JP2005140077A - Exhaust bypass valve control device - Google Patents

Exhaust bypass valve control device Download PDF

Info

Publication number
JP2005140077A
JP2005140077A JP2003379984A JP2003379984A JP2005140077A JP 2005140077 A JP2005140077 A JP 2005140077A JP 2003379984 A JP2003379984 A JP 2003379984A JP 2003379984 A JP2003379984 A JP 2003379984A JP 2005140077 A JP2005140077 A JP 2005140077A
Authority
JP
Japan
Prior art keywords
negative pressure
pressure chamber
bypass valve
exhaust bypass
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003379984A
Other languages
Japanese (ja)
Other versions
JP4296901B2 (en
Inventor
Shinichi Hasegawa
真一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2003379984A priority Critical patent/JP4296901B2/en
Publication of JP2005140077A publication Critical patent/JP2005140077A/en
Application granted granted Critical
Publication of JP4296901B2 publication Critical patent/JP4296901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust bypass valve control device for activating an exhaust gas purifying catalyst in an early stage by keeping an exhaust bypass valve into a fully opened condition to efficiently guide exhaust gas to the catalyst during warm-up operation right after cold start and for controlling the slight opening/closing of the exhaust bypass valve by keeping a negative pressure chamber into a closed condition between the negative pressure chamber and the atmospheric air during normal operation, with an actuator having improved reliability to the high temperature heat of a turbocharger. <P>SOLUTION: A control means 3 controls a diaphragm actuator 30 to perform the opening/closing operation of the exhaust bypass valve 24 in response to turbocharged pressure introduced into a positive pressure chamber 31, in such a manner that, in a period right after cold start when the exhaust gas purifying catalyst is in a non-activated condition, negative pressure is introduced into the negative pressure chamber 32 to open the exhaust bypass valve 24, and in a region where engine operated conditions are higher than a preset engine load, the negative pressure chamber 32 is kept into the closed condition between the negative pressure chamber 32 and the atmospheric air. The control means puts the negative pressure chamber 32 into the opened condition between itself and the atmospheric air in a region where the engine operated conditions are lower than the preset engine load. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ターボチャージャ付内燃機関の排気バイパス路に設けられた排気バイパス弁の開閉動作制御を行う排気バイパス弁制御装置に関する。   The present invention relates to an exhaust bypass valve control device that performs opening / closing operation control of an exhaust bypass valve provided in an exhaust bypass path of an internal combustion engine with a turbocharger.

従来、小排気量の内燃機関でも高出力を得る為の手段として、排気ガスでタービンを回転させて過給器を動かすターボチャージャが知られている。このようなターボチャージャは、高速高負荷下では必要以上に過給圧が増加して内燃機関を破損させる恐れがあるため、通常タービン上流に排気バイパス路を有し、この排気バイパス路に設けられた排気バイパス弁の開閉動作により過給圧を適正レベルに制御している(例えば、特許文献1参照。)。   2. Description of the Related Art Conventionally, a turbocharger that rotates a turbine with exhaust gas to move a supercharger is known as a means for obtaining a high output even with a small displacement internal combustion engine. Such a turbocharger usually has an exhaust bypass passage upstream of the turbine and is provided in the exhaust bypass passage because the turbocharging pressure may increase more than necessary under the high speed and high load condition and may damage the internal combustion engine. The supercharging pressure is controlled to an appropriate level by opening and closing the exhaust bypass valve (see, for example, Patent Document 1).

ところで、近年、自動車を取り巻く環境は、環境保護の要求に対応して、各国で排気ガス規制等の強化が実行されつつある。通常内燃機関のシリンダから排出される排気ガスは、排気ガス浄化触媒により浄化され大気に排出されるものであるが、ターボチャージャ付内燃機関では、シリンダから排出された排気ガスは、ターボチャージャのタービン等を通過する過程で熱が奪われるため、早期に排気ガス浄化触媒を活性状態にすることができないという問題がある。   By the way, in recent years, in the environment surrounding automobiles, exhaust gas regulations have been strengthened in various countries in response to the demand for environmental protection. Normally, exhaust gas discharged from a cylinder of an internal combustion engine is purified by an exhaust gas purification catalyst and discharged to the atmosphere. However, in an internal combustion engine with a turbocharger, the exhaust gas discharged from the cylinder is a turbine of the turbocharger. Since heat is taken away in the process of passing through the exhaust gas etc., there is a problem that the exhaust gas purification catalyst cannot be activated at an early stage.

このため、従来の技術においては、排気ガス浄化触媒が所定の触媒活性化温度に達するまでは、前記排気バイパス路に設けられた排気バイパス弁を開き、タービンを迂回して排気ガスを排気ガス浄化触媒に導いて、触媒の温度を積極的に昇温制御して早期に触媒を活性化させるようにしている(例えば、特許文献2参照。)。   For this reason, in the prior art, until the exhaust gas purification catalyst reaches a predetermined catalyst activation temperature, the exhaust bypass valve provided in the exhaust bypass passage is opened and the exhaust gas is purified by bypassing the turbine. The catalyst is guided to the catalyst, and the temperature of the catalyst is positively controlled to activate the catalyst at an early stage (see, for example, Patent Document 2).

前記排気バイパス弁の開閉動作は、通常、ダイアフラム式アクチュエータによりおこなわれている。このようなダイアフラム式アクチュエータは、ケースを2つの部屋に仕切るダイアフラムと、前記ダイアフラムに接続され前記バイパス弁を駆動するロッドと、一方の部屋(負圧室)に設けられ、前記バイパス弁を閉じる方向に前記ロッドを移動させるべく、前記ダイアフラムを付勢するバネと、を備えている。   The opening / closing operation of the exhaust bypass valve is usually performed by a diaphragm actuator. Such a diaphragm type actuator is provided in one chamber (negative pressure chamber) in which a diaphragm that partitions a case into two chambers, a rod that is connected to the diaphragm and drives the bypass valve, and closes the bypass valve. And a spring for urging the diaphragm to move the rod.

そして、暖機運転時に排気ガス浄化触媒を早期に活性化させる場合には、前記排気バイパス弁を全開状態とすべく、アクチュエータの負圧室に、例えば、負圧チャンバに蓄圧した負圧を供給して、前記負圧室に設けられた前記バネのバネ力に抗して前記ロッドを移動させる。   When the exhaust gas purification catalyst is activated early during the warm-up operation, the negative pressure accumulated in the negative pressure chamber, for example, is supplied to the negative pressure chamber of the actuator to fully open the exhaust bypass valve. Then, the rod is moved against the spring force of the spring provided in the negative pressure chamber.

また、前記排気バイパス弁により過給圧を適正レベルに制御する場合には、アクチュエータの他方の部屋(正圧室)に、タービンと同軸に接続されたコンプレッサにより加圧される過給圧を導入し、導入される過給圧とダイアフラムを付勢するバネとの力のバランスに応じて、前記排気バイパス弁の開閉動作を行うようにしている(例えば、特許文献3参照。)。   When the supercharging pressure is controlled to an appropriate level by the exhaust bypass valve, a supercharging pressure pressurized by a compressor connected coaxially with the turbine is introduced into the other chamber (positive pressure chamber) of the actuator. The exhaust bypass valve is opened and closed in accordance with the balance between the introduced supercharging pressure and the force of the spring that urges the diaphragm (see, for example, Patent Document 3).

特開平9−228848号公報Japanese Patent Laid-Open No. 9-228848 特開2002−364503号公報JP 2002-364503 A 実開平5−78934号公報Japanese Utility Model Publication No. 5-78934

しかしながら、暖機運転時に排気ガス浄化触媒を早期に活性化させる為には、前記排気バイパス弁を全開状態として効率よく排気ガスを触媒に導く必要があり、この場合、前記アクチュエータのロッド移動量は、最長となる。   However, in order to quickly activate the exhaust gas purification catalyst during warm-up operation, it is necessary to efficiently lead the exhaust gas to the catalyst with the exhaust bypass valve fully opened, and in this case, the rod movement amount of the actuator is The longest.

一方、暖機運転終了後の通常運転時において、過給圧を適正レベルに制御する場合には、前記排気バイパス弁を前記暖機運転時に比べて小さい領域で開閉して、過給圧を制御する必要があり、この場合、前記アクチュエータのロッド移動量は暖機運転時に比べて短くなる。   On the other hand, when controlling the supercharging pressure to an appropriate level during normal operation after the warm-up operation, the supercharging pressure is controlled by opening and closing the exhaust bypass valve in a smaller area than during the warm-up operation. In this case, the rod movement amount of the actuator is shorter than that during the warm-up operation.

また、前述のとおり、前記排気バイパス弁を開放する為に必要な力は、ダイアフラムを付勢するバネのばね力により決定される値である。   Further, as described above, the force required to open the exhaust bypass valve is a value determined by the spring force of the spring that biases the diaphragm.

従って、アクチュエータの正圧室に導入される過給圧に比べて、低い圧力である負圧チャンバに蓄圧される負圧を負圧室に導入して、前記排気バイパス弁が全開状態となるように前記バネ力を設定すると、アクチュエータの移動量と導入圧力とにより決定されるアクチュエータの圧力勾配が小さくなり、通常運転時における過給圧制御時の前記排気バイパス弁の微小開閉制御が困難となる。   Therefore, a negative pressure accumulated in the negative pressure chamber, which is lower than the supercharging pressure introduced into the positive pressure chamber of the actuator, is introduced into the negative pressure chamber so that the exhaust bypass valve is fully opened. If the spring force is set to the value, the pressure gradient of the actuator determined by the movement amount of the actuator and the introduction pressure becomes small, and it becomes difficult to perform minute opening / closing control of the exhaust bypass valve during supercharging pressure control during normal operation. .

本発明は、上記した従来技術の課題を解決し、暖機運転時には、前記排気バイパス弁を全開状態として効率よく排気ガスを触媒に導いて、排気ガス浄化触媒を早期に活性化させるとともに、通常運転時は前記負圧室と大気との間で前記負圧室を閉鎖状態とすることで、負圧室に空気ダンパー効果を持たせ、アクチュエータの移動量と正圧室に導入される過給圧とで決定されるアクチュエータの圧力勾配を大きくして、前記排気バイパス弁の微小開閉制御を可能とする排気バイパス弁制御装置を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, and at the time of warm-up operation, the exhaust bypass valve is fully opened to efficiently lead exhaust gas to the catalyst, and the exhaust gas purification catalyst is activated at an early stage. During operation, the negative pressure chamber is closed between the negative pressure chamber and the atmosphere so that the negative pressure chamber has an air damper effect, and the amount of movement of the actuator and the supercharging introduced into the positive pressure chamber An object of the present invention is to provide an exhaust bypass valve control device that increases the pressure gradient of the actuator determined by the pressure and enables minute opening / closing control of the exhaust bypass valve.

更に、上記課題を解決するとともに、ターボチャージャの高熱に対するアクチュエータの信頼性を向上させた排気バイパス弁制御装置を提供することを目的とする。   It is another object of the present invention to provide an exhaust bypass valve control device that solves the above-described problems and improves the reliability of the actuator against high heat of the turbocharger.

上記目的を達成するために本発明の排気バイパス弁制御装置にあっては、ターボチャージャのタービンロータを迂回する排気バイパス路に設けられた排気バイパス弁の開閉動作制御を行う排気バイパス弁制御装置において、ダイアフラムによって区画された正圧室及び負圧室を有し、前記排気バイパス弁の開閉動作を行うダイアフラム式アクチュエータと、冷間始動直後の排気ガス浄化触媒が未活性状態にある期間は、前記負圧室に負圧を導入して前記排気バイパス弁を開放するとともに、エンジン運転条件が所定のエンジン負荷よりも高い領域では前記負圧室と大気との間で前記負圧室を閉鎖状態として、前記正圧室に導入される過給圧に応じて前記排気バイパス弁の開閉動作を行うように前記ダイアフラム式アクチュエータを制御する制御手段と、を備えたことを特徴とする。   In order to achieve the above object, in the exhaust bypass valve control device of the present invention, in the exhaust bypass valve control device that controls the opening / closing operation of the exhaust bypass valve provided in the exhaust bypass passage that bypasses the turbine rotor of the turbocharger. A diaphragm actuator having a positive pressure chamber and a negative pressure chamber partitioned by a diaphragm, and performing an opening / closing operation of the exhaust bypass valve, and a period in which the exhaust gas purification catalyst immediately after a cold start is in an inactive state, In addition to opening the exhaust bypass valve by introducing negative pressure into the negative pressure chamber, the negative pressure chamber is closed between the negative pressure chamber and the atmosphere in a region where engine operating conditions are higher than a predetermined engine load. The diaphragm actuator is controlled so as to open and close the exhaust bypass valve in accordance with the supercharging pressure introduced into the positive pressure chamber. Characterized by comprising a means.

本発明の好ましい態様によれば、前記制御手段が、エンジン運転条件が所定のエンジン負荷よりも低い領域では前記負圧室と大気との間を開放状態とすることを特徴とする。   According to a preferred aspect of the present invention, the control means opens the space between the negative pressure chamber and the atmosphere in a region where the engine operating condition is lower than a predetermined engine load.

以上説明したように、本発明の排気バイパス弁制御装置によれば、暖機運転時には、前記排気バイパス弁を全開状態として効率よく排気ガスを触媒に導いて、排気ガス浄化触媒を早期に活性化させるとともに、通常運転時は前記排気バイパス弁の微小開閉制御を可能とする排気バイパス弁制御装置を提供することができる。   As described above, according to the exhaust bypass valve control device of the present invention, during the warm-up operation, the exhaust bypass valve is fully opened to efficiently lead the exhaust gas to the catalyst, thereby activating the exhaust gas purification catalyst at an early stage. In addition, it is possible to provide an exhaust bypass valve control device that enables minute opening / closing control of the exhaust bypass valve during normal operation.

更に、ターボチャージャの高熱に対するアクチュエータの信頼性を向上させた排気バイパス弁制御装置を提供することができる。   Furthermore, it is possible to provide an exhaust bypass valve control device that improves the reliability of the actuator against the high heat of the turbocharger.

以下に図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。   Exemplary embodiments of the present invention will be described in detail below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified. Absent.

図1は、ターボチャージャ付内燃機関及びその排気バイパス路に設けられた排気バイパス弁の開閉動作制御を行う排気バイパス弁制御装置を示す図である。   FIG. 1 is a diagram illustrating an internal combustion engine with a turbocharger and an exhaust bypass valve control device that controls the opening / closing operation of an exhaust bypass valve provided in the exhaust bypass path thereof.

図1に示すように、内燃機関1は、シリンダ11に吸気管12及び排気管13が接続され、吸気管12及び排気管13を跨ぐ形でその間にターボチャージャ2を配置している。ターボチャージャ2のコンプレッサロータ21とタービンロータ22とはシャフトにより連結固定されている。また、排気管13のターボチャージャ2より下流側には図示しない排気ガス浄化触媒(以下、「触媒」という。)が配置されている。   As shown in FIG. 1, in the internal combustion engine 1, an intake pipe 12 and an exhaust pipe 13 are connected to a cylinder 11, and a turbocharger 2 is disposed between the intake pipe 12 and the exhaust pipe 13 so as to straddle the intake pipe 12 and the exhaust pipe 13. The compressor rotor 21 and the turbine rotor 22 of the turbocharger 2 are connected and fixed by a shaft. Further, an exhaust gas purification catalyst (hereinafter referred to as “catalyst”) (not shown) is disposed downstream of the turbocharger 2 of the exhaust pipe 13.

また、排気管13には、タービンロータ22の上流から下流に排気を流す排気バイパス路23が設けられ、この排気バイパス路23には、排気バイパス弁24が開閉自在に装着されている。この排気バイパス弁24にはダイアフラム式アクチュエータ30に備えられたロッド34が連結されている。   Further, the exhaust pipe 13 is provided with an exhaust bypass passage 23 through which exhaust flows from the upstream to the downstream of the turbine rotor 22, and an exhaust bypass valve 24 is attached to the exhaust bypass passage 23 so as to be freely opened and closed. A rod 34 provided in the diaphragm actuator 30 is connected to the exhaust bypass valve 24.

排気バイパス弁24の開閉動作制御は、コンプレッサロータ21による過給圧及び負圧発生手段による負圧に応動する排気バイパス弁制御装置3により行われる。   The opening / closing operation control of the exhaust bypass valve 24 is performed by the exhaust bypass valve control device 3 that responds to the supercharging pressure by the compressor rotor 21 and the negative pressure by the negative pressure generating means.

排気バイパス弁制御装置3は、排気バイパス弁24を開閉するダイアフラム式アクチュエータ30、コンプレッサロータ21よりも下流側の吸気管12から分岐されてダイアフラム式アクチュエータ30に過給圧を導入する過給圧導入管40、吸気管12の気体の流れによって生じる負圧を蓄圧する負圧発生手段である負圧チャンバ50、負圧チャンバ50又は大気圧をダイアフラム式アクチュエータ30に導入する導入管60、ダイアフラム式アクチュエータ30への導入圧力を制御する制御手段であるところの制御弁70及び制御弁80、を備えている。   The exhaust bypass valve control device 3 is introduced from a diaphragm actuator 30 that opens and closes the exhaust bypass valve 24 and a supercharging pressure that branches from the intake pipe 12 downstream of the compressor rotor 21 and introduces a supercharging pressure to the diaphragm actuator 30. The negative pressure chamber 50 which is a negative pressure generating means for accumulating the negative pressure generated by the gas flow in the pipe 40 and the intake pipe 12, the negative pressure chamber 50, or the introduction pipe 60 for introducing the atmospheric pressure into the diaphragm actuator 30, the diaphragm actuator The control valve 70 and the control valve 80 are provided as control means for controlling the pressure introduced to the pressure 30.

また、排気バイパス弁制御装置3の負圧チャンバ50と吸気管12との間には、負圧チャンバ50から吸気管12へのみ気体が流れるように逆止弁90が設けられている。   A check valve 90 is provided between the negative pressure chamber 50 and the intake pipe 12 of the exhaust bypass valve control device 3 so that gas flows only from the negative pressure chamber 50 to the intake pipe 12.

図2及び図3は、ダイアフラム式アクチュエータ30の断面図及び一部拡大断面図である。尚、図2中、下半分はロッド34が伸張した状態を示すものである。     2 and 3 are a sectional view and a partially enlarged sectional view of the diaphragm actuator 30. FIG. In FIG. 2, the lower half shows a state where the rod 34 is extended.

ダイアフラム式アクチュエータ30は、図2に示すように、アクチュエータ30の筐体内がダイアフラム33により正圧室31及び負圧室32に仕切られている。また、ダイアフラム33はダイアフラムリテーナ37a,37bの間に介装される。そして、ダイアフラム33及びダイアフラムリテーナ37a,37bの中心にはロッド34が固定される。更に、ダイアフラム33及びダイアフラムリテーナ37a,37bは負圧室32に配置されたバネ35により正圧室31側に付勢される。また、ロッド34は、負圧室32のダイアフラム33とは対向する面に配置されるロッド軸受け38により軸方向に摺動自在に軸支される。また、正圧室31及び負圧室32にはそれぞれ正圧導入孔31a及び負圧導入孔32aが形成される。そして、このようなダイアフラム式アクチュエータ30は、アクチュエータ30の筐体に形成されるブラケット36によりターボチャージャ2の所定の位置に取り付けられる。   As shown in FIG. 2, the diaphragm actuator 30 is divided into a positive pressure chamber 31 and a negative pressure chamber 32 by a diaphragm 33 inside the housing of the actuator 30. The diaphragm 33 is interposed between the diaphragm retainers 37a and 37b. A rod 34 is fixed to the center of the diaphragm 33 and the diaphragm retainers 37a and 37b. Further, the diaphragm 33 and the diaphragm retainers 37 a and 37 b are biased toward the positive pressure chamber 31 by a spring 35 disposed in the negative pressure chamber 32. The rod 34 is pivotally supported by a rod bearing 38 disposed on the surface of the negative pressure chamber 32 facing the diaphragm 33 so as to be slidable in the axial direction. Further, a positive pressure introduction hole 31a and a negative pressure introduction hole 32a are formed in the positive pressure chamber 31 and the negative pressure chamber 32, respectively. Such a diaphragm actuator 30 is attached to a predetermined position of the turbocharger 2 by a bracket 36 formed on the housing of the actuator 30.

ロッド軸受け38は、図3に示すように、負圧室32の気密性を担保するロッドシール38a、ロッド34の軸方向の摺動を案内するベアリング38b、ロッドシール38a及びベアリング38bを収納するアンダープレート38c及びベアリングリテーナ38dを有している。また、アンダープレート38cとベアリングリテーナ38dとの間にはプレート38fが配置される。   As shown in FIG. 3, the rod bearing 38 includes a rod seal 38 a that ensures the airtightness of the negative pressure chamber 32, a bearing 38 b that guides the sliding in the axial direction of the rod 34, an under that accommodates the rod seal 38 a and the bearing 38 b. A plate 38c and a bearing retainer 38d are provided. A plate 38f is disposed between the under plate 38c and the bearing retainer 38d.

ダイアフラム33、ロッドシール38a及びベアリング38bは、それぞれターボチャージャ2の発熱を考慮して、その材料が選択される。従って、ダイアフラム33はフロロシリコンゴム、ヒドリンゴム等により形成され、ロッドシール38aはフロロシリコンゴム、フッ素ゴム等により形成され、ベアリング38bはフッ素樹脂、66ナイロン等により形成されるのが望ましい。   The materials of the diaphragm 33, the rod seal 38a, and the bearing 38b are selected in consideration of the heat generated by the turbocharger 2, respectively. Accordingly, it is desirable that the diaphragm 33 is made of fluorosilicone rubber, hydrin rubber or the like, the rod seal 38a is made of fluorosilicone rubber, fluororubber or the like, and the bearing 38b is made of fluororesin, 66 nylon or the like.

次に、排気バイパス弁制御装置3の動作について図1を用いて説明する。   Next, the operation of the exhaust bypass valve control device 3 will be described with reference to FIG.

〔暖機運転時(エンジン始動時)〕
内燃機関1の冷間始動直後の触媒が未活性状態にある期間では、ターボチャージャ2より下流側に配置される図示しない触媒が、所定の触媒活性化温度に達するまで、排気バイパス路23に設けられた排気バイパス弁24を開き、タービン22を迂回して排気ガスを図示しない触媒に導いて、触媒の温度を積極的に昇温制御して早期に触媒を活性化させる必要がある。
[When warming up (when starting the engine)]
During a period in which the catalyst immediately after the cold start of the internal combustion engine 1 is in an inactive state, a catalyst (not shown) arranged downstream of the turbocharger 2 is provided in the exhaust bypass passage 23 until a predetermined catalyst activation temperature is reached. It is necessary to open the exhaust bypass valve 24 and bypass the turbine 22 to guide the exhaust gas to a catalyst (not shown), to positively control the temperature of the catalyst to activate the catalyst at an early stage.

この場合には、タービン22を迂回する排気を最大量として触媒の早期活性化を可能とするべく、排気バイパス弁24を全開状態とする。本実施の形態では、ダイアフラム式アクチュエータ30のロッド34を最大限に伸張させて排気バイパス弁24を全開状態とする。   In this case, the exhaust bypass valve 24 is fully opened to enable early activation of the catalyst with the maximum amount of exhaust that bypasses the turbine 22. In the present embodiment, the rod 34 of the diaphragm actuator 30 is extended to the maximum, so that the exhaust bypass valve 24 is fully opened.

排気バイパス弁24を全開状態とするには、アクチュエータ30の負圧室32に、負圧チャンバ50に蓄圧した負圧を導入して、負圧室32に設けられたバネ35のバネ力に抗してロッド34を移動させることにより行われる。   In order to fully open the exhaust bypass valve 24, the negative pressure accumulated in the negative pressure chamber 50 is introduced into the negative pressure chamber 32 of the actuator 30 to resist the spring force of the spring 35 provided in the negative pressure chamber 32. Then, the rod 34 is moved.

ここで、負圧チャンバ50に蓄圧した負圧を負圧室32に導入するには、電磁式方向制御弁80をオンにするとともに、電磁式方向制御弁70をオフにして、負圧チャンバ50と導入管60とを連通させる。この状態で、負圧チャンバ50に蓄圧した負圧が負圧室32に導入され、アクチュエータ30内のダイアフラム33が、ロッド34を伸張させる方向に移動する。   Here, in order to introduce the negative pressure accumulated in the negative pressure chamber 50 into the negative pressure chamber 32, the electromagnetic direction control valve 80 is turned on and the electromagnetic direction control valve 70 is turned off. And the introduction pipe 60 are communicated with each other. In this state, the negative pressure accumulated in the negative pressure chamber 50 is introduced into the negative pressure chamber 32, and the diaphragm 33 in the actuator 30 moves in the direction in which the rod 34 is extended.

本実施の形態では、負圧チャンバ50に蓄圧される負圧の最大値に対応してアクチュエータ30内のスプリング35による排気バイパス弁24の閉じ荷重が適宜設定される。そして、負圧チャンバ50に蓄圧された負圧の最大値が負圧室32に作用することで、ロッド34が最大限に伸張して、排気バイパス弁24が全開状態となる。   In the present embodiment, the closing load of the exhaust bypass valve 24 by the spring 35 in the actuator 30 is appropriately set corresponding to the maximum value of the negative pressure accumulated in the negative pressure chamber 50. Then, when the maximum value of the negative pressure accumulated in the negative pressure chamber 50 acts on the negative pressure chamber 32, the rod 34 is extended to the maximum, and the exhaust bypass valve 24 is fully opened.

〔通常運転時(通常走行時)〕
触媒が、所定の触媒活性化温度に到達する暖機運転終了後の通常運転時、即ち、エンジン運転条件が所定のエンジン負荷よりも高い領域では、ターボチャージャ2による過給圧が適正値を越えて高まった場合に、排気バイパス弁24を前記暖機運転時に比べて小さい領域で開閉して、過給圧を適正レベルに制御する。本実施の形態では、この時のロッド34の伸張量は最大伸張量の4分の1程度の伸張量に設定される。
[During normal operation (normal driving)]
During normal operation after the warm-up operation when the catalyst reaches a predetermined catalyst activation temperature, that is, in a region where engine operating conditions are higher than a predetermined engine load, the supercharging pressure by the turbocharger 2 exceeds an appropriate value. When the exhaust pressure is increased, the exhaust bypass valve 24 is opened and closed in a region smaller than that during the warm-up operation to control the supercharging pressure to an appropriate level. In the present embodiment, the extension amount of the rod 34 at this time is set to an extension amount that is about a quarter of the maximum extension amount.

ここで、エンジン運転条件は、本実施の形態では、エンジン負荷をアクセル開度及びエンジン回転数により判断して、予め決められたアクセル開度及びエンジン回転数を超える
領域を通常走行時である所定のエンジン負荷領域と判断して、排気バイパス弁制御装置3が制御される。また、排気バイパス弁24の開弁時期及び開弁量は、ロッド34の移動量と正圧室31に導入される過給圧とで決定されるアクチュエータ30の圧力勾配により決まる。
Here, in the present embodiment, the engine operating condition is determined by determining the engine load based on the accelerator opening and the engine speed, and a predetermined range that is during normal travel in a region exceeding the predetermined accelerator opening and the engine speed. And the exhaust bypass valve control device 3 is controlled. Further, the valve opening timing and valve opening amount of the exhaust bypass valve 24 are determined by the pressure gradient of the actuator 30 determined by the amount of movement of the rod 34 and the supercharging pressure introduced into the positive pressure chamber 31.

過給圧の制御を目的として排気バイパス弁24を開閉するには、アクチュエータ30の正圧室31に、過給圧導入管40から過給圧を導入して、アクチュエータ30内のダイアフラム33を押圧してロッド34を伸張させる。   In order to open and close the exhaust bypass valve 24 for the purpose of controlling the supercharging pressure, the supercharging pressure is introduced into the positive pressure chamber 31 of the actuator 30 from the supercharging pressure introduction pipe 40 and the diaphragm 33 in the actuator 30 is pressed. Then, the rod 34 is extended.

ところで、上述の通り排気バイパス弁24の閉じ荷重は排気バイパス弁の受圧面積と排気圧力によって決まり、負圧室32に最大負圧に対応する負圧が導入された場合に、ロッド34が最大に伸張するようにダイアフラム33を付勢するバネ35のばね力が決定されている。しかしながら、このままでは、アクチュエータ30の圧力勾配が小さく、即ち、アクチュエータ30に加えられる圧力の変化量に対して、該アクチュエータ30のストローク量が大きいため、負圧チャンバ50に蓄圧される負圧に比べて、高い過給圧による過給圧制御を行う通常運転時において、ロッド34を最大伸張量の4分の1程度の範囲で伸縮させて、排気バイパス弁24の微小開閉動作を制御することが困難となる。   By the way, as described above, the closing load of the exhaust bypass valve 24 is determined by the pressure receiving area of the exhaust bypass valve and the exhaust pressure. When the negative pressure corresponding to the maximum negative pressure is introduced into the negative pressure chamber 32, the rod 34 is maximized. The spring force of the spring 35 that biases the diaphragm 33 so as to expand is determined. However, as it is, the pressure gradient of the actuator 30 is small, that is, the stroke amount of the actuator 30 is large with respect to the amount of change of the pressure applied to the actuator 30, so that it is compared with the negative pressure accumulated in the negative pressure chamber 50. Thus, during normal operation in which supercharging pressure control is performed with a high supercharging pressure, the rod 34 can be expanded and contracted within a range of about a quarter of the maximum extension amount to control the minute opening / closing operation of the exhaust bypass valve 24. It becomes difficult.

従って、本実施の形態では、通常運転時は、負圧室32と大気との間で負圧室32を閉鎖状態とすることで、負圧室32内の空気にダンパー効果を持たせ、ロッド34の移動量と正圧室31に導入される過給圧とで決定されるアクチュエータの圧力勾配を大きくして、排気バイパス弁24の微小開閉制御を可能とするものである。   Therefore, in the present embodiment, during normal operation, the negative pressure chamber 32 is closed between the negative pressure chamber 32 and the atmosphere, so that the air in the negative pressure chamber 32 has a damper effect, and the rod The pressure gradient of the actuator determined by the amount of movement 34 and the supercharging pressure introduced into the positive pressure chamber 31 is increased to enable minute opening / closing control of the exhaust bypass valve 24.

ここで、負圧室32と大気との間で負圧室32を閉鎖状態とするには、電磁式方向制御弁80をオフにするとともに、電磁式方向制御弁70をオンにして、導入管60と大気との間を閉鎖状態とする。この状態で、負圧室32内の気体の出入りは無くなるので、負圧室32が所定のダンパー特性を有することとなる。   Here, in order to close the negative pressure chamber 32 between the negative pressure chamber 32 and the atmosphere, the electromagnetic direction control valve 80 is turned off and the electromagnetic direction control valve 70 is turned on to introduce the introduction pipe. 60 and the atmosphere are closed. In this state, gas does not enter or exit from the negative pressure chamber 32, so that the negative pressure chamber 32 has a predetermined damper characteristic.

〔停車時・過給圧が低い状態時〕
触媒が、所定の触媒活性化温度に到達する暖機運転終了後の停車時・過給圧が低い状態時、即ち、エンジン運転条件が所定のエンジン負荷よりも低い領域では、ターボチャージャ2による過給圧が適正値を越えて高まる恐れは無い。一方、ターボチャージャ2に取り付けられるアクチュエータ30は、熱的に厳しい条件で使用されることから、温度上昇による負圧室の圧力変化を低減することで、アクチュエータ30の動作安定性を向上させることができる。特に、通常走行時に負圧室32と大気との間で負圧室32を閉鎖状態とする本実施の形態の排気バイパス弁制御装置3では、このような制御を行うことが効果的である。
[When stopped or when the boost pressure is low]
When the catalyst stops at the end of warm-up after reaching the predetermined catalyst activation temperature, or when the supercharging pressure is low, that is, in a region where the engine operating conditions are lower than the predetermined engine load, the overcharge by the turbocharger 2 occurs. There is no fear that the supply pressure will increase beyond the appropriate value. On the other hand, since the actuator 30 attached to the turbocharger 2 is used under severely thermal conditions, the operational stability of the actuator 30 can be improved by reducing the pressure change in the negative pressure chamber due to the temperature rise. it can. In particular, it is effective to perform such control in the exhaust bypass valve control device 3 of the present embodiment that closes the negative pressure chamber 32 between the negative pressure chamber 32 and the atmosphere during normal traveling.

尚、エンジン運転条件は、前記通常運転時と同様に、エンジン負荷をアクセル開度及びエンジン回転数により、所定のエンジン負荷領域と判断することにより決定される。   The engine operating conditions are determined by determining the engine load as a predetermined engine load region based on the accelerator opening and the engine speed, as in the normal operation.

ここで、負圧室32を大気開放状態とするには、電磁式方向制御弁80をオフにするとともに、電磁式方向制御弁70をオフにして、導入管60と大気との間を開放状態とする。   Here, in order to make the negative pressure chamber 32 open to the atmosphere, the electromagnetic directional control valve 80 is turned off and the electromagnetic directional control valve 70 is turned off to open the space between the introduction pipe 60 and the atmosphere. And

表1は、上記排気バイパス弁制御装置3の動作について、まとめたものである。   Table 1 summarizes the operation of the exhaust bypass valve control device 3.

Figure 2005140077
Figure 2005140077

本実施の形態に係る排気バイパス弁制御装置3に備えられたダイアフラム式アクチュエータ30では、表1による制御を行うことにより、アクチュエータ30の負圧室32を閉鎖状態とすることで、アクチュエータ30の圧力勾配を大きくすることができる。従って、冷間始動直後の触媒が未活性状態にある期間では、負圧チャンバに蓄圧される負圧、例えば、マイナス40KPa程度の負圧を負圧室32に導入して、アクチュエータ30の伸張量を最大限として、前記排気バイパス弁を全開状態とするとともに、通常運転時、即ち、エンジン運転条件が所定のエンジン負荷よりも高い領域、例えば、正圧室31に導入される圧力が40kPa又はその値を超える圧力領域においては、アクチュエータ30を最大伸張量の4分の1程度の伸縮量で伸縮させて、排気バイパス弁24の微小開閉制御を行うことが可能となる。   In the diaphragm type actuator 30 provided in the exhaust bypass valve control device 3 according to the present embodiment, the negative pressure chamber 32 of the actuator 30 is closed by performing the control according to Table 1, so that the pressure of the actuator 30 The gradient can be increased. Therefore, during a period in which the catalyst immediately after the cold start is in an inactive state, a negative pressure accumulated in the negative pressure chamber, for example, a negative pressure of about minus 40 KPa is introduced into the negative pressure chamber 32, and the extension amount of the actuator 30 is increased. The exhaust bypass valve is fully opened and the normal operation, that is, the region where the engine operating condition is higher than the predetermined engine load, for example, the pressure introduced into the positive pressure chamber 31 is 40 kPa or its In a pressure region exceeding the value, the actuator 30 can be expanded and contracted by an expansion / contraction amount that is about one-fourth of the maximum expansion amount, so that the minute opening / closing control of the exhaust bypass valve 24 can be performed.

図1は、ターボチャージャ付内燃機関及び本実施の形態に係る排気バイパス弁制御装置を示す図である。FIG. 1 is a diagram showing an internal combustion engine with a turbocharger and an exhaust bypass valve control device according to the present embodiment. 図2は、ダイアフラム式アクチュエータの断面図である。FIG. 2 is a cross-sectional view of the diaphragm actuator. 図3は、ダイアフラム式アクチュエータの一部拡大断面図である。FIG. 3 is a partially enlarged sectional view of the diaphragm actuator.

符号の説明Explanation of symbols

1 …内燃機関
2 …ターボチャージャ
3 …排気バイパス弁制御装置
22 …タービンロータ
23 …排気バイパス路
24 …排気バイパス弁
30 …ダイアフラム式アクチュエータ
31 …正圧室
32 …負圧室
33 …ダイアフラム
70 …電磁式方向制御弁(制御手段)
80 …電磁式方向制御弁(制御手段)
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Turbocharger 3 ... Exhaust bypass valve control device 22 ... Turbine rotor 23 ... Exhaust bypass passage 24 ... Exhaust bypass valve 30 ... Diaphragm actuator 31 ... Positive pressure chamber 32 ... Negative pressure chamber 33 ... Diaphragm 70 ... Electromagnetic Type directional control valve (control means)
80 ... Electromagnetic direction control valve (control means)

Claims (2)

ターボチャージャのタービンロータを迂回する排気バイパス路に設けられた排気バイパス弁の開閉動作制御を行う排気バイパス弁制御装置において、
ダイアフラムによって区画された正圧室及び負圧室を有し、前記排気バイパス弁の開閉動作を行うダイアフラム式アクチュエータと、
冷間始動直後の排気ガス浄化触媒が未活性状態にある期間は、前記負圧室に負圧を導入して前記排気バイパス弁を開放するとともに、エンジン運転条件が所定のエンジン負荷よりも高い領域では、前記負圧室と大気との間で前記負圧室を閉鎖状態として、前記正圧室に導入される過給圧に応じて前記排気バイパス弁の開閉動作を行うように前記ダイアフラム式アクチュエータを制御する制御手段と、を備えたことを特徴とする排気バイパス弁制御装置。
In an exhaust bypass valve control device that performs opening / closing operation control of an exhaust bypass valve provided in an exhaust bypass path that bypasses a turbine rotor of a turbocharger,
A diaphragm actuator having a positive pressure chamber and a negative pressure chamber partitioned by a diaphragm, and performing an opening and closing operation of the exhaust bypass valve;
During a period in which the exhaust gas purification catalyst is in an inactive state immediately after a cold start, a negative pressure is introduced into the negative pressure chamber to open the exhaust bypass valve, and an engine operating condition is higher than a predetermined engine load. Then, the diaphragm type actuator is configured so that the negative pressure chamber is closed between the negative pressure chamber and the atmosphere, and the exhaust bypass valve is opened and closed according to the supercharging pressure introduced into the positive pressure chamber. An exhaust bypass valve control device comprising: control means for controlling the exhaust gas.
前記制御手段が、エンジン運転条件が所定のエンジン負荷よりも低い領域では、前記負圧室と大気との間を開放状態とすることを特徴とする請求項1に記載の排気バイパス弁制御装置。   2. The exhaust bypass valve control device according to claim 1, wherein the controller opens the space between the negative pressure chamber and the atmosphere in a region where the engine operating condition is lower than a predetermined engine load.
JP2003379984A 2003-11-10 2003-11-10 Exhaust bypass valve control device Expired - Fee Related JP4296901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003379984A JP4296901B2 (en) 2003-11-10 2003-11-10 Exhaust bypass valve control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003379984A JP4296901B2 (en) 2003-11-10 2003-11-10 Exhaust bypass valve control device

Publications (2)

Publication Number Publication Date
JP2005140077A true JP2005140077A (en) 2005-06-02
JP4296901B2 JP4296901B2 (en) 2009-07-15

Family

ID=34689859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003379984A Expired - Fee Related JP4296901B2 (en) 2003-11-10 2003-11-10 Exhaust bypass valve control device

Country Status (1)

Country Link
JP (1) JP4296901B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270675A (en) * 2006-03-30 2007-10-18 Mitsubishi Motors Corp Supercharger control device for internal combustion engine
US20130098032A1 (en) * 2011-10-20 2013-04-25 Ford Global Technologies, Llc Method and system for reducing turbocharger noise during cold start
KR101519228B1 (en) 2013-10-23 2015-05-11 현대자동차주식회사 Low Vacuum Liaison type Waste Gate Valve and Gasoline Engine Catalyst Light-off Time Activity System
RU2574784C2 (en) * 2011-10-20 2016-02-10 Форд Глобал Технолоджис, ЛЛК Control process over engine with turbocompressor and engine system (versions)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558809B (en) * 2012-05-09 2019-06-18 布里斯托尔D/B/A远程自动化解决方案公司 The method and apparatus of configuration process control equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270675A (en) * 2006-03-30 2007-10-18 Mitsubishi Motors Corp Supercharger control device for internal combustion engine
US20130098032A1 (en) * 2011-10-20 2013-04-25 Ford Global Technologies, Llc Method and system for reducing turbocharger noise during cold start
US8978378B2 (en) * 2011-10-20 2015-03-17 Ford Global Technologies, Llc Method and system for reducing turbocharger noise during cold start
RU2574784C2 (en) * 2011-10-20 2016-02-10 Форд Глобал Технолоджис, ЛЛК Control process over engine with turbocompressor and engine system (versions)
KR101519228B1 (en) 2013-10-23 2015-05-11 현대자동차주식회사 Low Vacuum Liaison type Waste Gate Valve and Gasoline Engine Catalyst Light-off Time Activity System

Also Published As

Publication number Publication date
JP4296901B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
US8499555B2 (en) Charge-cooled valve
US6018949A (en) Internal combustion engine with exhaust gas turbocharger
JP4750791B2 (en) Exhaust gas turbocharger for internal combustion engines
DE60202327D1 (en) Internal combustion engine and turbocharger unit with turbine power control
JP5036724B2 (en) Internal combustion engine with a two-stage turbocharge system
KR101506696B1 (en) Multi-stage turbocharging system with thermal bypass
RU2647167C2 (en) Method and system of operating vehicle engine and supercharged engine system
US8407997B2 (en) Multistep turbocharger arrangement
JP5848159B2 (en) valve
JPH0532563B2 (en)
WO2017126166A1 (en) Waste gate valve control method and control device
JP6459835B2 (en) Valve device
US20110225968A1 (en) Internal combustion engine control apparatus
JP5353505B2 (en) Multistage turbocharger
JP4296901B2 (en) Exhaust bypass valve control device
JP5262543B2 (en) Diaphragm actuator
KR20120015386A (en) Operation controling system of waste gate unit for turbocharger
JP4574700B2 (en) Internal combustion engine provided with supercharger control device and exhaust throttle valve control device
JP2004204842A (en) Exhaust gas turbo-charger and manufacturing method for this charger
JP2013256918A (en) Cleaning method of egr valve of internal combustion engine and internal combustion engine
JP2008133808A (en) Multistage supercharged turbo engine
JP4674561B2 (en) Valve device
KR100391627B1 (en) boost pressure controlling system of turbocharger
JP2010059846A (en) Supercharging system of internal combustion engine
WO2014209862A1 (en) A pneumatic actuator having a pressure relief window

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Ref document number: 4296901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees