JP2005139483A - Method for collecting noble metal - Google Patents

Method for collecting noble metal Download PDF

Info

Publication number
JP2005139483A
JP2005139483A JP2003374863A JP2003374863A JP2005139483A JP 2005139483 A JP2005139483 A JP 2005139483A JP 2003374863 A JP2003374863 A JP 2003374863A JP 2003374863 A JP2003374863 A JP 2003374863A JP 2005139483 A JP2005139483 A JP 2005139483A
Authority
JP
Japan
Prior art keywords
eluent
noble metal
exchange resin
ion exchange
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003374863A
Other languages
Japanese (ja)
Inventor
Koji Nagao
幸治 長尾
Koichi Saito
弘一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohkuchi Electronics Co Ltd
Original Assignee
Ohkuchi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohkuchi Electronics Co Ltd filed Critical Ohkuchi Electronics Co Ltd
Priority to JP2003374863A priority Critical patent/JP2005139483A/en
Publication of JP2005139483A publication Critical patent/JP2005139483A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply, continuously, and repeatedly performing a step of liquating a noble metal into an eluent from an ion-exchange resin, and a step of collecting valuable metal from the eluent. <P>SOLUTION: The method for collecting a noble metal comprises eluting the noble metal in the eluent by contacting the ion-exchange resin having adsorbed the noble metal with the eluent which is an aqueous solution of a thiocyanic acid compound, and then collecting the noble metal from the eluent by electrolysis. It is preferable to continuously circulate the eluent to a liquation tank in which the eluent is contacted with the ion-exchange resin, and to an electrolytic collection tank in which the noble metal is electrolytically collected from the eluent containing the eluted noble metal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、イオン交換樹脂を使用して、貴金属(金、銀、白金、パラジウム)を回収する方法に関する。   The present invention relates to a method for recovering noble metals (gold, silver, platinum, palladium) using an ion exchange resin.

従来、排水処理や希薄有価金属含有溶液から有価金属、特に金、銀、白金、パラジウムの貴金属を選択的に濃縮回収する目的で、たとえば特公平8−5666号公報に記載されるように、イオン交換樹脂が利用されている。このような目的で使用されたイオン交換樹脂に吸着された貴金属を分離回収するため、溶離液をイオン交換樹脂に接触させる方法や、イオン交換樹脂を焼却する方法が行われている。   Conventionally, for the purpose of selectively concentrating and recovering valuable metals, in particular noble metals such as gold, silver, platinum, and palladium, from wastewater treatment or dilute valuable metal-containing solutions, as described in, for example, Japanese Patent Publication No. 8-5666, Exchange resin is used. In order to separate and recover the precious metal adsorbed on the ion exchange resin used for such a purpose, a method of bringing an eluent into contact with the ion exchange resin and a method of incinerating the ion exchange resin are performed.

イオン交換樹脂に接触して貴金属を含む溶離液から貴金属を回収するためには、電解により溶離液から分離する方法や、化学的方法で還元させる方法がある。しかし、両方法とも、イオン交換樹脂から貴金属を分離回収するまで作業が連続的に実施されておらず、貴金属をイオン交換樹脂から溶離液中に溶離する工程と、溶離液中から貴金属を回収する工程との2工程が独立していた。この理由は、イオン交換樹脂と溶離液を一度ろ別しなくては、溶離液中から貴金属のみを固体として回収できないためである。   In order to recover the precious metal from the eluent containing the precious metal in contact with the ion exchange resin, there are a method of separating from the eluent by electrolysis and a method of reducing by a chemical method. However, in both methods, the operation is not continuously performed until the noble metal is separated and recovered from the ion exchange resin, and the process of eluting the noble metal from the ion exchange resin into the eluent and the recovery of the noble metal from the eluent are performed. Two steps with the step were independent. This is because only the precious metal cannot be recovered from the eluent as a solid unless the ion exchange resin and the eluent are once filtered.

イオン交換樹脂から溶離液を使用して貴金属を回収する方法では、溶離液とイオン交換樹脂を接触させて溶離液中に貴金属を脱離させる。このイオン交換樹脂を処理するのに必要とされる溶離液量は、溶離剤の種類、濃度および貴金属量などで決定され、多くの場合には、多量の溶離液を処理するための溶離設備が必要となる。   In the method of recovering a noble metal from an ion exchange resin using an eluent, the noble metal is desorbed from the eluent by bringing the eluent into contact with the ion exchange resin. The amount of eluent required to process this ion exchange resin is determined by the type, concentration and amount of precious metal of the eluent, and in many cases, an elution facility for processing a large amount of eluent is required. Necessary.

さらに、その多量の溶離液から、電解により貴金属の分離回収を行わなければならない。従って、多量に処理を行うためには、電解設備を大型のものにするか、少量ずつ小分けして処理するために貯蔵設備を大型にしなければならないという問題があった。   Furthermore, noble metals must be separated and recovered from the large amount of eluent by electrolysis. Therefore, in order to carry out a large amount of treatment, there has been a problem that the electrolytic equipment must be made large or the storage equipment must be made large in order to divide it into small portions.

また、化学的方法で還元させる回収方法では、還元剤などを加えることから、さらに液量が増加するので、電解処理よりも多量の溶離液の処理が必要となる問題があった。   Further, in the recovery method in which the reduction is performed by a chemical method, since the amount of the liquid is further increased due to the addition of a reducing agent or the like, there has been a problem that it is necessary to process a larger amount of the eluent than the electrolytic treatment.

さらに、両方法ともに、貴金属の分離回収を行った後の溶離液は廃液となり、排水処理の負荷が大きいという問題もあった。   Furthermore, both methods have a problem that the eluent after separation and recovery of the noble metal becomes waste liquid, and the load of waste water treatment is large.

一方、イオン交換樹脂を焼却する方法でも、連続処理が不可能であり、さらに、有毒ガスを発生することから、有毒ガスの除去設備を必要とする問題があった。
特公平8−5666号公報
On the other hand, the method of incinerating the ion exchange resin also cannot be continuously processed, and further generates toxic gas, so that there is a problem that a facility for removing the toxic gas is required.
Japanese Patent Publication No. 8-5666

本発明は、貴金属をイオン交換樹脂から溶離液中に溶離する工程と、溶離液中から貴金属を回収する工程とを、簡便かつ連続的に、繰り返して実施できる方法を提供する。   The present invention provides a method in which a step of eluting a noble metal from an ion exchange resin into an eluent and a step of recovering the noble metal from the eluent can be carried out simply and continuously.

本発明の貴金属の回収方法は、貴金属を吸着したイオン交換樹脂に、チオシアン酸化合物の水溶液からなる溶離液を接触させて、貴金属を溶離液中に溶出させた後、該溶離液から前記貴金属を電解により回収する際において、前記溶離液をイオン交換樹脂と接触させる溶離槽と、前記貴金属が溶出した溶離液から該貴金属の電解回収を行う電解回収槽とに、前記溶離液を連続的に循環させる。   In the method for recovering a noble metal of the present invention, an eluent composed of an aqueous solution of a thiocyanate compound is brought into contact with an ion exchange resin that has adsorbed the noble metal to elute the noble metal in the eluent, and then the noble metal is removed from the eluent. When recovering by electrolysis, the eluent is continuously circulated between an elution tank in which the eluent is brought into contact with an ion exchange resin, and an electrolytic recovery tank in which the precious metal is electrolyzed from the eluent eluted from the precious metal. Let

本発明の方法により、溶離液を繰り返し何回でも使用でき、貴金属を高回収率で電解回収できる。   According to the method of the present invention, the eluent can be used any number of times, and noble metals can be electrolytically recovered at a high recovery rate.

本発明の方法では、従来の方法のように溶離液量が膨大にならずに、連続的かつ簡便に貴金属を回収することが可能となり、処理設備の小型化が実現できると共に、貴金属の回収ロスを削減でき、さらなる高回収率を得ることができる。これにより、回収コストを大幅に低減できる。   In the method of the present invention, the amount of the eluent is not enormous as in the conventional method, and it becomes possible to recover the noble metal continuously and easily, the processing equipment can be downsized, and the recovery loss of the noble metal can be realized. And a higher recovery rate can be obtained. Thereby, the collection cost can be significantly reduced.

本発明の方法は、貴金属が吸着しているイオン交換樹脂から、有価金属を分離回収することを目的とする場合に、特に有利である。   The method of the present invention is particularly advantageous when the purpose is to separate and recover valuable metals from an ion exchange resin on which precious metals are adsorbed.

本発明の方法による有価金属の回収システムの概略図を図1に示す。   A schematic diagram of a valuable metal recovery system according to the method of the present invention is shown in FIG.

本発明では、イオン交換樹脂(1)と溶離液(3)であるチオシアン酸化合物の水溶液を接触させる溶離槽(2)と、貴金属を含有している溶離液(3)から貴金属を分離回収する電解回収槽(6)とを設け、溶離液の循環方法を工夫することにより、溶離液(3)であるチオシアン酸化合物の水溶液が、前記溶離槽(2)と電解回収槽(6)とを順次通過するように配置して、溶離液(3)を循環させる。なお、イオン交換樹脂(1)の性状に特に制限はない。   In the present invention, the noble metal is separated and recovered from the elution tank (2) in which the ion exchange resin (1) and the aqueous solution of the thiocyanate compound as the eluent (3) are contacted, and the eluent (3) containing the noble metal. By providing an electrolytic recovery tank (6) and devising a method for circulating the eluent, an aqueous solution of the thiocyanate compound as the eluent (3) is separated into the elution tank (2) and the electrolytic recovery tank (6). The eluent (3) is circulated by arranging so as to pass sequentially. In addition, there is no restriction | limiting in particular in the property of an ion exchange resin (1).

溶離槽(2)は、市販のイオン交換樹脂用のカラム塔や、カートリッジタイプの容器が良いが、イオン交換樹脂(1)が槽外に流出しないよう工夫した容器でも良い。   The elution tank (2) may be a commercially available column tower for ion exchange resin or a cartridge type container, but may be a container designed to prevent the ion exchange resin (1) from flowing out of the tank.

溶離液(3)であるチオシアン酸化合物の水溶液は、濃度が常温(25℃)で、pH3以上、50g/リットル以上に調整することが望ましい。pH3未満とするか、50g/リットル未満とすると、貴金属の溶出量が低下したり、全く溶出しなくなる。溶離液(3)の量は、0.3m3 で、これを循環使用する。 The aqueous solution of the thiocyanate compound as the eluent (3) is preferably adjusted to a pH of 3 or more and 50 g / liter or more at a normal temperature (25 ° C.). If the pH is less than 3 or less than 50 g / liter, the elution amount of the noble metal is reduced or no elution occurs. The amount of the eluent (3) is 0.3 m 3 , which is recycled.

電解回収槽(6)は、陽極(4)にカーボンなどの安価な不溶性電極を使用し、陰極(5)に、ステンレスやチタンなどで、電着物の密着が弱く、回収しやすい不溶性電極を使用し、陽極(4)および陰極(5)を交互に配置し、市販されている一般的な整流器(8)などの直流電源を使用する。さらに、溶離槽(2)の前後またはどちらか一方に、イオン交換樹脂(1)中のゴミや固形不純物を除去する設備を配置するとよい。   The electrolytic recovery tank (6) uses an inexpensive insoluble electrode such as carbon for the anode (4), and the cathode (5) uses an insoluble electrode that is easy to collect, such as stainless steel or titanium, with weak adhesion of electrodeposits. Then, the anode (4) and the cathode (5) are alternately arranged, and a DC power supply such as a general rectifier (8) that is commercially available is used. Furthermore, equipment for removing dust and solid impurities in the ion exchange resin (1) may be disposed before or after the elution tank (2).

分離回収を行う電解電流密度は0.2A/dm2 〜5.0A/dm2 が望ましく、貴金属だけ効率良く回収されるため、溶離液(3)として繰り返し使用でき、多量の廃液の発生がない。 The electrolytic current density for separation and recovery is preferably 0.2 A / dm 2 to 5.0 A / dm 2 , and only the noble metal is efficiently recovered, so it can be used repeatedly as the eluent (3), and no large amount of waste liquid is generated. .

このように、貴金属の回収を終了したイオン交換樹脂(1)は、水洗、再生などの工程を経て、再び使用することもできる。   In this way, the ion exchange resin (1) that has finished collecting the noble metal can be used again through steps such as washing with water and regeneration.

(実施例1)
図1に示す回収システムにより、Au:245.6gの有価金属が吸着されているイオン交換樹脂(1)14kg(Au:17.54g/kg)を、イオン交換樹脂用カラム塔からなる溶離槽(2)に充填し、溶離槽(2)、電解回収槽(6)およびろ過設備(図示せず)に、チオシアン酸アンモニウム200g/リットル水溶液からなる溶離液(3)40リットルを、pH7に維持して、循環量20リットル/分でマグネットポンプ(7)により24時間、循環通液させた。イオン交換樹脂(1)は、住友化学製イオン交換樹脂へ貴金属を吸着させたものを用いた。
(Example 1)
By using the recovery system shown in FIG. 1, 14 kg (Au: 17.54 g / kg) of ion exchange resin (1) on which valuable metal of Au: 245.6 g has been adsorbed is dissolved in an elution tank comprising a column tower for ion exchange resin ( 2), and the eluent (3) consisting of 200 g / l aqueous solution of ammonium thiocyanate is maintained at pH 7 in the elution tank (2), electrolytic recovery tank (6) and filtration equipment (not shown). Then, the liquid was circulated through the magnet pump (7) at a circulation rate of 20 liters / minute for 24 hours. As the ion exchange resin (1), a product obtained by adsorbing a noble metal to an ion exchange resin manufactured by Sumitomo Chemical was used.

電解条件は、直流電源(8)を使用し、陽極(4)はカーボン、陰極(5)はステンレス板とし、電解電流密度は1.0A/dm2 として24時間、循環回収を行い、樹脂中Au量、溶離液中Au量、溶離液濃度、回収(電着)Au量の分析を行い、Au回収率を算出した。 The electrolytic conditions were a DC power supply (8), the anode (4) was carbon, the cathode (5) was a stainless steel plate, the electrolysis current density was 1.0 A / dm 2 , and circulation collection was performed for 24 hours. The amount of Au, the amount of Au in the eluent, the concentration of the eluent, and the amount of recovered (electrodeposition) Au were analyzed, and the Au recovery rate was calculated.

測定結果を表1に示す。表1に示すように、24時間でイオン交換樹脂中のAuを、陰極に99.0%電着させることができ、高回収率で、溶離液濃度の減少もほとんどなかった。また、回収された電着物のAu品位は、蛍光X線で測定したところ99.99%であった。

Figure 2005139483
The measurement results are shown in Table 1. As shown in Table 1, Au in the ion exchange resin could be electrodeposited 99.0% on the cathode in 24 hours, the recovery rate was high, and the eluent concentration was hardly decreased. Further, the Au quality of the collected electrodeposits was 99.99% as measured by fluorescent X-ray.
Figure 2005139483

(比較例1)
実施例1で使用したイオン交換樹脂(1)14kg(Au:238.2g)に、チオシアン酸アンモニウム200g/リットル水溶液からなる溶離液(3)を1,000リットル使用して、pH7に維持して、循環量20L/分で、マグネットポンプ(7)で通液した後、静置し、還元剤により還元を行い、Auを回収した。樹脂中Au量、溶離液中Au量、沈澱回収Au量の分析を行い、Au回収率を算出した。
(Comparative Example 1)
The ion exchange resin (1) used in Example 1 (14) (Au: 238.2 g) was used with 1,000 liters of an eluent (3) consisting of an aqueous solution of ammonium thiocyanate 200 g / liter, and the pH was maintained at 7. Then, the solution was passed through the magnet pump (7) at a circulation rate of 20 L / min, then allowed to stand, reduced with a reducing agent, and Au was collected. The amount of Au in the resin, the amount of Au in the eluent, and the amount of precipitated recovered Au were analyzed, and the Au recovery rate was calculated.

測定結果を表2に示す。以上のように、実施例1に比較して、溶離液を多量に必要とし、Au回収率も下回った。

Figure 2005139483
The measurement results are shown in Table 2. As described above, compared with Example 1, a large amount of eluent was required, and the Au recovery rate was also lower.
Figure 2005139483

(実施例2)
図1に示した装置を使用した。Au:15.12g、Ag:2.52gの有価金属が吸着されているイオン交換樹脂(1)14kg(Au:1.08g/kg、Ag:0.18g/kg)を、イオン交換樹脂用カラム塔からなる溶離槽(2)に充填し、溶離槽(2)、電解回収槽(6)およびろ過設備(図示せず)に、チオシアン酸アンモニウム200g/リットル水溶液からなる脱離液(3)40リットルを、pH7に維持して、循環量20リットル/分でマグネットポンプ(7)により循環通液させた。イオン交換樹脂(1)および陰極(5)は、24時間ごとに、3回入れ替えた。溶離液(3)は入れ替えずに連続で使用したが、溶離液濃度が150g/リットル以下になった時に、溶離液濃度が250g/リットルとなるまでチオシアン酸アンモニウムを添加して使用した。
(Example 2)
The apparatus shown in FIG. 1 was used. Ion exchange resin (1) 14 kg (Au: 1.08 g / kg, Ag: 0.18 g / kg) on which valuable metals of Au: 15.12 g and Ag: 2.52 g are adsorbed is used as a column for ion exchange resin. The elution tank (2) consisting of a tower is filled, and the desorption liquid (3) 40 consisting of an aqueous solution of ammonium thiocyanate 200 g / liter is added to the elution tank (2), the electrolytic recovery tank (6) and the filtration equipment (not shown). The liter was maintained at pH 7 and circulated through the magnet pump (7) at a circulation rate of 20 liters / minute. The ion exchange resin (1) and the cathode (5) were changed three times every 24 hours. The eluent (3) was used continuously without being exchanged, but when the eluent concentration was 150 g / liter or less, ammonium thiocyanate was added until the eluent concentration was 250 g / liter.

電解条件は、直流電源(8)を使用し、陽極(4)はカーボン、陰極(5)はステンレス板とし、電解電流密度は1.0A/dm2 として24時間、循環回収を行い、樹脂中Au量、溶離液中Au、Ag量、回収(電着)Au、Ag量の分析を行い、回収率および総回収率を算出した。その測定結果を表3に示す。

Figure 2005139483
The electrolytic conditions were a DC power supply (8), the anode (4) was carbon, the cathode (5) was a stainless steel plate, the electrolysis current density was 1.0 A / dm 2 , and circulation collection was performed for 24 hours. The amount of Au, the amount of Au in the eluent, the amount of Ag, the recovery (electrodeposition) Au and the amount of Ag were analyzed, and the recovery rate and the total recovery rate were calculated. The measurement results are shown in Table 3.
Figure 2005139483

回収率が、イオン交換樹脂を入れ替える毎に増加するのは、溶離液を交換していないためであり、Agで回収率が100%を超えたのは、イオン交換樹脂から溶離液中へ溶離したAgよりも、溶離液から陰極へ電着した銀の方が多かったためである。   The recovery rate increases every time the ion exchange resin is replaced because the eluent is not exchanged. The reason why the recovery rate of Ag exceeds 100% is that elution from the ion exchange resin into the eluent. This is because there was more silver electrodeposited from the eluent to the cathode than Ag.

表3に示したように、Au:98.7%、Ag:98.9%の高回収率を得ることができ、溶離液を繰り返し使用することができた。   As shown in Table 3, high recoveries of Au: 98.7% and Ag: 98.9% were obtained, and the eluent could be used repeatedly.

本発明の方法による貴金属の回収システムを示す概略図である。It is the schematic which shows the collection | recovery system of a noble metal by the method of this invention.

符号の説明Explanation of symbols

1 イオン交換樹脂
2 溶離槽
3 溶離液
4 陽極
5 陰極
6 電解回収槽
7 溶離液循環用ポンプ
8 整流器
DESCRIPTION OF SYMBOLS 1 Ion exchange resin 2 Elution tank 3 Eluent 4 Anode 5 Cathode 6 Electrolytic recovery tank 7 Pump for eluent circulation 8 Rectifier

Claims (1)

貴金属を吸着したイオン交換樹脂に、チオシアン酸化合物の水溶液からなる溶離液を接触させて、貴金属を溶離液中に溶出させた後、該溶離液から前記貴金属を電解により回収する貴金属の回収方法において、前記溶離液をイオン交換樹脂と接触させる溶離槽と、前記貴金属が溶出した溶離液から該貴金属の電解回収を行う電解回収槽とに、前記溶離液を連続的に循環させることを特徴とする貴金属の回収方法。 In the method for recovering a noble metal, the ion exchange resin adsorbing the noble metal is brought into contact with an eluent comprising an aqueous solution of a thiocyanate compound to elute the noble metal in the eluent, and then the noble metal is recovered from the eluent by electrolysis. The eluent is continuously circulated between an elution tank in which the eluent is brought into contact with an ion exchange resin, and an electrolytic recovery tank that performs electrolytic recovery of the noble metal from the eluate from which the noble metal has been eluted. How to recover precious metals.
JP2003374863A 2003-11-04 2003-11-04 Method for collecting noble metal Pending JP2005139483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003374863A JP2005139483A (en) 2003-11-04 2003-11-04 Method for collecting noble metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003374863A JP2005139483A (en) 2003-11-04 2003-11-04 Method for collecting noble metal

Publications (1)

Publication Number Publication Date
JP2005139483A true JP2005139483A (en) 2005-06-02

Family

ID=34686442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374863A Pending JP2005139483A (en) 2003-11-04 2003-11-04 Method for collecting noble metal

Country Status (1)

Country Link
JP (1) JP2005139483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095979A (en) * 2011-11-02 2013-05-20 Toshiba Corp Metal recovering method
JP7428574B2 (en) 2020-04-08 2024-02-06 大口電子株式会社 How to recover gold from ion exchange resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095979A (en) * 2011-11-02 2013-05-20 Toshiba Corp Metal recovering method
JP7428574B2 (en) 2020-04-08 2024-02-06 大口電子株式会社 How to recover gold from ion exchange resin

Similar Documents

Publication Publication Date Title
KR100207041B1 (en) Method of recovering antimony and bismuth from copper electrolyte
EP0535837A1 (en) Decontamination of radioactive metals
KR101199513B1 (en) Valuable metal recovery method from waste solder
JP5070581B2 (en) Method for separating and recovering precious metals
RU2157569C2 (en) Method for removing technetium from metal contaminated with radioactive materials
US3975244A (en) Electrolytic refining
US4374008A (en) Process for separating tungsten from coinage metals
CN108341526A (en) A kind of nickel-containing waste water online recycling water resource and extraction metal nickel resources new process
JP2005139483A (en) Method for collecting noble metal
JP3825983B2 (en) Metal purification method
JP2008127604A (en) Method of recovering noble metal element
RU2680552C1 (en) Method for producing silver and platinum group metals
JP3669418B2 (en) Method for collecting Pd and Pt from tributyl phosphate
JP3878402B2 (en) Metal purification method
JP2007290937A (en) Method of purifying nickel chloride aqueous solution
JPS63502358A (en) Electrolytic method that simultaneously performs gold electrodeposition and elemental iodine regeneration
JP3350917B2 (en) Method for selective recovery of antimony and bismuth in electrolytic solution in copper electrorefining
JP2000227497A (en) Separation recovery method of platinum group element, technetium, tellurium and selenium
JPH0533071A (en) Method for separating and refining rhodium from aqueous solution
JP3653944B2 (en) Method for selective recovery of Sb and Bi from copper electrolyte
JP2021165428A (en) Method for recovering gold from ion exchange resin
JP2005089808A (en) Method for refining nickel chloride aqueous solution
JP7194934B2 (en) Method for recovering silver in copper electrolyte
JP4506041B2 (en) Methods for removing osmium and ruthenium from nickel chloride solutions.
JPS6220838A (en) Installation for treating waste pickling liquid and solid residue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707