JP2005139915A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2005139915A
JP2005139915A JP2003374452A JP2003374452A JP2005139915A JP 2005139915 A JP2005139915 A JP 2005139915A JP 2003374452 A JP2003374452 A JP 2003374452A JP 2003374452 A JP2003374452 A JP 2003374452A JP 2005139915 A JP2005139915 A JP 2005139915A
Authority
JP
Japan
Prior art keywords
exhaust gas
flow rate
filter
amount
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2003374452A
Other languages
Japanese (ja)
Inventor
Sei Kawatani
聖 川谷
Hideyuki Takahashi
英行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2003374452A priority Critical patent/JP2005139915A/en
Publication of JP2005139915A publication Critical patent/JP2005139915A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of restraining a filter from breakage and preventing the increase of a fuel consumption by eliminating a gap between a presumed value of a combustion amount of PM and an actual value. <P>SOLUTION: The exhaust emission control device having a filter 21 to collect a particulate material in exhaust gas is constituted that the device comprises an oxygen concentration computing means A2 to calculate concentration of oxygen supplied to the filter; an exhaust gas flow rate computing means A3 to calculate a flow rate Gex of exhaust gas supplied to the filter; and a regeneration termination deciding means A4 to determine a correction value Gex^b to which an exhaust gas flow rate is reduced by a given amount, calculate an oxidation amount integration value PMOi of the particulate material from the exhaust gas flow rate corrected value Gex^b and oxygen concentration in exhaust gas and determine termination of regeneration of the filter when the oxidation amount integration value PMOi reaches a predetermined target oxidation amount PMO. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、排ガス浄化装置に関し、特にディーゼルエンジンに用いて好適の排ガス浄化装置に関する。   The present invention relates to an exhaust gas purification device, and more particularly to an exhaust gas purification device suitable for use in a diesel engine.

ディーゼルエンジンはその排ガス中の粒子状物質であるパティキュレート(パティキュレート)を捕集すべく、排気通路中にパティキュレートフィルタ(以下、単にフィルタという)を配備した排ガス浄化装置を採用している。ここで、フィルタは排ガス温度が600℃以上になると、堆積するパティキュレートを自己着火して酸化(焼却)し、フィルタの再生を行なうことができるが、近年、排気通路中のフィルタの上流側に酸化触媒を配備することで、より低い排ガス温度でパティキュレートを酸化(焼却)できる、排ガス浄化装置が開発されている。   The diesel engine employs an exhaust gas purification device in which a particulate filter (hereinafter simply referred to as a filter) is provided in the exhaust passage in order to collect particulates (particulates) that are particulate matter in the exhaust gas. Here, when the exhaust gas temperature reaches 600 ° C. or higher, the filter can self-ignite and oxidize (incinerate) the accumulated particulates, and the filter can be regenerated. An exhaust gas purification device that can oxidize (incinerate) particulates at a lower exhaust gas temperature by deploying an oxidation catalyst has been developed.

この排ガス浄化装置ではフィルタの上流側の酸化触媒において排ガス中に含まれるNOを酸化させてNOを生成し、このNOをフィルタ上においてパティキュレートと酸化反応させて、パティキュレートを燃焼させ、フィルタの連続再生を図っている。なお、NOはNOに比べて酸化剤としての機能が高く、比較的低い活性化エネルギでパティキュレートを酸化させる(つまり、比較的低温でパティキュレートを燃焼させる)ことができる。 In this exhaust gas purification apparatus by oxidizing NO contained in the exhaust gas in the oxidation catalyst on the upstream side of the filter to generate NO 2, the NO 2 by the oxidation reaction with the particulates on the filter, the combustion of particulates, The filter is continuously played. Note that NO 2 has a higher function as an oxidizing agent than NO, and can oxidize the particulates with relatively low activation energy (that is, burn the particulates at a relatively low temperature).

ところで、排気路に酸化触媒とフィルタを連続配備した排ガス浄化装置においては、排ガス温度が250℃を上回ると酸化触媒の活性化がなされ、フィルタ上のパティキュレートの燃焼を可能とするが、エンジンの運転状態によっては、排ガス温度が酸化触媒の活性化温度まで上昇せずにNOが酸化されず、連続再生が実行されない場合がある。このような場合には、強制再生制御により酸化触媒の活性化を図り、堆積するパティキュレートを焼却し、フィルタの再生を行なっている。   By the way, in the exhaust gas purification apparatus in which the oxidation catalyst and the filter are continuously arranged in the exhaust passage, when the exhaust gas temperature exceeds 250 ° C., the oxidation catalyst is activated and the particulates on the filter can be burned. Depending on the operating state, the exhaust gas temperature does not rise to the activation temperature of the oxidation catalyst, NO is not oxidized, and continuous regeneration may not be performed. In such a case, the oxidation catalyst is activated by forced regeneration control, the deposited particulates are incinerated, and the filter is regenerated.

ところで、この強制再生ではフィルタに堆積するパティキュレートの堆積量相当を燃焼により排除するが、焼却時間が短すぎるとフィルタ内の燃え残りパティキュレートが多くなり、排圧の上昇による燃費増大や、最悪の場合はフィルタの目詰まりが生じ、また、次回以降の強制再生において過剰堆積を招くことよりパティキュレートの過剰燃焼が生じ、これがフィルタの破損に繋がる。逆に、強制再生時間が長すぎると、不必要に加熱用燃料等のエネルギを消費し、燃費が増大するという問題がある。   By the way, in this forced regeneration, the equivalent of the accumulated amount of particulates accumulated on the filter is eliminated by combustion. However, if the incineration time is too short, the unburned particulates in the filter increase, resulting in an increase in fuel consumption due to an increase in exhaust pressure and the worst. In this case, clogging of the filter occurs, and excessive combustion of particulates occurs due to excessive accumulation in the subsequent forced regeneration, which leads to damage of the filter. Conversely, if the forced regeneration time is too long, there is a problem that energy such as fuel for heating is unnecessarily consumed and fuel consumption increases.

このため、フィルタの強制再生制御においては、通常、排ガス温度が焼却可能温度に達してからの所定の経過時間、例えば、堆積量相当の焼却時間をカウントし、強制再生を終了するようにしている。
しかし、実際の走行中に強制再生を実施する場合、エンジン回転数やエンジン負荷などの運転条件が時事刻々変化し、フィルタへ流入する排気の状態が変わるため、フィルタに堆積したパティキュレートを酸化させるのに要する時間も変化する。
For this reason, in the forced regeneration control of the filter, usually, a predetermined elapsed time after the exhaust gas temperature reaches the incineration possible temperature, for example, an incineration time corresponding to the accumulation amount is counted, and the forced regeneration is terminated. .
However, when forced regeneration is performed during actual driving, the operating conditions such as engine speed and engine load change from moment to moment, and the state of the exhaust gas flowing into the filter changes, so the particulates accumulated in the filter are oxidized. The time required for this also changes.

そこで、特許文献1(特願2003−083653号)に開示の技術では、強制再生開始からのパティキュレートの総燃焼量をフィルタに供給された酸素質量流量の積算値に所定係数を乗算した値に等しいとして処理しており、例えば、吸気量Qaより燃料噴射量qに理論酸素消費量α(14.7)を乗算した消費空気量q×αを減算し、その値(Qa−q×α)に酸素質量比β(≒0.2)を乗算してフィルタへ流入する排ガス中の酸素質量流O2を求める。更に、その酸素質量流量O2を累積することで堆積パティキュレートの燃焼量パティキュレートを算出し、その値が目標燃焼量に達することを演算した際にフィルタの強制再生の終了判定を行なうようにしている。   Therefore, in the technique disclosed in Patent Document 1 (Japanese Patent Application No. 2003-083653), the total combustion amount of particulates from the start of forced regeneration is multiplied by a predetermined coefficient multiplied by the integrated value of the oxygen mass flow rate supplied to the filter. For example, the air consumption q × α obtained by multiplying the fuel injection amount q by the theoretical oxygen consumption α (14.7) is subtracted from the intake air amount Qa, and the value (Qa−q × α) is subtracted. Is multiplied by an oxygen mass ratio β (≈0.2) to obtain an oxygen mass flow O2 in the exhaust gas flowing into the filter. Further, by accumulating the oxygen mass flow rate O2, the combustion amount particulate matter of the accumulated particulates is calculated, and when it is calculated that the value reaches the target combustion amount, the end of forced regeneration of the filter is determined. Yes.

特願2003−083653号Japanese Patent Application No. 2003-083653

ところで、特許文献1のように、パティキュレート(PM)の酸化による燃焼量(ΔPM)を酸素質量流量のみで推定した場合、次のような問題が生じている。   Incidentally, as in Patent Document 1, when the combustion amount (ΔPM) due to oxidation of particulates (PM) is estimated only by the oxygen mass flow rate, the following problem occurs.

即ち、図9(a)に示すように、排気系の排ガス流量が大きい高速時には、パティキュレートの酸化量推定値x1に対してパティキュレートの酸化量実測値y1が比較的小さくなり、中速時y2、低速時y3へと変化するに従い、パティキュレートの酸化量実測値が大きく変化することが明らかとなっており、そのずれについて本発明者等は検討を加えた。   That is, as shown in FIG. 9 (a), when the exhaust gas flow rate in the exhaust system is high, the particulate oxidation actual measurement value y1 is relatively small with respect to the particulate oxidation estimated value x1, and at medium speed. It has been clarified that the actual oxidation value of the particulates changes greatly as y2 changes to y3 at low speed, and the present inventors have examined the deviation.

ここで、パティキュレートの燃焼量を求める際に用いるフィルタに流入する酸素質量流量○2wは酸素濃度O2exと排ガス流量Gexの乗算値となり、これは吸入空気量Qaと、燃料供給量に理論酸素消費量(14.7)を乗算した値O2fとの減算値に酸素質量比δ(0.2)を乗算した値でもある。
2w=O2ex×Gex=(Qa−O2f)×δ
ところが、酸素質量流量○2wに関連する吸入空気量Qaや排ガス流量Gexの値は次のように排ガス流速であるSV値の変動に起因してずれを生じている。即ち、排ガス流量Gexとフィルタ容積QVの比であるSV値(∝Gex/QV:Space Velocity)は、これが大きくなるほど排ガスのフィルタ通過時に燃焼に寄与しない酸素のすり抜けが生じる。この場合、フィルタ上を通過する酸素によるパティキュレートの燃焼反応は的確に成されず、燃焼効率が低下(図10(a)の実線e1参照)し、図10(b)に示すように、SV値が大きくなるほどPM燃焼量(ΔPM)が低減する。
Here, the oxygen mass flow rate ○ 2w flowing into the filter used when determining the particulate combustion amount is a product of the oxygen concentration O2ex and the exhaust gas flow rate Gex, which is the theoretical oxygen consumption for the intake air amount Qa and the fuel supply amount. It is also a value obtained by multiplying the subtracted value by the value O2f multiplied by the amount (14.7) by the oxygen mass ratio δ (0.2).
2w = O2ex × Gex = (Qa−O2f) × δ
However, the values of the intake air amount Qa and the exhaust gas flow rate Gex related to the oxygen mass flow rate ○ 2w are deviated due to fluctuations in the SV value that is the exhaust gas flow velocity as follows. That is, as the SV value (∝Gex / QV: Space Velocity), which is the ratio between the exhaust gas flow rate Gex and the filter volume QV, increases, the slipping of oxygen that does not contribute to combustion occurs when the exhaust gas passes through the filter. In this case, the particulate combustion reaction due to oxygen passing over the filter is not accurately performed, and the combustion efficiency is lowered (see the solid line e1 in FIG. 10A). As shown in FIG. The PM combustion amount (ΔPM) decreases as the value increases.

ここで、SV値が大きくなるのに応じてパティキュレートの燃焼効率が低下する程度は排ガス温度が低下するほど顕著となっている。なお、排ガス温度が800℃を上回ると、パティキュレートの酸化反応速度が高レベルを維持することにより、酸素のすり抜けの影響は低減し、図10(a)に1点鎖線e2で示すように燃焼効率はSV値の影響をあまり受けなくなる。
言い代えると、強制再生制御において、フィルタ上のパティキュレートの燃焼反応は排ガス温度の他にSV値の影響、即ち、排ガス流量やフィルタ容積の影響を受ける。この点を考慮して、パティキュレートの再生時の燃焼量推定値を演算することにより、図9(b)に示すように燃焼量推定値を実測値と同値に近づけることができるものと推考される。
Here, the degree to which the combustion efficiency of the particulates decreases as the SV value increases increases as the exhaust gas temperature decreases. When the exhaust gas temperature exceeds 800 ° C., the oxidation reaction rate of the particulates is maintained at a high level, so that the influence of oxygen slip-through is reduced, and combustion occurs as shown by a one-dot chain line e2 in FIG. 10 (a). Efficiency is less affected by the SV value.
In other words, in forced regeneration control, the particulate combustion reaction on the filter is affected by the SV value, that is, the exhaust gas flow rate and the filter volume, in addition to the exhaust gas temperature. In consideration of this point, it is assumed that the estimated combustion amount can be brought close to the measured value as shown in FIG. 9B by calculating the estimated combustion amount at the regeneration of the particulates. The

本発明は、上述のような実情に応えるために成されたものであり、パティキュレートの燃焼量推定値の実測値とのずれを排除することで、フィルタの破損を抑え、燃費増大を防止できる排ガス浄化装置を提供することを目的とする。   The present invention has been made to meet the above-described circumstances, and by eliminating the deviation from the actually measured value of the estimated amount of burning of particulates, it is possible to suppress damage to the filter and prevent an increase in fuel consumption. An object is to provide an exhaust gas purification device.

この発明の請求項1に係る排ガス浄化装置では、エンジンから排出される排ガスの粒子状物質を捕集するフィルタを備えた排ガス浄化装置において、該フィルタに供給される排ガス中の酸素濃度を算出する酸素濃度演算手段と、該フィルタに供給される排ガス流量を算出する排ガス流量演算手段と、該フイルタ内を流れる排ガスの流速を算出する排ガス流速算出手段と、該フイルタの再生時に、排ガス中の酸素濃度と排ガス流量と排ガス流速とに基づいて粒子状物質の酸化量積算値を算出し、同酸化量積算値が所定の目標酸化量に達すると、該フィルタの再生終了を判定する再生終了判定手段と、を備えていることを特徴とする。   In the exhaust gas purification apparatus according to claim 1 of the present invention, in the exhaust gas purification apparatus provided with a filter that collects particulate matter of the exhaust gas discharged from the engine, the oxygen concentration in the exhaust gas supplied to the filter is calculated. Oxygen concentration calculation means, exhaust gas flow rate calculation means for calculating the flow rate of exhaust gas supplied to the filter, exhaust gas flow rate calculation means for calculating the flow rate of exhaust gas flowing in the filter, and oxygen in the exhaust gas during regeneration of the filter A regeneration end determination means for calculating the oxidation amount integrated value of the particulate matter based on the concentration, the exhaust gas flow rate, and the exhaust gas flow rate, and determining the end of regeneration of the filter when the oxidation amount integrated value reaches a predetermined target oxidation amount And.

請求項2に係る排ガス浄化装置では、請求項1記載の排ガス浄化装置において、該排ガス流速に応じた補正定数を算出する補正定数算出手段を備え、該補正定数算出手段から得られた補正定数により排ガス流量を補正して排ガス流量補正値を求め、該フィルタの再生時に、該排ガス流量補正値と排ガス中の酸素濃度とから粒子状物質の酸化量積算値を算出することを特徴とする。   According to a second aspect of the present invention, there is provided an exhaust gas purifying apparatus according to the first aspect, further comprising correction constant calculating means for calculating a correction constant according to the exhaust gas flow velocity, and the correction constant obtained from the correction constant calculating means. The exhaust gas flow rate correction value is obtained by correcting the exhaust gas flow rate, and the oxidation amount integrated value of the particulate matter is calculated from the exhaust gas flow rate correction value and the oxygen concentration in the exhaust gas when the filter is regenerated.

請求項3に係る排ガス浄化装置では、請求項1記載の排ガス浄化装置において、該再生終了判定手段は、酸化量積算値を下式により演算することを特徴とする。   The exhaust gas purifying apparatus according to claim 3 is characterized in that, in the exhaust gas purifying apparatus according to claim 1, the regeneration end determining means calculates an integrated value of oxidation amount by the following equation.

PMOi=a×O2EX×Gex^b+PMOi−1
ただし、O2ex=(Ga×O2IN−Gf×O2L)/Gex
0≦b<1
a:定数
b:排ガス流量補正定数
Ga:吸入空気量
O2ex:排ガス中酸素濃度
O2IN:吸入空気酸素濃度
Gf:燃料供給量
O2L:理論酸素消費量
Gex:排ガス流量
PMOi:酸化量積算値
PMOi−1:前回計算までの酸化量積算値
請求項4に係る排ガス浄化装置では、請求項1記載の排ガス浄化装置において、再生終了判定手段で用いる排ガス流量補正定数は運転状態に応じて設定されることを特徴とする。
PMOi = a * O2EX * Gex ^ b + PMOi-1
However, O2ex = (Ga * O2IN-Gf * O2L) / Gex
0 ≦ b <1
a: Constant
b: Exhaust gas flow rate correction constant
Ga: intake air amount O2ex: exhaust gas oxygen concentration O2IN: intake air oxygen concentration
Gf: Fuel supply amount O2L: Theoretical oxygen consumption Gex: Exhaust gas flow rate PMOi: Oxidation amount integrated value PMOi-1: Oxidation amount integrated value up to the previous calculation In the exhaust gas purification apparatus according to claim 4, the exhaust gas purification according to claim 1 In the apparatus, the exhaust gas flow rate correction constant used in the regeneration end determination means is set according to the operating state.

請求項5に係る排ガス浄化装置では、請求項2乃至請求項4のいずれか1つに記載の排ガス浄化装置において、該補正定数の値が、排ガス流速が増大するにつれて減少するように設定されたことを特徴とする。   In the exhaust gas purification apparatus according to claim 5, in the exhaust gas purification apparatus according to any one of claims 2 to 4, the value of the correction constant is set to decrease as the exhaust gas flow rate increases. It is characterized by that.

この発明の請求項1乃至請求項5によれば、排ガス流量を所定量低減した補正値を求め、該排ガス流量補正済み値と排ガス中の酸素濃度とから粒子状物質の酸化量積算値を算出し、これが所定の目標酸化量に達するとフィルタの再生を終了していることより、排気系のフィルタ容積、排ガス流量の変動の影響による酸化量推定値と酸化量実測値とのずれを排除してパティキュレートの燃焼量推定値を演算でき、的確にフィルタの再生を終了できる。このため、パティキュレートの燃焼量推定値と、実測値とのずれを排除することができ、焼却時間が短すぎ燃え残りパティキュレートが多くなることによる、燃費増大や過剰燃焼によるフィルタの破損を抑え、強制再生時間が長すぎることによる燃費増大を防止できる。   According to the first to fifth aspects of the present invention, a correction value obtained by reducing the exhaust gas flow rate by a predetermined amount is obtained, and an integrated oxidation amount value of the particulate matter is calculated from the exhaust gas flow rate corrected value and the oxygen concentration in the exhaust gas. However, when this reaches the predetermined target oxidation amount, the regeneration of the filter is terminated, so that the deviation between the estimated amount of oxidation and the measured amount of oxidation due to the effects of fluctuations in the exhaust system filter volume and exhaust gas flow rate is eliminated. Thus, the estimated combustion amount of the particulates can be calculated, and the regeneration of the filter can be finished accurately. For this reason, it is possible to eliminate the difference between the estimated amount of burned particulate matter and the actual measured value, and to suppress the increase in fuel consumption and damage to the filter due to excessive combustion due to the incineration time being too short and increasing the amount of unburned particulates. Further, it is possible to prevent an increase in fuel consumption due to the excessively long regeneration time.

特に、請求項2によれば、酸化量積算値を的確に演算できる。
特に、請求項3によれば、酸化量積算値を的確に演算できる。
特に、請求項4によれば、排ガス流量補正定数が的確に設定されるので、酸化量積算値を的確に演算できる。
特に、請求項5によれば、補正定数が的確に設定されるので、酸化量積算値を的確に演算できる。
In particular, according to claim 2, it is possible to accurately calculate the oxidation amount integrated value.
In particular, according to the third aspect, it is possible to accurately calculate the oxidation amount integrated value.
In particular, according to the fourth aspect, the exhaust gas flow rate correction constant is accurately set, so that the oxidation amount integrated value can be accurately calculated.
In particular, according to the fifth aspect, since the correction constant is accurately set, it is possible to accurately calculate the oxidation amount integrated value.

以下、本発明の一実施形態にかかる排ガス浄化装置について説明する。図1は排ガス浄化装置の全体構成を示し、軽油を燃料とするディーゼルエンジン(以後単にエンジン1と記す)に装着される。
エンジン1は燃焼室2より延出する排気路EXを備え、この排気路EXには排気マニホールド3、排気管4、その途中に配備される排気後処理装置5、その下流の図示しないマフラーを順次接続して形成される。また、排気路EX上には過給機(ターボチャージャ)7が設けられるとともに、吸気通路IN上にはインタクーラICが設けられている。
Hereinafter, an exhaust gas purifying apparatus according to an embodiment of the present invention will be described. FIG. 1 shows the overall configuration of an exhaust gas purifying apparatus, which is attached to a diesel engine (hereinafter simply referred to as engine 1) using light oil as fuel.
The engine 1 includes an exhaust passage EX extending from the combustion chamber 2, and an exhaust manifold 3, an exhaust pipe 4, an exhaust aftertreatment device 5 disposed in the middle of the exhaust passage EX, and a muffler (not shown) downstream thereof are sequentially provided in the exhaust passage EX. Connected and formed. A supercharger (turbocharger) 7 is provided on the exhaust passage EX, and an intercooler IC is provided on the intake passage IN.

エンジン1は直列4気筒エンジンであり、各気筒にはインジェクタ6が設けられている。各インジェクタ6にはこれに燃料を供給する燃料供給部8と、インジェクタ6により燃焼室2に燃料噴射を行う燃料噴射部9を備え、これらはエンジンECU11により駆動制御される。   The engine 1 is an in-line four-cylinder engine, and an injector 6 is provided in each cylinder. Each injector 6 includes a fuel supply unit 8 that supplies fuel to the injector 6 and a fuel injection unit 9 that injects fuel into the combustion chamber 2 by the injector 6, and these are driven and controlled by the engine ECU 11.

燃料供給部8はエンジン駆動の高圧燃料ポンプ12の高圧燃料をエンジンECU11内の燃圧制御手段111により駆動制御される燃圧調整部13で定圧化した上でコモンレール14に導き、コモンレール14より分岐して延出する燃料管路15を介し各インジェクタ6に供給する。インジェクタ6の電磁バルブ16はエンジンECU11内の噴射制御手段112(図2参照)に接続され、同噴射制御手段112は演算された燃料噴射量、噴射時期に応じた出力Dj信号を電磁バルブ16に出力し、インジェクタ6を噴射制御する。   The fuel supply unit 8 makes the high-pressure fuel of the engine-driven high-pressure fuel pump 12 constant by the fuel pressure adjustment unit 13 that is driven and controlled by the fuel pressure control means 111 in the engine ECU 11, then leads to the common rail 14 and branches from the common rail 14. The fuel is supplied to each injector 6 through the extending fuel pipe 15. The electromagnetic valve 16 of the injector 6 is connected to an injection control means 112 (see FIG. 2) in the engine ECU 11, and the injection control means 112 sends an output Dj signal corresponding to the calculated fuel injection amount and injection timing to the electromagnetic valve 16. To output and control the injection of the injector 6.

ここで噴射制御手段112はエンジン回転数Neとアクセルペダル踏込量θaに応じた燃料噴射量Ufを求める。更に噴射時期は、周知の基本進角値に運転条件に応じた補正を加えて導出される。その上で、演算された噴射時期及び燃料噴射量Uf相当のインジェクタ駆動時間をインジェクタドライバ17にセットし、インジェクタドライバ17の開閉出力で電磁バルブ16を介しインジェクタ6の燃料噴射を制御する。   Here, the injection control means 112 obtains the fuel injection amount Uf corresponding to the engine speed Ne and the accelerator pedal depression amount θa. Further, the injection timing is derived by adding a correction corresponding to the operating condition to a known basic advance value. Then, the injector injection time corresponding to the calculated injection timing and fuel injection amount Uf is set in the injector driver 17, and the fuel injection of the injector 6 is controlled via the electromagnetic valve 16 by the opening / closing output of the injector driver 17.

排気管4の途中の排気後処理装置5は金属筒状のケーシング18を備え、その膨出部181の内側に排気路EXに沿って酸化触媒19及びディーゼルパティキュレートフィルタ(以後単にフィルタと記す)21を直列状に備える。なお、酸化触媒19及びフィルタ21はそれぞれ膨出部181との間に各々を支持する金属網状体22を介装している。   The exhaust aftertreatment device 5 in the middle of the exhaust pipe 4 includes a metal cylindrical casing 18, and an oxidation catalyst 19 and a diesel particulate filter (hereinafter simply referred to as a filter) along the exhaust path EX inside the bulging portion 181. 21 are provided in series. The oxidation catalyst 19 and the filter 21 are each provided with a metal net 22 that supports the bulging portion 181.

酸化触媒19は触媒担持体191に担持され、触媒担持体191内の各排ガス通路r1は両端部が開放され、排ガスを排気路EX上流より下流側に容易に通過させることができる。触媒担持体191はセラミック製で断面がハニカム構造を成すモノリシス型であり、互いに並列配備された多数の排ガス通路r1を形成され、各通路の通路対向壁面に酸化触媒19が触媒層を成して担持される。
NOを生成する機能部を成す酸化触媒19は、エンジン1から排出される排気中の一酸化窒素(NO)を酸素Oで酸化して高活性の二酸化窒素(NO)に生成する触媒性能を備えるものが選択され、ここではプラチナ系酸化触媒が採用された。
The oxidation catalyst 19 is carried on the catalyst carrier 191. Both ends of each exhaust gas passage r1 in the catalyst carrier 191 are opened, and the exhaust gas can be easily passed from the upstream side to the downstream side of the exhaust passage EX. The catalyst carrier 191 is a monolithic type made of ceramic and having a honeycomb structure in cross section. A large number of exhaust gas passages r1 arranged in parallel to each other are formed, and an oxidation catalyst 19 forms a catalyst layer on the passage-facing wall of each passage. Supported.
The oxidation catalyst 19 that forms a functional part that generates NO 2 is a catalyst that oxidizes nitrogen monoxide (NO) in the exhaust discharged from the engine 1 with oxygen O 2 to generate highly active nitrogen dioxide (NO 2 ). The one with the performance was selected, and a platinum-based oxidation catalyst was adopted here.

フィルタ21はセラミック製、例えば、Mg、Al、Siを主成分とするコージェライトから成り、多数の排ガス通路r2を排気路EXの方向に向けて並列状に積層してなるハニカム構造体として形成される。ここで互いに隣合う各排ガス通路r2は交互に排気路EX上流側と下流側のいずれか一方が端部211で閉鎖されるように形成される。これにより上流側に流入した排ガスは各排ガス通路r2−1の通路対向壁bを透過して排気路EX下流側に出口を形成された各排ガス通路r2−2に達し、排出され、その際、排ガス中よりパティキュレート(以後、単にPMと記す)を濾過する。   The filter 21 is made of ceramic, for example, made of cordierite mainly composed of Mg, Al, and Si, and is formed as a honeycomb structure in which a large number of exhaust gas passages r2 are laminated in parallel in the direction of the exhaust passage EX. The Here, the exhaust gas passages r2 adjacent to each other are formed so that either the upstream side or the downstream side of the exhaust passage EX is alternately closed at the end 211. As a result, the exhaust gas flowing into the upstream side passes through the passage facing wall b of each exhaust gas passage r2-1 and reaches each exhaust gas passage r2-2 formed with an outlet on the downstream side of the exhaust passage EX, and is discharged. Particulates (hereinafter simply referred to as PM) are filtered from the exhaust gas.

酸化触媒19とフィルタ21との間には、酸化触媒19の出口温度及びフィルタ21の入口温度を排気温度gtとして検出する排気温度センサ26が設けられている。また、フィルタ21にはその上流側と下流側との差圧を検出する差圧センサ23が設けられている。なお、場合により、フィルタ21の上流側と下流側とにそれぞれ絶対圧を検出するセンサを設け、差圧を算出するように構成してもよい。   An exhaust temperature sensor 26 is provided between the oxidation catalyst 19 and the filter 21 to detect the outlet temperature of the oxidation catalyst 19 and the inlet temperature of the filter 21 as the exhaust temperature gt. The filter 21 is provided with a differential pressure sensor 23 that detects a differential pressure between the upstream side and the downstream side. In some cases, a sensor for detecting an absolute pressure may be provided on the upstream side and the downstream side of the filter 21 to calculate the differential pressure.

エンジンECU11は不図示の入出力回路に多数のポートを有し、吸気通路INの吸気流量Qaを検出するエアフローセンサ(AFS)22と、フィルタ21の差圧δpを検出する差圧センサ23と、エンジン1のアクセルペダル開度θaを検出するアクセルペダル開度センサ24と、クランク角情報Δθを検出するクランク角センサ25と、排気温度gtを検出する排気温度センサ26と、水温wtを検出する水温センサ27とが接続され、これらよりの検出信号を採り込む。ここでクランク角情報ΔθはエンジンECU11においてエンジン回転数Neの導出に用いられると共に燃料噴射時期制御に使用される。   The engine ECU 11 has a number of ports in an input / output circuit (not shown), an air flow sensor (AFS) 22 that detects the intake flow rate Qa of the intake passage IN, a differential pressure sensor 23 that detects the differential pressure δp of the filter 21, An accelerator pedal opening sensor 24 that detects the accelerator pedal opening θa of the engine 1, a crank angle sensor 25 that detects crank angle information Δθ, an exhaust temperature sensor 26 that detects the exhaust temperature gt, and a water temperature that detects the water temperature wt. The sensor 27 is connected and the detection signals from these are taken. Here, the crank angle information Δθ is used in the engine ECU 11 for derivation of the engine speed Ne and also for fuel injection timing control.

図2に示すように、エンジンECU11は燃圧制御手段111、噴射制御手段112等の周知のエンジン制御処理機能を備え、更に、強制再生制御で用いる強制再生判定手段A1、酸素濃度演算手段A2、排ガス流量演算手段A3、再生終了判定手段A4としての制御機能を有する。   As shown in FIG. 2, the engine ECU 11 has well-known engine control processing functions such as a fuel pressure control means 111 and an injection control means 112, and further includes a forced regeneration determination means A1, an oxygen concentration calculation means A2, exhaust gas used in forced regeneration control. It has control functions as flow rate calculation means A3 and regeneration end determination means A4.

ここで、強制再生判定手段A1はフィルタ21の強制再生を開始するか否かを判定するものである。ここで、強制再生判定手段A1はPMの堆積量を推定(又は算出)するPM堆積量推定部a1が設けられている。このPM堆積量推定部a1はフィルタ21に未燃焼のまま堆積されるPM堆積量PMnを差圧センサ23からの情報δpに基づいて推定(又は算出)する。推定されたPM堆積量PMnが所定値以上となると、強制再生判定手段A1はフィルタ21が連続再生されずに目詰まりを生じていると判定し、フィルタ21の強制的な再生開始を判定する。なお、PM堆積量PMnの推定手法についてはすでに種々の手法が公知であるのでここでは詳しい説明は省略する。   Here, the forced regeneration determination means A1 determines whether or not the forced regeneration of the filter 21 is started. Here, the forced regeneration determination means A1 is provided with a PM accumulation amount estimation unit a1 that estimates (or calculates) the accumulation amount of PM. The PM accumulation amount estimation unit a1 estimates (or calculates) the PM accumulation amount PMn accumulated on the filter 21 without being burned based on the information δp from the differential pressure sensor 23. When the estimated PM accumulation amount PMn exceeds a predetermined value, the forced regeneration determination unit A1 determines that the filter 21 is not continuously regenerated and is clogged, and determines the forced regeneration start of the filter 21. Various methods for estimating the PM deposition amount PMn are already known, and a detailed description thereof is omitted here.

酸素濃度演算手段A2は、強制再生時において、フィルタに供給される排ガス中の酸素濃度O2EXを算出する。ここで、酸素濃度O2EXの演算式の一例を式(1)として下記する。
O2EX=(Ga×O2IN−Gf×O2L)/Gex・・・・・・(1)
ただし、Ga:吸入空気量
O2IN:吸入空気酸素濃度
Gf:燃料供給量
O2L:理論酸素消費量
Gex:排ガス流量
排ガス流量演算手段A3は、強制再生時において、フィルタに供給される排ガス流量Gexを算出する。ここで、吸入空気量Qaと燃料供給量Gfに所定のガス変換定数βを乗算した値との加算値が式(2)のように算出される。
The oxygen concentration calculation means A2 calculates the oxygen concentration O2EX in the exhaust gas supplied to the filter during forced regeneration. Here, an example of an arithmetic expression for the oxygen concentration O2EX will be described below as Expression (1).
O2EX = (Ga * O2IN-Gf * O2L) / Gex (1)
Where Ga: intake air amount O2IN: intake air oxygen concentration
Gf: Fuel supply amount O2L: Theoretical oxygen consumption Gex: Exhaust gas flow rate The exhaust gas flow rate calculation means A3 calculates the exhaust gas flow rate Gex supplied to the filter during forced regeneration. Here, an addition value of the intake air amount Qa and the value obtained by multiplying the fuel supply amount Gf by a predetermined gas conversion constant β is calculated as shown in Expression (2).

Gex=Qa+Gf×β・・・・(2)
再生終了判定手段A4は、強制再生時において、排ガス流量Gexを取込み、所定の排ガス流量補正定数(以後、単にべき定数bと記す)を用いて排ガス流量Gexをそのべき乗値Gex^b(Gex’)に低減修正し、排ガス流量補正済み値とする。次いで、排ガス流量補正済み値Gex^b(Gex’)と排ガス中の酸素濃度O2EXとの乗算値を求める。更に、これらを積算して、即ち、前回計算の酸化量積算値PMOi−1に加算してPMの酸化量積算値PMOiを算出し、同酸化量積算値PMOiが所定の目標酸化量PMOに達すると、該フィルタの再生終了を判定する。ここで、酸化量積算値PMOiの演算式の一例を式(3)として下記する。
Gex = Qa + Gf × β (2)
The regeneration end judging means A4 takes in the exhaust gas flow rate Gex at the time of forced regeneration, and uses a predetermined exhaust gas flow rate correction constant (hereinafter simply referred to as a power constant b) to convert the exhaust gas flow rate Gex to a power value Gex ^ b (Gex ′ ) To correct the exhaust gas flow rate. Next, a multiplication value of the exhaust gas flow rate corrected value Gex ^ b (Gex ′) and the oxygen concentration O2EX in the exhaust gas is obtained. Further, these are integrated, that is, added to the previously calculated oxidation amount integrated value PMOi−1 to calculate the PM oxidation amount integrated value PMOi, and the oxidation amount integrated value PMOi reaches the predetermined target oxidation amount PMO. Then, the end of regeneration of the filter is determined. Here, an example of an arithmetic expression of the oxidation amount integrated value PMOi will be described below as Expression (3).

PMOi=a×O2EX×Gex^b+PMOi−1・・・・(3)
ただし、aは定数、bはべき定数(予めここでの排気系に適する値が0≦b<1の範囲で設定される)、PMOi−1は前回計算までの酸化量積算値、とする。
PMOi = a * O2EX * Gex ^ b + PMOi-1 (3)
However, a is a constant, b is a power constant (a value suitable for the exhaust system here is set in a range of 0 ≦ b <1), and PMOi−1 is an integrated amount of oxidation until the previous calculation.

以下、詳しく説明すると、本願発明者らは、PMの単位時間当りの燃焼量である酸化量積算値PMOiを式(1)で求めた酸素濃度O2EXに、式(2)で求めた排ガス流量Gexを乗算して求めたが、この酸化量積算値PMOiを算出した場合に、実測値との間にずれが生じていることを実験等により確認した(図9(a)、(b)参照)。   Explaining in detail below, the inventors of the present invention set the oxidation amount integrated value PMOi, which is the combustion amount per unit time of PM, to the oxygen concentration O2EX obtained by the equation (1), and the exhaust gas flow rate Gex obtained by the equation (2). However, when this oxidation amount integrated value PMOi was calculated, it was confirmed by experiments or the like that there was a deviation from the actual measurement value (see FIGS. 9A and 9B). .

即ち、フィルタ上のPMの酸化速度は排気酸素流量と排ガス温のみでなく、フィルタでの排ガスの流速SV(∝Gex/QV)を考慮する必要があると判断される。ここで、図9(a)、(b)に示すように、酸化量推定値(符号x1)に対し、SV値が大きい高速状態の排気系(排ガス量が比較的大きい)では、酸化に寄与せず素通りしている酸素の量が多いため、排気酸素流量の割に焼却が遅れ気味となり、酸化量実測値(符号y1)が比較的小さくなり、SV値が小さい低速状態の排気系(排ガス量が比較的小さい)では酸化が十分に進み、酸化量推定値(符号x1)と酸化量実測値(符号y3)のずれが低減していると見做される。なお、図10(b)には、SV値とPM酸化量ΔPM(実測値)の関連を示す特性線図を示した。   That is, it is judged that the oxidation rate of PM on the filter needs to consider not only the exhaust oxygen flow rate and exhaust gas temperature but also the exhaust gas flow velocity SV (∝Gex / QV) in the filter. Here, as shown in FIGS. 9A and 9B, the exhaust system in a high-speed state with a large SV value (relatively large exhaust gas amount) contributes to oxidation as compared with the estimated oxidation amount (symbol x1). Since there is a large amount of oxygen passing through, the incineration seems to be delayed for the exhaust oxygen flow rate, the measured amount of oxidation (symbol y1) becomes relatively small, and the exhaust system in the low speed state (exhaust gas) with a small SV value. When the amount is relatively small), the oxidation proceeds sufficiently, and it is considered that the deviation between the estimated amount of oxidation (symbol x1) and the actual measured amount of oxidation (symbol y3) is reduced. FIG. 10B is a characteristic diagram showing the relationship between the SV value and the PM oxidation amount ΔPM (actual value).

このように酸化量推定値と酸化量実測値とにはずれがあり、推定値と実測値が一致するようにずれを修正するには、SV値が大きい排ガス量Gexが比較的大きい(高速)ほど酸化量推定値を減少修正(図10(b)の符号D参照)することが望ましい。そこで、この修正を行う上で、図6に特性線を示したように、排ガス流量Gexを減少修正するため、排ガス流量補正定数であるべき定数b(0≦b<1)を用い、排ガス量Gexを減少修正し、即ち、酸化量推定値(酸化量積算値PMOi)を減少修正し、実測値に近似させることが適切であると判断された。   Thus, there is a difference between the estimated amount of oxidation and the actual measured value of oxidation. In order to correct the deviation so that the estimated value and the actual value match, the exhaust gas amount Gex having a large SV value is relatively large (high speed). It is desirable to reduce and correct the estimated amount of oxidation (see symbol D in FIG. 10B). Therefore, in making this correction, as shown by the characteristic line in FIG. 6, in order to reduce and correct the exhaust gas flow rate Gex, a constant b (0 ≦ b <1) that should be an exhaust gas flow rate correction constant is used, and the exhaust gas amount. It was determined that it was appropriate to reduce and correct Gex, that is, to reduce and correct the estimated oxidation amount (oxidized amount integrated value PMOi) to approximate the measured value.

即ち、ずれ修正処理のためには、各排気系に応じて酸化量を演算する要件の一つの排ガス流量Gexを0≦b<1の範囲の適宜選択されたべき定数bで減少修正し(その修正特性を図6に示した)、求めた排ガス流量補正済み値Gex^b(Gex’)によって、酸化量積算値PMOi(推定値)を演算した場合、実測値とのずれを低減でき、適切な焼却時点を判断できることを見出した。   That is, for the deviation correction process, the exhaust gas flow rate Gex, which is one of the requirements for calculating the oxidation amount in accordance with each exhaust system, is decreased and corrected by a constant b that is appropriately selected within the range of 0 ≦ b <1 (that is, The corrected characteristic is shown in FIG. 6), and when the calculated exhaust gas flow rate corrected value Gex ^ b (Gex ′) is used to calculate the oxidation amount integrated value PMOi (estimated value), the deviation from the actually measured value can be reduced, and And found that it is possible to determine the time of incineration.

言い替えると、SV値が大きく(排ガス流量Gexが比較的大きく)、酸化に寄与せず素通りしている酸素の量が多い状態での再生処理により焼却が遅れ気味の場合には、酸化量積算値PMOi(推定値)と実測値とのずれを排除できるべき定数bを0≦b<1の範囲で予め選択設定しておく。このべき定数bは、修正特性線図(図6に示した)を考慮し、排気系の特性に適する値として、予め、実験的に選択設定される。その上で、排ガス流量Gex1をべき定数bで減少修正Dすることで、実際の焼却状態と推定値のズレを排除できる。   In other words, if the SV value is large (the exhaust gas flow rate Gex is relatively large) and the incineration is delayed due to the regeneration process in a state where there is a large amount of oxygen that does not contribute to oxidation, the integrated amount of oxidation value A constant b that should eliminate the difference between the PMOi (estimated value) and the actually measured value is selected and set in advance in the range of 0 ≦ b <1. This power constant b is experimentally selected and set in advance as a value suitable for the characteristics of the exhaust system in consideration of the corrected characteristic diagram (shown in FIG. 6). On that basis, the deviation between the actual incineration state and the estimated value can be eliminated by reducing and correcting the exhaust gas flow rate Gex1 with the power constant b.

このように、酸化量積算値PMOi(推定値)を減少修正することで、SV値が大きく排気酸素流量の割に焼却が遅れ気味となる焼却を考慮することができ、この減少修正値が目標値である堆積値PMOに達する時点では、適確な完全焼却を達成でき、その時点を適切に判断できると見做される。
なお、SV値が小さく、酸化に寄与する酸素の量が多い状態での再生処理により焼却は確実に進むが、その焼却速度には限界値があり、例えば、図10(b)に示すようにΔPM1が最大のPM焼却量となる。
ところで、噴射制御手段112は負荷相当の主噴射量qmainを確保するための主燃料噴射量設定部として機能するが、この機能に加えて、本実施形態においては、強制再生指令を受けるとポスト噴射モードで追加燃料噴射作動するポスト噴射制御部として機能する。
In this way, by reducing and correcting the oxidation amount integrated value PMOi (estimated value), it is possible to consider incineration where the SV value is large and the incineration tends to be delayed with respect to the exhaust oxygen flow rate. When reaching the deposition value PMO, which is a value, it is considered that accurate complete incineration can be achieved, and that time can be appropriately judged.
Although the incineration proceeds reliably by the regeneration process in a state where the SV value is small and the amount of oxygen contributing to oxidation is large, the incineration speed has a limit value, for example, as shown in FIG. ΔPM1 is the maximum PM incineration amount.
By the way, the injection control means 112 functions as a main fuel injection amount setting unit for securing the main injection amount qmain corresponding to the load. In addition to this function, in this embodiment, when a forced regeneration command is received, post injection is performed. It functions as a post-injection controller that performs additional fuel injection in mode.

図3(a)、(b)に示すように、ポスト噴射モードでは主噴射量qmainと区分し、その後の第1追加燃料噴射量q1を設定するものであって、エンジン1の運転状態や温度センサ26で得られる触媒出口温度(排ガス温度Tgと同一)に応じて、同温度を増減するため第1追加燃料噴射量q1を設定するようになっている。なお、酸化触媒19の昇温制御時には、この第1追加燃料噴射制御以外にも主燃料噴射タイミングのリタードや、不図示の吸気絞り弁の絞り操作を実行してもよい。   As shown in FIGS. 3 (a) and 3 (b), in the post-injection mode, it is divided from the main injection amount qmain, and the first additional fuel injection amount q1 thereafter is set. In accordance with the catalyst outlet temperature (same as the exhaust gas temperature Tg) obtained by the sensor 26, the first additional fuel injection amount q1 is set to increase or decrease the temperature. In addition, during the temperature increase control of the oxidation catalyst 19, a retard of the main fuel injection timing or a throttle operation of an intake throttle valve (not shown) may be executed in addition to the first additional fuel injection control.

また、この追加燃料の噴射タイミングは、触媒が活性化する温度T1までは図3(a)に示すように、膨張行程の終期前の比較的早期に成され、これにより、追加燃料とシリンダ内の高温の燃焼ガスとが混合して追加燃料が燃焼し、高温の排ガスが酸化触媒19に供給されて酸化触媒19の温度が上昇するようになっている。   Further, the injection timing of the additional fuel is made relatively early before the end of the expansion stroke, as shown in FIG. 3A, until the temperature T1 at which the catalyst is activated. The high-temperature combustion gas is mixed and the additional fuel is combusted, and the high-temperature exhaust gas is supplied to the oxidation catalyst 19 so that the temperature of the oxidation catalyst 19 rises.

一方、温度センサ26からの情報に基づいて、触媒出口温度(排ガス温度Tgと同一)が活性化温度を上回ると判定されると、図3(b)に示すように、今度は増量された第2追加燃料噴射量q2が、例えば排気行程において噴射されるようになっている。この場合において第1追加燃料噴射量q1をそのまま継続噴射してもよい。そして、このようなタイミングで第2追加燃料噴射量q2の噴射が成されることにより、燃料がシリンダ内で燃焼することなく酸化触媒19に達する。活性化温度に達した酸化触媒19で燃料の燃焼が行なわれることで、排ガス温度の昇温が促進され、これにより、酸化触媒19の下流側にあるフィルタ21が熱せられて、PMが酸化可能な温度(たとえば600℃)前後まで昇温されて、PMの焼却(フィルタの強制再生)が実行されるようになっている。   On the other hand, if it is determined that the catalyst outlet temperature (same as the exhaust gas temperature Tg) is higher than the activation temperature based on the information from the temperature sensor 26, as shown in FIG. 2 The additional fuel injection amount q2 is injected, for example, in the exhaust stroke. In this case, the first additional fuel injection amount q1 may be continuously injected as it is. Then, the second additional fuel injection amount q2 is injected at such timing, so that the fuel reaches the oxidation catalyst 19 without burning in the cylinder. The combustion of the fuel is performed in the oxidation catalyst 19 that has reached the activation temperature, so that the temperature rise of the exhaust gas is promoted. As a result, the filter 21 on the downstream side of the oxidation catalyst 19 is heated and the PM can be oxidized. The temperature is raised to around a certain temperature (for example, 600 ° C.), and PM incineration (filter regeneration) is performed.

本発明の一実施形態にかかる排ガス浄化装置は、上述のように構成されているので、図7に示すフローチャートに基づいてその作用を説明すると以下のようになる。
まず、ステップs1において各センサからの情報を取り込む。次に、ステップs2に進み、強制再生フラグFが0か1かを判定する。ここで、強制再生フラグFは強制再生を実行しているか否かを判定するために用いられるものであって、後述するように強制再生中はF=1に設定され、強制再生を実行していないときにはF=0に設定される。なお、最初の制御周期は、強制再生フラグはF=0となっているため、この場合はステップs3に進む。
Since the exhaust gas purifying apparatus according to one embodiment of the present invention is configured as described above, the operation thereof will be described as follows based on the flowchart shown in FIG.
First, in step s1, information from each sensor is captured. Next, proceeding to step s2, it is determined whether the forced regeneration flag F is 0 or 1. Here, the forced regeneration flag F is used to determine whether or not forced regeneration is being performed. As described later, during forced regeneration, F = 1 is set and forced regeneration is being performed. If not, F = 0 is set. Note that in the first control cycle, the forced regeneration flag is F = 0, and in this case, the process proceeds to step s3.

ステップs3では、差圧センサ23からの情報に基づいてPMの堆積量PMnを推定し、ステップs4でPM堆積量PMnが所定値PM1以上か否かを判定する。そして、PM堆積量が所定値PM1以上であれば、ステップs5に進む。ステップs5では、フィルタ21が連続再生されずに目詰まりを生じていると判定されて、フィルタ21の強制再生開始が判定される。また、このとき強制再生フラグがF=1に設定されるため、次回の制御周期ではステップs2より後述のステップs6に制御順序が規制されることとなる。   In step s3, the PM accumulation amount PMn is estimated based on information from the differential pressure sensor 23, and in step s4, it is determined whether the PM accumulation amount PMn is equal to or greater than a predetermined value PM1. If the PM accumulation amount is equal to or greater than the predetermined value PM1, the process proceeds to step s5. In step s5, it is determined that the filter 21 is not continuously regenerated and is clogged, and the forced regeneration start of the filter 21 is determined. At this time, since the forced regeneration flag is set to F = 1, the control order is restricted from step s2 to step s6 described later in the next control cycle.

ステップs5で強制再生開始が判定されると、ステップs6に進み、酸化触媒19の昇温制御が実行される。この触媒昇温制御は、図3(a)に示すように、主噴射後の膨張行程において第1追加燃料噴射(不図示の増量マップによる追加燃料量での噴射)を行うものであり、この第1追加燃料の燃焼により酸化触媒19の温度が上昇する。   If it is determined in step s5 that the forced regeneration is started, the process proceeds to step s6, and the temperature increase control of the oxidation catalyst 19 is executed. As shown in FIG. 3 (a), this catalyst temperature increase control performs the first additional fuel injection (injection with an additional fuel amount by an increase map (not shown)) in the expansion stroke after the main injection. The temperature of the oxidation catalyst 19 rises due to the combustion of the first additional fuel.

次に、ステップs7において、酸化触媒19の温度(ここでは排ガス温度Tg)が活性化温度T1に達しているか否かが判定され、活性化温度未満であれば、メインルーチンにリターンし、次の周期での制御に移る。この場合、酸化触媒19が活性化温度に達するまでは、次回以降の制御周期においてステップs1、s2、s6、s7のルーチンを繰り返し実行し、酸化触媒19の昇温処理が実行される。   Next, in step s7, it is determined whether or not the temperature of the oxidation catalyst 19 (in this case, the exhaust gas temperature Tg) has reached the activation temperature T1, and if it is less than the activation temperature, the process returns to the main routine, and the next Move on to cycle control. In this case, until the oxidation catalyst 19 reaches the activation temperature, the routine of steps s1, s2, s6, and s7 is repeatedly executed in the next and subsequent control cycles, and the temperature raising process of the oxidation catalyst 19 is executed.

そして、ステップs7で触媒温度が活性化温度に達したと判定されると、ステップs8に進み、ここでPM燃焼のための第2追加燃料噴射量q2が不図示の追加燃料マップを用いて設定され、第2追加燃料噴射が実行される。これにより、第2追加燃料が酸化触媒19において燃焼され、その下流側のフィルタ21が熱せられて、PMが酸化可能な温度(たとえば600℃)前後まで昇温されて、PMの焼却(フィルタの強制再生)が実行されるようになっている。   If it is determined in step s7 that the catalyst temperature has reached the activation temperature, the process proceeds to step s8, where the second additional fuel injection amount q2 for PM combustion is set using an additional fuel map (not shown). Then, the second additional fuel injection is executed. As a result, the second additional fuel is combusted in the oxidation catalyst 19, the downstream filter 21 is heated, and the temperature is raised to a temperature at which PM can be oxidized (for example, 600 ° C.). (Forced regeneration) is executed.

PMの焼却が確実に実行され、ステップs9に達すると、ここでは、フィルタ21に供給された排気中酸素濃度O2EXを式(1)、(2)を用いて演算する。
まず、式(2)で最新の吸入空気量Ga、燃料供給量Gfを用いて排ガス流量Gexを演算し、式(1)で、最新の吸入空気量Ga、吸入空気酸素濃度O2IN、燃料供給量Gf、理論酸素消費量O2L、排ガス流量Gexを用いて排気中酸素濃度O2EXを算出する。
When the PM incineration is reliably executed and step s9 is reached, here, the exhaust oxygen concentration O2EX supplied to the filter 21 is calculated using the equations (1) and (2).
First, the exhaust gas flow rate Gex is calculated using the latest intake air amount Ga and fuel supply amount Gf in equation (2), and the latest intake air amount Ga, intake air oxygen concentration O2IN, fuel supply amount is calculated in equation (1). Exhaust oxygen concentration O2EX is calculated using Gf, theoretical oxygen consumption O2L, and exhaust gas flow rate Gex.

更に、ステップs10に達すると、式(3)で現在までのPMの酸化量(燃焼量)積算値PMOiを求める。ここでは、予め選択設定しておいた酸化量積算値PMOi(推定値)と実測値とのずれを排除できる排ガス流量補正定数であるべき定数bを用い、排ガス流量補正済み値Gex^b(Gex’)を求め、これに排気中酸素濃度O2EXGexと定数aを乗算して、今回の酸化量を求め、これに前回計算までのPMの酸化量積算値PMOi−1を加算して、現在の酸化量(燃焼量)積算値PMOiを求めている。   Further, when step s10 is reached, an integrated value PMOi of the amount of PM oxidation (combustion amount) up to the present is obtained by equation (3). Here, a constant b, which should be an exhaust gas flow rate correction constant capable of eliminating the deviation between the oxidation amount integrated value PMOi (estimated value) selected and set in advance and the actual measurement value, is used, and the exhaust gas flow rate corrected value Gex ^ b (Gex '), And this is multiplied by the exhaust oxygen concentration O2EXGex and a constant a to obtain the current oxidation amount, and this is added to the previous oxidation amount integrated value PMOi-1 of PM to obtain the current oxidation amount. The amount (combustion amount) integrated value PMOi is obtained.

その後、ステップs11に進み、現在の酸化量(燃焼量)積算値PMOiが目標値PMOに達したか否かが判定される。この目標値PMOは例えばフィルタ21の出入口の差圧に基づいて算出される強制再生開始時のPM堆積量PM1(ステップs3参照)が適用される。なお、強制再生開始時のPM堆積量は略一定値となるので、強制再生開始時のPMの堆積量を予め実験や試験等で求めておき、この値(固定値)を目標値としてもよい。   Thereafter, the process proceeds to step s11, where it is determined whether or not the current oxidation amount (combustion amount) integrated value PMOi has reached the target value PMO. For this target value PMO, for example, the PM accumulation amount PM1 (see step s3) at the start of forced regeneration calculated based on the differential pressure at the inlet / outlet of the filter 21 is applied. Since the PM accumulation amount at the start of forced regeneration becomes a substantially constant value, the PM accumulation amount at the start of forced regeneration is obtained in advance through experiments or tests, and this value (fixed value) may be used as the target value. .

そして、ステップs11において、酸化量(燃焼量)積算値PMOiが目標値PMOに達していなければ、リターンして、ステップs1からステップs11までの処理を繰り返し実行する。また、酸化量積算値PMOi(PM燃焼量)が目標値に達するとステップs11からステップs12に進み、強制再生フラグをF=0として、強制再生を終了する。   In step s11, if the oxidation amount (combustion amount) integrated value PMOi has not reached the target value PMO, the process returns to repeatedly execute the processing from step s1 to step s11. Further, when the oxidation amount integrated value PMOi (PM combustion amount) reaches the target value, the process proceeds from step s11 to step s12, the forced regeneration flag is set to F = 0, and the forced regeneration is terminated.

このように、本実施形態では酸化触媒19が活性化し、PM燃焼のための第2追加燃料噴射が実行され、追加燃料が酸化触媒19において燃焼され、その下流側のフィルタ21が熱せられ、PMが酸化可能な温度(たとえば600℃)前後に高められる運転域に入ると、即ち、強制再生が開始されると、式(3)で現在の酸化量積算値PMOi(PM燃焼量推定値)を算出し、その値が目標値PMOに達した時点で強制再生を終了している。ここで、所定のべき定数bは酸化量積算値PMOiを実測値に修正するに最適な値として予め選択された値であり、これによりSV値の影響、即ち、排気系のフィルタ容積、排ガス流量の変動の影響を考慮して、PMの燃焼量推定値を演算でき、酸化量積算値PMOi(PM燃焼量推定値)の実測値とのずれを排除することで強制再生終了を適確に行なえる。このため、パティキュレートの燃焼量推定値と、実測値とのずれを排除することができ、焼却時間が短すぎ燃え残りパティキュレートが多くなることによる、燃費増大や過剰燃焼によるフィルタの破損を抑え、強制再生時間が長すぎることによる燃費増大を防止できる。   Thus, in this embodiment, the oxidation catalyst 19 is activated, the second additional fuel injection for PM combustion is executed, the additional fuel is burned in the oxidation catalyst 19, the downstream filter 21 is heated, and PM Enters an operating range where the temperature can be increased to around an oxidizable temperature (for example, 600 ° C.), that is, when forced regeneration is started, the current oxidation amount integrated value PMOi (PM combustion amount estimated value) is expressed by Equation (3). The forced regeneration is finished when the calculated value reaches the target value PMO. Here, the predetermined power constant b is a value selected in advance as an optimal value for correcting the oxidation amount integrated value PMOi to an actual measurement value, and thereby the influence of the SV value, that is, the filter volume of the exhaust system, the exhaust gas flow rate. The estimated combustion amount of PM can be calculated in consideration of the effect of fluctuations, and the forced regeneration end can be performed accurately by eliminating the deviation from the measured value of the oxidation amount integrated value PMOi (PM combustion amount estimated value). The For this reason, it is possible to eliminate the difference between the estimated amount of burned particulate matter and the actual measured value, and to suppress the increase in fuel consumption and damage to the filter due to excessive combustion due to the incineration time being too short and increasing the amount of unburned particulates. Further, it is possible to prevent an increase in fuel consumption due to the excessively long regeneration time.

また、上述の実施形態において、酸化量積算値PMOi(推定値)と実測値とのずれを修正するに最適なべき定数bを固定値として予め選択設定されるものとしたが、これに代えて、図4、図8(上述のステップs9、s10間で実施)に示すように、そのときのエンジン回転数Neと軸トルクTqとに応じたべき定数bを所定のべき数マップmp1によって設定しても良い。ここで、べき定数bは中回転中負荷域(白紙域)b−2を基準として低回転低負荷域(複数縦線分散域)での値b―1を用いて排ガス量Gexを増加修正(b−1>b−2)し、進み気味の焼却を考慮し、更に、高回転高負荷域(複数横線分散域)では値b−3を用いて排ガス量Gexを減少修正(b−3<b−2)し、遅れ気味の焼却を考慮する。これにより、酸化量積算値PMOi(推定値)と実測値とのずれを修正するように構成しても良い。ここでは、運転域に応じて酸化量積算値PMOi(推定値)と実測値とのずれを増減修正し、より適確な完全焼却を達成でき、その時点を適切に判断できる。   In the above-described embodiment, the constant b that is optimal for correcting the deviation between the oxidation amount integrated value PMOi (estimated value) and the actually measured value is selected and set in advance as a fixed value. 4, FIG. 8 (implemented between steps s9 and s10 described above), a power constant b corresponding to the engine speed Ne and shaft torque Tq at that time is set by a predetermined power map mp1. May be. Here, the power constant b increases and corrects the exhaust gas amount Gex by using the value b-1 in the low rotation low load region (multiple vertical line dispersion region) with reference to the medium rotation intermediate load region (blank paper region) b-2. b-1> b-2), considering incineration of advancing, and in the high rotation high load region (multiple horizontal line dispersion region), the value b-3 is used to reduce and correct the exhaust gas amount Gex (b-3 < b-2) and taking into account delayed incineration. Thus, the deviation between the oxidation amount integrated value PMOi (estimated value) and the actually measured value may be corrected. Here, the deviation between the oxidation amount integrated value PMOi (estimated value) and the actually measured value is increased / decreased according to the operating region, and more accurate complete incineration can be achieved, and the time point can be determined appropriately.

更に、上述の各実施形態において、べき定数bは選択設定される固定値か、エンジン回転数Neと軸トルクTqとに応じたべき定数bとして設定していたが、これに代えて、排ガス温度Tgに応じたべき定数bを、例えば、図5に示すべき数マップmp2によって設定してもよい。この場合、排ガス温度が800℃を上回ると、パティキュレートの酸化反応速度が高レベルを維持することより、酸素のすり抜けの影響は低減し、排ガス量Gexの修正の必要は無く、b=1となる。600℃以下では焼却は進まず、最大修正すべくb=0とし、排ガス量Gexの減少修正を最大(Gex=1)にしても良い。ここでは、温度変動に応じて酸化量積算値PMOi(推定値)と実測値とのずれを修正でき、適確な完全焼却を達成でき、その時点を適切に判断できる。   Further, in each of the above-described embodiments, the power constant b is set as a fixed value to be selected or set, or a power constant b according to the engine speed Ne and the shaft torque Tq. The power constant b corresponding to Tg may be set by, for example, the power map mp2 shown in FIG. In this case, when the exhaust gas temperature exceeds 800 ° C., the oxidation reaction rate of the particulates is maintained at a high level, so that the influence of oxygen slip-through is reduced, there is no need to correct the exhaust gas amount Gex, and b = 1. Become. Incineration does not proceed below 600 ° C., and b = 0 may be set for maximum correction, and reduction correction for the exhaust gas amount Gex may be set to maximum (Gex = 1). Here, the deviation between the oxidation amount integrated value PMOi (estimated value) and the actually measured value can be corrected in accordance with the temperature fluctuation, an accurate complete incineration can be achieved, and the time point can be determined appropriately.

上述のところにおいて、排ガス制御装置はディーゼルエンジンの排気系に酸化触媒とPMフィルタを順次配設し、筒内インジェクタによる追加燃料噴射によって強制再生を行なっていたが、これ以外にもエンジンの排気ポート又は排気管等の排気通路上に、フィルタへのHC供給用のインジェクタ(第2インジェクタ)を設け、強制再生時には第2の追加燃料噴射に代えて第2インジェクタから排気通路に直接燃料(HC)を添加する手段を駆動することでフィルタ強制再生を行なうことができる排ガス浄化装置にも同様に適用できる。   In the above description, the exhaust gas control device sequentially arranges the oxidation catalyst and the PM filter in the exhaust system of the diesel engine, and performs forced regeneration by additional fuel injection by the in-cylinder injector. Alternatively, an injector (second injector) for supplying HC to the filter is provided on an exhaust passage such as an exhaust pipe, and fuel (HC) is directly supplied from the second injector to the exhaust passage instead of the second additional fuel injection at the time of forced regeneration. The present invention can be similarly applied to an exhaust gas purifying apparatus that can perform forced filter regeneration by driving a means for adding.

本発明の一実施形態にかかる排ガス浄化装置の全体構成を示す模式図である。It is a mimetic diagram showing the whole exhaust gas purification device composition concerning one embodiment of the present invention. 図1の排ガス浄化装置のエンジンECUの機能構成を示すブロック図である、It is a block diagram which shows the function structure of engine ECU of the exhaust gas purification apparatus of FIG. 図1の排ガス浄化装置のエンジンECUが行なう追加燃料噴射タイミングについて説明する図で(a)は第1追加燃料噴射モード図、(b)は第2追加燃料噴射モード図である。FIGS. 2A and 2B are diagrams for explaining an additional fuel injection timing performed by the engine ECU of the exhaust gas purification apparatus of FIG. 1. FIG. 3A is a first additional fuel injection mode diagram, and FIG. 図1の排ガス浄化装置のエンジンECUが行なう追加燃料噴射制御の変形例で用いるエンジン回転数―軸トルク相当べき数マップの特性線図である。FIG. 8 is a characteristic diagram of an engine speed—power shaft equivalent power map used in a modified example of additional fuel injection control performed by the engine ECU of the exhaust gas purification apparatus of FIG. 1. 図1の排ガス浄化装置のエンジンECUが行なう追加燃料噴射制御の変形例で用いる排ガス温度相当べき数マップの特性線図である。FIG. 7 is a characteristic diagram of a number map corresponding to an exhaust gas temperature used in a modified example of additional fuel injection control performed by the engine ECU of the exhaust gas purification apparatus of FIG. 1. 図1の排ガス浄化装置のエンジンECUが行なうべき数による排ガス流量の修正説明図である。It is correction explanatory drawing of the exhaust gas flow rate by the number which engine ECU of the exhaust gas purification apparatus of FIG. 1 should perform. 図1の排ガス浄化装置のエンジンECUが行なう排ガス浄化装置の追加燃料噴射制御を説明するフローチャートである。FIG. 2 is a flowchart for explaining additional fuel injection control of the exhaust gas purifying apparatus performed by an engine ECU of the exhaust gas purifying apparatus of FIG. 1. 図1の排ガス浄化装置のエンジンECUが行なう排ガス浄化装置の追加燃料噴射制御の他の変形例を説明する一部分フローチャートである。FIG. 8 is a partial flowchart for explaining another modification of the additional fuel injection control of the exhaust gas purifying apparatus performed by the engine ECU of the exhaust gas purifying apparatus of FIG. 1. 排ガス浄化装置のPM堆積量と実測値のずれ特性を説明する線図で、(a)は酸素流量の変化による特性を、(b)はSV値を考慮した、本発明の場合のPM堆積量と実測値のずれ特性を示す。FIG. 4 is a diagram for explaining the deviation characteristics between the PM accumulation amount and the actual measurement value of the exhaust gas purifying apparatus, where (a) shows the characteristic due to the change in the oxygen flow rate, and (b) shows the PM accumulation amount in the present invention in consideration of the SV value. And the deviation characteristics of the measured values. 排ガス浄化装置の燃焼効率とSV値の特性を排ガス温度をパラメータとして示す特性線図である。It is a characteristic diagram which shows the characteristic of combustion efficiency of an exhaust gas purification apparatus, and SV value by using exhaust gas temperature as a parameter.

符号の説明Explanation of symbols

1 エンジン
2 燃焼室
6 インジェクタ
8 燃料供給部
9 燃料噴射部
11 エンジンECU
111 燃圧制御部
13 燃圧調整部
19 酸化触媒
21 フィルタ
b 排ガス流量補正定数(べき定数)
A2 酸素濃度演算手段
A3 排ガス流量演算手段
A4 再生終了判定手段
Ga 吸入空気量
Gex 排ガス流量
Gex^b(Gex’) 排ガス流量補正済み値
Gf 燃料供給量
O2EX 酸素濃度
O2IN 吸入空気酸素濃度
O2L 理論酸素消費量
PMO 目標酸化量
PMOi 酸化量積算値
DESCRIPTION OF SYMBOLS 1 Engine 2 Combustion chamber 6 Injector 8 Fuel supply part 9 Fuel injection part 11 Engine ECU
111 Fuel Pressure Control Unit 13 Fuel Pressure Adjustment Unit 19 Oxidation Catalyst 21 Filter b Exhaust Gas Flow Rate Correction Constant (Power Constant)
A2 Oxygen concentration calculation means A3 Exhaust gas flow rate calculation means A4 Regeneration completion determination means Ga Intake air amount Gex Exhaust gas flow rate Gex ^ b (Gex ') Exhaust gas flow rate corrected value Gf Fuel supply amount O2EX Oxygen concentration O2IN Intake air oxygen concentration O2L Theoretical oxygen consumption Amount PMO Target oxidation amount PMOi Oxidation amount integrated value

Claims (5)

エンジンから排出される排ガスの粒子状物質を捕集するフィルタを備えた排ガス浄化装置において、
該フィルタに供給される排ガス中の酸素濃度を算出する酸素濃度演算手段と、
該フィルタに供給される排ガス流量を算出する排ガス流量演算手段と、
該フイルタ内を流れる排ガスの流速を算出する排ガス流速算出手段と、
該フイルタの再生時に、排ガス中の酸素濃度と排ガス流量と排ガス流速とに基づいて粒子状物質の酸化量積算値を算出し、同酸化量積算値が所定の目標酸化量に達すると、該フィルタの再生終了を判定する再生終了判定手段と、
を備えていることを特徴とする排ガス浄化装置。
In an exhaust gas purification device equipped with a filter that collects particulate matter of exhaust gas discharged from the engine,
Oxygen concentration calculating means for calculating the oxygen concentration in the exhaust gas supplied to the filter;
Exhaust gas flow rate calculating means for calculating the exhaust gas flow rate supplied to the filter;
Exhaust gas flow velocity calculating means for calculating the flow velocity of the exhaust gas flowing through the filter;
At the time of regeneration of the filter, an integrated value of the oxidation amount of the particulate matter is calculated based on the oxygen concentration in the exhaust gas, the exhaust gas flow rate, and the exhaust gas flow velocity, and when the integrated oxidation amount reaches a predetermined target oxidation amount, A reproduction end determination means for determining the reproduction end of
An exhaust gas purification apparatus comprising:
該排ガス流速に応じた補正定数を算出する補正定数算出手段を備え、
該補正定数算出手段から得られた補正定数により排ガス流量を補正して排ガス流量補正値を求め、
該フィルタの再生時に、該排ガス流量補正値と排ガス中の酸素濃度とから粒子状物質の酸化量積算値を算出することを特徴とする請求項1記載の排ガス浄化装置。
A correction constant calculating means for calculating a correction constant according to the exhaust gas flow velocity,
The exhaust gas flow rate is corrected by the correction constant obtained from the correction constant calculating means to obtain an exhaust gas flow rate correction value,
2. The exhaust gas purification apparatus according to claim 1, wherein when the filter is regenerated, an integrated value of the oxidation amount of the particulate matter is calculated from the exhaust gas flow rate correction value and the oxygen concentration in the exhaust gas.
該再生終了判定手段は、酸化量積算値を下式により演算することを特徴とする請求項1記載の排ガス浄化装置。
PMOi=a×O2EX×Gex^b+PMOi−1
ただし、O2ex=(Ga×O2IN−Gf×O2L)/Gex
0≦b<1
a:定数
b:排ガス流量補正定数
Ga:吸入空気量
O2ex:排ガス中酸素濃度
O2IN:吸入空気酸素濃度
Gf:燃料供給量
O2L:理論酸素消費量
Gex:排ガス流量
PMOi:酸化量積算値
PMOi−1:前回計算までの酸化量積算値
The exhaust gas purifying apparatus according to claim 1, wherein the regeneration end determining means calculates an integrated value of oxidation amount by the following equation.
PMOi = a * O2EX * Gex ^ b + PMOi-1
However, O2ex = (Ga * O2IN-Gf * O2L) / Gex
0 ≦ b <1
a: Constant
b: Exhaust gas flow rate correction constant
Ga: intake air amount O2ex: exhaust gas oxygen concentration O2IN: intake air oxygen concentration
Gf: Fuel supply amount
O2L: Theoretical oxygen consumption
Gex: exhaust gas flow rate PMOi: oxidation amount integrated value PMOi-1: oxidation amount integrated value until the previous calculation
該排ガス流量補正定数は運転状態に応じて設定されることを特徴とする請求項1記載の排ガス浄化装置。   The exhaust gas purification device according to claim 1, wherein the exhaust gas flow rate correction constant is set according to an operating state. 該補正定数の値が、排ガス流速が増大するにつれて減少するように設定されたことを特徴とする請求項2乃至請求項4のいずれか1つに記載の排ガス浄化装置。
The exhaust gas purification apparatus according to any one of claims 2 to 4, wherein the value of the correction constant is set so as to decrease as the exhaust gas flow velocity increases.
JP2003374452A 2003-11-04 2003-11-04 Exhaust emission control device Ceased JP2005139915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003374452A JP2005139915A (en) 2003-11-04 2003-11-04 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003374452A JP2005139915A (en) 2003-11-04 2003-11-04 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2005139915A true JP2005139915A (en) 2005-06-02

Family

ID=34686166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374452A Ceased JP2005139915A (en) 2003-11-04 2003-11-04 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2005139915A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247419A (en) * 2006-03-13 2007-09-27 Mazda Motor Corp Exhaust emission control device of engine
JP2010106765A (en) * 2008-10-30 2010-05-13 Toyota Motor Corp Exhaust gas purification system for internal combustion engine
JP2016094890A (en) * 2014-11-14 2016-05-26 三菱自動車工業株式会社 Exhaust emission control device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247419A (en) * 2006-03-13 2007-09-27 Mazda Motor Corp Exhaust emission control device of engine
JP4706514B2 (en) * 2006-03-13 2011-06-22 マツダ株式会社 Engine exhaust purification system
JP2010106765A (en) * 2008-10-30 2010-05-13 Toyota Motor Corp Exhaust gas purification system for internal combustion engine
JP4697286B2 (en) * 2008-10-30 2011-06-08 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2016094890A (en) * 2014-11-14 2016-05-26 三菱自動車工業株式会社 Exhaust emission control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US6962046B2 (en) Exhaust gas cleaning system having particulate filter
JP2007040221A (en) Exhaust emission control device
JP2004293339A (en) Exhaust emission control device
KR100721321B1 (en) Exhaust emission control device of internal combustion engine
JP2006342737A (en) Exhaust emission control device
JP4544011B2 (en) Internal combustion engine exhaust purification system
US7841169B2 (en) Regeneration controller for exhaust purification apparatus of internal combustion engine
US7322186B2 (en) Exhaust gas purifying system for internal combustion engine
JP2010265844A (en) Exhaust emission control device for internal combustion engine
JP4174685B1 (en) Exhaust gas purification device for internal combustion engine
JP2008138619A (en) Exhaust emission control device of internal combustion engine
JP4640318B2 (en) Control device for internal combustion engine
JP2005090276A (en) Catalyst control device of internal combustion engine
JP2005240719A (en) Regeneration time detecting device for filter and regeneration control device for filter
JP2008144726A (en) Exhaust emission control device for internal combustion engine
JP4702557B2 (en) Exhaust purification device
JP2006274907A (en) Exhaust emission control device
JP4352635B2 (en) Exhaust gas purification device for internal combustion engine
JP2005139915A (en) Exhaust emission control device
JP4107017B2 (en) Engine control device
JP4539595B2 (en) PM deposition amount estimation device for internal combustion engine
JP3888115B2 (en) Control device for internal combustion engine
JP2003020933A (en) Exhaust emission control device for internal combustion engine
JP2006274983A (en) Exhaust emission control device
JP4506978B2 (en) Exhaust purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20091027