JP2005139261A - Resin composition, resin composition intermediate, method for producing resin composition, and method for producing resin composition intermediate - Google Patents

Resin composition, resin composition intermediate, method for producing resin composition, and method for producing resin composition intermediate Download PDF

Info

Publication number
JP2005139261A
JP2005139261A JP2003375637A JP2003375637A JP2005139261A JP 2005139261 A JP2005139261 A JP 2005139261A JP 2003375637 A JP2003375637 A JP 2003375637A JP 2003375637 A JP2003375637 A JP 2003375637A JP 2005139261 A JP2005139261 A JP 2005139261A
Authority
JP
Japan
Prior art keywords
resin composition
polycarbonate
fine particles
phenyl group
inorganic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003375637A
Other languages
Japanese (ja)
Inventor
Takashi Kiyono
俊 清野
Yasuaki Kai
康朗 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003375637A priority Critical patent/JP2005139261A/en
Publication of JP2005139261A publication Critical patent/JP2005139261A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new resin composition which can realize excellent transparency and improved mechanical characteristics such as stiffness as resin glass capable of being applied to various products instead of conventional inorganic glass. <P>SOLUTION: This method for producing the resin composition comprising phenyl group-having inorganic oxide fine particles and a polycarbonate/phenyl group-having polyvinyl copolymer comprises dissolving a resin composition intermediate containing a polycarbonate polymer having double bonds at the terminals in a prescribed solvent to produce a preliminary polymerization solution, adding the phenyl group-having inorganic oxide fine particles and a phenyl group-having vinyl monomer to the preliminary polymerization solution to produce a polymerization solution, and then heating the polymerization solution at a prescribed temperature to cause the polymerization reaction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光線透過率を低減することなく剛性向上、熱膨張率低減、表面硬度向上を実現しうる樹脂組成物、及び樹脂組成物中間体に関する。また、本発明は、前記樹脂組成物及び前記樹脂組成物中間体の製造方法に関する。   The present invention relates to a resin composition capable of realizing improvement in rigidity, reduction in coefficient of thermal expansion, and improvement in surface hardness without reducing light transmittance, and a resin composition intermediate. Moreover, this invention relates to the manufacturing method of the said resin composition and the said resin composition intermediate body.

自動車の窓ガラスは、外形の大部分を占め、運転上および外観上重要な部品で、各種折曲ガラスの出現により形状自由度が大きくなり、使用面積は増加している。このため、軽量化と安全性が要求されている。また、最近のヘッドランプは、新規な造形が多く、形状自由度、光学的性能などの要求が高度になっている。   The window glass of an automobile occupies most of the outer shape, and is an important component in terms of operation and appearance. With the appearance of various types of bent glass, the degree of freedom of shape has increased, and the use area has increased. For this reason, weight reduction and safety are required. In addition, recent headlamps have a lot of new modeling, and demands for shape flexibility, optical performance, etc. are high.

樹脂製ガラスは、無機ガラスに比べ、弾性率が小さいので、従来大きな窓ガラス製品には適用が困難であった。また、剛性なども無機ガラスに比べて小さく、前述したような大きな窓ガラス製品などに使用するには、その厚さを増大させなければならず、軽量化の要請を満足することができないでいた。さらに、樹脂製ガラスは無機ガラスに比べて熱膨張率が大きく、前述のような窓ガラス製品に適用すると、例えば夏などにおいては、前記樹脂製ガラスの熱膨張に起因して表面が波打ちを起こし、視界を十分に確保できないという問題が生じていた。   Since resin glass has a smaller elastic modulus than inorganic glass, it has conventionally been difficult to apply it to large window glass products. In addition, the rigidity, etc. is smaller than that of inorganic glass, and in order to use it for large window glass products as described above, the thickness has to be increased and the demand for weight reduction cannot be satisfied. . Furthermore, resin glass has a larger coefficient of thermal expansion than inorganic glass. When applied to window glass products as described above, for example, in summer, the surface is wavy due to the thermal expansion of the resin glass. There was a problem that sufficient visibility could not be secured.

これに対して、前記樹脂製ガラス中に、補強材としてガラス繊維を添加して剛性向上する試みがなされているが、前記ガラス繊維の繊維径は約10ミクロンもあり、長さも約200ミクロンもあるので可視光線が透過されずに反射され、その結果不透明となってしまっていた。このため、ガラス繊維含有樹脂製ガラスは、安全上の視界確保に不十分であるので上述した窓ガラス部品に採用には至らなかった。   On the other hand, an attempt has been made to improve the rigidity by adding glass fiber as a reinforcing material in the resin glass, but the fiber diameter of the glass fiber is about 10 microns, and the length is about 200 microns. As a result, visible light was reflected without being transmitted, and as a result, it was opaque. For this reason, since the glass fiber-containing resin glass is insufficient for securing the field of view for safety, it has not been adopted for the above-described window glass parts.

また、前記樹脂製ガラスは、無機ガラスに比べて表面硬度が小さいので、ワイパーで擦ると傷がつくので、このような観点からも窓ガラス部品への適用が困難であった。これに対して、前記樹脂製ガラスに体して有機シラン系の表面硬化処理を施す試みがなされているが、このような表面硬化処理では前記樹脂製ガラス表面を十分に硬化させることができず、長時間の使用において多数の傷が発生するようになるため、結果的に実用には至っていない。   Further, since the resin glass has a surface hardness smaller than that of the inorganic glass, it is damaged when rubbed with a wiper, so that it is difficult to apply to the window glass part from this point of view. On the other hand, attempts have been made to apply organosilane-based surface hardening treatment to the resinous glass, but such surface hardening treatment cannot sufficiently cure the resinous glass surface. As a result, many scratches occur after long-term use, and as a result, it has not been put into practical use.

さらに、前記樹脂製ガラスの剛性向上と表面硬度確保のために、前記樹脂製ガラスの表面に無機ガラスを積層してガラス積層体を形成する試みがなされているが、例えば夏の高温時においては、前記樹脂製ガラスと前記無機ガラスとの熱膨張差に起因して界面剥離が生じ、結果的に実用には至っていない。   Furthermore, in order to improve the rigidity of the resin glass and ensure the surface hardness, attempts have been made to form a glass laminate by laminating inorganic glass on the surface of the resin glass. Interfacial peeling occurs due to the difference in thermal expansion between the resin glass and the inorganic glass, and as a result, it has not been put into practical use.

一方、最近の電子部品の樹脂製記憶デスク表面に対して、その表面硬化及び剛性向上を目的として、前記デスク表面にシリカをスパッタリングする試みがなされているが、前記スパッタリング処理は真空雰囲気中で行うため、このような試みは大きな部品に対して適用することができず、さらに生産性が低いという問題がある。   On the other hand, attempts have been made to sputter silica on the desk surface for the purpose of hardening the surface and improving the rigidity of the resin storage desk surface of recent electronic components, but the sputtering process is performed in a vacuum atmosphere. Therefore, such an attempt cannot be applied to large parts, and there is a problem that productivity is low.

かかる問題に鑑みて、本出願人は、アクリル樹脂の合成過程でシリカ微粒子を配合する技術を検討した(特開平11−343349号参照)。しかしながら、得られた樹脂組成物は主としてアクリル樹脂を母材としたため、耐熱性、耐衝撃性への要求水準が上昇した現在においては、これらの特性を十分に満足することができない。   In view of such a problem, the present applicant has studied a technique for blending silica fine particles in the process of synthesizing an acrylic resin (see JP-A-11-343349). However, since the obtained resin composition is mainly composed of an acrylic resin as a base material, these characteristics cannot be sufficiently satisfied at present when the required level of heat resistance and impact resistance has increased.

さらに、同公報中において、ポリカーボネイト樹脂を塩化メチレン溶剤に溶解し、これにシリカ微粒子を混合することが開示されているが、比較的大きなシリカ濃度においては、前記ポリカーボネート樹脂中での前記シリカの混合分散が困難になり、透明性、並びに剛性、弾性率、及び耐衝撃性などの機械的強度を十分に向上させることができないでいた。   Further, in the same publication, it is disclosed that a polycarbonate resin is dissolved in a methylene chloride solvent, and silica fine particles are mixed therewith. However, at a relatively large silica concentration, mixing of the silica in the polycarbonate resin is disclosed. Dispersion becomes difficult, and transparency and mechanical strength such as rigidity, elastic modulus, and impact resistance cannot be sufficiently improved.

かかる問題に鑑みて、シリカの表面をシリコーン化合物などで改質したり(特開2003−201114号公報)、シリカの表面に対して疎水化処理を施したり(特開2003−201405号公報)、樹脂組成物を構成する重合体の表面に水酸基と水素結合を生ぜしめる官能基を形成し、この樹脂組成物中に疎水化処理したシリカを分散させる(特開2003−201409号公報)などの試みがなされているが、樹脂組成物中でのシリカの分散性及び安定性は十分ではなく、その透明性及び機械的強度を同時に満足させることのできる樹脂組成物を得ることはできないでいた。   In view of such a problem, the surface of silica is modified with a silicone compound or the like (Japanese Patent Laid-Open No. 2003-201114), or the surface of silica is subjected to a hydrophobic treatment (Japanese Patent Laid-Open No. 2003-201405). Attempts to form functional groups that generate hydroxyl groups and hydrogen bonds on the surface of the polymer constituting the resin composition, and to disperse the hydrophobized silica in the resin composition (Japanese Patent Laid-Open No. 2003-201409) However, the dispersibility and stability of silica in the resin composition are not sufficient, and it has not been possible to obtain a resin composition that can simultaneously satisfy the transparency and mechanical strength.

本発明は、上記従来技術の問題に鑑みてなされたものであり、従来の無機ガラスに代わって種々の製品に適用できる樹脂製ガラスとして、透明性に優れ、剛性などの機械的特性の向上を実現し得る新規な樹脂組成物を提供するものである。   The present invention has been made in view of the above-mentioned problems of the prior art, and is excellent in transparency and improved in mechanical properties such as rigidity as a resin glass that can be applied to various products in place of the conventional inorganic glass. A novel resin composition that can be realized is provided.

上記目的を達成すべく、本発明は、
フェニル基を有する無機酸化物微粒子と、ポリカーボネート/フェニル基を有するポリビニル共重合体とを含むことを特徴とする、樹脂組成物に関する。
In order to achieve the above object, the present invention provides:
The present invention relates to a resin composition comprising inorganic oxide fine particles having a phenyl group and a polyvinyl copolymer having a polycarbonate / phenyl group.

また、本発明は、

Figure 2005139261

で示される、片末端に二重結合を有するポリカーボネート重合体を含む樹脂組成物中間体及び
Figure 2005139261

で示される、両末端に二重結合を有するポリカーボネート重合体を含む樹脂組成物中間体の少なくとも一方を所定の溶媒中に溶解させて、予備重合溶液を作製する工程と、
前記予備重合溶液中に、フェニル基を有する無機酸化物微粒子及びフェニル基を有するビニルモノマーを添加して重合溶液を作製する工程と、
前記重合溶液を所定温度に加熱することにより重合反応を生ぜしめ、前記フェニル基を有する前記無機酸化物微粒子と、ポリカーボネート/フェニル基を有するポリビニル共重合体とを含むことを特徴とする、樹脂組成物を製造する工程と、
を具えることを特徴とする、樹脂組成物の製造方法に関する。 The present invention also provides:
Figure 2005139261

And a resin composition intermediate comprising a polycarbonate polymer having a double bond at one end, and
Figure 2005139261

A step of dissolving a resin composition intermediate containing a polycarbonate polymer having a double bond at both ends, in a predetermined solvent to prepare a prepolymerized solution;
A step of adding a phenyl group-containing inorganic oxide fine particle and a phenyl group-containing vinyl monomer to prepare a polymerization solution in the prepolymerization solution;
A resin composition characterized by causing a polymerization reaction by heating the polymerization solution to a predetermined temperature, and containing the inorganic oxide fine particles having the phenyl group and a polyvinyl copolymer having a polycarbonate / phenyl group. Manufacturing a product,
It is related with the manufacturing method of the resin composition characterized by comprising.

本発明においては、フェニル基を有する無機酸化物微粒子を準備し、一方で〔化1〕又は〔化2〕で示されるポリカーボネート重合体を含む樹脂組成物中間体を準備する。そして、前記樹脂組成物中間体を含む予備重合溶液を作製するとともに、この予備重合溶液中に前記無機酸化物微粒子及びフェニル基を有するビニルモノマーを添加し重合溶液を作製し、所定温度に加熱して重合反応を生ぜしめている。   In the present invention, inorganic oxide fine particles having a phenyl group are prepared, while a resin composition intermediate containing a polycarbonate polymer represented by [Chemical Formula 1] or [Chemical Formula 2] is prepared. And while preparing the prepolymerization solution containing the said resin composition intermediate body, adding the vinyl monomer which has the said inorganic oxide microparticles | fine-particles and a phenyl group in this prepolymerization solution, producing a polymerization solution, and heating to predetermined temperature Polymerization reaction.

このとき、前記ビニルモノマーは前記ポリカーボネート重合体の二重結合部分に付加し、ポリカーボネート/ポリビニル共重合体を形成するとともに、この共重合体中のフェニル基と前記無機酸化物微粒子中のフェニル基とが相互作用を生ぜしめるようになるため、前記無機酸化物微粒子は最終的に得た樹脂組成物中で均一かつ安定的に分散するようになる。したがって、前記樹脂組成物は、透明性、線膨脹率、並びに剛性及び弾性率などの機械的強度において十分に高い値を呈するようになる。   At this time, the vinyl monomer is added to the double bond portion of the polycarbonate polymer to form a polycarbonate / polyvinyl copolymer, and the phenyl group in the copolymer and the phenyl group in the inorganic oxide fine particles As a result, the inorganic oxide fine particles are uniformly and stably dispersed in the finally obtained resin composition. Accordingly, the resin composition exhibits sufficiently high values in mechanical strength such as transparency, linear expansion coefficient, rigidity, and elastic modulus.

以上説明したように、本発明によれば、透明性及び剛性などの機械的特性に優れた新規な樹脂組成物を提供できる。したがって、従来の無機ガラスに代わって種々の製品に適用できる樹脂製ガラスとして広範に応用することができる。   As described above, according to the present invention, a novel resin composition excellent in mechanical properties such as transparency and rigidity can be provided. Therefore, it can be widely applied as a resin glass that can be applied to various products in place of the conventional inorganic glass.

以下、本発明の詳細、並びにその他の特徴及び利点について詳述する。
本発明においては、目的とする樹脂組成物を製造するに際し、最初に〔化1〕で示される、片末端に二重結合を有するポリカーボネート重合体を含む樹脂組成物中間体、及び/又は〔化2〕で示される、両末端に二重結合を有するポリカーボネート重合体を含む樹脂組成物中間体を準備する。これらの樹脂組成物中間体は、例えばホスゲン法による重合反応を二段階で行い、後段の重合反応においてp−イソプロペニルフェノール溶液を添加することによって製造することができる。
Details of the present invention, as well as other features and advantages, are described in detail below.
In the present invention, when a desired resin composition is produced, a resin composition intermediate comprising a polycarbonate polymer having a double bond at one end, first represented by [Chemical Formula 1], and / or [Chemical Formula 1] 2], a resin composition intermediate comprising a polycarbonate polymer having double bonds at both ends is prepared. These resin composition intermediates can be produced, for example, by performing a polymerization reaction by a phosgene method in two stages and adding a p-isopropenylphenol solution in the subsequent polymerization reaction.

図1は、上述した樹脂組成物中間体を製造する際の製造プロセスを時系列的に示した工程図である。最初に、水酸化ナトリウム(NaOH)水溶液及び2,2−ビス(4−ヒドロキシプロパン(BPA)からなるBPAアルカリ水溶液を準備し、これにハイドロサルファイド、メチレンクロライド、及びホスゲンを順次に添加して重合反応を実施する(前段の重合反応)。その後、必要に応じて再度メチレンクロライドを添加した後、p−イソプロペニルフェノール溶液を添加し、再度ホスゲンを添加し、必要に応じて再度メチレンクロライドを添加するとともに、分子量調整剤としてのトリエチルアミンを添加し、所定時間重合反応を行う(後段の重合反応)ことによって、目的とする樹脂組成物中間体を得る。   FIG. 1 is a process diagram showing, in time series, a production process for producing the above-described resin composition intermediate. First, a BPA alkaline aqueous solution comprising sodium hydroxide (NaOH) aqueous solution and 2,2-bis (4-hydroxypropane (BPA) is prepared, and hydrosulfide, methylene chloride, and phosgene are sequentially added to the polymerization. Carry out the reaction (preliminary polymerization reaction) .After that, add methylene chloride again if necessary, then add p-isopropenylphenol solution, add phosgene again, and add methylene chloride again if necessary. At the same time, triethylamine as a molecular weight regulator is added, and a polymerization reaction is performed for a predetermined time (polymerization reaction in the subsequent stage), thereby obtaining a target resin composition intermediate.

図2は、上述した製造プロセスにおける、前記樹脂組成物中間体の生成過程を示す反応式である。図2においては、主として後段の重合反応によって前記樹脂組成物中間体が生成される過程を示している。図2における左側のポリカーボネート重合体は上述した前段の重合反応によって得られるものであり、このようにして得たポリカーボネート重合体は、後段の重合過程において、p−イソプロピルフェノール及びホスゲンが添加されることによって脱塩酸反応を引き起こし、その結果、末端に二重結合(図では片末端に二重結合を有する)を有するポリカーボネート重合体からなる目的とする樹脂組成物中間体を得る。   FIG. 2 is a reaction formula showing a production process of the resin composition intermediate in the manufacturing process described above. FIG. 2 shows a process in which the resin composition intermediate is generated mainly by a subsequent polymerization reaction. The polycarbonate polymer on the left side in FIG. 2 is obtained by the above-described polymerization reaction, and the polycarbonate polymer thus obtained is obtained by adding p-isopropylphenol and phosgene in the subsequent polymerization process. Causes a dehydrochlorination reaction, and as a result, a target resin composition intermediate comprising a polycarbonate polymer having a double bond at the end (having a double bond at one end in the figure) is obtained.

なお、上述したポリカーボネート重合体において、二重結合が片末端のみに形成されるか、両末端に形成されるかは、ビスフェノールA,ホスゲン、およびp−イソプロピルフェノールの配合比率によって決定される。   In the above polycarbonate polymer, whether the double bond is formed only at one end or both ends is determined by the blending ratio of bisphenol A, phosgene, and p-isopropylphenol.

一方で、フェニル基を有する無機酸化物微粒子を準備する。前記フェニル基は、例えば前記無機酸化物微粒子に対してシリル化処理を施すことによって付加することができる。   On the other hand, inorganic oxide fine particles having a phenyl group are prepared. The phenyl group can be added, for example, by subjecting the inorganic oxide fine particles to a silylation treatment.

前記無機酸化物微粒子は、球状、パールネックレス状又は鎖状であることが好ましい。これによって、最終的に得る樹脂組成物中での均一分散が容易になるとともに、前記樹脂組成物中で安定的に存在するようになり、その透明性及び機械的強度などをより向上させることができるようになる。   The inorganic oxide fine particles are preferably spherical, pearl necklace-shaped or chain-shaped. As a result, uniform dispersion in the finally obtained resin composition is facilitated, and the resin composition stably exists in the resin composition, and the transparency and mechanical strength thereof can be further improved. become able to.

また、前記無機酸化物微粒子の1次粒子径は、可視光線の波長域の下限値である380nm以下であることが好ましく、さらには5nm〜200nmであることが好ましく、特には5nm〜100nmであることが好ましい。これによって、目的とする樹脂組成物の透明性を十分に確保することができる。   The primary particle diameter of the inorganic oxide fine particles is preferably 380 nm or less, which is the lower limit value of the visible light wavelength range, more preferably 5 nm to 200 nm, and particularly 5 nm to 100 nm. It is preferable. Thereby, the transparency of the target resin composition can be sufficiently ensured.

なお、前記無機酸化物微粒子の種類については特に限定されるものではないが、好ましくはシリカ微粒子を用いる。   The kind of the inorganic oxide fine particles is not particularly limited, but silica fine particles are preferably used.

次いで、本発明では、上述した末端二重結合を有するポリカーボネート重合体からなる樹脂組成物中間体を原料として、この原料中に前記無機酸化物微粒子を分散させ、前記樹脂組成物を得る。   Next, in the present invention, the resin composition intermediate comprising the polycarbonate polymer having a terminal double bond described above is used as a raw material, and the inorganic oxide fine particles are dispersed in the raw material to obtain the resin composition.

従来のように、前記樹脂組成物中間体を溶融させて、得られた溶融体に前記無機酸化物微粒子を配合混練させて、前記無機酸化物微粒子を最終目的物である前記樹脂組成物中に分散させようとすると、特に前記無機酸化物微粒子がある程度以上の量になると、前記無機酸化物微粒子が凝集してしまい、その結果、前記樹脂組成物の透明性が劣化してしまう。そこで、本発明では、前記樹脂組成物中間体の末端二重結合に対してフェニル基を付加し、前記無機酸化物微粒子のフェニル基と前記樹脂組成物中間体のフェニル基とが互いに相互作用するようにして、前記無機酸化物微粒子の均一分散を実行する。   Conventionally, the resin composition intermediate is melted, and the inorganic oxide fine particles are blended and kneaded into the obtained melt, so that the inorganic oxide fine particles are contained in the resin composition as a final target product. When it is attempted to disperse, especially when the amount of the inorganic oxide fine particles exceeds a certain level, the inorganic oxide fine particles aggregate, and as a result, the transparency of the resin composition deteriorates. Therefore, in the present invention, a phenyl group is added to the terminal double bond of the resin composition intermediate, and the phenyl group of the inorganic oxide fine particles and the phenyl group of the resin composition intermediate interact with each other. In this way, uniform dispersion of the inorganic oxide fine particles is performed.

具体的には、前記樹脂組成物中間体を所定の溶媒中に溶解させ、必要に応じてメチレンクロライドを添加して予備重合溶液を作製し、次いで、この予備重合溶液に対してフェニル基を有するビニルモノマー及び前記無機酸化物微粒子を添加して重合溶液を作製し、必要に応じて分子量調整剤を加えて重合反応を行い、前記樹脂組成物を得る。なお、前記樹脂組成物中間体から前記樹脂組成物を得るまでの製造プロセスを図3に示す。   Specifically, the resin composition intermediate is dissolved in a predetermined solvent, and a methylene chloride is added as necessary to prepare a prepolymerized solution. Then, the prepolymerized solution has a phenyl group. A vinyl monomer and the inorganic oxide fine particles are added to prepare a polymerization solution, and if necessary, a molecular weight adjusting agent is added to perform a polymerization reaction to obtain the resin composition. In addition, the manufacturing process until it obtains the said resin composition from the said resin composition intermediate body is shown in FIG.

図4は、図3に示す製造プロセスにおける反応過程を示す反応式である。図4に示すように、末端二重結合を有するポリカーボネート重合体からなる樹脂組成物中間体は、フェニル基を有するビニルモノマー(図ではスチレンモノマー)と反応し、その末端の二重結合に前記ビニルモノマー(スチレンモノマー)が付加した、ポリカーボネート/フェニル基を有するポリビニル共重合体からなる追加の樹脂組成物中間体が形成される。   FIG. 4 is a reaction formula showing a reaction process in the manufacturing process shown in FIG. As shown in FIG. 4, a resin composition intermediate comprising a polycarbonate polymer having a terminal double bond reacts with a vinyl monomer having a phenyl group (in the figure, a styrene monomer), and the vinyl is bonded to the terminal double bond. An additional resin composition intermediate consisting of a polyvinyl copolymer having a polycarbonate / phenyl group, to which a monomer (styrene monomer) has been added, is formed.

図3に示す製造プロセスでは、重合反応過程において、前記追加の樹脂組成物中間体におけるフェニル基と、前記無機酸化物微粒子のフェニル基とが相互作用を生ぜしめる結果、前記無機酸化物微粒子が凝集することなく均一に分散した上記樹脂組成物を得ることができる。前記樹脂組成物は、上述した製造方法に起因して、フェニル基を有する無機酸化物微粒子と、前記追加の樹脂組成物中間体とから構成される。   In the manufacturing process shown in FIG. 3, in the polymerization reaction process, as a result of the interaction between the phenyl group in the additional resin composition intermediate and the phenyl group of the inorganic oxide fine particles, the inorganic oxide fine particles are aggregated. The above-mentioned resin composition dispersed uniformly can be obtained without doing so. The resin composition is composed of inorganic oxide fine particles having a phenyl group and the additional resin composition intermediate due to the production method described above.

前記ビニルモノマーとしては、スチレンモノマー、アクリル酸フェニルモノマー、及びイソプロペニルトルエンモノマーなどを好ましく用いることができる。特に、本発明ではスチレンモノマーを用いることが好ましい。   As the vinyl monomer, a styrene monomer, a phenyl acrylate monomer, an isopropenyl toluene monomer, and the like can be preferably used. In particular, it is preferable to use a styrene monomer in the present invention.

前述したビニルモノマーを用いることにより、前記追加の樹脂組成物中間体は、ポリカーボネート/ポリスチレン共重合体、ポリカーボネート/ポリアクリル酸フェニル共重合体、及びポリカーボネート/ポリイソプロペニルトルエン共重合体から構成されることになる。したがって、最終的に得る前記樹脂組成物もこれらの共重合体を含むことになる。   By using the aforementioned vinyl monomer, the additional resin composition intermediate is composed of a polycarbonate / polystyrene copolymer, a polycarbonate / polyacrylic acid phenyl copolymer, and a polycarbonate / polyisopropenyltoluene copolymer. It will be. Therefore, the resin composition finally obtained also contains these copolymers.

なお、ビニルモノマーとしてスチレンモノマーを用いた場合の、前記共重合体の一般式は、前記ポリカーボネート重合体からなる樹脂組成物中間体が片末端のみに二重結合を有する場合は

Figure 2005139261

で示され、前記樹脂組成物中間体が両末端に二重結合を有する場合は
Figure 2005139261

で示される。したがって、前記追加の樹脂組成物中間体及び前記樹脂組成物は、前述したような一般式の共重合体を有することになる。 In the case where a styrene monomer is used as the vinyl monomer, the general formula of the copolymer is that the resin composition intermediate comprising the polycarbonate polymer has a double bond only at one end.
Figure 2005139261

When the resin composition intermediate has double bonds at both ends
Figure 2005139261

Indicated by Therefore, the additional resin composition intermediate and the resin composition have the general formula copolymer as described above.

以下に実施例を説明するが、ここでは、ポリカーボネイトをPCと略記する。
なお、以下に示す各実施例および各比較例において、全光線透過率、透過電子顕微鏡での分散状態、曲げ強度、曲げ弾性率および線膨脹係数は、下記装置を用いて評価した。
・全光線透過率:ヘイズメーター(村上色彩研究所製MH−65)で測定
・透過電子顕微鏡での分散状態:日立製作所製H−800を用いて80000倍で観察し、黒色がシリカ微粒子で、白色が樹脂として分散状態を観察
・曲げ強度、弓単性率:オートグラフ(島津製作所DCS−10T)で測定
・線膨脹係数の測定:熱機械測定装置(セイコー電子工業製TMA120C)で測定
Examples will be described below. Here, polycarbonate is abbreviated as PC.
In each of the following examples and comparative examples, the total light transmittance, the dispersion state in a transmission electron microscope, the bending strength, the bending elastic modulus, and the linear expansion coefficient were evaluated using the following apparatuses.
-Total light transmittance: Measured with a haze meter (MH-65 manufactured by Murakami Color Research Laboratory)-Dispersion state with a transmission electron microscope: observed with H-800 manufactured by Hitachi, Ltd. Observation of dispersion state as white resin ・ Bending strength, bow unity ratio: measured with autograph (Shimadzu DCS-10T) ・ Measurement of linear expansion coefficient: measured with thermomechanical measuring device (TMA120C manufactured by Seiko Denshi Kogyo)

(実施例1)
初めに、末端に二重結合の付いた不飽和末端基PC(樹脂組成物中間体)を次のような手順で合成した。
水酸化ナトリウム110gを水1.25リットルに溶解し、この溶液を20℃に保持するとともに、2,2−ビス(4−ヒドロキシフェニル)プロパン(BPA)228gを添加して、BPAアルカリ水溶液を作製した。次いで、この水溶液中にハイドロサルフアイド0.25gを溶解するとともに、メチレンクロライド(MC)750mlを加え、撹拌混合した後ホスゲンを吹き込み30分間重合反応を実施した(前段の重合反応)。
(Example 1)
First, an unsaturated terminal group PC (resin composition intermediate) having a double bond at the terminal was synthesized by the following procedure.
110 g of sodium hydroxide is dissolved in 1.25 liters of water, and this solution is kept at 20 ° C., and 228 g of 2,2-bis (4-hydroxyphenyl) propane (BPA) is added to prepare an aqueous BPA aqueous solution. did. Next, 0.25 g of hydrosulfide was dissolved in this aqueous solution, 750 ml of methylene chloride (MC) was added, and after stirring and mixing, phosgene was blown in and a polymerization reaction was carried out for 30 minutes (preceding polymerization reaction).

次いで、重合液中にp−イソプロペニルフェノール9.75gを含むMC625gを加え、更にホスゲンを30分間吹き込み、さらに、1%トリエチルアミンのMC溶液15mlを加え、約1時間重合した(後段の重合反応)。重合液の有機相をリン酸で中和し、メタノールに滴下し重合組成物を沈殿させ、濾過及び乾燥して、粉末状の、末端に二重結合を有する樹脂組成物中間体を得た。   Next, 625 g of MC containing 9.75 g of p-isopropenylphenol was added to the polymerization solution, phosgene was blown in for 30 minutes, and 15 ml of 1% triethylamine in MC was further added, followed by polymerization for about 1 hour (polymerization reaction in the latter stage). . The organic phase of the polymerization solution was neutralized with phosphoric acid, dropped into methanol to precipitate the polymerization composition, filtered and dried to obtain a powdery resin composition intermediate having a double bond at the terminal.

一方、所定の容器中で、フェニル基で表面処理をした球状シリカ20gをスチレンモノマー20gに配合及び分散させて、シリカ分散溶液を調整した。また、前記樹脂組成物中間体の100gをMC500mlに溶解し樹脂溶液を調整した。次いで、前記シリカ分散溶液と前記樹脂溶液とを混合し撹拌させて、120℃に加熱した。次いで、分子量調節剤として、n−ドデシルメルカプタンを0.11gを配合して、約100分間重合反応した後に、メタノールで沈殿させシリカ/PC樹脂組成物を得た。なお、上述した製造プロセスは、図1及び図3に関連させて図5及び図6に時系列的に示している。   On the other hand, 20 g of spherical silica surface-treated with a phenyl group was blended and dispersed in 20 g of styrene monomer in a predetermined container to prepare a silica dispersion solution. Also, 100 g of the resin composition intermediate was dissolved in 500 ml of MC to prepare a resin solution. Next, the silica dispersion solution and the resin solution were mixed and stirred, and heated to 120 ° C. Next, 0.11 g of n-dodecyl mercaptan was blended as a molecular weight regulator, polymerized for about 100 minutes, and precipitated with methanol to obtain a silica / PC resin composition. The manufacturing process described above is shown in time series in FIGS. 5 and 6 in association with FIGS.

得られた組成物を、乾燥、粉砕し、熱プレス成形によりシート状の成形品を得た。この試験片で得られた全光線透過率、透過電顕での分散状態、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。また、樹脂組成物の灰分から求めたシリカ配合量は、約14重量%であった。   The obtained composition was dried and pulverized, and a sheet-like molded product was obtained by hot press molding. Table 1 shows the results of the total light transmittance, the dispersion state with a transmission electron microscope, the bending strength, the bending elastic modulus, and the linear expansion coefficient obtained with this test piece. Moreover, the silica compounding quantity calculated | required from the ash content of the resin composition was about 14 weight%.

(実施例2)
樹脂組成物中間体の後段に重合過程において、p−イソプロペニルフェノールの添加量を19.5gとし、1%トリエチルアミンのMC溶液に代えて2%トリエチルアミンのMC溶液を用いた以外は、実施例1と同様にして樹脂組成物中間体を製造し、シリカ/PC樹脂組成物を得た。
(Example 2)
Example 1 except that the amount of p-isopropenylphenol added was 19.5 g and a 2% triethylamine MC solution was used in place of the 1% triethylamine MC solution in the polymerization process after the resin composition intermediate. In the same manner as above, a resin composition intermediate was produced to obtain a silica / PC resin composition.

得られた組成物を、乾燥、粉砕し、熱プレス成形によりシート状の成形品を得た。この試験片で得られた全光線透過率、透過電顕での分散状態、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。また、樹脂組成物の灰分から求めたシリカ配合量は、約14重量%であった。   The obtained composition was dried and pulverized, and a sheet-like molded product was obtained by hot press molding. Table 1 shows the results of the total light transmittance, the dispersion state with a transmission electron microscope, the bending strength, the bending elastic modulus, and the linear expansion coefficient obtained with this test piece. Moreover, the silica compounding quantity calculated | required from the ash content of the resin composition was about 14 weight%.

(実施例3)
球状シリカの量を20gから30gに変更した以外は、実施例1と同様にして樹脂組成物中間体を製造し、シリカ/PC樹脂組成物を得た。得られた組成物を、乾燥、粉砕し、熱プレス成形によりシート状の成形品を得た。この試験片で得られた全光線透過率、透過電顕での分散状態、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。また、樹脂組成物の灰分から求めたシリカ配合量は、約20重量%であった。
(Example 3)
A resin composition intermediate was produced in the same manner as in Example 1 except that the amount of spherical silica was changed from 20 g to 30 g, to obtain a silica / PC resin composition. The obtained composition was dried and pulverized, and a sheet-like molded product was obtained by hot press molding. Table 1 shows the results of the total light transmittance, the dispersion state with a transmission electron microscope, the bending strength, the bending elastic modulus, and the linear expansion coefficient obtained with this test piece. Moreover, the silica compounding quantity calculated | required from the ash content of the resin composition was about 20 weight%.

(実施例4)
球状シリカの量を20gから40gに変更した以外は、実施例1と同様にして樹脂組成物中間体を製造し、シリカ/PC樹脂組成物を得た。得られた組成物を、乾燥、粉砕し、熱プレス成形によりシート状の成形品を得た。この試験片で得られた全光線透過率、透過電顕での分散状態、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。また、樹脂組成物の灰分から求めたシリカ配合量は、約25重量%であった。
Example 4
A resin composition intermediate was produced in the same manner as in Example 1 except that the amount of spherical silica was changed from 20 g to 40 g, to obtain a silica / PC resin composition. The obtained composition was dried and pulverized, and a sheet-like molded product was obtained by hot press molding. Table 1 shows the results of the total light transmittance, the dispersion state with a transmission electron microscope, the bending strength, the bending elastic modulus, and the linear expansion coefficient obtained with this test piece. Moreover, the silica compounding quantity calculated | required from the ash content of the resin composition was about 25 weight%.

(実施例5)
球状シリカに代えて鎖状シリカを用いた以外は、実施例1と同様にして樹脂組成物中間体を製造し、シリカ/PC樹脂組成物を得た。得られた組成物を、乾燥、粉砕し、熱プレス成形によりシート状の成形品を得た。この試験片で得られた全光線透過率、透過電顕での分散状態、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。また、樹脂組成物の灰分から求めたシリカ配合量は、約14重量%であった。
(Example 5)
A resin composition intermediate was produced in the same manner as in Example 1 except that chain silica was used instead of spherical silica to obtain a silica / PC resin composition. The obtained composition was dried and pulverized, and a sheet-like molded product was obtained by hot press molding. Table 1 shows the results of the total light transmittance, the dispersion state with a transmission electron microscope, the bending strength, the bending elastic modulus, and the linear expansion coefficient obtained with this test piece. Moreover, the silica compounding quantity calculated | required from the ash content of the resin composition was about 14 weight%.

(実施例6)
シリカ分散溶液の調整において、20gのスチレンモノマーに代えて28.5gのアクリル酸フェニルモノマーを用いた以外は、実施例1と同様にして樹脂組成物中間体を製造し、シリカ/PC樹脂組成物を得た。得られた組成物を、乾燥、粉砕し、熱プレス成形によりシート状の成形品を得た。この試験片で得られた全光線透過率、透過電顕での分散状態、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。また、樹脂組成物の灰分から求めたシリカ配合量は、約14重量%であった。
(Example 6)
In preparing the silica dispersion, a resin composition intermediate was produced in the same manner as in Example 1 except that 28.5 g of phenyl acrylate monomer was used instead of 20 g of styrene monomer, and the silica / PC resin composition was prepared. Got. The obtained composition was dried and pulverized, and a sheet-like molded product was obtained by hot press molding. Table 1 shows the results of the total light transmittance, the dispersion state with a transmission electron microscope, the bending strength, the bending elastic modulus, and the linear expansion coefficient obtained with this test piece. Moreover, the silica compounding quantity calculated | required from the ash content of the resin composition was about 14 weight%.

(実施例7)
シリカ分散溶液の調整において、20gのスチレンモノマーに代えて27.3gのイソプロペニルトルエンモノマーを用いた以外は、実施例1と同様にして樹脂組成物中間体を製造し、シリカ/PC樹脂組成物を得た。得られた組成物を、乾燥、粉砕し、熱プレス成形によりシート状の成形品を得た。この試験片で得られた全光線透過率、透過電顕での分散状態、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。また、樹脂組成物の灰分から求めたシリカ配合量は、約14重量%であった。
(Example 7)
In preparing the silica dispersion, a resin composition intermediate was produced in the same manner as in Example 1 except that 27.3 g of isopropenyltoluene monomer was used instead of 20 g of styrene monomer, and the silica / PC resin composition was prepared. Got. The obtained composition was dried and pulverized, and a sheet-like molded product was obtained by hot press molding. Table 1 shows the results of the total light transmittance, the dispersion state with a transmission electron microscope, the bending strength, the bending elastic modulus, and the linear expansion coefficient obtained with this test piece. Moreover, the silica compounding quantity calculated | required from the ash content of the resin composition was about 14 weight%.

(比較例1)
PC(ユーピロンS2000 三菱エンプラ製)120gを、メチレンクロライド溶液240gに溶解し、予め、フェニル基で表面処理をした球状シリカ20gを分散して、PC/シリカ混合溶液を調整した。この混合溶液をメタノールに滴下し重合組成物を沈殿させ、濾過し、乾燥して、粉末を得た。
(Comparative Example 1)
120 g of PC (Iupilon S2000 manufactured by Mitsubishi Engineering Plastics) was dissolved in 240 g of a methylene chloride solution, and 20 g of spherical silica surface-treated with a phenyl group was dispersed in advance to prepare a PC / silica mixed solution. The mixed solution was dropped into methanol to precipitate the polymerization composition, filtered and dried to obtain a powder.

得られた組成物を、乾燥、粉砕し、熱プレス成形により、シート状の成形晶を得た。この試験片で得られた全光線透過率、透過電顕での分散状態、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。また、樹脂組成物の灰分から求めたシリカ配合量は、約14重量%であった。   The obtained composition was dried and pulverized, and a sheet-like formed crystal was obtained by hot press molding. Table 1 shows the results of the total light transmittance, the dispersion state with a transmission electron microscope, the bending strength, the bending elastic modulus, and the linear expansion coefficient obtained with this test piece. Moreover, the silica compounding quantity calculated | required from the ash content of the resin composition was about 14 weight%.

(比較例2)
PC(ユーピロンS2000 三菱エンプラ製)120gを、メチレンクロライド溶液240gに溶解し、予め、メチル基で表面処理をした球状シリカ20gを分散して、PC/シリカ混合溶液を調整した。この混合溶液をメタノールに滴下し重合組成物を沈殿させ、濾過し、乾燥して、粉末を得た。
(Comparative Example 2)
120 g of PC (Iupilon S2000 manufactured by Mitsubishi Engineering Plastics) was dissolved in 240 g of a methylene chloride solution, and 20 g of spherical silica surface-treated with a methyl group was dispersed in advance to prepare a PC / silica mixed solution. The mixed solution was dropped into methanol to precipitate the polymerization composition, filtered and dried to obtain a powder.

得られた組成物を、乾燥、粉砕し、熱プレス成形により、シート状の成形晶を得た。この試験片で得られた全光線透過率、透過電顕での分散状態、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。また、樹脂組成物の灰分から求めたシリカ配合量は、約14重量%であった。   The obtained composition was dried and pulverized, and a sheet-like formed crystal was obtained by hot press molding. Table 1 shows the results of the total light transmittance, the dispersion state with a transmission electron microscope, the bending strength, the bending elastic modulus, and the linear expansion coefficient obtained with this test piece. Moreover, the silica compounding quantity calculated | required from the ash content of the resin composition was about 14 weight%.

Figure 2005139261
Figure 2005139261

以上実施例及び比較例から明らかなように、実施例に示す本発明の樹脂組成物は透明性に優れ、曲げ強度、曲げ弾性率の向上と熱膨脹率の低下が確認された。また、比較例に示す本発明と異なる樹脂組成物は、シリカの凝集によって透明性が確保されず、さらに曲げ強度及び曲げ弾性率も低く、熱膨脹率も大きく、樹脂組成物に要求される諸特性にほとんど総てにおいて、本発明の樹脂組成物よりも劣ることが判明した。   As is apparent from the above examples and comparative examples, the resin compositions of the present invention shown in the examples were excellent in transparency, and it was confirmed that the bending strength and bending elastic modulus were improved and the thermal expansion coefficient was lowered. In addition, the resin composition different from the present invention shown in the comparative example does not ensure transparency due to the aggregation of silica, and further has low bending strength and bending elastic modulus, high thermal expansion coefficient, and various properties required for the resin composition. It was found that almost all of the resin compositions were inferior to the resin composition of the present invention.

以上、具体例を挙げながら発明の実施の形態に基づいて本発明を詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。   As described above, the present invention has been described in detail based on the embodiments of the present invention with specific examples. However, the present invention is not limited to the above contents, and all modifications and changes are made without departing from the scope of the present invention. It can be changed.

例えば、本発明の樹脂組成物は、必要に応じて、酸化防止剤及び熱安定剤(例えば、ヒンダードフェノール、ヒドロキノン、チオエーテル、ホスファイト類及びこれらの置換体及びその組み合わせを含む)、紫外線吸収剤(例えばレゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノン等)、滑剤、離型剤(例えばシリコン樹脂、モンタン酸及びその塩、ステアリン酸及びその塩、ステアリルアルコール、ステアリルアミド等)、染料(例えばニトロシン等)、顔科(例えば硫化カドミウム、フタロシアニン等)を含む着色剤、添加剤添着液(例えばシリコンオイル等)、及び結晶核剤(例えばタルク、カオリン等)などを単独又は適宜組み合わせて添加することができる。   For example, the resin composition of the present invention contains an antioxidant and a heat stabilizer (including hindered phenols, hydroquinones, thioethers, phosphites, and their substitution products and combinations thereof), ultraviolet absorption, if necessary. Agents (for example, resorcinol, salicylate, benzotriazole, benzophenone, etc.), lubricants, mold release agents (for example, silicon resin, montanic acid and salts thereof, stearic acid and salts thereof, stearyl alcohol, stearylamide, etc.), dyes (for example, nitrocin) , Coloring agents containing facials (for example, cadmium sulfide, phthalocyanine, etc.), additive additives (for example, silicone oil), crystal nucleating agents (for example, talc, kaolin, etc.), etc. .

本発明の樹脂組成物は所望の形状に成形し、任意の用途に適用することができる。特に、透明性、高剛性、及び低線膨張性を利用するという観点からは、無機ガラスにかわる樹脂性ガラスとして自動車用のウィンドウ周囲の部品などの成形品への適用が可能である。   The resin composition of the present invention can be molded into a desired shape and applied to any application. In particular, from the viewpoint of utilizing transparency, high rigidity, and low linear expansion, it can be applied to molded articles such as parts around windows for automobiles as resinous glass replacing inorganic glass.

本発明の樹脂組成物中間体を製造する際の製造プロセスを時系列的に示した工程図である。It is process drawing which showed the manufacturing process at the time of manufacturing the resin composition intermediate body of this invention in time series. 図1に示す製造プロセスにおける、前記樹脂組成物中間体の生成過程を示す反応式である。2 is a reaction formula showing a production process of the resin composition intermediate in the manufacturing process shown in FIG. 本発明の樹脂組成物中間体から本発明の樹脂組成物を得るまでの製造プロセスを示した工程図である。It is process drawing which showed the manufacturing process until it obtains the resin composition of this invention from the resin composition intermediate body of this invention. 図3に示す製造プロセスにおける反応過程を示す反応式である。4 is a reaction formula showing a reaction process in the manufacturing process shown in FIG. 3. 本発明の実施例における、樹脂組成物中間体を製造する際の製造プロセスを時系列的に示した工程図である。It is process drawing which showed the manufacturing process at the time of manufacturing the resin composition intermediate body in the Example of this invention in time series. 本発明の実施例における、樹脂組成物中間体から樹脂組成物を得るまでの製造プロセスを示した工程図である。It is process drawing which showed the manufacturing process until it obtains a resin composition from the resin composition intermediate body in the Example of this invention.

Claims (16)

フェニル基を有する無機酸化物微粒子と、ポリカーボネート/フェニル基を有するポリビニル共重合体とを含むことを特徴とする、樹脂組成物。   A resin composition comprising inorganic oxide fine particles having a phenyl group and a polyvinyl copolymer having a polycarbonate / phenyl group. 前記ポリカーボネート/フェニル基を有するポリビニル共重合体は、ポリカーボネート/ポリスチレン共重合体、ポリカーボネート/ポリアクリル酸フェニル共重合体、及びポリカーボネート/ポリイソプロペニルトルエン共重合体から選ばれる少なくとも一種であることを特徴とする、請求項1に記載の樹脂組成物。   The polyvinyl copolymer having a polycarbonate / phenyl group is at least one selected from a polycarbonate / polystyrene copolymer, a polycarbonate / polyacrylic acid phenyl copolymer, and a polycarbonate / polyisopropenyltoluene copolymer. The resin composition according to claim 1. 前記ポリカーボネート/フェニル基を有するポリビニル共重合体は、
Figure 2005139261

及び
Figure 2005139261

で示される少なくとも一方のポリカーボネート/ポリスチレン共重合体であることを特徴とする、請求項2に記載の樹脂組成物。
The polyvinyl copolymer having the polycarbonate / phenyl group is
Figure 2005139261

as well as
Figure 2005139261

The resin composition according to claim 2, wherein the resin composition is at least one polycarbonate / polystyrene copolymer represented by the formula:
前記無機酸化物微粒子はシリカ微粒子であることを特徴とする、請求項1〜3のいずれか一に記載の樹脂組成物。   The resin composition according to claim 1, wherein the inorganic oxide fine particles are silica fine particles. 前記無機酸化物微粒子は、球状、パールネックレス状又は鎖状であることを特徴とする、請求項1〜5のいずれか一に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 5, wherein the inorganic oxide fine particles have a spherical shape, a pearl necklace shape, or a chain shape. 前記無機酸化物微粒子は、その1次粒子径が可視光線波長域の下限値である380nm以下であるとすることを特徴とする、請求項1〜5のいずれか一に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 5, wherein the inorganic oxide fine particles have a primary particle diameter of 380 nm or less, which is a lower limit value of a visible light wavelength range. 前記無機酸化物微粒子の前記1次粒子径は、5nm〜200nmであるとすることを特徴とする、請求項6に記載の樹脂組成物。   The resin composition according to claim 6, wherein the primary particle diameter of the inorganic oxide fine particles is 5 nm to 200 nm. 前記無機酸化物微粒子の前記1次粒子径は、5nm〜100nmであるとすることを特徴とする、請求項7に記載の樹脂組成物。   The resin composition according to claim 7, wherein the primary particle diameter of the inorganic oxide fine particles is 5 nm to 100 nm. 〔化1〕で示されるポリカーボネート/ポリスチレン共重合体を含むことを特徴とする、樹脂組成物中間体。   A resin composition intermediate comprising the polycarbonate / polystyrene copolymer represented by [Chemical Formula 1]. 〔化2〕で示されるポリカーボネート/ポリスチレン共重合体を含むことを特徴とする、樹脂組成物中間体。   A resin composition intermediate comprising the polycarbonate / polystyrene copolymer represented by [Chemical Formula 2].
Figure 2005139261

で示される、片末端に二重結合を有するポリカーボネート重合体を含むことを特徴とする、樹脂組成物中間体。
Figure 2005139261

A resin composition intermediate comprising a polycarbonate polymer having a double bond at one end, as shown in
Figure 2005139261

で示される、両末端に二重結合を有するポリカーボネート重合体を含むことを特徴とする、樹脂組成物中間体。
Figure 2005139261

A resin composition intermediate characterized by comprising a polycarbonate polymer having double bonds at both ends, as shown in FIG.
請求項1〜8のいずれか一に記載の樹脂組成物の製造方法であって、
〔化3〕で示される、片末端に二重結合を有するポリカーボネート重合体を含む樹脂組成物中間体及び〔化4〕で示される、両末端に二重結合を有するポリカーボネート重合体を含む樹脂組成物中間体の少なくとも一方を所定の溶媒中に溶解させて、予備重合溶液を作製する工程と、
前記予備重合溶液中に、フェニル基を有する無機酸化物微粒子及びフェニル基を有するビニルモノマーを添加して重合溶液を作製する工程と、
前記重合溶液を所定温度に加熱することにより重合反応を生ぜしめ、前記フェニル基を有する前記無機酸化物微粒子と、ポリカーボネート/フェニル基を有するポリビニル共重合体とを含むことを特徴とする、樹脂組成物を製造する工程と、
を具えることを特徴とする、樹脂組成物の製造方法。
It is a manufacturing method of the resin composition as described in any one of Claims 1-8,
A resin composition intermediate comprising a polycarbonate polymer having a double bond at one end represented by [Chemical Formula 3] and a resin composition comprising a polycarbonate polymer having a double bond at both ends represented by [Chemical Formula 4] Dissolving at least one of the product intermediates in a predetermined solvent to prepare a prepolymerized solution;
A step of adding inorganic oxide fine particles having a phenyl group and a vinyl monomer having a phenyl group to prepare a polymerization solution in the preliminary polymerization solution;
A resin composition characterized by causing a polymerization reaction by heating the polymerization solution to a predetermined temperature, and containing the inorganic oxide fine particles having the phenyl group and a polyvinyl copolymer having a polycarbonate / phenyl group. Manufacturing a product,
A process for producing a resin composition, comprising:
前記ビニルモノマーは、スチレンモノマー、アクリル酸フェニルモノマー、及びイソプロペニルトルエンモノマーから選ばれる少なくとも一種であることを特徴とする、請求項13に記載の樹脂組成物の製造方法。   The method for producing a resin composition according to claim 13, wherein the vinyl monomer is at least one selected from a styrene monomer, a phenyl acrylate monomer, and an isopropenyl toluene monomer. 前記無機酸化物微粒子をシリル化剤で表面処理することによって、前記無機酸化物微粒子に前記フェニル基を付加することを特徴とする、請求項13又は14に記載の樹脂組成物の製造方法。   The method for producing a resin composition according to claim 13 or 14, wherein the phenyl group is added to the inorganic oxide fine particles by subjecting the inorganic oxide fine particles to a surface treatment with a silylating agent. 請求項11又は12に記載の樹脂組成物中間体の製造方法であって、
ホスゲン法による重合反応において重合反応を二段階で実施し、後段の重合反応においてp−イソプロペニルフェノール溶液を添加することを特徴とする、樹脂組成物中間体の製造方法。
A method for producing a resin composition intermediate according to claim 11 or 12,
A process for producing a resin composition intermediate, wherein a polymerization reaction is carried out in two stages in a polymerization reaction by a phosgene method, and a p-isopropenylphenol solution is added in a subsequent polymerization reaction.
JP2003375637A 2003-11-05 2003-11-05 Resin composition, resin composition intermediate, method for producing resin composition, and method for producing resin composition intermediate Pending JP2005139261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375637A JP2005139261A (en) 2003-11-05 2003-11-05 Resin composition, resin composition intermediate, method for producing resin composition, and method for producing resin composition intermediate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003375637A JP2005139261A (en) 2003-11-05 2003-11-05 Resin composition, resin composition intermediate, method for producing resin composition, and method for producing resin composition intermediate

Publications (1)

Publication Number Publication Date
JP2005139261A true JP2005139261A (en) 2005-06-02

Family

ID=34686952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375637A Pending JP2005139261A (en) 2003-11-05 2003-11-05 Resin composition, resin composition intermediate, method for producing resin composition, and method for producing resin composition intermediate

Country Status (1)

Country Link
JP (1) JP2005139261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241378A1 (en) * 2020-05-27 2021-12-02 三菱瓦斯化学株式会社 Curable resin composition, molded article and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241378A1 (en) * 2020-05-27 2021-12-02 三菱瓦斯化学株式会社 Curable resin composition, molded article and method for producing same

Similar Documents

Publication Publication Date Title
US8013105B2 (en) Flame-retardant polycarbonate resin composition, polycarbonate resin molded article, and method for producing the polycarbonate resin molded article
WO2008047673A1 (en) Flame-retardant polycarbonate resin composition, polycarbonate resin molded article, and method for producing the polycarbonate resin molded article
KR101225949B1 (en) Thermoplastic resin composition
US8143330B2 (en) Polycarbonate resin composition, molded polycarbonate resin article, and method for production of the molded polycarbonate resin article
JP6797350B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
WO2008047671A1 (en) Flame-retardant polycarbonate resin composition, polycarbonate resin molded article, and method for producing the polycarbonate resin molded article
JP5821190B2 (en) Resin composition and transparent resin molded body and coating film using the same
KR102024138B1 (en) Impact strength modifiers, method for preparing the same, and polylactic acid/polycarbonate resin composition
WO2010137437A1 (en) Resin composition and process for producing same
JP5140930B2 (en) Metal oxide particle composite, resin composite using the same, and production method thereof
JP5040126B2 (en) Method for producing resin composition and resin composition thereof
JP2009084550A (en) Polycarbonate resin composition and method for producing the same
CN111205618A (en) Low-temperature impact-resistant high-transmittance flame-retardant polycarbonate composite material and preparation method thereof
JP2005139261A (en) Resin composition, resin composition intermediate, method for producing resin composition, and method for producing resin composition intermediate
JP2006328110A (en) Resin composition, method for producing resin composition, and composite oxide particle for resin composition
KR101078837B1 (en) Thermoplastic polyester resin composition
JP4721662B2 (en) Method for producing molded article of aromatic polycarbonate resin composition and molded article
JP2005320482A (en) Resin composition, resin composition intermediate, manufacturing method of resin composition and manufacturing method of resin composition intermediate
JP2000309707A (en) Aromatic polysulfone resin composition and its molded article
US20050174880A1 (en) Polymeric material, molded article, and processes for producing these
JPH05140440A (en) Polycarbonate resin composition
JP2004256693A (en) Method for producing resin composition and resin composition
TW201906911A (en) Treated barium sulfate particles and their use
JP2006160879A (en) Dispersant for inorganic filler of polycarbonate composition, polycarbonate composition, and manufacturing process of the polycarbonate composition
KR20200061942A (en) Polycarbonate resin composition with improved chemical-resistance