JP2005137126A - Coil structure of stator and manufacturing method for the same - Google Patents

Coil structure of stator and manufacturing method for the same Download PDF

Info

Publication number
JP2005137126A
JP2005137126A JP2003370538A JP2003370538A JP2005137126A JP 2005137126 A JP2005137126 A JP 2005137126A JP 2003370538 A JP2003370538 A JP 2003370538A JP 2003370538 A JP2003370538 A JP 2003370538A JP 2005137126 A JP2005137126 A JP 2005137126A
Authority
JP
Japan
Prior art keywords
coil
stator
core
cooling
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003370538A
Other languages
Japanese (ja)
Inventor
Hirofumi Shimizu
宏文 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003370538A priority Critical patent/JP2005137126A/en
Publication of JP2005137126A publication Critical patent/JP2005137126A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coil structure of and a manufacturing method for stators wherein high cooling capability is obtained and uneven cooling of a stator is reduced. <P>SOLUTION: The stator is constructed by disposing core assemblies 122, formed by winding coils 42 around cores 41 formed of laminated steel plates, in the circumferential direction. Cooling members 43 for cooling the coils 42 are disposed between the coils 42 of the adjacent core assemblies 122. The stator is so constructed that the distance between the coils 42 and the cooling members 43 is smaller than that between the cores 41 and the coils 42. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、積層鋼板からなるコアにコイルを巻回して構成されたコア組立部品を周方向に配置して構成された固定子であって、隣り合うコア組立部品のコイル間にコイルを冷却する冷却部材が配置された固定子のコイル構造及び製造方法に関するものである。   The present invention is a stator configured by arranging a core assembly component formed by winding a coil around a core made of laminated steel sheets in the circumferential direction, and cools the coil between coils of adjacent core assembly components. The present invention relates to a coil structure and a manufacturing method of a stator in which a cooling member is arranged.

従来、例えばハイブリッド駆動ユニット等に適用される複軸多層モータにおける固定子の冷却構造としては、熱源であるステータの固定方法として、熱伝達効率の良い樹脂を固定子組立体内に充填させる方法が知られている。そして、固定子間近の樹脂に冷媒を通す通路を設け、その通路に冷却水を循環させることにより、その樹脂を冷却して間接的に固定子を冷却し、性能の安定化を図っている(例えば、特許文献1)。しかし、この例では、固定子の冷却が偏り、固定子を周方向に均一に冷却できないという問題があった。
特開2000−14086号公報
Conventionally, as a stator cooling structure in a multi-axis multilayer motor applied to, for example, a hybrid drive unit, a method of filling a stator assembly with a resin having a high heat transfer efficiency is known as a stator fixing method as a heat source. It has been. And the passage which lets a refrigerant pass to resin near the stator, and circulates cooling water in the passage, cools the resin and cools a stator indirectly, and aims at stabilization of performance ( For example, Patent Document 1). However, in this example, there is a problem that cooling of the stator is biased and the stator cannot be uniformly cooled in the circumferential direction.
JP 2000-14086 A

上述した複軸多層モータにおける固定子冷却の偏りを緩和するため、図19に示すように、積層鋼板からなるコア501にコイル502を巻回して構成されたコア組立部品を周方向に配置して構成された固定子503であって、隣り合うコア組立部品のコイル501間にコイル501を冷却する冷却部材504が配置された固定子503も考えられている。   In order to alleviate the bias of stator cooling in the multi-axis multilayer motor described above, as shown in FIG. 19, a core assembly component formed by winding a coil 502 around a core 501 made of laminated steel plates is arranged in the circumferential direction. A stator 503 is also considered which is a configured stator 503 in which a cooling member 504 for cooling the coil 501 is disposed between the coils 501 of adjacent core assembly parts.

上述した従来の例において、コイル502にはコア501を電磁石にするために多くの電流を流すが、その際に発熱を伴う。この発熱量を吸収し放熱する冷媒が流れる通路を構成するのが、冷却部材504である。しかし、通常、コイル502はコア501に、巻かれるため、図19に示すように、コイル502とコア501とは密着しており、逆に、冷却部材504とコイル502とは隙間が発生していた。上述した従来の例では、固定子503がこのような構造となっているため、製造上コイル502と冷却部材504との間に若干の隙間が発生してしまい、あるいは、隙間分布にむらが出来てしまい、冷却能力の低下、冷却むらが依然として発生するという問題があった。   In the conventional example described above, a large amount of current is passed through the coil 502 in order to use the core 501 as an electromagnet. At that time, heat is generated. The cooling member 504 constitutes a passage through which the refrigerant that absorbs and generates heat is absorbed. However, since the coil 502 is usually wound around the core 501, as shown in FIG. 19, the coil 502 and the core 501 are in close contact with each other, and conversely, a gap is generated between the cooling member 504 and the coil 502. It was. In the conventional example described above, since the stator 503 has such a structure, a slight gap is generated between the coil 502 and the cooling member 504 in manufacturing, or the gap distribution is uneven. As a result, there was a problem that cooling capacity was lowered and cooling unevenness still occurred.

本発明の目的は上述した課題を解消して、固定子の冷却むらの少ない高い冷却能力を得ることができる固定子のコイル構造及び製造方法を提供しようとするものである。   An object of the present invention is to solve the above-described problems and to provide a stator coil structure and a manufacturing method capable of obtaining a high cooling capacity with little uneven cooling of the stator.

本発明の固定子のコイル構造は、積層鋼板からなるコアにコイルを巻回して構成されたコア組立部品を周方向に配置して構成された固定子であって、隣り合うコア組立部品のコイル間にコイルを冷却する冷却部材が配置された固定子において、コアとコイル間の距離よりもコイルと冷却部材との距離が狭くなるよう構成したことを特徴とするものである。   The stator coil structure of the present invention is a stator configured by arranging a core assembly part formed by winding a coil around a core made of laminated steel sheets in the circumferential direction, and is a coil of adjacent core assembly parts In the stator in which the cooling member for cooling the coil is arranged, the distance between the coil and the cooling member is made smaller than the distance between the core and the coil.

また、本発明の固定子の製造方法は、積層鋼板からなるコアと、予め積層鋼板に巻回する寸法よりも大きい寸法で環状に巻いたコイルとを別に準備し、環状に巻いたコイルをコアに装着してコア組立部品を形成し、コア組立部品と冷却部材とを交互に周方向に配置することで、コイル自らの弾性力でコイルを冷却部材に押し付け、コイルをコアよりも冷却部材に近く配置したことを特徴とするものである。   In addition, the stator manufacturing method of the present invention is prepared by separately preparing a core made of laminated steel sheets and a coil wound in an annular shape with dimensions larger than those wound in advance on the laminated steel sheets. The core assembly parts and the cooling members are alternately arranged in the circumferential direction so that the coil is pressed against the cooling member by its own elastic force, and the coil is made a cooling member rather than the core. It is characterized by being placed close to each other.

本発明の固定子のコイル構造にあっては、コアとコイル間の距離よりもコイルと冷却部材との距離が狭くなるよう構成したため、コイルと冷却部材との隙間を最小限にでき、冷却能力を最大にすることができる。   In the stator coil structure of the present invention, since the distance between the coil and the cooling member is narrower than the distance between the core and the coil, the gap between the coil and the cooling member can be minimized, and the cooling capacity Can be maximized.

また、本発明の固定子のコイル構造の好適例では、コアとコイルとの間に弾性率の高い絶縁材を設けてコア組立部品を形成し、コア組立部品と冷却部材とを交互に周方向に配置することで、絶縁材のクッション効果でコイルを冷却部材に押し付け、コイルをコアよりも冷却部材に近く配置することができる。この例では、コアとコイルとの間に弾性部材を介在させてコイルを巻くことでコイルが冷却部材側に膨らむ。しかも弾性部材により冷却部材を潰すこともないので、一層の冷却能力を向上することができる。   In a preferred example of the stator coil structure of the present invention, an insulating material having a high elastic modulus is provided between the core and the coil to form a core assembly component, and the core assembly component and the cooling member are alternately arranged in the circumferential direction. The coil can be pressed against the cooling member by the cushioning effect of the insulating material, and the coil can be disposed closer to the cooling member than the core. In this example, the coil swells to the cooling member side by winding the coil with an elastic member interposed between the core and the coil. In addition, since the cooling member is not crushed by the elastic member, further cooling capacity can be improved.

さらに、本発明の固定子のコイル構造の好適例では、積層鋼板からなるコアの横断面形状を、固定子として配置したときの中心方向に行くに従って周方向の幅が小さくなるテーパ形状とすることができる。この例では、コアのコイルへの押し込み時に発生するくさび力により、コイルが外側へ押し広げられて、冷却部材へより大きな力で押し付けることができ、冷却能力を向上することができる。本例において、さらに好適には、コイルと積層鋼板からなるコアとが直接滑るのではなく、間に絶縁物質を1〜2部品介在させることで、コイルに不要なこすり傷などが発生しない。   Furthermore, in a preferred example of the coil structure of the stator of the present invention, the cross-sectional shape of the core made of laminated steel sheets is a tapered shape whose width in the circumferential direction decreases as it goes in the central direction when arranged as a stator. Can do. In this example, the wedge force generated when the core is pushed into the coil is expanded outward, so that the coil can be pressed against the cooling member with a larger force, and the cooling capacity can be improved. In this example, more preferably, the coil and the core made of the laminated steel sheet are not directly slid, but an insulating material is interposed between 1 and 2 parts, so that unnecessary rubbing or the like does not occur in the coil.

本発明の固定子の製造方法にあっては、積層鋼板からなるコアと、予め積層鋼板に巻回する寸法よりも大きい寸法で環状に巻いたコイルとを別に準備し、環状に巻いたコイルをコアに装着してコア組立部品を形成し、コア組立部品と冷却部材とを交互に周方向に配置することで、コイル自らの弾性力でコイルを冷却部材に押し付け、コイルをコアよりも冷却部材に近く配置したため、大きめに巻かれたコイルは自らの弾性力により冷却部材に押し付け力を発生し、冷却能力を向上することができる。   In the method of manufacturing a stator according to the present invention, a core made of laminated steel sheets and a coil wound in an annular shape with dimensions larger than those wound in advance on the laminated steel sheets are separately prepared. A core assembly part is formed by mounting on the core, and the core assembly part and the cooling member are alternately arranged in the circumferential direction, so that the coil is pressed against the cooling member by its own elastic force, and the coil is more cooled than the core. Therefore, the coil wound larger can generate a pressing force against the cooling member by its own elastic force, thereby improving the cooling capacity.

また、本発明の固定子の製造方法の好適例では、環状に巻いたコイルをコアに装着してコア組立部品を形成する際、コアとコイルとの間に弾性率の高い絶縁材を設けることができる。この例では、コアとコイルとの間に弾性部材を介在させてコイルを巻くことでコイルが冷却部材側に膨らむ。しかも弾性部材により冷却部材を潰すこともないので、一層の冷却能力を向上することができる。   In a preferred embodiment of the method for manufacturing a stator according to the present invention, when a core assembly is formed by mounting an annular coil on a core, an insulating material having a high elastic modulus is provided between the core and the coil. Can do. In this example, the coil swells to the cooling member side by winding the coil with an elastic member interposed between the core and the coil. In addition, since the cooling member is not crushed by the elastic member, further cooling capacity can be improved.

さらに、本発明の固定子の製造方法の好適例では、環状に巻いたコイルをコアに装着してコア組立部品を形成する際、横断面形状を、固定子として配置したときの中心方向に行くに従って周方向の幅が小さくなるテーパ形状とした積層鋼板からなるコアを環状に巻いたコイルに押し込むことができる。この例では、コアのコイルへの押し込み時に発生するくさび力により、コイルが外側へ押し広げられて、冷却部材へより大きな力で押し付けることができ、冷却能力を向上することができる。   Furthermore, in a preferred embodiment of the method for manufacturing a stator according to the present invention, when a core assembly is formed by mounting an annularly wound coil on a core, the cross-sectional shape goes in the center direction when arranged as a stator. Accordingly, a core made of a laminated steel sheet having a tapered shape whose width in the circumferential direction is reduced can be pushed into a coil wound in an annular shape. In this example, the wedge force generated when the core is pushed into the coil is expanded outward, so that the coil can be pressed against the cooling member with a larger force, and the cooling capacity can be improved.

さらにまた、本発明の固定子の製造方法の好適例では、コイルをコアとは別に巻回した後、樹脂で環状にモールディングするに際し、モールドの型の外周側(固定子に組み付けられたとき冷却部材側)にコイルが寄る様に、樹脂の流れや射出位置を調整することができる。この例では、コイルをモールドした樹脂の厚さは冷却部材側を絶縁に必要な厚さを確保しつつ、冷却性を最大限にする薄さに管理できるので、絶縁性と冷却性の両立ができる。   Furthermore, in the preferred embodiment of the stator manufacturing method of the present invention, the coil is wound separately from the core, and then molded in a ring shape with resin, the outer periphery side of the mold (cooling when assembled on the stator) The flow and injection position of the resin can be adjusted so that the coil approaches the member side. In this example, the thickness of the resin molded with the coil can be controlled to a thickness that maximizes cooling performance while ensuring the thickness necessary for insulation on the cooling member side, so that both insulation and cooling properties can be achieved. it can.

以下、本発明を実するための最良の形態を図面に基づいて説明する。
まず、本発明の固定子のコイル構造及び製造方法が適用される複軸多層モータの一例について説明する。
The best mode for carrying out the present invention will be described below with reference to the drawings.
First, an example of a multi-axis multilayer motor to which the stator coil structure and the manufacturing method of the present invention are applied will be described.

[ハイブリッド駆動ユニットの全体構成]
図1は複軸多層モータが適用されたハイブリッド駆動ユニットの全体図であり、図1において、Eはエンジン、Mは複軸多層モータ、Gはラビニョウ型複合遊星歯車列、Dは駆動出力機構、1はモータカバー、2はモータケース、3はギヤハウジング、4はフロントカバーである。
[Overall configuration of hybrid drive unit]
FIG. 1 is an overall view of a hybrid drive unit to which a multi-axis multi-layer motor is applied. In FIG. 1, E is an engine, M is a multi-axis multi-layer motor, G is a Ravigneaux type compound planetary gear train, D is a drive output mechanism, Reference numeral 1 denotes a motor cover, 2 denotes a motor case, 3 denotes a gear housing, and 4 denotes a front cover.

前記エンジンEは、ハイブリッド駆動ユニットの主動力源であり、エンジン出力軸5とラビニョウ型複合遊星歯車列Gの第2リングギヤR2とは、回転変動吸収ダンパー6及び多板クラッチ7を介して連結されている。   The engine E is a main power source of the hybrid drive unit, and the engine output shaft 5 and the second ring gear R2 of the Ravigneaux type planetary gear train G are connected through a rotation fluctuation absorbing damper 6 and a multi-plate clutch 7. ing.

前記複軸多層モータMは、外観的には1つのモータであるが2つのモータジェネレータ機能を有する副動力源である。この複軸多層モータMは、前記モータケース2に固定され、コイルを巻いた固定電機子としてのステータSと、前記ステータSの内側に配置し、永久磁石を埋設したインナーロータIRと、前記ステータSの外側に配置し、永久磁石を埋設したアウターロータORと、を同軸上に三層配置することで構成されている。前記インナーロータIRに固定の第1モータ中空軸8は、ラビニョウ型複合遊星歯車列Gの第1サンギヤS1に連結され、前記アウターロータORに固定の第2モータ軸9は、ラビニョウ型複合遊星歯車列Gの第2サンギヤS2に連結されている。   The multi-axis multilayer motor M is a sub-power source having two motor generator functions although it is one motor in appearance. The multi-axis multilayer motor M is fixed to the motor case 2 and includes a stator S as a fixed armature wound with a coil, an inner rotor IR disposed inside the stator S and having a permanent magnet embedded therein, and the stator The outer rotor OR, which is arranged outside the S and has a permanent magnet embedded therein, is arranged in three layers on the same axis. The first motor hollow shaft 8 fixed to the inner rotor IR is connected to the first sun gear S1 of the Ravigneaux-type compound planetary gear train G, and the second motor shaft 9 fixed to the outer rotor OR is the Ravigneaux-type compound planetary gear. It is connected to the second sun gear S2 of row G.

前記ラビニョウ型複合遊星歯車列Gは、二つのモータ回転数を制御することにより無段階に変速比を変える無段階変速機能を有する遊星歯車機構である。このラビニョウ型複合遊星歯車列Gは、互いに噛み合う第1ピニオンP1と第2ピニオンP2を支持する共通キャリヤCと、第1ピニオンP1に噛み合う第1サンギヤS1と、第2ピニオンP2に噛み合う第2サンギヤS2と、第1ピニオンP1に噛み合う第1リングギヤR1と、第2ピニオンP2に噛み合う第2リングギヤR2との5つの回転要素を有して構成されている。前記第1リングギヤR1とギヤハウジング3との間には多板ブレーキ10が介装されている。前記共通キャリヤCには、出力ギヤ11が連結されている。   The Ravigneaux-type compound planetary gear train G is a planetary gear mechanism having a continuously variable transmission function that changes a transmission gear ratio steplessly by controlling two motor rotation speeds. The Ravigneaux type planetary gear train G includes a common carrier C that supports the first pinion P1 and the second pinion P2 that mesh with each other, a first sun gear S1 that meshes with the first pinion P1, and a second sun gear that meshes with the second pinion P2. It has five rotating elements, S2, a first ring gear R1 that meshes with the first pinion P1, and a second ring gear R2 that meshes with the second pinion P2. A multi-plate brake 10 is interposed between the first ring gear R1 and the gear housing 3. An output gear 11 is connected to the common carrier C.

前記駆動出力機構Dは、出力ギヤ11と、第1カウンターギヤ12と、第2カウンターギヤ13と、ドライブギヤ14と、ディファレンシャル15と、ドライブシャフト16L、16Rにより構成されている。そして、出力ギヤ11からの出力回転及び出力トルクは、第1カウンターギヤ12→第2カウンターギヤ13→ドライブギヤ14→ディファレンシャル15を経過し、ドライブシャフト16L、16Rから図外の駆動輪へ伝達される。   The drive output mechanism D includes an output gear 11, a first counter gear 12, a second counter gear 13, a drive gear 14, a differential 15, and drive shafts 16L and 16R. The output rotation and output torque from the output gear 11 pass through the first counter gear 12 → second counter gear 13 → drive gear 14 → differential 15 and are transmitted from the drive shafts 16L and 16R to the drive wheels (not shown). The

すなわち、ハイブリッド駆動ユニットは、前記第2リングギヤR2とエンジン出力軸5を連結し、前記第1サンギヤS1と第1モータ中空軸8とを連結し、前記第2サンギヤS2と第2モータ軸9とを連結し、前記共通キャリヤCに出力ギヤ11を連結することにより構成されている。   That is, the hybrid drive unit connects the second ring gear R2 and the engine output shaft 5, connects the first sun gear S1 and the first motor hollow shaft 8, and connects the second sun gear S2 and the second motor shaft 9. And the output gear 11 is connected to the common carrier C.

[複軸多層モータの構成]
図2は本発明が適用される複軸多層モータMを示す縦断面図、図3は本発明が適用される複軸多層モータMを示す一部縦断正面図、図4本例のステータ(固定子)を背面側から見た図である。
[Configuration of multi-axis multilayer motor]
2 is a longitudinal sectional view showing a multi-axis multilayer motor M to which the present invention is applied, FIG. 3 is a partially longitudinal front view showing the multi-axis multilayer motor M to which the present invention is applied, and FIG. It is the figure which looked at the child from the back side.

図2において、1はモータカバー、2はモータケースであり、これらに囲まれたモータ室17内にインナーロータIRとステータSとアウターロータORとにより構成された複軸多層モータMが配置されている。   In FIG. 2, reference numeral 1 denotes a motor cover, and 2 a motor case. A multi-axis multilayer motor M constituted by an inner rotor IR, a stator S, and an outer rotor OR is disposed in a motor chamber 17 surrounded by them. Yes.

前記インナーロータIRは、その内筒面が第1モータ中空軸8の段差軸端部に対して圧入(或いは焼きばめ)により固定されている。このインナーロータIRには、図3に示すように、ロータベース20に対し磁束形成を考慮した配置によるインナーロータマグネット21(永久磁石)が軸方向に12本埋設されている。但し、2本が対となってV字配置されて同じ極性を示し、3極対としてある。   The inner rotor surface of the inner rotor IR is fixed by press-fitting (or shrink fitting) to the stepped shaft end portion of the first motor hollow shaft 8. As shown in FIG. 3, twelve inner rotor magnets 21 (permanent magnets) are embedded in the inner rotor IR in the axial direction with respect to the rotor base 20 in consideration of magnetic flux formation. However, the two are arranged in a V-shape to show the same polarity and are in a three-pole pair.

前記ステータSは、ステータピース40を積層したステータピース積層体41とコイル42とステータ冷却用の冷媒路43とインナー側ボルト・ナット44とアウター側ボルト・ナット45とを有して構成されている。そして、ステータSの正面側端部が、正面側エンドプレート47とステータシャフト48とを介してモータケース2に固定されている。   The stator S includes a stator piece laminate 41 in which the stator pieces 40 are laminated, a coil 42, a cooling medium passage 43 for cooling the stator, an inner side bolt / nut 44, and an outer side bolt / nut 45. . The front side end of the stator S is fixed to the motor case 2 via the front side end plate 47 and the stator shaft 48.

前記コイル42は、コイル数が18で、図4に示すように、6相コイルを3回繰り返しながら円周上に配置される。   The coil 42 has 18 coils, and as shown in FIG. 4, the coil 42 is arranged on the circumference while repeating the 6-phase coil three times.

そして、前記6相コイル42に対しては、図外のインバータから給電接続端子50とバスバー径方向積層体51と給電コネクタ52とバスバー軸方向積層体53を介して複合電流が印加される。この複合電流は、アウターロータORを駆動させるための3相交流と、インナーロータIRを駆動させるための6相交流を複合させたものである。   A composite current is applied to the six-phase coil 42 from an inverter (not shown) through the power supply connection terminal 50, the bus bar radial stack 51, the power connector 52, and the bus bar axial stack 53. This composite current is a combination of a three-phase alternating current for driving the outer rotor OR and a six-phase alternating current for driving the inner rotor IR.

前記アウターロータORは、その外筒面がアウターロータケース62に対してロー付け、或いは、接着により固定されている。そして、アウターロータケース62の正面側には正面側連結ケース63が固定され、背面側には背面側連結ケース64が固定されている。そして、この背面側連結ケース64に第2モータ軸9がスプライン結合されている。このアウターロータORには、図3に示すように、ロータベース60に対し磁束形成を考慮した配置によるアウターロータマグネット61(永久磁石)が、両端位置に空間を介して軸方向に12本埋設されている。このアウターロータマグネット61は、インナーロータマグネット21と異なり、1本づつ極性が違い、6極対をなしている。   The outer rotor OR has an outer cylindrical surface fixed to the outer rotor case 62 by brazing or bonding. And the front side connection case 63 is being fixed to the front side of the outer rotor case 62, and the back side connection case 64 is being fixed to the back side. The second motor shaft 9 is splined to the back side connection case 64. In the outer rotor OR, as shown in FIG. 3, twelve outer rotor magnets 61 (permanent magnets) arranged in consideration of magnetic flux formation with respect to the rotor base 60 are embedded in the axial direction at both end positions. ing. Unlike the inner rotor magnet 21, the outer rotor magnet 61 is different in polarity one by one and forms a six-pole pair.

図2において、80、81はアウターロータ6をモータケース2及びモータカバー1に支持する一対のアウターロータ支持ベアリングである。82はインナーロータIRをモータケース2に支持するインナーロータ支持ベアリング、83はアウターロータORに対しステータSを支持するステータ支持ベアリング、84は第1モータ中空軸8と第2モータ軸9との間に介装される中間ベアリングである。   In FIG. 2, reference numerals 80 and 81 denote a pair of outer rotor support bearings that support the outer rotor 6 on the motor case 2 and the motor cover 1. 82 is an inner rotor support bearing that supports the inner rotor IR to the motor case 2, 83 is a stator support bearing that supports the stator S with respect to the outer rotor OR, and 84 is between the first motor hollow shaft 8 and the second motor shaft 9. This is an intermediate bearing.

また、図2において、85はインナーロータIRの回転位置を検出するインナーロータレゾルバ、86はアウターロータORの回転位置を検出するアウターロータレゾルバである。   In FIG. 2, 85 is an inner rotor resolver that detects the rotational position of the inner rotor IR, and 86 is an outer rotor resolver that detects the rotational position of the outer rotor OR.

[遊星歯車機構の構成]
図5はハイブリッド駆動ユニットのラビニョウ型複合遊星歯車列Gを示す縦断面図である。図5において、2はモータケース、3はギヤハウジング、4はフロントカバーであり、これらに囲まれたギヤ室30内にラビニョウ型複合遊星歯車列G及び駆動出力機構Dが配置されている。
[Configuration of planetary gear mechanism]
FIG. 5 is a longitudinal sectional view showing a Ravigneaux type compound planetary gear train G of the hybrid drive unit. In FIG. 5, 2 is a motor case, 3 is a gear housing, and 4 is a front cover. A Ravigneaux type planetary gear train G and a drive output mechanism D are arranged in a gear chamber 30 surrounded by them.

前記ラビニョウ型複合遊星歯車列Gの第2リングギヤR2には、回転変動吸収フライホイールダンパー6と変速機入力軸31とクラッチドラム32とを介し、多板クラッチ7の締結時にエンジンEからの回転駆動トルクが入力される。   The second ring gear R2 of the Ravigneaux type planetary gear train G is driven to rotate from the engine E when the multi-plate clutch 7 is engaged via the rotation fluctuation absorbing flywheel damper 6, the transmission input shaft 31, and the clutch drum 32. Torque is input.

前記ラビニョウ型複合遊星歯車列Gの第1サンギヤS1には、第1モータ中空軸8がスプライン結合され、決められたモータ動作点にしたがって、複軸多層モータMのインナーロータIRから第1トルクと第1回転数が入力される。   A first motor hollow shaft 8 is splined to the first sun gear S1 of the Ravigneaux type planetary gear train G, and the first torque and the first torque are transmitted from the inner rotor IR of the multi-axis multilayer motor M according to the determined motor operating point. The first rotation speed is input.

前記ラビニョウ型複合遊星歯車列Gの第2サンギヤS2には、第2モータ軸9がスプライン結合され、決められたモータ動作点にしたがって、複軸多層モータMのアウターロータORから第2トルクと第2回転数が入力される。   A second motor shaft 9 is splined to the second sun gear S2 of the Ravigneaux type planetary gear train G, and the second torque and the second torque are output from the outer rotor OR of the multi-axis multilayer motor M according to the determined motor operating point. Two revolutions are input.

前記ラビニョウ型複合遊星歯車列Gの第1リングギヤR1と、ギヤハウジング3との間には多板ブレーキ10が設けられ、発進時等において多板ブレーキ10が締結された時には、第1リングギヤR1が停止する。   A multi-plate brake 10 is provided between the first ring gear R1 of the Ravigneaux type planetary gear train G and the gear housing 3, and when the multi-plate brake 10 is engaged at the time of starting or the like, the first ring gear R1 is Stop.

前記ラビニョウ型複合遊星歯車列Gの共通キャリヤCには、ステータシャフト48に対しベアリングを介して回転可能に支持された出力ギヤ11がスプライン結合されている。   An output gear 11 that is rotatably supported by a stator shaft 48 via a bearing is splined to the common carrier C of the Ravigneaux type planetary gear train G.

前記駆動出力機構Dは、前記出力ギヤ11と噛み合う第1カウンターギヤ12と、この第1カウンターギヤ12のシャフト部に設けられた第2カウンターギヤ13と、第2カウンターギヤ13と噛み合うドライブギヤ14とを有する。そして、第2カウンターギヤ13とドライブギヤ14の歯数比により、終減速比が決められる。   The drive output mechanism D includes a first counter gear 12 that meshes with the output gear 11, a second counter gear 13 provided on the shaft portion of the first counter gear 12, and a drive gear 14 that meshes with the second counter gear 13. And have. The final reduction ratio is determined by the ratio of the number of teeth of the second counter gear 13 and the drive gear 14.

前記多板クラッチ7のクラッチピストン33には、フロントカバー4に形成されたクラッチ圧油路34により締結圧が供給される。また、前記多板ブレーキ10のブレーキピストン35には、フロントカバー4に形成されたブレーキ圧油路36により締結圧が供給される。前記クラッチピストン33と前記ブレーキピストン35は、フロントカバー4の内側で、内周位置にクラッチピストン33が配置され、その外周位置にブレーキピストン35が配置される。   A fastening pressure is supplied to the clutch piston 33 of the multi-plate clutch 7 by a clutch pressure oil passage 34 formed in the front cover 4. A fastening pressure is supplied to the brake piston 35 of the multi-plate brake 10 by a brake pressure oil passage 36 formed in the front cover 4. The clutch piston 33 and the brake piston 35 are disposed inside the front cover 4, the clutch piston 33 is disposed at an inner circumferential position, and the brake piston 35 is disposed at an outer circumferential position thereof.

また、前記変速機入力軸31には、軸心油路37が形成されていて、この軸心油路37には、フロントカバー4に形成された潤滑油路38を介して潤滑油が供給される。   A shaft center oil passage 37 is formed in the transmission input shaft 31, and lubricating oil is supplied to the shaft center oil passage 37 through a lubricant oil passage 38 formed in the front cover 4. The

[ステータ構造]
図6は本発明が適用される複軸多層モータのステータS及びモータケース部材を示す拡大縦断面図である。
[Stator structure]
FIG. 6 is an enlarged longitudinal sectional view showing a stator S and a motor case member of a multi-axis multilayer motor to which the present invention is applied.

前記ステータピース積層体41は、複数のステータピース40が軸方向に積層され、その外周に、平型銅線によるコイル42が軸方向に往復するように巻かれることで構成される。   The stator piece laminate 41 is configured by laminating a plurality of stator pieces 40 in the axial direction and winding a coil 42 of a flat copper wire around the outer periphery thereof so as to reciprocate in the axial direction.

正面側ブランケット70と背面側ブランケット71は、前記コイル42が巻かれた複数のステータピース積層体41を、モータ回転軸を中心とする円周上に等間隔で配列し、その軸方向両端位置に、ステータピース40と位置決めをしながら設置される。   In the front side blanket 70 and the back side blanket 71, a plurality of stator piece laminated bodies 41 around which the coil 42 is wound are arranged at equal intervals on the circumference centering on the motor rotation axis, and at both axial end positions. The stator piece 40 is positioned while being positioned.

正面側エンドプレート47と背面側エンドプレート49は、両ブラケット70、71の外側に配置される。なお、正面側エンドプレート47には、ステータシャフト48が固定されている。   The front side end plate 47 and the back side end plate 49 are arranged outside the brackets 70 and 71. A stator shaft 48 is fixed to the front end plate 47.

前記インナー側ボルト・ナット44とアウター側ボルト・ナット45は、両エンドプレート47、49を挿通し、ナットを回して締め上げ、この締め上げで発生する摩擦力により全体を固定し、ステータSの骨格構造体を構成する。   The inner side bolt and nut 44 and the outer side bolt and nut 45 are inserted through both end plates 47 and 49, tightened by rotating the nut, and fixed as a whole by the frictional force generated by this tightening. Constructs a skeletal structure.

前記ステータ冷却パイプ72は、周方向に隣接するコイル付きステータピース積層体41の間の位置に配置し、両端部が前記正面側ブラケット70と背面側ブラケット71に対し支持される。   The stator cooling pipe 72 is disposed at a position between the coiled stator piece laminated bodies 41 adjacent in the circumferential direction, and both ends thereof are supported by the front bracket 70 and the rear bracket 71.

前記樹脂モールド部46は、ステータ形状に合致する凹型を有する型枠内に、ステータ冷却パイプ32を支持した骨格構造体を入れ、溶融樹脂を流し込み、溶融樹脂を空間部分に充填することで成形される。なお、74はモータケース2に形成された冷媒導入路、74’はモータケース2に形成された冷媒排出路、77はステータSをモータケース2に固定するボルトである。   The resin mold portion 46 is formed by placing a skeletal structure supporting the stator cooling pipe 32 in a mold having a concave shape that matches the stator shape, pouring the molten resin, and filling the space with the molten resin. The Note that 74 is a refrigerant introduction path formed in the motor case 2, 74 ′ is a refrigerant discharge path formed in the motor case 2, and 77 is a bolt for fixing the stator S to the motor case 2.

[ステータ冷却構造]
図7は本発明におけるステータ冷却構造及び冷媒の流れを示す断面図、図8は図7A−A線によるステータ冷却構造の冷媒分配蓋部材を示す断面図、図9は図7B−B線によるステータ冷却構造の冷媒分配板部材を示す断面図、図10は図7C−C線によるステータ冷却構造の冷媒往路及び冷媒復路を示す断面図、図11は図7D−D線によるステータ冷却構造の冷媒Uターン蓋部材を示す図である。
[Stator cooling structure]
7 is a cross-sectional view showing the stator cooling structure and the flow of the refrigerant in the present invention, FIG. 8 is a cross-sectional view showing the refrigerant distribution lid member of the stator cooling structure along the line 7A-A, and FIG. 9 is the stator along the line 7B-B. FIG. 10 is a sectional view showing a refrigerant forward path and a refrigerant return path of the stator cooling structure taken along line 7C-C, and FIG. 11 is a refrigerant U of the stator cooling structure taken along line 7D-D. It is a figure which shows a turn lid member.

前記複軸多層モータMは、ステータSを挟んで同心円状にインナーロータIRとアウターロータORとを配置し、ステータを挟んで同心円状にインナーロータとアウターロータとを配置している。   In the multi-axis multilayer motor M, an inner rotor IR and an outer rotor OR are disposed concentrically with a stator S interposed therebetween, and an inner rotor and an outer rotor are disposed concentrically with the stator interposed therebetween.

前記ステータSは、モータ回転軸を中心とする円周に等ピッチで配列したコイル42(多相コイル)を巻き付けたステータピース積層体41と、該ステータピース積層体41のコイル発熱を冷却するステータ冷却用の冷媒路43と、を有する。   The stator S includes a stator piece laminate 41 in which coils 42 (multiphase coils) arranged at an equal pitch around a circumference around a motor rotation axis are wound, and a stator that cools the coil heat generation of the stator piece laminate 41 And a cooling refrigerant path 43.

前記冷媒路43は、冷媒導入路90と、冷媒分配蓋部材91と、冷媒分配板部材92と、冷媒往路93と、冷媒復路94と、冷媒Uターン蓋部材95と、冷媒排出路96と、を備えた構成としている。   The refrigerant path 43 includes a refrigerant introduction path 90, a refrigerant distribution lid member 91, a refrigerant distribution plate member 92, a refrigerant forward path 93, a refrigerant return path 94, a refrigerant U-turn lid member 95, a refrigerant discharge path 96, It is set as the structure provided with.

前記冷媒導入路90は、図7(イ)に示すように、樹脂モールド部46に形成され、冷媒を外部からステータ端部の冷媒導入口へ導く。   The refrigerant introduction path 90 is formed in the resin mold portion 46 as shown in FIG. 7 (a), and guides the refrigerant from the outside to the refrigerant introduction port at the stator end.

前記冷媒分配蓋部材91は、図8に示すように、形状がドーナツ状であり、周方向に往路91aと復路91bの仕切壁91cを設け、前記冷媒導入路90から往路91aの開始部91dに冷媒を導く。   As shown in FIG. 8, the refrigerant distribution lid member 91 has a donut shape, is provided with a partition wall 91c of an outward path 91a and a return path 91b in the circumferential direction, and extends from the refrigerant introduction path 90 to a start portion 91d of the outward path 91a. Guide the refrigerant.

前記冷媒分配板部材92は、図9に示すように、前記往路91aの部分に連通する往路用分配穴92aと、前記復路91bの部分に連通する復路用分配穴92bとを、周方向に隣接する位置に開口している。   As shown in FIG. 9, the refrigerant distribution plate member 92 includes a forward distribution hole 92a communicating with the forward path 91a and a return distribution hole 92b communicating with the backward path 91b in the circumferential direction. Open to the position to be.

前記冷媒往路93は、図10に示すように、前記ステータSの樹脂モールド部46に軸方向に貫通して形成され、一端が前記往路用分配穴92aに連通する。   As shown in FIG. 10, the refrigerant forward path 93 is formed through the resin mold portion 46 of the stator S in the axial direction, and one end communicates with the forward path distribution hole 92a.

前記冷媒復路94は、図10に示すように、前記ステータSの樹脂モールド部46に軸方向に貫通して形成され、一端が前記復路用分配穴92bに連通する。   As shown in FIG. 10, the refrigerant return path 94 is formed through the resin mold portion 46 of the stator S in the axial direction, and one end thereof communicates with the return path distribution hole 92b.

前記冷媒Uターン蓋部材95は、図11に示すように、一対の冷媒往路93と冷媒復路94に対応する連通凹部95aが形成され、周方向に隣り合う設定とされた冷媒往路93と冷媒復路94の両他端を連通する。   As shown in FIG. 11, the refrigerant U-turn lid member 95 is formed with a communication recess 95a corresponding to a pair of refrigerant outward paths 93 and a refrigerant return path 94, and is set adjacent to the circumferential direction in the refrigerant forward path 93 and the refrigerant return path. The other end of 94 is communicated.

前記冷媒排出路96は、図7(ロ)に示すように、前記冷媒復路94と冷媒分配板部材92の復路用分配穴92bを経過し、冷媒分配蓋部材91の復路91bの終端部91eから冷媒を排出する。   As shown in FIG. 7 (b), the refrigerant discharge path 96 passes through the refrigerant return path 94 and the return distribution hole 92 b of the refrigerant distribution plate member 92, and from the end portion 91 e of the return path 91 b of the refrigerant distribution lid member 91. Discharge the refrigerant.

前記冷媒往路93と冷媒復路94は、図10に示すように、周方向に隣接する各コイル42間に配置している。なお、往復の組みとなっている冷媒路は、○の中の数字が同じで、「’」の付いていない数字は冷媒往路93に対応し、「’」の付いている数字は冷媒復路94に対応している。   As shown in FIG. 10, the refrigerant forward path 93 and the refrigerant return path 94 are disposed between the coils 42 adjacent in the circumferential direction. Note that the numbers of circles in the reciprocating refrigerant paths are the same, the numbers without "'" correspond to the refrigerant forward path 93, and the numbers with "'" are the refrigerant return path 94. It corresponds to.

前記冷媒分配蓋部材91の仕切壁91cは、円周方向の往路断面積を冷媒導入路90に近い部分から遠い部分まで一定断面積に保ち、円周方向の復路断面積を冷媒排出路96に近い部分から遠い部分まで一定断面積に保つ環状仕切壁としている。   The partition wall 91c of the refrigerant distribution lid member 91 maintains a circumferential cross-sectional area in a constant direction from a portion close to the refrigerant introduction passage 90 to a portion far from the refrigerant introduction passage 90, and a circumferential return cross-sectional area as a refrigerant discharge passage 96. It is an annular partition wall that maintains a constant cross-sectional area from near to far.

次に、作用を説明する。   Next, the operation will be described.

[複軸多相モータの基本機能]
2ロータ・1ステータで、アウターロータ磁力線とインナーロータ磁力線との2つの磁力線が作られる複軸多層モータMを採用したことで、コイル42及び図外のコイルインバータを2つのインナーロータIRとアウターロータORに対し共用できる。そして、インナーロータIRに対する電流とアウターロータORに対する電流を重ね合わせた複合電流を1つのコイル42に印加することにより、2つのロータIR、ORをそれぞれ独立に制御することができる。つまり、外観的には、1つの複軸多層モータMであるが、モータ機能とジェネレータ機能の異種または同種の機能を組み合わせたものとして使える。
[Basic functions of multi-axis multi-phase motor]
By adopting a multi-axis multilayer motor M in which two magnetic lines of outer rotor magnetic field lines and inner rotor magnetic field lines are formed with two rotors and one stator, the coil 42 and a coil inverter (not shown) are replaced with two inner rotors IR and outer rotors. Can be shared for OR. Then, by applying a composite current obtained by superimposing the current for the inner rotor IR and the current for the outer rotor OR to one coil 42, the two rotors IR and OR can be controlled independently. That is, in appearance, it is a single multi-axis multilayer motor M, but it can be used as a combination of different or similar functions of the motor function and the generator function.

よって、例えば、ロータとステータを持つモータと、ロータとステータを持つジェネレータの2つのものを設ける場合に比べて大幅にコンパクトになり、スペース・コスト・重量の面で有利であると共に、コイル共用化により電流による損失(鉄損、スイッチングロス)を防止することができる。   Therefore, for example, compared to the case where a motor having a rotor and a stator and a generator having a rotor and a stator are provided, the size is greatly reduced, which is advantageous in terms of space, cost, and weight, and can be used as a common coil. Thus, loss due to current (iron loss, switching loss) can be prevented.

また、複合電流制御のみで(モータ+ジェネレータ)の使い方に限らず、(モータ+モータ)や(ジェネレータ+ジェネレータ)の使い方も可能であるというように、高い選択自由度を持ち、例えば、ハイブリッド車の駆動源に採用した場合、これら多数の選択肢の中から車両状態に応じて最も効果的或いは効率的な組み合わせを選択することができる。   Moreover, it has a high degree of freedom in selection, such as using not only (motor + generator) but also (motor + motor) or (generator + generator) by combined current control. When used as a drive source, the most effective or efficient combination can be selected from among these many options according to the vehicle state.

[ステータ冷却作用]
複軸多層モータMの駆動時、コイル42に大電流を流すと、コイル42は発熱する。この熱は電気効率や機械効率を悪化させる原因となる。また、複軸多層モータMでは、発熱体であるコイル42は、モータ回転軸を中心とする円周に等ピッチでステータS内に配列される。よって、その熱を取り除くためにステータSの周方向において偏りなく冷却する必要がある。
[Stator cooling]
When a large current is passed through the coil 42 when the multi-axis multilayer motor M is driven, the coil 42 generates heat. This heat causes the electrical efficiency and mechanical efficiency to deteriorate. Further, in the multi-axis multilayer motor M, the coils 42 that are heating elements are arranged in the stator S at equal pitches on the circumference around the motor rotation axis. Therefore, in order to remove the heat, it is necessary to cool without deviation in the circumferential direction of the stator S.

以下、本例のステータ冷却構造によるステータ冷却作用を、図7及び図12を用いて説明する。   Hereinafter, the stator cooling action by the stator cooling structure of this example will be described with reference to FIGS. 7 and 12.

外部からモータケース2に形成された冷媒導入路74を経過した冷媒は、往路では、図7(a)に示すように、冷媒導入路90→冷媒分配蓋部材91の往路91a→冷媒分配板部材92の往路用分配穴92a→冷媒往路93→冷媒Uターン蓋部材95の連通凹部95aへと流れる。   As shown in FIG. 7A, the refrigerant that has passed through the refrigerant introduction path 74 formed in the motor case 2 from the outside is the refrigerant introduction path 90 → the forward path 91a of the refrigerant distribution lid member 91 → the refrigerant distribution plate member in the forward path. The forward flow distribution hole 92a → the refrigerant forward passage 93 → the refrigerant U-turn cover member 95 flows into the communication recess 95a.

そして、復路では、図7(b)に示すように、冷媒Uターン蓋部材95の連通凹部95aから、冷媒復路94→冷媒分配板部材92の復路用分配穴92b→冷媒分配蓋部材91の復路91b→冷媒排出路96へと流れ、冷媒排出路96からモータケース2に形成された冷媒排出路74’を経過して外部に排出される。   In the return path, as shown in FIG. 7B, the return path 94 → the return distribution hole 92 b of the refrigerant distribution plate member 92 → the return path of the refrigerant distribution cover member 91 from the communication recess 95 a of the refrigerant U-turn cover member 95. The refrigerant flows from 91 b to the refrigerant discharge path 96, passes through the refrigerant discharge path 74 ′ formed in the motor case 2 from the refrigerant discharge path 96, and is discharged to the outside.

この冷媒の流れにおいて、冷媒往路93と冷媒復路94との組みが周方向に隣り合うと共に、冷媒分配蓋部材91に往路91aと復路91bを仕切る周方向の仕切壁91cを設けた。   In this refrigerant flow, a set of the refrigerant forward path 93 and the refrigerant backward path 94 is adjacent in the circumferential direction, and the refrigerant distribution lid member 91 is provided with a circumferential partition wall 91c that partitions the forward path 91a and the backward path 91b.

このため、例えば、図12において、往路(1)で復路(1)’の組みのように、冷媒分配板部材92の往路用分配穴92aと冷媒導入路90の流路長が短ければ、冷媒分配板部材92の復路用分配穴92bと冷媒排出路96との流路長が長くなり、逆に、往路(9)で復路(9)’の組みのように、冷媒分配板部材92の往路用分配穴92aと冷媒導入路90との流路長が長ければ、冷媒分配板部材92の復路用分配穴92bと冷媒排出路96との流路長が短くなる。   For this reason, for example, in FIG. 12, if the flow path length of the forward distribution hole 92a of the refrigerant distribution plate member 92 and the refrigerant introduction path 90 is short as in the combination of the forward path (1) and the return path (1) ′, the refrigerant The flow path length between the return distribution hole 92b of the distribution plate member 92 and the refrigerant discharge path 96 is increased, and conversely, the forward path of the refrigerant distribution plate member 92 as in the return path (9) ′ in the forward path (9). If the flow path length between the distribution hole 92a and the refrigerant introduction path 90 is long, the flow path length between the return distribution hole 92b of the refrigerant distribution plate member 92 and the refrigerant discharge path 96 is short.

このように、冷媒分配蓋部材91の往路91aと復路91bを通過するための冷媒の合計流路長がほぼ同じ長さ(冷媒分配蓋部材91の1周弱)となるため、同一路長の往復路とUターン路を含め、分配された(1)、(1)’の組み〜(9)、(9)’の組みにより表される各冷媒路43(冷媒導入路90から冷媒排出路96まで)の路長は、ほぼ同じ長さで各冷媒路43による冷却効果がほぼ均一となり、ステータSの冷却偏りを緩和することができる。   Thus, since the total flow path length of the refrigerant for passing through the forward path 91a and the return path 91b of the refrigerant distribution lid member 91 is substantially the same length (less than one round of the refrigerant distribution lid member 91), Refrigerant paths 43 (from the refrigerant introduction path 90 to the refrigerant discharge path) represented by the combinations of (1), (1) ′ to (9), (9) ′ distributed including the round trip path and the U-turn path 96) is substantially the same length, the cooling effect of each refrigerant passage 43 becomes substantially uniform, and the cooling bias of the stator S can be alleviated.

なお、冷媒分配板部材92の往路用分配穴92aと復路用分配穴92bとの大きさを変化させることにより、流路抵抗を調整し、各冷媒路43の流量を均一にすることができる。   The flow path resistance can be adjusted and the flow rate of each refrigerant path 43 can be made uniform by changing the size of the forward distribution hole 92a and the return distribution hole 92b of the refrigerant distribution plate member 92.

また、図6に示すように、冷媒Uターン蓋部材95の内側を流れる冷媒により冷媒Uターン蓋部材95は軸方向外側に押されるため、この力がステータ支持ベアリング83に作用する。つまり、冷媒によりステータ支持ベアリング83に対し予圧を与えることができる。   Further, as shown in FIG. 6, since the refrigerant U-turn lid member 95 is pushed outward in the axial direction by the refrigerant flowing inside the refrigerant U-turn lid member 95, this force acts on the stator support bearing 83. That is, the preload can be applied to the stator support bearing 83 by the refrigerant.

本発明の特徴は、上述した構成の複軸多層モータMのステータS(固定子)の冷却構造に加えて好適に使用できる固定子のコイル構造及び製造方法を提供することにある。以下、本発明の固定子のコイル構造及び製造方法について詳細に説明する。   A feature of the present invention is to provide a stator coil structure and a manufacturing method that can be suitably used in addition to the cooling structure of the stator S (stator) of the multi-axis multilayer motor M having the above-described configuration. Hereinafter, the coil structure and manufacturing method of the stator according to the present invention will be described in detail.

図13は本発明の固定子のコイル構造の一例を示す図である。図13に示す例では、複軸多層モータMのステータS(固定子)の一部を示しており、コイル42とステータピース積層体からなるコア41との間の隙間は大きくなり、コイル42と冷媒の通過する冷却部材43との間の隙間が最小になっている。これにより、冷却能力を最大にしている。なお、以下に示す例では、コイル42を各コア41に集中巻きして構成している。   FIG. 13 is a view showing an example of the stator coil structure of the present invention. In the example shown in FIG. 13, a part of the stator S (stator) of the multi-axis multilayer motor M is shown, and the gap between the coil 42 and the core 41 made of the stator piece laminate is increased, The gap with the cooling member 43 through which the refrigerant passes is minimized. This maximizes the cooling capacity. In the example shown below, the coil 42 is configured by being concentratedly wound around each core 41.

図14(a)〜(c)はそれぞれ本発明の固定子のコイル構造の他の例を示す図である。図14(a)はステータピース積層体からなるコア41の正面図であり、図14(b)はコア41にコイル42を巻いたコア組立部品122の一例を図13の内周側から見た図であり、図14(c)は隣り合う2つのコア組立部品122の間に冷却部材43が配置された状態を図13の内周側から見た図である。   14A to 14C are views showing other examples of the stator coil structure of the present invention. 14A is a front view of the core 41 made of a stator piece laminate, and FIG. 14B is an example of the core assembly component 122 in which the coil 42 is wound around the core 41 as viewed from the inner peripheral side of FIG. FIG. 14C is a view of the state in which the cooling member 43 is disposed between two adjacent core assembly parts 122 as viewed from the inner peripheral side of FIG.

図14(a)〜(c)に示す例では、コア41の両側に弾性率の高い絶縁材例えばフッ素ゴムなどからなる絶縁弾性体120を配置し、その外側にコイル42を巻いたコア組立部品122を示している。図14(a)〜(c)に示す例では、所定位置にコア組立部品122が配置されると、寸法関係で絶縁弾性体120がつぶれてそのクッション効果でコイル42は冷却部材43に密着する。これにより、冷却能力を一層向上させることができる。   In the example shown in FIGS. 14A to 14C, a core assembly component in which an insulating elastic body 120 made of an insulating material having a high elastic modulus, for example, fluorine rubber, is disposed on both sides of the core 41 and a coil 42 is wound on the outside thereof. 122 is shown. In the example shown in FIGS. 14A to 14C, when the core assembly part 122 is disposed at a predetermined position, the insulating elastic body 120 is crushed due to the dimensional relationship, and the coil 42 is in close contact with the cooling member 43 due to the cushion effect. . Thereby, the cooling capacity can be further improved.

図15(a)〜(c)はそれぞれ図13に示す固定子を製造する各工程の一例を説明するための図である。図15(a)〜(c)に従って本発明の固定子の製造方法を説明すると、まず、図15(a)に示す構成の、ステータピース積層体からなるコア41と、図15(b)に示す構成の、ステータピース積層体からなるコア41に巻回する寸法W1よりも大きい寸法W2で環状に巻いたコイル42とを、予め別に準備する。そして、環状に巻いたコイル42をコア41に装着してコア組立部品122を形成し、図15(c)に示すように、コア組立部品122と冷却部材43とを交互に周方向に配置して、図13に示す構造の固定子を作製する。   FIGS. 15A to 15C are diagrams for explaining an example of each process for manufacturing the stator shown in FIG. 13. The manufacturing method of the stator of the present invention will be described with reference to FIGS. 15A to 15C. First, the core 41 composed of the stator piece laminate having the structure shown in FIG. 15A and the structure shown in FIG. A coil 42 that is annularly wound with a dimension W2 larger than the dimension W1 wound around the core 41 made of the stator piece laminate of the structure shown is separately prepared in advance. Then, the coil 42 wound in an annular shape is attached to the core 41 to form the core assembly part 122. As shown in FIG. 15C, the core assembly parts 122 and the cooling members 43 are alternately arranged in the circumferential direction. Thus, the stator having the structure shown in FIG. 13 is manufactured.

これにより、コイル42自らの弾性力でコイル42を冷却部材43に押し付け、コイル42をコア41よりも冷却部材43に近く配置している。この際、コイル42が冷却部材43に密着し、その結果コイル42は上下にわずかに延びる(広がる)が、コイルターン部の隙間を確保しておけば問題は無い。また、コア42は個別に支持されているので、コイル42の変形によって影響を受けることも無い。   Accordingly, the coil 42 is pressed against the cooling member 43 by the elastic force of the coil 42 itself, and the coil 42 is disposed closer to the cooling member 43 than the core 41. At this time, the coil 42 is brought into close contact with the cooling member 43, and as a result, the coil 42 slightly extends (expands) slightly in the vertical direction. Further, since the cores 42 are individually supported, they are not affected by the deformation of the coils 42.

図16(a)〜(c)はそれぞれ図13に示す固定子を製造する各工程の他の例を説明するための図である。図16(a)〜(c)に従って本発明の固定子の製造方法を説明すると、まず、図16(a)に示す構成の、ステータピース積層体からなるコア41と、図16(b)に示す構成の、環状に巻いたコイル42とを、予め別に準備する。そして、環状に巻いたコイル42をコア41に装着してコア組立部品122を形成し、図16(c)に示すように、コア組立部品122と冷却部材43とを交互に周方向に配置して、図13に示す構造の固定子を作製する。   FIGS. 16A to 16C are views for explaining another example of each process for manufacturing the stator shown in FIG. The stator manufacturing method of the present invention will be described with reference to FIGS. 16 (a) to 16 (c). First, a core 41 composed of a stator piece laminate having the structure shown in FIG. 16 (a), and FIG. A coil 42 having an annular configuration and having the structure shown is separately prepared in advance. Then, the coil 42 wound in an annular shape is attached to the core 41 to form the core assembly part 122. As shown in FIG. 16C, the core assembly parts 122 and the cooling members 43 are alternately arranged in the circumferential direction. Thus, the stator having the structure shown in FIG. 13 is manufactured.

図16(a)〜(c)に示す例において図15(a)〜(c)に示す例と異なる点は、コア41の形状とコア41とコイル42との間に絶縁弾性体を装着する点である。すなわち、図16(a)に示すように、コア41として、横断面形状を、固定子として配置したときの中心方向に行くに従って周方向の幅が小さくなるテーパ角130を有するテーパ形状とする。それとともに、コア組立部品122を形成する際、図16(c)及び図17にもコア組立体122を上から見た図を示すように、コア41とコイル42との間に弾性率の高い絶縁材例えばフッ素ゴムなどからなる絶縁弾性体131を配置している。   16 (a) to 16 (c) is different from the example shown in FIGS. 15 (a) to 15 (c) in that an insulating elastic body is mounted between the shape of the core 41 and the core 41 and the coil 42. Is a point. That is, as shown in FIG. 16A, the core 41 has a taper shape having a taper angle 130 in which the width in the circumferential direction decreases as it goes in the central direction when the core 41 is disposed as a stator. At the same time, when the core assembly part 122 is formed, the elastic modulus is high between the core 41 and the coil 42 as shown in FIGS. 16 (c) and 17 when the core assembly 122 is viewed from above. An insulating elastic body 131 made of an insulating material such as fluorine rubber is disposed.

これにより、コア41を外側からコイル42の穴に挿入する際、コイル42はコア41に設けられたテーパ角130により押し広げられ、より一層コイル42を冷却部材43に押し付けることができる。また、コア41を外側からコイル42の穴に挿入する際、コア41に設けられたテーパ角130により押し広げられるのはスペーサとしての絶縁弾性体131で、コイル42を傷つけることは無い。なお、上述した例では絶縁弾性体131を設けたが、絶縁弾性体131を設けずにテーパ角130を有するコア41を使用することもできる。ただ、その際は、コイル42を傷つけない効果を得ることはできない。   Thereby, when the core 41 is inserted into the hole of the coil 42 from the outside, the coil 42 is expanded by the taper angle 130 provided in the core 41, and the coil 42 can be further pressed against the cooling member 43. Further, when the core 41 is inserted into the hole of the coil 42 from the outside, it is the insulating elastic body 131 as a spacer that is pushed and widened by the taper angle 130 provided in the core 41, and the coil 42 is not damaged. Although the insulating elastic body 131 is provided in the above-described example, the core 41 having the taper angle 130 without using the insulating elastic body 131 can be used. However, in that case, the effect of not damaging the coil 42 cannot be obtained.

図18は本発明の固定子の製造方法のさらに他の例を説明するための図である。図18は別に巻いたコイル42をモールドする型141を示している。この型141を使用して、コア41とは別に巻いたコイル42を樹脂で環状にモールディングするに際し、モールドの型141の外周側142(固定子に組み付けられたとき冷却部材43側)にコイル42が寄る様に、樹脂の流れや射出位置を調整する。具体的には、図18に示すように、樹脂を流し込むゲート140を型141の内周側に2箇所配置する。こうすることで、型141中にセットされる図示しないコイルには、図中白抜きの矢印方向に力が働く。その結果として、樹脂の硬化後は冷却部材43側にコイルが広がる。   FIG. 18 is a view for explaining still another example of the stator manufacturing method of the present invention. FIG. 18 shows a mold 141 for molding a coil 42 separately wound. When this coil 141 is used to mold a coil 42 wound separately from the core 41 into an annular shape with resin, the coil 42 is placed on the outer peripheral side 142 of the mold 141 (the cooling member 43 side when assembled to the stator). Adjust the resin flow and injection position so that the Specifically, as shown in FIG. 18, two gates 140 into which resin is poured are arranged on the inner peripheral side of the mold 141. By doing so, a force acts on the coil (not shown) set in the mold 141 in the direction of the white arrow in the figure. As a result, the coil spreads to the cooling member 43 side after the resin is cured.

本発明の固定子のコイル構造及び製造方法は、従来の固定子の冷却構造に加えて用いることで、冷却能力をより一層高めることができ、特に、複軸多層モータの固定子の冷却構造として好適に使用することができる。   The stator coil structure and manufacturing method of the present invention can be used in addition to the conventional stator cooling structure to further increase the cooling capacity, and particularly as a stator cooling structure for a multi-axis multilayer motor. It can be preferably used.

ステータ冷却構造を有する複軸多層モータが適用されたハイブリッド駆動ユニットを示す概略全体図である。1 is a schematic overall view showing a hybrid drive unit to which a multi-axis multilayer motor having a stator cooling structure is applied. ステータ冷却構造が適用された複軸多層モータMを示す縦断側面図である。It is a vertical side view which shows the multi-axis multilayer motor M to which the stator cooling structure was applied. ステータ冷却構造が適用された複軸多層モータMを示す一部縦断正面図である。It is a partially longitudinal front view showing a multi-axis multilayer motor M to which a stator cooling structure is applied. ステータ冷却構造が適用された複軸多層モータMをステータの背面側から見た図である。It is the figure which looked at the multi-axis multilayer motor M to which the stator cooling structure was applied from the back side of the stator. 複軸多層モータが適用されたハイブリッド駆動ユニットのラビニョウ型複合遊星歯車列Gおよび駆動出力機構Dを示す縦断側面図である。It is a vertical side view which shows the Ravigneaux type compound planetary gear train G and the drive output mechanism D of the hybrid drive unit to which the multi-axis multilayer motor is applied. ステータ冷却構造が適用された複軸多層モータMのステータおよびモータケース部材を示す縦断側面図である。It is a vertical side view which shows the stator and motor case member of the multi-axis multilayer motor M to which the stator cooling structure is applied. (a)、(b)はそれぞれステータ冷却構造及び冷媒の流れを示す断面図である。(A), (b) is sectional drawing which shows the stator cooling structure and the flow of a refrigerant | coolant, respectively. 図7A−A線によるステータ冷却構造の冷媒分配蓋部材を示す断面図である。It is sectional drawing which shows the refrigerant | coolant distribution lid member of the stator cooling structure by the FIG. 7A line. 図7B−B線によるステータ冷却構造の冷媒分配板部材を示す図である。It is a figure which shows the refrigerant | coolant distribution plate member of the stator cooling structure by the FIG. 7B-B line. 図7C−C線によるステータ冷却構造の冷媒往路及び冷媒復路を示す断面図である。It is sectional drawing which shows the refrigerant | coolant forward path and refrigerant | coolant backward path | route of a stator cooling structure by FIG. 7C-C line. 図7D−D線によるステータ冷却構造のUターン蓋部材を示す図である。It is a figure which shows the U-turn lid member of the stator cooling structure by the FIG. 7D line. ステータ冷却構造の冷媒分配蓋部材における冷媒の流れを示す作用説明図である。It is an operation explanatory view showing the flow of the refrigerant in the refrigerant distribution lid member of the stator cooling structure. 本発明の固定子のコイル構造の一例を示す図である。It is a figure which shows an example of the coil structure of the stator of this invention. (a)〜(c)はそれぞれ本発明の固定子のコイル構造の他の例を示す図である。(A)-(c) is a figure which shows the other example of the coil structure of the stator of this invention, respectively. (a)〜(c)はそれぞれ図13に示す固定子を製造する各工程の一例を説明するための図である。(A)-(c) is a figure for demonstrating an example of each process of manufacturing the stator shown in FIG. 13, respectively. (a)〜(c)はそれぞれ図13に示す固定子を製造する各工程の他の例を説明するための図である。(A)-(c) is a figure for demonstrating the other example of each process of manufacturing the stator shown in FIG. 13, respectively. コア組立体122を上から見た図である。It is the figure which looked at the core assembly 122 from the top. 本発明の固定子の製造方法のさらに他の例を説明するための図である。It is a figure for demonstrating the further another example of the manufacturing method of the stator of this invention. 従来の固定子の構造の一例を示す図である。It is a figure which shows an example of the structure of the conventional stator.

符号の説明Explanation of symbols

41 コア
42 コイル
43 冷却部材
120、131 絶縁弾性体
122 コア組立部品
130 テーパ角
140 ゲート
141 型
142 外周側
41 Core 42 Coil 43 Cooling member 120, 131 Insulating elastic body 122 Core assembly part 130 Taper angle 140 Gate 141 Type 142 Outer peripheral side

Claims (7)

積層鋼板からなるコアにコイルを巻回して構成されたコア組立部品を周方向に配置して構成された固定子であって、隣り合うコア組立部品のコイル間にコイルを冷却する冷却部材が配置された固定子において、コアとコイル間の距離よりもコイルと冷却部材との距離が狭くなるよう構成したことを特徴とする固定子のコイル構造。   A stator configured by arranging a core assembly part formed by winding a coil around a core made of laminated steel sheets in the circumferential direction, and a cooling member for cooling the coil is disposed between the coils of adjacent core assembly parts A stator coil structure, wherein the distance between the coil and the cooling member is smaller than the distance between the core and the coil. コアとコイルとの間に弾性率の高い絶縁材を設けてコア組立部品を形成し、コア組立部品と冷却部材とを交互に周方向に配置することで、絶縁材のクッション効果でコイルを冷却部材に押し付け、コイルをコアよりも冷却部材に近く配置した請求項1に記載の固定子のコイル構造。   An insulating material having a high elastic modulus is provided between the core and the coil to form a core assembly part, and the core assembly part and the cooling member are alternately arranged in the circumferential direction, thereby cooling the coil by the cushion effect of the insulating material. The stator coil structure according to claim 1, wherein the coil is pressed against the member and the coil is disposed closer to the cooling member than the core. 積層鋼板からなるコアの横断面形状を、固定子として配置したときの中心方向に行くに従って周方向の幅が小さくなるテーパ形状とした請求項2に記載の固定子のコイル構造。   The stator coil structure according to claim 2, wherein the cross-sectional shape of the core made of the laminated steel plate is a tapered shape in which the width in the circumferential direction decreases as it goes in the central direction when the core is arranged as a stator. 積層鋼板からなるコアと、予め積層鋼板に巻回する寸法よりも大きい寸法で環状に巻いたコイルとを別に準備し、環状に巻いたコイルをコアに装着してコア組立部品を形成し、コア組立部品と冷却部材とを交互に周方向に配置することで、コイル自らの弾性力でコイルを冷却部材に押し付け、コイルをコアよりも冷却部材に近く配置したことを特徴とする固定子の製造方法。   Separately prepare a core made of laminated steel and a coil wound in an annular shape with dimensions larger than those previously wound around the laminated steel sheet, and attach the annularly wound coil to the core to form a core assembly part. The stator is manufactured by alternately arranging the assembly parts and the cooling members in the circumferential direction so that the coil is pressed against the cooling member by its own elastic force, and the coil is arranged closer to the cooling member than the core. Method. 環状に巻いたコイルをコアに装着してコア組立部品を形成する際、コアとコイルとの間に弾性率の高い絶縁材を設けた請求項4に記載の固定子の製造方法。   5. The method of manufacturing a stator according to claim 4, wherein an insulating material having a high elastic modulus is provided between the core and the coil when the annularly wound coil is attached to the core to form the core assembly part. 環状に巻いたコイルをコアに装着してコア組立部品を形成する際、横断面形状を、固定子として配置したときの中心方向に行くに従って周方向の幅が小さくなるテーパ形状とした積層鋼板からなるコアを環状に巻いたコイルに押し込む請求項4または5に記載の固定子の製造方法。   From a laminated steel sheet with a taper shape in which the width in the circumferential direction decreases as it goes in the central direction when it is arranged as a stator when forming a core assembly by attaching an annular coil to the core The method for manufacturing a stator according to claim 4 or 5, wherein the core is pushed into a coil wound in an annular shape. コイルをコアとは別に巻回した後、樹脂で環状にモールディングするに際し、モールドの型の外周側(固定子に組み付けられたとき冷却部材側)にコイルが寄る様に、樹脂の流れや射出位置を調整する請求項4〜6のいずれか1項に記載の固定子の製造方法。   When the coil is wound separately from the core and then molded in an annular shape with resin, the resin flow and injection position are set so that the coil approaches the outer peripheral side of the mold (the cooling member side when assembled to the stator). The method for manufacturing a stator according to any one of claims 4 to 6, wherein the adjustment is performed.
JP2003370538A 2003-10-30 2003-10-30 Coil structure of stator and manufacturing method for the same Pending JP2005137126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370538A JP2005137126A (en) 2003-10-30 2003-10-30 Coil structure of stator and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370538A JP2005137126A (en) 2003-10-30 2003-10-30 Coil structure of stator and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2005137126A true JP2005137126A (en) 2005-05-26

Family

ID=34647521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370538A Pending JP2005137126A (en) 2003-10-30 2003-10-30 Coil structure of stator and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2005137126A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010099974A3 (en) * 2009-03-05 2011-11-10 Cpm Compact Power Motors Gmbh Dual-rotor motor having heat dissipation
EP1987579B1 (en) 2006-02-23 2017-03-15 Wilo Se Motor centrifugal pump
CN108390525A (en) * 2018-04-26 2018-08-10 佛山博发智能科技有限公司 A kind of energy-saving cooling body of stator based on spiral water-cooling structure
CN108539884A (en) * 2018-04-26 2018-09-14 佛山博发智能科技有限公司 A kind of energy-saving cooling body of stator based on rotational structure
WO2019145464A1 (en) * 2018-01-26 2019-08-01 Borgwarner Sweden Ab An electrical motor
US10608483B2 (en) 2015-08-13 2020-03-31 Mitsubishi Electric Corporation Stator, electric motor, and air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1987579B1 (en) 2006-02-23 2017-03-15 Wilo Se Motor centrifugal pump
WO2010099974A3 (en) * 2009-03-05 2011-11-10 Cpm Compact Power Motors Gmbh Dual-rotor motor having heat dissipation
CN102428629A (en) * 2009-03-05 2012-04-25 Cpm小型电动马达有限公司 Dual-rotor motor having heat dissipation
US8541923B2 (en) 2009-03-05 2013-09-24 Cpm Compact Power Motors Gmbh Dual-rotor motor having heat dissipation
US10608483B2 (en) 2015-08-13 2020-03-31 Mitsubishi Electric Corporation Stator, electric motor, and air conditioner
WO2019145464A1 (en) * 2018-01-26 2019-08-01 Borgwarner Sweden Ab An electrical motor
CN111527668A (en) * 2018-01-26 2020-08-11 博格华纳瑞典公司 Electric motor
CN108390525A (en) * 2018-04-26 2018-08-10 佛山博发智能科技有限公司 A kind of energy-saving cooling body of stator based on spiral water-cooling structure
CN108539884A (en) * 2018-04-26 2018-09-14 佛山博发智能科技有限公司 A kind of energy-saving cooling body of stator based on rotational structure
CN108390525B (en) * 2018-04-26 2019-09-06 泰州程顺制冷设备有限公司 A kind of stator cooling body based on spiral water-cooling structure

Similar Documents

Publication Publication Date Title
US6903471B2 (en) Stator cooling structure for multi-shaft, multi-layer electric motor
US6864604B2 (en) Cooling structure for multi-shaft, multi-layer electric motor
JP4220324B2 (en) Rotating electric machine
US6838790B2 (en) Stator of two rotor single stator type electric motor
JP4029817B2 (en) Magnetic circuit structure of rotating electrical machine
US7372182B2 (en) Axial gap alternator associated with a flywheel
JP2005137126A (en) Coil structure of stator and manufacturing method for the same
JP3812511B2 (en) Motor coil feeding structure of hybrid drive unit
JP5728266B2 (en) Motor cooling structure
JP4100119B2 (en) Stator structure of multi-axis multilayer motor
JP3627559B2 (en) Multilayer motor
JP3815399B2 (en) Stator cooling structure for multi-axis multilayer motor
JP5233774B2 (en) Stator core support structure and vehicle drive apparatus having the structure
JP4120558B2 (en) Stator cooling structure
JP2004072950A (en) Supporting structure for stator cooling pipe of double-axis multilayer motor
JP4082126B2 (en) Outer rotor support bearing mounting structure for multi-axis multi-layer motor
JP3885755B2 (en) Stator structure of multi-axis multilayer motor
JP2005130587A (en) Stator core supporting structure of double shaft multilayer motor
JP2004312800A (en) Structure of stator of multiple shaft multilayer motor
JP2004067021A (en) Frictional engagement element arrangement structure of hybrid drive unit
JP2005269730A (en) Method of manufacturing rotary electric machine
JP2004312801A (en) Structure of stator of multiple shaft multilayer motor
JP2004297930A (en) Stator structure for multispindle multilayer motor
JP3543507B2 (en) Vehicle drive system
JP2005168205A (en) Stator core structure of rotary electric machine