルタを用いるものとしてもよい。   Further, in the above-described embodiment, the optical filter having the transmission characteristics substantially similar to the emission wavelength band of the light emitting element is disposed only on the light receiving element side. However, the emission wavelength band is intentionally disposed on the light emitting element side. An extremely wide filter may be used, and an optical filter having transmission characteristics in the same wavelength band may be used for both the light emitting element and the light receiving element that form a pair.

こうすることで、発光素子自体の有する発光波長帯域特性に依存せず、発光素子と受光素子の送受光特性をより容易に揃えることができる。   By doing so, the light transmission / reception characteristics of the light emitting element and the light receiving element can be more easily aligned without depending on the light emission wavelength band characteristic of the light emitting element itself.

また、本発明に係る測距装置は、上記図2、図3、及び図6に示した如く3組の測距センサに限定するものではなく、複数組であれば何組であってもよく、上述したように測距に要する時間はほぼ同一であるが、組数を増やすことでより多数位置までの距離情報を得ることができ。対象物の状態から、必要に応じたより正確な距離情報を得ることができる。   Further, the distance measuring device according to the present invention is not limited to the three distance measuring sensors as shown in FIGS. 2, 3, and 6, and any number of distance measuring sensors may be used. As described above, the time required for ranging is almost the same, but by increasing the number of sets, it is possible to obtain distance information up to a large number of positions. More accurate distance information according to need can be obtained from the state of the object.

その他、本発明は上記実施の形態に限らず、その要旨を逸脱しない範囲内で種々変形して実施することが可能であるものとする。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

さらに、上記実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合わせにより種々の発明が抽出され得る。例えば、実施の形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題の少なくとも1つが解決でき、発明の効果の欄で述べられている効果の少なくとも1つが得られる場合には、この構成要件が削除された構成が発明として抽出され得る。   Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, at least one of the problems described in the column of the problem to be solved by the invention can be solved, and described in the column of the effect of the invention. In a case where at least one of the obtained effects can be obtained, a configuration in which this configuration requirement is deleted can be extracted as an invention.

本発明の実施の一形態に係る測距センサの受光素子側の構成を示す図。The figure which shows the structure by the side of the light receiving element of the ranging sensor which concerns on one Embodiment of this invention. 同実施の形態に係る発光素子であるLEDの発光波長帯域特性を例示する図。The figure which illustrates the light emission wavelength band characteristic of LED which is the light emitting element which concerns on the embodiment. 同実施の形態に係る受光素子側に設けられたフィルタの透過特性を例示する図。The figure which illustrates the transmission characteristic of the filter provided in the light receiving element side concerning the embodiment. 同実施の形態に係る測距センサの駆動タイミングを示す図。The figure which shows the drive timing of the distance measuring sensor which concerns on the same embodiment. 測距センサの基本原理を説明するための図。The figure for demonstrating the basic principle of a ranging sensor. 複数位置を測距する測距センサの基本的な構成を例示する図。The figure which illustrates the basic composition of the ranging sensor which measures a plurality of positions. 複数の測距センサの駆動タイミングを例示する図。The figure which illustrates the drive timing of a some distance measuring sensor.

符号の説明Explanation of symbols

11…投影系レンズ鏡筒、12…LED(1〜3)、13…投影面、14…PSD(1〜3)、14a…孔、14b…一次元PSD、15a〜15c,15a′〜15c′…測距センサ、FIL1〜3…光学フィルタ。   DESCRIPTION OF SYMBOLS 11 ... Projection system lens-barrel, 12 ... LED (1-3), 13 ... Projection surface, 14 ... PSD (1-3), 14a ... Hole, 14b ... One-dimensional PSD, 15a-15c, 15a'-15c ' ... distance measuring sensors, FIL1 to 3 ... optical filters.

Claims (4)

それぞれ発光位置及び発光波長帯域が異なる複数の発光素子と、
これら発光素子とそれぞれ1対1に設けられて組となり、対応する発光素子の発光波長帯域に合致した透過波長帯域の透過特性を有するフィルタを形成した複数の受光素子と、
これらそれぞれ波長帯域が異なる複数組の発光素子及び受光素子を同一のタイミングで駆動して複数の受光素子での受信信号から複数の測距情報を得る駆動制御手段と
を具備したことを特徴とする測距装置。
A plurality of light emitting elements each having a different emission position and emission wavelength band;
A plurality of light-receiving elements each having a filter having transmission characteristics in a transmission wavelength band matching the emission wavelength band of the corresponding light-emitting elements;
Drive control means for driving a plurality of sets of light-emitting elements and light-receiving elements having different wavelength bands at the same timing to obtain a plurality of distance measurement information from signals received by the plurality of light-receiving elements is provided. Distance measuring device.
上記複数の発光素子は、それぞれ発光波長帯域が異なるLEDでなることを特徴とする請求項1記載の測距装置。   2. The distance measuring device according to claim 1, wherein each of the plurality of light emitting elements is an LED having a different emission wavelength band. 上記それぞれ対応する組となる発光素子と受光素子は、同一の透過波長帯域の透過特性を有するフィルタを介して光の送受を行なうことを特徴とする請求項1記載の測距装置。   2. The distance measuring apparatus according to claim 1, wherein the light emitting element and the light receiving element which form a pair corresponding to each other transmit and receive light through a filter having transmission characteristics in the same transmission wavelength band. それぞれ発光位置及び発光波長帯域が異なる複数の発光素子、及びこれら発光素子とそれぞれ1対1に設けられて組となり、対応する発光素子の発光波長帯域に合致した透過波長帯域の透過特性を有するフィルタを形成した複数の受光素子に対し、
これらそれぞれ波長帯域が異なる複数組の発光素子及び受光素子を同一タイミングで駆動して複数の受光素子での受信信号から複数の測距情報を得る
ことを特徴とする測距方法。
A plurality of light emitting elements each having a different light emitting position and light emitting wavelength band, and a filter having a transmission characteristic in a transmission wavelength band that matches each of the light emitting wavelength bands of the corresponding light emitting elements. For multiple light receiving elements
A distance measuring method, wherein a plurality of sets of light emitting elements and light receiving elements having different wavelength bands are driven at the same timing to obtain a plurality of distance measuring information from received signals from the plurality of light receiving elements.
JP2003378698A 2003-11-07 2003-11-07 Range finder and range finding method Pending JP2005140685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378698A JP2005140685A (en) 2003-11-07 2003-11-07 Range finder and range finding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378698A JP2005140685A (en) 2003-11-07 2003-11-07 Range finder and range finding method

Publications (1)

Publication Number Publication Date
JP2005140685A true JP2005140685A (en) 2005-06-02

Family

ID=34688997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378698A Pending JP2005140685A (en) 2003-11-07 2003-11-07 Range finder and range finding method

Country Status (1)

Country Link
JP (1) JP2005140685A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286191A (en) * 2006-04-13 2007-11-01 Canon Inc Approach detector and image display device
JP2016014665A (en) * 2014-07-03 2016-01-28 アドヴァンスド サイエンティフィック コンセプツ,イン Ladar sensor for dense environment
WO2017038203A1 (en) * 2015-08-28 2017-03-09 富士フイルム株式会社 Distance image acquisition device-equipped projector device and projection mapping method
WO2020116036A1 (en) * 2018-12-06 2020-06-11 パナソニックIpマネジメント株式会社 Object recognition device, object recognition method, and program
WO2020116035A1 (en) * 2018-12-06 2020-06-11 パナソニックIpマネジメント株式会社 Distance information acquisition device, distance information acquisition method, and program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286191A (en) * 2006-04-13 2007-11-01 Canon Inc Approach detector and image display device
JP2016014665A (en) * 2014-07-03 2016-01-28 アドヴァンスド サイエンティフィック コンセプツ,イン Ladar sensor for dense environment
WO2017038203A1 (en) * 2015-08-28 2017-03-09 富士フイルム株式会社 Distance image acquisition device-equipped projector device and projection mapping method
JPWO2017038203A1 (en) * 2015-08-28 2018-07-05 富士フイルム株式会社 Projector device with distance image acquisition device and projection mapping method
US10412352B2 (en) 2015-08-28 2019-09-10 Fujifilm Corporation Projector apparatus with distance image acquisition device and projection mapping method
WO2020116036A1 (en) * 2018-12-06 2020-06-11 パナソニックIpマネジメント株式会社 Object recognition device, object recognition method, and program
WO2020116035A1 (en) * 2018-12-06 2020-06-11 パナソニックIpマネジメント株式会社 Distance information acquisition device, distance information acquisition method, and program
JPWO2020116035A1 (en) * 2018-12-06 2021-10-28 パナソニックIpマネジメント株式会社 Distance information acquisition device, distance information acquisition method, and program

Similar Documents

Publication Publication Date Title
JP2005241340A (en) Multi-range finding device
US10048376B2 (en) Distance measuring device and photodetector
CN108957425B (en) Analog device for LiDAR photometry system
JP2022506031A (en) Methods and systems for retroreflector mapping
JP2008032707A (en) Range finder
WO2010020267A1 (en) Distance-measuring system
JP2000111340A (en) Light communication device of surveying machine
JPH0226165B2 (en)
US6330055B1 (en) Distance measuring apparatus
KR20210033528A (en) Detector to determine the position of at least one object
US6243537B1 (en) Distance measuring apparatus
JP2005140685A (en) Range finder and range finding method
GB2083313A (en) Distance detecting device
JP3265449B2 (en) Distance sensor
US20160337633A1 (en) 3d camera module
US6350976B1 (en) Distance measuring apparatus
JPH07120253A (en) Active autofocus device
JP2003057343A (en) Laser ranging device
US6864964B2 (en) Optical distance measuring device
JP2009098003A (en) Vibration displacement detecting device and method of detecting displacement and vibration
JPH0989553A (en) Distance measuring device
JP2022522832A (en) Systems and methods for real-time LIDAR distance calibration
KR100976299B1 (en) Bi-directional optical module and laser range finder using the same
KR100245006B1 (en) Auto-focus control apparatus and method according to multi-measuring of distance measuring data
TW200532173A (en) Photoelectric sensor