JP2005136620A - Signal demodulator - Google Patents

Signal demodulator Download PDF

Info

Publication number
JP2005136620A
JP2005136620A JP2003369247A JP2003369247A JP2005136620A JP 2005136620 A JP2005136620 A JP 2005136620A JP 2003369247 A JP2003369247 A JP 2003369247A JP 2003369247 A JP2003369247 A JP 2003369247A JP 2005136620 A JP2005136620 A JP 2005136620A
Authority
JP
Japan
Prior art keywords
signal
amplitude
modulation
component
modulation signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003369247A
Other languages
Japanese (ja)
Inventor
Hiroyuki Aono
浩之 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003369247A priority Critical patent/JP2005136620A/en
Publication of JP2005136620A publication Critical patent/JP2005136620A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a signal demodulator which can demodulate an amplitude modulation signal and a phase modulation signal by using a common circuit of a simple structure. <P>SOLUTION: An orthogonal detection circuit 3 used for demodulating a phase modulation signal is used. Each multiplier 31 and 32 multiplies a received amplitude modulation signal by the cosine component and the sine component of a non-modulation signal whose frequency is the same as a carrier generated by an oscillator 33. High-frequency filters 41 and 42 remove high-frequency components of the output, and a vector operation circuit 5 takes a mean square so as to acquire amplitude information. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、信号復調装置に関し、例えば、狭域通信(DSRC;Dedicated Short Range Communication)システムで用いられるASK(Amplitude Shift Keying)変調方式信号のような振幅変調信号とQPSK(Quadrature Phase Shift Keying)変調方信号のような位相変調信号の両者を変調可能とした信号復調装置に関する。   The present invention relates to a signal demodulator, and relates to, for example, an amplitude modulation signal such as an ASK (Amplitude Shift Keying) modulation method signal and a QPSK (Quadrature Phase Shift Keying) modulation used in a DSRC (Dedicated Short Range Communication) system. The present invention relates to a signal demodulator capable of modulating both phase modulation signals such as one-way signals.

ETCや商用車管理システム等の路車間通信等で用いられるDSRCシステムにおいては、主にASK変調方式とQPSK変調方式の2つの変調方式が混在して用いられている。したがって、車載側の通信装置には、変調方式の異なる2種類の信号を復調するシステムを備える必要がある。従来は、ASK変調信号の復調部とQPSK変調信号の復調部をそれぞれ独立に設け、復調すべき信号に応じて切替を行っていた。しかし、変調方式それぞれに独立の復調回路を設けると、回路構成が複雑になり、コストアップにもなる。そこで、異なる変調方式の復調回路を共用化する技術の開発が進められている(例えば、特許文献1、2参照)。   In a DSRC system used for road-to-vehicle communication such as an ETC or a commercial vehicle management system, two modulation methods of an ASK modulation method and a QPSK modulation method are mainly used in a mixed manner. Therefore, it is necessary to provide a communication apparatus on the vehicle-mounted side with a system that demodulates two types of signals having different modulation methods. Conventionally, a demodulation unit for an ASK modulation signal and a demodulation unit for a QPSK modulation signal are provided independently, and switching is performed according to the signal to be demodulated. However, if an independent demodulation circuit is provided for each modulation method, the circuit configuration becomes complicated and the cost increases. In view of this, development of a technique for sharing a demodulation circuit of a different modulation method is being promoted (see, for example, Patent Documents 1 and 2).

特許文献1は、受信信号をデジタル化し、デジタル演算により復調を行うことで、プログラムの切替によって各種の変調信号の復調を可能とするものである。特許文献2は、MSK(Minimum Shift Keying)変調方式とQPSK変調方式の復調回路の共用化に関するものである。
特開2003−78577号公報 特開2000−134271号公報
Japanese Patent Application Laid-Open No. 2004-228867 makes it possible to demodulate various modulation signals by switching programs by digitizing a received signal and performing demodulation by digital calculation. Patent Document 2 relates to sharing of demodulation circuits of MSK (Minimum Shift Keying) modulation method and QPSK modulation method.
JP 2003-78577 A JP 2000-134271 A

しかしながら、MSK変調とQPSK変調とは、ともに周波数変調方式である点が共通するため、特許文献2に記載の技術のように回路の共有化を実現することは容易であるが、ASK変調は、振幅変調である点で相違し、復調方式が根本的に異なる。また、特許文献1の技術によれば各種の変調方式の復号をソフトウェアで行うため、振幅変調と周波数変調を共通の装置で復号することは可能となるが、DSRCシステムでは、通信を行うエリアが狭く、短時間にリアルタイムで比較的大量のデータ処理を行う必要があるため、高速で処理を行うプロセッサ、メモリを要することになり、装置構成が複雑化し、コストアップになる。   However, since both MSK modulation and QPSK modulation are frequency modulation schemes in common, it is easy to realize circuit sharing as in the technique described in Patent Document 2, but ASK modulation is It differs in that it is amplitude modulation, and the demodulation method is fundamentally different. Further, according to the technique of Patent Document 1, since decoding of various modulation methods is performed by software, it is possible to decode amplitude modulation and frequency modulation by a common device. However, in the DSRC system, there are areas for communication. Since it is necessary to process a relatively large amount of data in a short time and in real time, a processor and a memory that perform processing at a high speed are required, which complicates the apparatus configuration and increases the cost.

そこで本発明は、振幅変調信号と位相変調信号の両方を簡易な構成の共通の回路で復調することが可能な信号復調装置を提供することを課題とする。   Accordingly, an object of the present invention is to provide a signal demodulating device capable of demodulating both an amplitude modulation signal and a phase modulation signal by a common circuit having a simple configuration.

上記課題を解決するため、本発明に係る信号復調装置は、直交検波回路と信号処理回路を有する信号復調装置であって、直交検波回路から出力される同相成分と直交成分のそれぞれから高周波成分を除去する高周波フィルタを有し、この信号処理回路は、振幅変調信号入力時には、高周波フィルタ通過後の同相成分出力を基にして振幅変調信号の振幅成分を取得することを特徴とする。   In order to solve the above problems, a signal demodulating device according to the present invention is a signal demodulating device having a quadrature detection circuit and a signal processing circuit, wherein a high frequency component is obtained from each of an in-phase component and a quadrature component output from the quadrature detection circuit. The signal processing circuit has a high frequency filter to be removed, and when the amplitude modulation signal is input, the signal processing circuit acquires the amplitude component of the amplitude modulation signal based on the in-phase component output after passing through the high frequency filter.

あるいは、信号処理回路は、振幅変調信号入力時には、高周波フィルタ通過後の同相成分と直交成分の二乗平均を基にして振幅変調信号の振幅成分を取得することが好ましい。   Alternatively, the signal processing circuit preferably acquires the amplitude component of the amplitude modulation signal based on the mean square of the in-phase component and the quadrature component after passing through the high-frequency filter when the amplitude modulation signal is input.

直交検波回路では、入力された信号を2つに分岐し、一方に搬送波と同じ周波数の無変調信号のCOS成分を、他方に搬送波と同じ周波数の無変調信号のSIN成分を乗じる。乗算結果のうち前者を同相成分、後者を直交成分と呼ぶ。入力信号がQPSK変調信号のような位相変調場合、同相成分・直交成分から信号の位相を検出する。一方、入力信号が振幅変調信号、例えば、ASK変調信号(A×cos(2πft+θ))の場合、前者はA×cos(2πft+θ)×cos(2πft)=A/2×{cos(4πft+θ)+cosθ}、後者はA×cos(2πft+θ)×sin(2πft)=A/2×{sin(4πft+θ)+sinθ}となり、高周波成分であるcos(4πft+θ)、sin(4πft+θ)を高周波フィルタで除去すると、その通過後の出力は、前者がA/2×cosθ、後者がA/2×sinθとなる。一般にθ≒0であり、cosθ≒1となるから、前者はA/2に略等しい。   In the quadrature detection circuit, the input signal is branched into two, and one is multiplied by the COS component of the unmodulated signal having the same frequency as the carrier wave, and the other is multiplied by the SIN component of the unmodulated signal having the same frequency as the carrier wave. Among the multiplication results, the former is called an in-phase component, and the latter is called a quadrature component. When the input signal is phase modulated like a QPSK modulated signal, the phase of the signal is detected from the in-phase component and the quadrature component. On the other hand, when the input signal is an amplitude modulation signal, for example, an ASK modulation signal (A × cos (2πft + θ)), the former is A × cos (2πft + θ) × cos (2πft) = A / 2 × {cos (4πft + θ) + cosθ} In the latter case, A × cos (2πft + θ) × sin (2πft) = A / 2 × {sin (4πft + θ) + sinθ}. When cos (4πft + θ) and sin (4πft + θ), which are high-frequency components, are removed by a high-frequency filter, they pass through. The latter output is A / 2 × cos θ for the former and A / 2 × sin θ for the latter. In general, θ≈0 and cos θ≈1, so the former is approximately equal to A / 2.

周波数偏差によりθ≠0の場合、前者と後者の二乗平均をとる。二乗平均は√{(A/2×cosθ)+(A/2×sinθ)}であり、これは、A/2の絶対値である。 When θ ≠ 0 due to frequency deviation, the root mean square of the former and the latter is taken. The root mean square is {square root} {(A / 2 × cos θ) 2 + (A / 2 × sin θ) 2 }, which is the absolute value of A / 2.

さらに、得られた振幅に応じて、受信した振幅変調信号を増幅するアンプを備えているとよい。すなわち、増幅利得を振幅に応じて制御する。   Furthermore, it is preferable to provide an amplifier that amplifies the received amplitude modulation signal in accordance with the obtained amplitude. That is, the amplification gain is controlled according to the amplitude.

直交検波回路の出力を高周波フィルタに導き、通過させて高周波成分を除去することにより、QPSK変調方式等の位相変調信号の復調に用いられる直交検波回路によって振幅変調信号の振幅情報を取り出すことができる。このため、振幅変調信号の復調用に専用の回路(包絡線検波回路)を設ける必要がなくなり、復調回路を共用できるので、構成が簡略化され、コストダウンが図れる。   By guiding the output of the quadrature detection circuit to a high-frequency filter and passing it through to remove the high-frequency component, amplitude information of the amplitude-modulated signal can be extracted by a quadrature detection circuit used for demodulation of a phase-modulated signal such as a QPSK modulation method. . For this reason, there is no need to provide a dedicated circuit (envelope detection circuit) for demodulation of the amplitude modulation signal, and the demodulation circuit can be shared, so that the configuration is simplified and the cost can be reduced.

特に、二乗平均を利用した場合には、周波数偏差の影響を受けずに低雑音での復調を行うことができる。   In particular, when the mean square is used, it is possible to perform demodulation with low noise without being affected by the frequency deviation.

振幅変調信号受信時の利得調整に二乗平均を用いることで、振幅情報による利得調整が可能となり、搬送波の影響を受けない利得調整が可能となる。   By using the root mean square for gain adjustment when receiving an amplitude modulation signal, gain adjustment based on amplitude information is possible, and gain adjustment that is not affected by a carrier wave is possible.

以下、添付図面を参照して本発明の好適な実施の形態について詳細に説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の参照番号を附し、重複する説明は省略する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same reference numerals are given to the same components in the drawings as much as possible, and duplicate descriptions are omitted.

図1は本発明に係る信号復調装置を備えた車載用通信装置の受信部の主要構成を示すブロック構成図であり、図2はこの車載用通信装置が用いられるDSRCシステムのイメージ図である。   FIG. 1 is a block diagram showing a main configuration of a receiving unit of an in-vehicle communication device provided with a signal demodulator according to the present invention, and FIG. 2 is an image diagram of a DSRC system in which the in-vehicle communication device is used.

この通信装置の受信部は、本発明に係る信号復調装置100を有しており、アンテナ1と、アンプ2と、直交検波回路3と、高周波フィルタ41、42と、ベクトル演算回路5と、AGC(Auto Gain Control)回路6から構成される。   The receiving unit of this communication apparatus includes a signal demodulating apparatus 100 according to the present invention, and includes an antenna 1, an amplifier 2, a quadrature detection circuit 3, high frequency filters 41 and 42, a vector calculation circuit 5, and an AGC. (Auto Gain Control) circuit 6 is formed.

アンテナ1とアンプ2が接続され、アンプ2の出力は2つに分岐されて直交検波回路3へと導かれる。直交検波回路3は、2つの乗算器31、32と発振器33から構成されており、各乗算器31、32のそれぞれの一方の入力端子と出力端子が直交検波回路3の入力端子、出力端子となる。各乗算器31、32の他方の入力端子は、発振器33に接続され、所定周波数の無変調信号のcos成分、sin成分が入力されている。   The antenna 1 and the amplifier 2 are connected, and the output of the amplifier 2 is branched into two and led to the quadrature detection circuit 3. The quadrature detection circuit 3 includes two multipliers 31 and 32 and an oscillator 33, and one input terminal and output terminal of each of the multipliers 31 and 32 are input and output terminals of the quadrature detection circuit 3. Become. The other input terminal of each of the multipliers 31 and 32 is connected to the oscillator 33, and the cos component and sin component of an unmodulated signal having a predetermined frequency are input.

直交検波回路3の2つの出力端子にはそれぞれ高周波フィルタ41、42が接続され、高周波フィルタ41、42の出力端子とベクトル演算回路5の入力端子が接続されている。ベクトル演算回路5の出力端子は、AGC回路6の入力端子へと接続されるとともに、図示していない信号処理回路へと接続されている。AGC回路6の出力端子は、乗算器でもあるアンプ2のもう一つの入力端子へと接続されている。   High frequency filters 41 and 42 are connected to the two output terminals of the quadrature detection circuit 3, respectively, and the output terminals of the high frequency filters 41 and 42 and the input terminal of the vector arithmetic circuit 5 are connected. The output terminal of the vector arithmetic circuit 5 is connected to the input terminal of the AGC circuit 6 and to a signal processing circuit (not shown). The output terminal of the AGC circuit 6 is connected to another input terminal of the amplifier 2 that is also a multiplier.

DSRCシステムは図2に示されるように、路上に設置されている送受信機7から電波8を送信するものであり、送受信エリア内を通過する車両9に設置された通信装置(本発明に係る受信機100を有する)との間で通信を行うものである。DSRCシステムの無線周波数は、例えば5.8MHz帯が用いられ、変調方式としてはASK変調方式とQPSK変調方式が併用される。   As shown in FIG. 2, the DSRC system transmits radio waves 8 from a transceiver 7 installed on the road, and is a communication device installed in a vehicle 9 passing through the transmission / reception area (reception according to the present invention). Communication). For example, a 5.8 MHz band is used as a radio frequency of the DSRC system, and an ASK modulation method and a QPSK modulation method are used in combination as modulation methods.

本実施形態の動作を説明する前に、この受信機での通信に用いられるデジタル変調波について簡単に説明する。   Before explaining the operation of the present embodiment, a digital modulation wave used for communication in this receiver will be briefly explained.

図3は、ASK変調、PSK変調、FSK変調それぞれの変調波を元になるデジタル信号とともに示した図である。図3(a)に示されるように元となるデジタル信号のベースバンド波形は、単純な二値波形とする。ASK変調では、ベースバンド波形に応じて被変調波の振幅を異ならせる。例えば、図3(b)に示されるように、振幅が0の領域(ベース信号が0)と一定振幅(=A)の領域(ベース信号が1)が存在する。これに対して、PSK変調の場合には、被変調波はベースバンド波形が切り替わる時点でその位相のみを切り替えるので、図3(c)に示されるように、その振幅は常に一定である。FSK変調の場合も、被変調波はベースバンド波形に応じてその周波数を切り替えるので、図3(d)に示されるように、その振幅は常に一定となる。   FIG. 3 is a diagram showing modulated waves of ASK modulation, PSK modulation, and FSK modulation together with the original digital signal. As shown in FIG. 3A, the baseband waveform of the original digital signal is a simple binary waveform. In ASK modulation, the amplitude of the modulated wave is varied according to the baseband waveform. For example, as shown in FIG. 3B, there are a region with an amplitude of 0 (base signal is 0) and a region with a constant amplitude (= A) (base signal is 1). On the other hand, in the case of PSK modulation, the amplitude of the modulated wave is always constant as shown in FIG. 3C because only the phase of the modulated wave is switched when the baseband waveform is switched. Also in the case of FSK modulation, the frequency of the modulated wave is switched according to the baseband waveform, so that the amplitude is always constant as shown in FIG.

図4はQPSK変調の場合の被変調波をベースバンド波形とともに示す図である。QPSK変調は図3(c)に示されるPSK変調を発展させたものであり、ベースバンドの2ビットずつを組み合わせ、組み合わせたビット値に応じて被変調波の位相をπ/4ずつ異ならせることで、4値を一度に伝送できるようにして周波数利用効率を高めた伝送方式である。   FIG. 4 is a diagram showing a modulated wave in the case of QPSK modulation together with a baseband waveform. QPSK modulation is an extension of the PSK modulation shown in FIG. 3 (c), in which two baseband bits are combined and the phase of the modulated wave is varied by π / 4 according to the combined bit value. Thus, this is a transmission method in which four values can be transmitted at a time and the frequency utilization efficiency is improved.

本実施形態における直交検波回路3は、QPSK変調方式の復調に広く用いられている。以下、具体的な動作について説明する。まず、QPSK変調方式の復調から述べる。乗算器31、32で入力信号の搬送波と同じ周波数の無変調信号のcos成分、sin成分を乗じて高周波フィルタ41、42を通過させることにより、同相成分Iと直交成分Qをそれぞれ取得できる。図5は、QPSK変調方式における、この同相成分Iと直交成分との関係を示したものである。ここでは、元のデジタルデータの0を−1として、1を1として取り扱った場合を示している。直交検波回路3を利用することで、同相成分Iと直交成分Qとを独立に把握することができる。   The quadrature detection circuit 3 in this embodiment is widely used for demodulation of the QPSK modulation method. A specific operation will be described below. First, the demodulation of the QPSK modulation method will be described. The multipliers 31 and 32 multiply the cos component and sin component of the unmodulated signal having the same frequency as the carrier wave of the input signal and pass through the high frequency filters 41 and 42, whereby the in-phase component I and the quadrature component Q can be acquired. FIG. 5 shows the relationship between the in-phase component I and the quadrature component in the QPSK modulation method. Here, a case where 0 is treated as 1 and 1 is treated as 1 in the original digital data is shown. By using the quadrature detection circuit 3, the in-phase component I and the quadrature component Q can be grasped independently.

ASK変調信号が入力された場合、ASK変調信号は、A×cos(2πft+θ)で表せる(ここで、Aは元のデジタルデータに応じて0または1の値をとるものとする)。   When an ASK modulation signal is input, the ASK modulation signal can be expressed by A × cos (2πft + θ) (where A is a value of 0 or 1 depending on the original digital data).

乗算器31で処理された出力信号は、A×cos(2πft+θ)×cos(2πft)=A/2×{cos(4πft+θ)+cosθ}となり、乗算器32で処理された出力信号は、A×cos(2πft+θ)×sin(2πft)=A/2×{sin(4πft+θ)+sinθ}となる。高周波フィルタ41、42で(4πft+θ)を除去することにより、それぞれA/2×cosθ、A/2×sinθが出力として得られる。   The output signal processed by the multiplier 31 is A × cos (2πft + θ) × cos (2πft) = A / 2 × {cos (4πft + θ) + cosθ}, and the output signal processed by the multiplier 32 is A × cos. (2πft + θ) × sin (2πft) = A / 2 × {sin (4πft + θ) + sinθ}. By removing (4πft + θ) by the high frequency filters 41 and 42, A / 2 × cos θ and A / 2 × sin θ are obtained as outputs, respectively.

ベクトル演算回路5は、この出力からベクトル演算によって振幅Aを求める。具体的には、両者の二乗平均√{(A/2×cosθ)+(A/2×sinθ)}をとる。この二乗平均値は|A/2|となるから、ASK変調信号の振幅が得られ、これにより、元データを復調することができる。 The vector calculation circuit 5 obtains the amplitude A from this output by vector calculation. Specifically, the root mean square of both {{(A / 2 × cos θ) 2 + (A / 2 × sin θ) 2 }} is taken. Since the root mean square value is | A / 2 |, the amplitude of the ASK modulation signal is obtained, whereby the original data can be demodulated.

ここで、θが0に近い場合には、上記出力はそれぞれA/2、0に略等しくなるため、ベクトル演算回路5を用いずともASK変調信号の振幅を得ることができ、元データの復調が可能である。しかし、周波数偏差があり、θが0からずれている場合には、同相成分出力であるA/2×cosθが小さくなり、正しい変調ができない可能性がある。このような場合には、ベクトル演算回路5での二乗平均値演算を行うことで、周波数偏差成分が除去されるので、振幅を正しく把握し、精度良く復調を行うことができる。   Here, when θ is close to 0, the above outputs are approximately equal to A / 2 and 0, respectively. Therefore, the amplitude of the ASK modulation signal can be obtained without using the vector calculation circuit 5, and the original data can be demodulated. Is possible. However, when there is a frequency deviation and θ is deviated from 0, A / 2 × cos θ, which is an in-phase component output, becomes small, and there is a possibility that correct modulation cannot be performed. In such a case, the frequency deviation component is removed by calculating the mean square value in the vector calculation circuit 5, so that the amplitude can be correctly grasped and demodulated with high accuracy.

AGC回路6は、求めた振幅値A/2に応じてアンプ2による増幅率を制御する(図6参照)。従来のAGCでは、復調部に入力される信号に応じて制御を行っているが、これでは、搬送波であるcos(2πft+θ)の変動の影響を受けやすい。これに対して、本発明によれば、求めるべき振幅値に応じた増幅が可能であるため、利得の制御効率が良く、精度のよい測定が可能となる。   The AGC circuit 6 controls the amplification factor by the amplifier 2 according to the obtained amplitude value A / 2 (see FIG. 6). In the conventional AGC, control is performed according to the signal input to the demodulator, but this is easily affected by fluctuations in cos (2πft + θ) that is a carrier wave. On the other hand, according to the present invention, amplification according to the amplitude value to be obtained is possible, so that gain control efficiency is good and measurement with high accuracy is possible.

入力された変調信号がASK変調信号かQPSK変調信号かは以下のようにして判定する。θ≒0の場合には、ASK変調信号の場合、直交成分出力が略0で一定であることから判定できる。また、θ≠0の場合も、二乗平均値の変動を基にして変調方式の判別が可能である。   Whether the input modulation signal is an ASK modulation signal or a QPSK modulation signal is determined as follows. In the case of θ≈0, in the case of an ASK modulation signal, the determination can be made because the orthogonal component output is substantially 0 and constant. In addition, even when θ ≠ 0, it is possible to determine the modulation method based on the variation of the mean square value.

以上の説明では、QPSK変調とASK変調との共有化について説明したが、他の位相変調と振幅変調の復調回路の共用についても本発明は好適に利用可能であり、車載通信装置やDSRCシステムに限らず、他の通信システムにおいても適用可能である。   In the above description, the sharing of the QPSK modulation and the ASK modulation has been described. However, the present invention can also be suitably used for the sharing of other phase modulation and amplitude modulation demodulation circuits, and can be applied to in-vehicle communication apparatuses and DSRC systems. The present invention is not limited to this and can be applied to other communication systems.

本発明に係る信号復調装置を備えた車載用通信装置の受信部の主要構成を示すブロック構成図である。It is a block block diagram which shows the main structures of the receiving part of the vehicle-mounted communication apparatus provided with the signal demodulation apparatus which concerns on this invention. 図1の車載用通信装置が用いられるDSRCシステムのイメージ図である。It is an image figure of the DSRC system in which the vehicle-mounted communication apparatus of FIG. 1 is used. ASK変調、FSK変調、PSK変調による被変調波と入力波の波形をともに示す図である。It is a figure which shows both the waveform of the to-be-modulated wave by ASK modulation, FSK modulation, and PSK modulation, and an input wave. 入力波とQPSK変調による被変調波の波形をともに示す図である。It is a figure which shows both the waveform of the modulated wave by an input wave and QPSK modulation. QPSK変調方式における同相成分と直交成分の関係を示す図である。It is a figure which shows the relationship between the in-phase component and quadrature component in a QPSK modulation system. AGC回路における増幅率の設定を説明するグラフである。It is a graph explaining the setting of the amplification factor in an AGC circuit.

符号の説明Explanation of symbols

1…アンテナ、2…アンプ、3…直交検波回路、5…ベクトル演算回路、6…AGC回路、7…送受信機、8…電波、9…車両、31…乗算器、32…乗算器、33…発振器、41…高周波フィルタ、100…信号復調装置。   DESCRIPTION OF SYMBOLS 1 ... Antenna, 2 ... Amplifier, 3 ... Quadrature detection circuit, 5 ... Vector arithmetic circuit, 6 ... AGC circuit, 7 ... Transceiver, 8 ... Radio wave, 9 ... Vehicle, 31 ... Multiplier, 32 ... Multiplier, 33 ... Oscillator, 41... High frequency filter, 100.

Claims (3)

直交検波回路と信号処理回路を有する信号復調装置であって、
直交検波回路から出力される同相成分と直交成分のそれぞれから高周波成分を除去する高周波フィルタを有し、
前記信号処理回路は、振幅変調信号入力時には、高周波フィルタ通過後の同相成分出力を基にして振幅変調信号の振幅成分を取得することを特徴とする信号復調装置。
A signal demodulator having a quadrature detection circuit and a signal processing circuit,
A high-frequency filter that removes high-frequency components from each of the in-phase and quadrature components output from the quadrature detection circuit;
The signal processing device is characterized in that when the amplitude modulation signal is input, the signal processing circuit acquires the amplitude component of the amplitude modulation signal based on the in-phase component output after passing through the high frequency filter.
直交検波回路と信号処理回路を有する信号復調装置であって、
直交検波回路から出力される同相成分と直交成分のそれぞれから高周波成分を除去する高周波フィルタを有し、
前記信号処理回路は、振幅変調信号入力時には、高周波フィルタ通過後の同相成分と直交成分の二乗平均から振幅変調信号の振幅成分を取得することを特徴とする請求項1記載の信号復調装置。
A signal demodulator having a quadrature detection circuit and a signal processing circuit,
A high-frequency filter that removes a high-frequency component from each of the in-phase component and the quadrature component output from the quadrature detection circuit;
2. The signal demodulator according to claim 1, wherein the signal processing circuit acquires the amplitude component of the amplitude modulation signal from the mean square of the in-phase component and the quadrature component after passing through the high-frequency filter when the amplitude modulation signal is input.
得られた振幅に応じて、受信した振幅変調信号を増幅するアンプを備えていることを特徴とする請求項1または2記載の信号復調装置。   3. The signal demodulator according to claim 1, further comprising an amplifier that amplifies the received amplitude modulation signal in accordance with the obtained amplitude.
JP2003369247A 2003-10-29 2003-10-29 Signal demodulator Pending JP2005136620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003369247A JP2005136620A (en) 2003-10-29 2003-10-29 Signal demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003369247A JP2005136620A (en) 2003-10-29 2003-10-29 Signal demodulator

Publications (1)

Publication Number Publication Date
JP2005136620A true JP2005136620A (en) 2005-05-26

Family

ID=34646670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369247A Pending JP2005136620A (en) 2003-10-29 2003-10-29 Signal demodulator

Country Status (1)

Country Link
JP (1) JP2005136620A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228397A (en) * 2006-02-24 2007-09-06 Toshiba Tec Corp Quadrature demodulator and interrogator
JP2007282217A (en) * 2006-03-31 2007-10-25 Aisin Seiki Co Ltd Demodulation circuit
JP2007281947A (en) * 2006-04-07 2007-10-25 Hitachi Ltd On-vehicle device for narrow band communication
JP2008022187A (en) * 2006-07-12 2008-01-31 Fujitsu Ten Ltd Receiving device
JP2011077593A (en) * 2009-09-29 2011-04-14 Renesas Electronics Corp Demodulator and demodulation method
JP2011087212A (en) * 2009-10-19 2011-04-28 Sony Corp Demodulation device and method, and electronic equipment
JP2015015618A (en) * 2013-07-05 2015-01-22 ラピスセミコンダクタ株式会社 Audio system, and audio signal transmission method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228397A (en) * 2006-02-24 2007-09-06 Toshiba Tec Corp Quadrature demodulator and interrogator
JP4676357B2 (en) * 2006-02-24 2011-04-27 東芝テック株式会社 Quadrature demodulator and interrogator
JP2007282217A (en) * 2006-03-31 2007-10-25 Aisin Seiki Co Ltd Demodulation circuit
JP2007281947A (en) * 2006-04-07 2007-10-25 Hitachi Ltd On-vehicle device for narrow band communication
JP4681493B2 (en) * 2006-04-07 2011-05-11 日立オートモティブシステムズ株式会社 On-board device for narrow area communication
JP2008022187A (en) * 2006-07-12 2008-01-31 Fujitsu Ten Ltd Receiving device
JP2011077593A (en) * 2009-09-29 2011-04-14 Renesas Electronics Corp Demodulator and demodulation method
JP2011087212A (en) * 2009-10-19 2011-04-28 Sony Corp Demodulation device and method, and electronic equipment
JP2015015618A (en) * 2013-07-05 2015-01-22 ラピスセミコンダクタ株式会社 Audio system, and audio signal transmission method

Similar Documents

Publication Publication Date Title
JP6633200B2 (en) Extract carrier signal from modulated signal
US7492838B2 (en) Apparatus for compensating for phase mismatch in QPSK demodulator
EA031637B1 (en) Separating and extracting modulated signals
US20060286957A1 (en) Direct conversion radio apparatus
JP4676357B2 (en) Quadrature demodulator and interrogator
US20100226459A1 (en) Apparatus and Method for I/Q Modulation
US8965290B2 (en) Amplitude enhanced frequency modulation
CN101119358A (en) Quadrature demodulator
JP2005136620A (en) Signal demodulator
JP3371175B2 (en) Transmission method
WO2016021466A1 (en) Wireless communication apparatus and integrated circuit
US5131008A (en) DSP-based GMSK coherent detector
JPH07264091A (en) Communication equipment for radio card
US7729410B2 (en) Procedure for BPSK demodulation corresponding to BPSK modulation with reduced envelope peaking
JP2004040678A (en) Demodulator
JP3979261B2 (en) Receiver
JP2005045329A (en) Receiver
JP2022117789A (en) Communication device and communication method
JP2003023468A (en) Digital modulator
US6198908B1 (en) System and a method for transfer of a digital information carrying signal
KR20100069282A (en) Device and method for binary phase shift key demodulator using phase shifter
JP4698331B2 (en) Transmitter
JP2007281947A (en) On-vehicle device for narrow band communication
US10256889B2 (en) Method and device for conditioning a radio data signal for a broadcast receiver
JP2011166458A (en) Digital signal transmitting method, digital signal receiving method, digital signal transmitting apparatus, and digital signal receiving apparatus