JP2005135655A - Manufacturing method and device of membrane electrode assembly laminating diffusion layers and membrane electrode assembly - Google Patents

Manufacturing method and device of membrane electrode assembly laminating diffusion layers and membrane electrode assembly Download PDF

Info

Publication number
JP2005135655A
JP2005135655A JP2003368002A JP2003368002A JP2005135655A JP 2005135655 A JP2005135655 A JP 2005135655A JP 2003368002 A JP2003368002 A JP 2003368002A JP 2003368002 A JP2003368002 A JP 2003368002A JP 2005135655 A JP2005135655 A JP 2005135655A
Authority
JP
Japan
Prior art keywords
diffusion layer
electrode assembly
membrane electrode
laminated
heating roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003368002A
Other languages
Japanese (ja)
Inventor
Hiroshi Doi
博 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003368002A priority Critical patent/JP2005135655A/en
Publication of JP2005135655A publication Critical patent/JP2005135655A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a membrane electrode assembly without warpage in a manufacturing method of the membrane electrode assembly in which diffusion layers are continuously hot-pressed on both sides of a catalyst layer with heating rollers. <P>SOLUTION: In cutting out diffusion layers 50 from a long-size carbon cloth 50a, warp threads are to be cut up with a number of notches 52 cut in in a weft direction on the carbon cloth 50a. The diffusion layers 50, 50 cut out are hot-pressed on an upper and a lower catalyst layers 4 of a member 1a conveyed with the catalyst layers 4 laminated on an electrolyte membrane 3 with heating rollers 10a, 10b. Warpage caused by differences of rigidity (tensile strength) of the diffusion layers 50, 50 is cancelled out by the forming of the notches 52. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池のセルとして用いられる拡散層を積層した膜電極接合体の製造方法と装置に関する。   The present invention relates to a method and apparatus for manufacturing a membrane electrode assembly in which diffusion layers used as cells of a fuel cell are laminated.

図9は、固体高分子型燃料電池の要部を示しており、膜電極接合体(MEA:Membrane-Electrode Assembly)1がセパレータ2を挟持して多数配置されている。膜電極接合体1は、イオン交換膜からなる電解質膜3と、その両面に積層されたアノードおよびカソードとして機能する触媒層4と、各触媒層に接着積層された拡散層5とで構成される。拡散層5にはセパレータ2に形成された流路6から燃料ガス(水素)および酸化ガス(酸素、通常は空気)が供給される。   FIG. 9 shows a main part of the polymer electrolyte fuel cell, in which a large number of membrane electrode assemblies (MEA: Membrane-Electrode Assembly) 1 are arranged with a separator 2 interposed therebetween. The membrane electrode assembly 1 includes an electrolyte membrane 3 made of an ion exchange membrane, a catalyst layer 4 functioning as an anode and a cathode laminated on both surfaces thereof, and a diffusion layer 5 adhered and laminated on each catalyst layer. . Fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) are supplied to the diffusion layer 5 from a flow path 6 formed in the separator 2.

膜電極接合体1の製造には、電解質膜に触媒インクを塗布し乾燥させて両面に触媒層を形成し、そこに、カーボンクロスのような材料である拡散層を触媒層の両面に平板プレスを用いてホットプレスして、接着積層する方法が通常行われる。この方法は、いわゆるバッチ処理であり、多数の膜電極接合体を連続的に製造するには有効ではない。そこで、長尺状の電解質膜の両面に一定間隔で触媒層を連続的に形成した部材を作り、それを上下一対の加熱ローラの間に通過させる一方、例えば特許文献1(特開2003−48190号公報)に記載されるようなロータリーカッターを備えた薄膜切断装置を用いて、ロール状のカーボンクロスから所定の大きさの拡散層を切断し、それを前記した触媒層を両面に積層した部材の触媒層と加熱ローラとの間に通過させることによって、触媒層の両面に拡散層を連続的に接着積層していくようにした、膜電極接合体を連続的に製造する方法が行われる。   To manufacture the membrane electrode assembly 1, a catalyst ink is applied to an electrolyte membrane and dried to form a catalyst layer on both sides, and a diffusion layer made of a material such as carbon cloth is formed on both sides of the catalyst layer by a flat plate press. In general, a method of hot-pressing and laminating using an adhesive is performed. This method is a so-called batch process and is not effective for continuously producing a large number of membrane electrode assemblies. Therefore, a member in which a catalyst layer is continuously formed on both surfaces of a long electrolyte membrane at a constant interval is made and passed between a pair of upper and lower heating rollers, while for example, Patent Document 1 (Japanese Patent Laid-Open No. 2003-48190). A member in which a diffusion layer having a predetermined size is cut from a roll-shaped carbon cloth using a thin film cutting device provided with a rotary cutter as described in Japanese Patent Publication No.), and a catalyst layer as described above is laminated on both sides. A method of continuously producing a membrane electrode assembly in which a diffusion layer is continuously adhered and laminated on both surfaces of a catalyst layer by passing between the catalyst layer and a heating roller is performed.

図10aは、そのような膜電極接合体の連続的な製造方法と装置の一例を示す。長尺状の電解質膜3の両面に所定の間隔をおいて触媒層4、4が積層した部材1aが上下一対の吸着機能を兼ね備えた加熱ローラ10a、10bの間を通過するようにされている。加熱ローラ10a、10bにはロータリーカッター20が対設しており、加熱ローラ10a、10bとロータリーカッター20との間には長尺状のカーボンクロスのような拡散層材料5aが送り込まれ、ロータリーカッター20により所定の大きさに拡散層5が切断される。切断された拡散層5、5は、吸着機能を兼ね備えた加熱ローラ10a、10bにより吸着された状態で、加熱ローラ10a、10bの回転により部材1aの両面に送られる。なお、上記した加熱ローラ10とロータリーカッター20とで構成される薄膜切断装置の一例が上記特許文献1に示される。   FIG. 10a shows an example of a continuous manufacturing method and apparatus for such a membrane electrode assembly. A member 1a in which catalyst layers 4 and 4 are laminated at predetermined intervals on both surfaces of a long electrolyte membrane 3 passes between heating rollers 10a and 10b having a pair of upper and lower adsorption functions. . A rotary cutter 20 is opposed to the heating rollers 10a and 10b, and a diffusion layer material 5a such as a long carbon cloth is fed between the heating rollers 10a and 10b and the rotary cutter 20, and the rotary cutter The diffusion layer 5 is cut into a predetermined size by 20. The cut diffusion layers 5 and 5 are fed to both surfaces of the member 1a by the rotation of the heating rollers 10a and 10b in a state of being sucked by the heating rollers 10a and 10b having a suction function. An example of a thin film cutting device constituted by the heating roller 10 and the rotary cutter 20 described above is shown in Patent Document 1.

加熱ローラ10a、10b間の部材1aが位置決めされる一方、拡散層5、5は上下の加熱ローラ10a,10bで送られる。その後、例えば下側の加熱ローラ10bが上昇して上側の加熱ローラ10aに圧接した状態となることによって、加熱ローラ10a、10bの回転と共に、電解質膜3に形成された触媒層4、4の上に次第にホットプレスされて接着積層され膜電極接合体1が形成される。その接合と同時にロータリーカッター20によって次の拡散層5が切断され、加熱ローラ10a,10bに吸着される。その工程が繰り返されることにより、長尺状の電解質膜3には膜電極接合体1が一定間隔で連続的に形成され、下流側で図示しない切断装置により個々の膜電極接合体1に切断・分離される。   While the member 1a between the heating rollers 10a and 10b is positioned, the diffusion layers 5 and 5 are fed by the upper and lower heating rollers 10a and 10b. Thereafter, for example, the lower heating roller 10b rises and comes into pressure contact with the upper heating roller 10a, whereby the heating rollers 10a and 10b are rotated and the catalyst layers 4 and 4 formed on the electrolyte membrane 3 are rotated. The membrane electrode assembly 1 is formed by being hot-pressed gradually and bonded and laminated. Simultaneously with the joining, the next diffusion layer 5 is cut by the rotary cutter 20 and is adsorbed by the heating rollers 10a and 10b. By repeating the process, the membrane electrode assembly 1 is continuously formed on the long electrolyte membrane 3 at regular intervals, and is cut into individual membrane electrode assemblies 1 by a cutting device (not shown) on the downstream side. To be separated.

特開2003−48190号公報JP 2003-48190 A

本発明者らは、上記のような手法を用いて両面に拡散層5、5を積層した膜電極接合体1を多く製造してきているが、その過程において、図10bに示すように、形成された膜電極接合体1に反りが生じる場合があることを経験した。このような反りが生じた膜電極接合体1は後工程でセパレータと組み付けるときに、組み付け作業が困難となることから、可能な限り回避しなければならない。   The present inventors have manufactured many membrane electrode assemblies 1 in which diffusion layers 5 and 5 are laminated on both surfaces by using the above-described method. In the process, as shown in FIG. It was experienced that the membrane electrode assembly 1 may be warped. The membrane electrode assembly 1 in which such warpage has occurred must be avoided as much as possible since the assembly work becomes difficult when it is assembled with the separator in a subsequent process.

本発明は、上記の事情に鑑みてなされたものであり、加熱ローラを用いて触媒層の両面に拡散層を連続的にホットプレスしていく膜電極接合体の製造方法において、得られる膜電極接合体に反りが生じるのを大きく抑制することを目的とする。   The present invention has been made in view of the above circumstances, and a membrane electrode obtained in a method of manufacturing a membrane electrode assembly in which a diffusion layer is continuously hot pressed on both surfaces of a catalyst layer using a heating roller. The object is to largely suppress the warpage of the joined body.

本発明者らは、反り発生の原因を見つけ出すべく、反りの発生した膜電極接合体と反りの生じない膜電極接合体とについて多くの検証を行った。それにより、反りの発生は、
(a)触媒層を上下に挟むようにして重ね合わされて加熱ローラによりホットプレスされる上下2枚の拡散層(例えば、カーボンクロス)の物性の違い、特に剛性(引っ張り強さ)の違いが、大きな要因となっていること、
(b)拡散層は、上下の加熱ローラによりホットプレスされるとき、加熱ローラの回転方向と軸方向の両方に、加熱ローラの回転によってしごかれるような作用を受けて伸ばされながら触媒層に圧着されること、
(c)その伸び量は拡散層となる材料の持つ剛性(引っ張り強さ)、特に加熱ローラの回転方向(加熱ローラへの進入方向)の剛性の強さに影響を受けること、
(d)拡散層は、加熱ローラ間での加圧状態から開放されると、大きく伸ばされたものは大きく縮もうとし、逆に伸びの小さかったものはあまり縮まないこと、
(e)上下の拡散層に収縮量の違いがあったときに軸方向は収縮力が弱いために反らず、回転方向はその力が強いために、上に凸または下に凸(図10b参照)の反りが膜電極接合体に発生すること、を知見した。
In order to find out the cause of the occurrence of warping, the present inventors have conducted many verifications on a membrane electrode assembly in which warpage has occurred and a membrane electrode assembly in which no warpage has occurred. As a result, the occurrence of warping is
(A) The difference in physical properties, especially the difference in rigidity (tensile strength) between two upper and lower diffusion layers (for example, carbon cloth) that are superposed with the catalyst layer sandwiched between them and hot pressed by a heating roller is a major factor. That
(B) When the diffusion layer is hot-pressed by the upper and lower heating rollers, the diffusion layer is stretched in both the rotating direction and the axial direction of the heating roller while being stretched by the action of being squeezed by the rotation of the heating roller. Being crimped,
(C) The amount of elongation is affected by the rigidity (tensile strength) of the material to be the diffusion layer, in particular, the rigidity strength in the rotation direction of the heating roller (direction of entering the heating roller),
(D) When the diffusion layer is released from the pressurized state between the heating rollers, the greatly stretched one tries to shrink greatly, and conversely, the one with a small stretch does not shrink so much.
(E) When there is a difference in contraction amount between the upper and lower diffusion layers, the axial direction does not warp because the contraction force is weak, and the rotation direction is convex upward or convex because the force is strong (FIG. 10b). It was found that the warpage of (see) occurs in the membrane electrode assembly.

上記のことから、上下2枚の拡散層の材料として、少なくとも加熱ローラへの進入方向の剛性(引っ張り強さ)がほぼ等しい材料を用いれば、あるいは、剛性が異なっている場合には、ほぼ等しくなるような工程(手段)を施しておけば、造られる膜電極接合体に反りが生じるのをほぼ抑制することが可能となることがわかった。   From the above, if the materials of the diffusion layers of the upper and lower two layers are at least substantially equal in rigidity (tensile strength) in the entry direction to the heating roller, or if the rigidity is different, they are almost equal. It has been found that if such a process (means) is performed, it is possible to substantially suppress warping of the membrane electrode assembly to be produced.

本発明は、本発明者らが得た上記の知見に基づいており、第1の発明は、電解質膜の両面に触媒層を積層した部材の双方の触媒層面に拡散層となる材料を加熱ローラでホットプレスしながら接着積層して両面に拡散層を積層した膜電極接合体を製造する方法であって、上下の拡散層となる材料として、少なくとも加熱ローラへの進入方向の剛性がほぼ等しい材料を用いることを特徴とする。そうすることにより、上下の材料の剛性の違いに起因して膜電極接合体に反りが生じるのを効果的に抑制することができる。   The present invention is based on the above knowledge obtained by the present inventors, and the first invention is that a material that becomes a diffusion layer on both catalyst layer surfaces of a member in which a catalyst layer is laminated on both surfaces of an electrolyte membrane is heated roller. Is a method of manufacturing a membrane electrode assembly in which diffusion layers are laminated on both sides by hot pressing with a material, and a material to be used as upper and lower diffusion layers is at least substantially equal in rigidity in the entry direction to the heating roller It is characterized by using. By doing so, it is possible to effectively suppress the warpage of the membrane electrode assembly due to the difference in rigidity between the upper and lower materials.

図10に示したような方法により膜電極接合体を連続的に製造していく場合には、拡散層の材料として長尺状のものをロール状に巻き込んだもの(原反ロール)が通常用いられる。拡散層の材料がカーボンクロスのような材料の場合、各原反ロールの剛性(引っ張り強さ)が同じであることは少なく、製造過程において剛性にバラツキが生じるのを避けられない。また、1つの原反ロールにおいても、長手方向において剛性の異なる部分が存在することも十分に考えられる。また、原反ロールが織布の場合、長尺状の織布としての性質上、縦糸方向の剛性は横糸方向の剛性と比較して大きく、また、各ロールでの剛性のバラツキは縦糸方向で顕著であり、横糸方向ではバラツキはあるが、剛性の絶対値が小さいので差は少ない。   When a membrane electrode assembly is continuously manufactured by the method shown in FIG. 10, a material in which a long material is wound into a roll (raw roll) is usually used as the material of the diffusion layer. It is done. When the material of the diffusion layer is a material such as carbon cloth, the rigidity (tensile strength) of each raw fabric roll is rarely the same, and it is inevitable that the rigidity varies in the manufacturing process. In addition, it is fully conceivable that even in one original fabric roll, there are portions having different rigidity in the longitudinal direction. When the fabric roll is a woven fabric, the warp direction stiffness is larger than the weft direction stiffness due to the nature of the long woven fabric, and the stiffness variation in each roll is in the warp direction. It is remarkable and there is variation in the weft direction, but the difference is small because the absolute value of rigidity is small.

従って、拡散層となる材料に長尺状の織布を用い、そこから適宜の手段により所要の大きさの拡散層を切断して、それを加熱ローラによりホットプレスするような場合、長尺状の織布に対して少なくとも縦糸方向の剛性を低下させる工程を上下の長尺状の織布に加えることにより、剛性に差異がある場合であっても、接合時、上下織布の伸びの差を少なくすることができ、造られる膜電極接合体に反りが生じるのをほぼ抑制できる。   Therefore, when a long woven fabric is used as the material for the diffusion layer, the diffusion layer of a required size is cut therefrom by an appropriate means, and then hot-pressed with a heating roller, the long shape Even if there is a difference in rigidity by adding a process to lower the rigidity in the warp direction to the upper and lower elongated woven cloth, the difference in elongation of the upper and lower woven cloth during bonding It is possible to substantially reduce the warpage of the membrane electrode assembly produced.

従って、第2の発明は、電解質膜の両面に触媒層を積層した部材の双方の触媒層面に拡散層となる材料を加熱ローラでホットプレスしながら接着積層して両面に拡散層を積層した膜電極接合体を製造する方法であって、拡散層となる材料が長尺状の織布であり、当該織布に少なくとも縦糸方向の剛性を低下させる工程を行った後、当該織布の縦糸方向を加熱ローラへの進入方向として送り込むことを特徴とする。送り込みの途中で、適宜の手段により所要の大きさの拡散層が切断分離され、それが加熱ローラに送られてホットプレスにより積層一体化される。   Therefore, the second invention is a film in which a diffusion layer material is bonded and laminated on both surfaces of the electrolyte membrane while hot pressing with a heating roller on both catalyst layer surfaces of the member having the catalyst layer laminated on both surfaces of the electrolyte membrane. A method for producing an electrode assembly, wherein a material to be a diffusion layer is a long woven fabric, and the woven fabric is subjected to a step of reducing rigidity in the warp direction at least, and then the warp direction of the woven fabric Is fed as a direction of entering the heating roller. In the middle of feeding, a diffusion layer having a required size is cut and separated by an appropriate means, which is sent to a heating roller and laminated and integrated by hot pressing.

縦糸方向の剛性を低下させる工程としては、多数の切り込みを拡散層となる材料に入れて少なくとも縦糸を分断する工程が好ましく、より具体的には、その工程をロータリーカッターを用いて行うことが好ましい。拡散層に形成した切り込みが拡散層の触媒層に接する面にまで達していると、その開口部が触媒層を傷つけて膜電極接合体の寿命を短くする恐れがある。従って、多数の切り込みを拡散層となる材料に入れる工程は、形成される切り込みが触媒層に接着積層される面には達しないようにして行うことが推奨される。   The step of reducing the rigidity in the warp direction is preferably a step of dividing at least the warp by putting a large number of incisions in the material to be the diffusion layer, and more specifically, the step is preferably performed using a rotary cutter. . If the notch formed in the diffusion layer reaches the surface of the diffusion layer in contact with the catalyst layer, the opening may damage the catalyst layer and shorten the life of the membrane electrode assembly. Therefore, it is recommended that the step of putting a large number of cuts in the material to be the diffusion layer is performed so that the cuts that are formed do not reach the surface that is bonded and laminated to the catalyst layer.

前記したように、長尺状の織布の場合、通常、横糸方向での剛性のバラツキはあるが、その収縮力は非常に小さい(反るまでに至らない)。従って、長尺状の織布から切り出した2枚の拡散層をその横糸方向が加熱ローラへの進入方向として加熱ローラに送り込むようにすれば、造られる膜電極接合体に反りが生じるのをほぼ抑制することができる。   As described above, in the case of a long woven fabric, there is usually a variation in rigidity in the weft direction, but the shrinkage force is very small (not warping). Therefore, if the two diffusion layers cut out from the long woven fabric are sent to the heating roller with the weft direction as the direction of entry into the heating roller, the membrane electrode assembly produced is almost free from warping. Can be suppressed.

従って、第3の発明は、電解質膜の両面に触媒層を積層した部材の双方の触媒層面に拡散層となる材料を加熱ローラでホットプレスしながら接着積層して両面に拡散層を積層した膜電極接合体を製造する方法であって、拡散層となる材料が長尺状の織布であり、当該織布から切り出した拡散層をその横糸方向が加熱ローラへの進入方向とし加熱ローラに送り込むことを特徴とする。送り込まれた拡散層はホットプレスにより触媒層に積層一体化されて膜電極接合体が形成される。   Therefore, the third invention is a film in which a diffusion layer is laminated on both surfaces by hot-pressing a material to be a diffusion layer on both catalyst layer surfaces of a member in which a catalyst layer is laminated on both surfaces of an electrolyte membrane with a heating roller. A method of manufacturing an electrode assembly, wherein a material to be a diffusion layer is a long woven fabric, and the diffusion layer cut out from the woven fabric is fed into the heating roller with the weft direction as the direction of entering the heating roller. It is characterized by that. The supplied diffusion layer is laminated and integrated with the catalyst layer by hot pressing to form a membrane electrode assembly.

本発明の方法は、不織布やペーパーのように基本的には方向性のない材料を拡散層の材料として用いる場合にも適用できる。そのような材料を加熱ローラに送り込む場合であっても、少なくとも加熱ローラの軸線方向に(すなわち、加熱ローラへの進入方向と直交する方向に)多数の切り込みを入れた状態とすることにより、上下の材料の間にわずかとはいえ剛性の違いがあるような場合に、それに起因して製造される膜電極接合体に反りが生じるのを効果的に抑制することができる。   The method of the present invention can also be applied to the case where a material having basically no directionality such as a nonwoven fabric or paper is used as the material of the diffusion layer. Even when such a material is fed to the heating roller, it is possible to change the vertical direction by making a number of cuts at least in the axial direction of the heating roller (that is, in a direction perpendicular to the direction of entering the heating roller). When there is a slight difference in rigidity between the materials, it is possible to effectively suppress warping of the membrane electrode assembly produced due to the difference.

本発明はさらに、上記の製造方法を実施するのに好適な装置として、電解質膜の両面に触媒層を積層した部材の双方の触媒層面に拡散層となる材料を加熱ローラでホットプレスしながら同時に接着積層して両面に拡散層を積層した膜電極接合体を製造する装置であって、上下一対の加熱ローラと、上下一対の加熱ローラの間に前記電解質膜の両面に触媒層を積層した部材を送り込む手段と、拡散層となる材料を電解質膜の両面に触媒層を積層した部材と加熱ローラとの間に送り込む拡散層材料送り手段とを備えており、該拡散層材料送り手段は送り込まれる拡散層となる材料に多数の切り込みを入れる手段をさらに備えていることを特徴とする膜電極接合体を製造装置をも開示する。この製造装置を用いることにより、膜電極接合体を反りのない状態で、かつ、連続的に製造することができる。   The present invention further provides an apparatus suitable for carrying out the above manufacturing method, wherein a material that becomes a diffusion layer on both catalyst layer surfaces of a member in which a catalyst layer is laminated on both surfaces of an electrolyte membrane is simultaneously hot-pressed with a heating roller. An apparatus for manufacturing a membrane electrode assembly in which a diffusion layer is laminated on both surfaces by bonding and laminating, and a member in which a catalyst layer is laminated on both surfaces of the electrolyte membrane between a pair of upper and lower heating rollers and a pair of upper and lower heating rollers And a diffusion layer material feeding means for feeding a material for the diffusion layer between the heating roller and a member having a catalyst layer laminated on both sides of the electrolyte membrane. The diffusion layer material feeding means is fed An apparatus for manufacturing a membrane electrode assembly is further disclosed, which further comprises means for making a large number of cuts in the material to be the diffusion layer. By using this manufacturing apparatus, the membrane electrode assembly can be continuously manufactured without warping.

本発明はさらに、上記の製造方法あるいは製造装置により製造される膜電極接合体として、電解質膜と、その両面に積層した触媒層と、その両面に積層した拡散層とを少なくとも備えた膜電極接合体であって、拡散層には触媒層に接しない面側から多数の切り込みが形成されていることを特徴とする膜電極接合体を開示する。このように拡散層に多数の切り込みが形成されることにより、製造の過程で膜電極接合体に反りが生じるのはほぼ抑制され、ほぼ平坦な膜電極接合体となる。そのために、後工程でセパレータと組み付けるときの作業も円滑に行うことが可能となる。また、拡散層が多数の切り込みを有することから、ガス拡散性が向上し膜電極接合体の性能を上げることもできる。   The present invention further includes a membrane electrode assembly comprising at least an electrolyte membrane, a catalyst layer laminated on both surfaces thereof, and a diffusion layer laminated on both surfaces as a membrane electrode assembly produced by the above production method or production apparatus. A membrane electrode assembly is disclosed in which a large number of cuts are formed in the diffusion layer from the side of the diffusion layer that does not contact the catalyst layer. By forming a large number of cuts in the diffusion layer in this manner, warpage of the membrane electrode assembly during the manufacturing process is substantially suppressed, and a substantially flat membrane electrode assembly is obtained. Therefore, it is possible to smoothly perform the work when assembling with the separator in a subsequent process. In addition, since the diffusion layer has a large number of cuts, the gas diffusibility is improved and the performance of the membrane electrode assembly can be improved.

本発明によれば、反りのない状態の膜電極接合体を連続的に製造することができる。それにより、燃料電池の単セル製造コストを低減することができる。   According to the present invention, it is possible to continuously produce a membrane electrode assembly having no warpage. Thereby, the single cell manufacturing cost of a fuel cell can be reduced.

以下、本発明を図面を参照しながら説明する。図1は本発明の製造方法により膜電極接合体を製造するのに好適な製造装置の一例を示す。本発明においても、先に図10に基づき説明したと同様、長尺状の電解質膜3の両面に所定の間隔をおいて触媒層4、4を積層した部材1aが用いられ、それが上下一対の吸着機能を兼ね備えた加熱ローラ10a、10bの間を図で左から右に向けて移送される。そして、その過程で、部材1aにおける上下の触媒層4、4に対し本発明による拡散層50がホットプレスされ、膜電極接合体1が連続的に製造される。   The present invention will be described below with reference to the drawings. FIG. 1 shows an example of a production apparatus suitable for producing a membrane electrode assembly by the production method of the present invention. Also in the present invention, as described above with reference to FIG. 10, the member 1 a in which the catalyst layers 4 and 4 are laminated at predetermined intervals on both surfaces of the long electrolyte membrane 3 is used. Are transferred from the left to the right in the figure between the heating rollers 10a and 10b having the suction function. In this process, the diffusion layer 50 according to the present invention is hot-pressed on the upper and lower catalyst layers 4 and 4 in the member 1a, and the membrane electrode assembly 1 is continuously manufactured.

この例において拡散層50にはカーボンクロス50aを用いており、図2に模式的に示す長尺状のカーボンクロス50aがロール状に巻き込まれて原反ロール51とされたものが、図1に示すように、部材1aの移送路の上下位置に鏡面対照的に配置される。長尺状のカーボンクロス50aは縦糸方向aと横糸方向bとを有しており、上下に配置される2つの原反ロール51、51において、それぞれの縦糸方向aの剛性(引っ張り強さ)は異なっている場合が多い。なお、図1では図解を分かりやすくするためにカーボンクロス50aの厚さを誇張して示しているが、燃料電池の拡散層として用いられるカーボンクロスの厚みは、実際には0.3〜0.4mm程度である。   In this example, a carbon cloth 50a is used for the diffusion layer 50, and a long carbon cloth 50a schematically shown in FIG. As shown, it is arranged in a mirror-like manner at the upper and lower positions of the transfer path of the member 1a. The long carbon cloth 50a has a warp direction a and a weft direction b, and the rigidity (tensile strength) in the warp direction a of each of the two original fabric rolls 51, 51 arranged vertically is as follows. Often they are different. In FIG. 1, the thickness of the carbon cloth 50a is exaggerated for easy understanding of the illustration, but the thickness of the carbon cloth used as the diffusion layer of the fuel cell is actually 0.3 to 0.00 mm. It is about 4 mm.

各原反ロール51は支軸61に支承されており、そこから引き出される長尺状のカーボンクロス50aは、アンビルローラ62、テンションローラ63、案内ローラ64などにより案内されて加熱ローラ10a、10bに達し、そこからさらに下流側に案内されて巻き取りローラ65により巻き取られる。なお、支軸61には送り出されるカーボンクロス50aにゆるみが生じないように、逆方向のトルクを付与しておくことが望ましい。   Each original fabric roll 51 is supported by a support shaft 61, and a long carbon cloth 50a pulled out from the support roll 61 is guided by an anvil roller 62, a tension roller 63, a guide roller 64, and the like to be heated to the heating rollers 10a and 10b. From there, it is guided further downstream and is taken up by the take-up roller 65. It is desirable that reverse torque be applied to the support shaft 61 so that the carbon cloth 50a fed out does not loosen.

アンビルローラ62に対向して切り込み加工用のロータリーカッター70が取り付けてあり、カーボンクロス50aがアンビルローラ62とロータリーカッター70との間を通過するときに、図3に示すように、ロータリーカッター70の刃先71によって、カーボンクロス50aには、その全横幅にわたり、かつ厚みの1/4〜1/5程度のクリアランスcを残すようにして、少なくとも横糸方向bに沿う切り込み52が形成される。   A rotary cutter 70 for cutting is attached to face the anvil roller 62, and when the carbon cloth 50a passes between the anvil roller 62 and the rotary cutter 70, as shown in FIG. By the cutting edge 71, the carbon cloth 50a is formed with a cut 52 along at least the weft direction b so as to leave a clearance c of about 1/4 to 1/5 of the thickness across the entire width.

図4a〜dは形成される切り込み52のいくつかの例を示しており、図4aではカーボンクロス50aの横糸方向bに平行な複数本の直線群により切り込み52が形成され、図4bでは該直線群が破線状の直線群とされている。図4cでは横糸方向bに平行な複数本の波線群により切り込み52が形成され、図4dでは交差する2方向の直線群により切り込み52が形成されている。このような切り込み52をカーボンクロス50aに入れることにより、カーボンクロス50aの縦糸は細断され、それにより縦糸方向aの剛性(引っ張り強さ)は大きく低減する。   4a to 4d show some examples of the cuts 52 to be formed. In FIG. 4a, the cuts 52 are formed by a group of a plurality of straight lines parallel to the weft direction b of the carbon cloth 50a. In FIG. The group is a straight line group having a broken line shape. In FIG. 4c, the notch 52 is formed by a plurality of wavy line groups parallel to the weft direction b, and in FIG. 4d, the notch 52 is formed by two intersecting straight line groups. By inserting such a notch 52 into the carbon cloth 50a, the warp of the carbon cloth 50a is shredded, and thereby the rigidity (tensile strength) in the warp direction a is greatly reduced.

そのために、もし上下の原反ロール51、51において、巻き出されるカーボンクロス50a、50aの縦糸方向の剛性に差異がある場合でも、その差異は解消され、上下のカーボンクロス50a、50aの縦糸方向の剛性はほぼ同じ値となる。切り込み52の細かさや深さの程度によって剛性の低減度合いは変化するが、カーボンクロス50aが巻き取りロール65により巻き取られるまでにかかるテンションに耐えるだけの強度を備えることを条件に、より細かく、より深い切り込みを形成することが望ましい。   Therefore, even if there is a difference in rigidity in the warp direction between the upper and lower original fabric rolls 51, 51, the difference is eliminated, and the warp direction of the upper and lower carbon cloths 50a, 50a is eliminated. The rigidity of is almost the same value. Although the degree of reduction in rigidity changes depending on the degree of fineness and depth of the cuts 52, it is finer on the condition that the carbon cloth 50a has sufficient strength to withstand the tension required until the carbon cloth 50a is wound by the winding roll 65. It is desirable to form deeper cuts.

切り込み52が形成されたカーボンクロス50aはテンションローラ63によりゆるみのない状態を維持しながら、加熱ローラ10a、10bに至る。加熱ローラ10a、10bに対向して、カーボンクロス50aから所定形状の拡散層50を切り出すためのロータリーカッター20が位置しており、ロータリーカッター20の1回転毎に、その刃21の形状に応じて、図5に一例を示すように拡散層50がカーボンクロス50aから切り出される。拡散層50が切り出された後のカーボンクロス50aは巻き取りローラ65により巻き取られる一方、切り出された拡散層50は吸引機能を備えた加熱ローラ10a、10bの周面に引き取られ、加熱ローラ10a、10bの回転と共に、部材1aの上下両面に向けて送られる。なお、吸着機能を備えた加熱ローラ10とロータリーカッター20とからなる連続する薄膜(カーボンクロス50a)から所定形状の薄膜製品(拡散層50)を切り出す装置の一例は前記した特許文献1に記載されており、上記実施の形態においてもその装置をそのまま用いることができる。   The carbon cloth 50a in which the cuts 52 are formed reaches the heating rollers 10a and 10b while maintaining a state where the tension roller 63 is not loosened. A rotary cutter 20 for cutting out the diffusion layer 50 having a predetermined shape from the carbon cloth 50a is positioned facing the heating rollers 10a and 10b. The rotary cutter 20 is rotated according to the shape of the blade 21 for each rotation. As shown in FIG. 5, the diffusion layer 50 is cut out from the carbon cloth 50a. The carbon cloth 50a after the diffusion layer 50 is cut out is taken up by the take-up roller 65, while the cut out diffusion layer 50 is taken up by the peripheral surfaces of the heating rollers 10a and 10b having a suction function. Along with the rotation of 10b, it is sent toward the upper and lower surfaces of the member 1a. An example of an apparatus for cutting out a thin film product (diffusion layer 50) having a predetermined shape from a continuous thin film (carbon cloth 50a) composed of a heating roller 10 having a suction function and a rotary cutter 20 is described in Patent Document 1 described above. In the above embodiment, the apparatus can be used as it is.

部材1aの送りとロータリーカッター20による拡散層50の切断タイミングは同期が取られており、拡散層50をホットプレスするときを除いて、2つの加熱ローラ10a、10bはわずかに離間している。拡散層50を部材1aの触媒層4にホットプレスする時点で上下の加熱ローラ10a、10bは部材1aを圧接した状態となる。この例では、下側の加熱ローラ10bが上昇して上側の加熱ローラ10aに圧接する。   The feeding of the member 1a and the cutting timing of the diffusion layer 50 by the rotary cutter 20 are synchronized, and the two heating rollers 10a and 10b are slightly separated except when the diffusion layer 50 is hot pressed. At the time when the diffusion layer 50 is hot pressed onto the catalyst layer 4 of the member 1a, the upper and lower heating rollers 10a and 10b are in pressure contact with the member 1a. In this example, the lower heating roller 10b rises and comes into pressure contact with the upper heating roller 10a.

加熱ローラ10a、10bの回転と共に、拡散層50、50は、その切り込み52を形成した面と反対側の面が電解質膜3側となるようにして、触媒層4、4に上に次第にホットプレスされていき、触媒層4の上に拡散層50が接着積層された膜電極接合体1が造られる。この工程が繰り返されることにより、電解質膜3を繋ぎ材として膜電極接合体1が一定間隔をおいて連続的に製造され、下流位置において、図示しない装置により個々の膜電極接合体1に分離される。   With the rotation of the heating rollers 10a and 10b, the diffusion layers 50 and 50 are gradually hot-pressed on the catalyst layers 4 and 4 so that the surface opposite to the surface on which the cuts 52 are formed becomes the electrolyte membrane 3 side. Then, the membrane electrode assembly 1 in which the diffusion layer 50 is bonded and laminated on the catalyst layer 4 is manufactured. By repeating this process, the membrane electrode assembly 1 is continuously manufactured with the electrolyte membrane 3 as a connecting material at regular intervals, and is separated into individual membrane electrode assemblies 1 by a device (not shown) at a downstream position. The

前述したように、拡散層50、50は、加熱ローラ10a、10bの回転によってしごかれるような作用を受け、伸ばされながら触媒層4、4に圧着(ホットプレス)される。そして、加熱ローラ10a、10b間での加圧状態から開放されたとき、原寸法まで縮もうとする。従来の製造方法では、上下のカーボンクロスの縦糸方向の剛性に差異がある場合でも、そのまま剛性の調整を行うことなく切り出された触媒層を触媒層に加熱ローラによってホットプレスしていたために、上下の拡散層でのこの収縮量の違いから、上に凸または下に凸の反りが製造後の膜電極接合体に発生することがあったが、上記のように本発明では、双方のカーボンクロス50a、50aに切り込み52を入れることによって縦糸方向の剛性を低下させ、それにより、上下のカーボンクロスの剛性に差異がある場合でも、その差異を解消できるようにしているので、製造される膜電極接合体1に反りが生じるのは効果的に解消される。   As described above, the diffusion layers 50 and 50 are subjected to the action of being squeezed by the rotation of the heating rollers 10a and 10b, and are pressed (hot pressed) onto the catalyst layers 4 and 4 while being stretched. When the pressure is released between the heating rollers 10a and 10b, the original size is reduced. In the conventional manufacturing method, even when there is a difference in the rigidity in the warp direction between the upper and lower carbon cloths, the catalyst layer that was cut out without adjusting the rigidity was hot-pressed on the catalyst layer with a heating roller. Due to this difference in the amount of shrinkage in the diffusion layer, upward or downward warping may occur in the membrane electrode assembly after production. In the present invention, as described above, both carbon cloths 50a and 50a are cut into 52 to reduce the rigidity in the warp direction, so that even if there is a difference in the rigidity of the upper and lower carbon cloth, the difference can be eliminated. The warpage of the joined body 1 is effectively eliminated.

図6は、本発明者らが行った、カーボンクロスの2つの原反ロールを上下に用いて、図1に示す装置により膜電極接合体1を実際に製造した例を示している。図6aは、図1の装置から切り込み加工用のロータリーカッター70を取り外して膜電極接合体1を製造したときのものであり、幅w:50mmの膜電極接合体1に高さh:20mm程度の反り、すなわち約40%の反りが生じた。そこで、刃先71のピッチP:20mm(図6b)、P:10mm(図6c)の2つのロータリーカッター70を用意し、それを取り付け、他の条件は同じとして、図4aに示す形状の平行な直線群である切り込み52をカーボンクロス50aに形成して、膜電極接合体1を製造した。その結果、図6bのものでは高さh:5〜10mm程度の反りとなり、図6cでは高さh:3mm程度の反りとなって、本発明の有効性が確認された。また、このことから、切り込み52のピッチPが細かくなる程、反りの高さhは小さくなるなることもわかる。   FIG. 6 shows an example in which the membrane electrode assembly 1 was actually manufactured by the apparatus shown in FIG. FIG. 6A shows the membrane electrode assembly 1 manufactured by removing the cutting cutter 70 from the apparatus shown in FIG. 1, and the membrane electrode assembly 1 having a width w of 50 mm and a height h of about 20 mm. Warpage, that is, about 40% of warpage occurred. Therefore, two rotary cutters 70 having a pitch P of the cutting edge 71 of P: 20 mm (FIG. 6b) and P: 10 mm (FIG. 6c) are prepared and attached, and the other conditions are the same, and the parallel shape of the shape shown in FIG. The membrane electrode assembly 1 was manufactured by forming cuts 52 as a straight line group in the carbon cloth 50a. As a result, in FIG. 6b, the height h was about 5 to 10 mm, and in FIG. 6c, the height was about 3 mm, confirming the effectiveness of the present invention. This also shows that the warp height h decreases as the pitch P of the notches 52 becomes smaller.

なお、上記の例では、カーボンクロス50aに切り込み52を形成する手段としてアンビルローラ62とロータリーカッター70とからなる手段を用いたが、図7に示すような、カーボンクロス50aの横糸方向bに移動するロータリーカッター73のような手段で切り込み52を形成することもできる。また、切り込み52をカーボンクロス50aの横幅全部にわたるようにして形成したが、ロータリーカッター20を用いて拡散層50を切り出すような場合には、特に図示しないが、少なくとも切り出される拡散層に相当する領域にのみ切り込み52を形成してもよい。その一例としては、外形を切り出すロータリーカッター20の内側に切り込み52用の第2の刃を持たせ、外形を切り出すと同時に切り込み52を入れる方法がある。ただし、その場合には切り込み52の形成面が図1に示す場合とは反対面となるので、切り出された拡散層50を反転させる何らかの手段を加熱ローラ10とカーボンクロス50aとの間に介在させる必要がある。   In the above example, the means including the anvil roller 62 and the rotary cutter 70 is used as the means for forming the cut 52 in the carbon cloth 50a. However, as shown in FIG. 7, the carbon cloth 50a moves in the weft direction b. The notch 52 can also be formed by means such as a rotary cutter 73. Further, the cut 52 is formed so as to cover the entire width of the carbon cloth 50a. However, in the case where the diffusion layer 50 is cut out using the rotary cutter 20, a region corresponding to at least the cut out diffusion layer is not shown. The notch 52 may be formed only in the case. As an example, there is a method in which a second blade for the notch 52 is provided inside the rotary cutter 20 for cutting out the outer shape, and the notch 52 is inserted at the same time as the outer shape is cut out. However, in that case, since the formation surface of the cut 52 is opposite to that shown in FIG. 1, some means for inverting the cut diffusion layer 50 is interposed between the heating roller 10 and the carbon cloth 50a. There is a need.

また、図示しない別途用意する切り出し手段によりカーボンクロス50aから拡散層50を切り出し、それを、図8に示すように、縦糸方向aが加熱ローラ10a、10bの軸線方向と平行となった姿勢(横糸方向bが加熱ローラへの進入方向となった姿勢)で加熱ローラ10a、10bに送り込むようにする場合には、上記した切り込み52を拡散層に形成しなくても、製造される膜拡散層1に反りが生じるのを回避することができる。その理由は、前記したように、長尺状の織布の場合、通常、横糸方向での剛性のバラツキはあるが、その収縮力が非常に小さいことによる。   Further, the diffusion layer 50 is cut out from the carbon cloth 50a by a separately prepared cutting means (not shown), and as shown in FIG. 8, the warp direction a is parallel to the axial direction of the heating rollers 10a and 10b (weft yarn). In the case of feeding the heating rollers 10a and 10b with the direction b in the approaching direction to the heating roller), the produced film diffusion layer 1 can be produced without forming the above-mentioned notch 52 in the diffusion layer. It is possible to avoid warping. The reason is that, as described above, in the case of a long woven fabric, there is usually a variation in rigidity in the weft direction, but the contraction force is very small.

また、上記の例では、拡散層の材料としてカーボンクロスを示したが、カーボンクロスに限らず、従来、燃料電池の拡散層として用いられてきているすべての材料に対して、本発明の方法を適用することができる。例えば、不織布やペーパーの場合には、本質的に繊維の方向性はなく、上下の拡散層の剛性の違いによる反りの発生は比較的少ないといえる。しかし、そのような材料を加熱ローラに送り込む場合に、少なくとも加熱ローラへの進入方向と直交する方向に多数の切り込みを入れておくことにより、上下の拡散層の間にわずかとはいえ剛性の違いがあるような場合に、それに起因して製造される膜電極接合体に反りが生じるのを効果的に抑制することが可能となる。   In the above example, the carbon cloth is shown as the material of the diffusion layer. However, the method of the present invention is not limited to the carbon cloth, but is applied to all materials conventionally used as the diffusion layer of the fuel cell. Can be applied. For example, in the case of a nonwoven fabric or paper, there is essentially no fiber directionality, and it can be said that the occurrence of warping due to the difference in rigidity between the upper and lower diffusion layers is relatively small. However, when such a material is fed into the heating roller, a large difference in rigidity is made between the upper and lower diffusion layers by making a large number of cuts at least in the direction perpendicular to the direction of entering the heating roller. In such a case, it is possible to effectively suppress warping of the membrane electrode assembly produced due to the occurrence of warpage.

本発明の製造方法により膜電極接合体を製造するのに好適な製造装置の一例を示す図。The figure which shows an example of the manufacturing apparatus suitable for manufacturing a membrane electrode assembly with the manufacturing method of this invention. カーボンクロスの原反ロールを模式的に示す図。The figure which shows the original fabric roll of a carbon cloth typically. カーボンクロスに切り込みを入れる状態を示す模式図。The schematic diagram which shows the state which cuts into carbon cloth. 形成される切り込みのいくつかの例を示す図。The figure which shows some examples of the cut formed. 切り込みが形成された拡散層がカーボンクロスから切り出されること説明する図。The figure explaining that the diffusion layer in which the cut was formed is cut out from a carbon cloth. 拡散層に形成した切り込みの効果を実験結果に基づき説明する図。The figure explaining the effect of the cut formed in the diffused layer based on an experimental result. カーボンクロスに切り込みを入れる他の例を示す図。The figure which shows the other example which cuts into carbon cloth. 本発明の他の態様である、織布から切り出した拡散層をその横糸方向が加熱ローラへの進入方向とし加熱ローラに送り込む方法を説明する図。The figure explaining the method of sending into the heating roller the diffusion layer cut out from the woven fabric which is the other aspect of this invention as the weft direction is the approach direction to a heating roller. 膜電極接合体を説明する図。The figure explaining a membrane electrode assembly. 従来の膜電極接合体の製造方法と装置の一例を説明する図。The figure explaining an example of the manufacturing method and apparatus of the conventional membrane electrode assembly.

符号の説明Explanation of symbols

1…膜電極接合体、1a…電解質膜の両面に触媒層を積層した部材、2…セパレータ、3…電解質膜、4…触媒層、10a、10b…加熱ローラ、20…拡散層を切り出すためのロータリーカッター、5、50…拡散層、5a、50a…カーボンクロス、51…長尺状のカーボンクロスの原反ロール、52…拡散層に形成された切り込み、62…アンビルローラ、65…巻き取りローラ、70…切り込み加工用のロータリーカッター、71…刃先、73…ロータリーカッター、a…長尺状のカーボンクロスの縦糸方向、b…横糸方向、c…クリアランス、p…切り込みのピッチ、h…反り   DESCRIPTION OF SYMBOLS 1 ... Membrane electrode assembly, 1a ... Member which laminated | stacked catalyst layer on both surfaces of electrolyte membrane, 2 ... Separator, 3 ... Electrolyte membrane, 4 ... Catalyst layer, 10a, 10b ... Heating roller, 20 ... For cutting out a diffusion layer Rotary cutter, 5, 50 ... diffusion layer, 5a, 50a ... carbon cloth, 51 ... raw roll of carbon cloth, 52 ... notch formed in diffusion layer, 62 ... anvil roller, 65 ... take-up roller , 70: Rotary cutter for cutting, 71 ... Cutting edge, 73 ... Rotary cutter, a ... Warp direction of long carbon cloth, b ... Weft direction, c ... Clearance, p ... Pitch of cutting, h ... Warpage

Claims (10)

電解質膜の両面に触媒層を積層した部材の双方の触媒層面に拡散層となる材料を加熱ローラでホットプレスしながら接着積層して両面に拡散層を積層した膜電極接合体を製造する方法であって、上下の拡散層となる材料として、少なくとも加熱ローラへの進入方向の剛性がほぼ等しい材料を用いることを特徴とする膜電極接合体の製造方法。   A method of manufacturing a membrane electrode assembly in which a material that becomes a diffusion layer on both sides of an electrolyte membrane is bonded and laminated while hot pressing with a heating roller, and a diffusion layer is laminated on both sides. A method of manufacturing a membrane electrode assembly, wherein a material having at least substantially the same rigidity in the direction of entry into the heating roller is used as a material for the upper and lower diffusion layers. 電解質膜の両面に触媒層を積層した部材の双方の触媒層面に拡散層となる材料を加熱ローラでホットプレスしながら接着積層して両面に拡散層を積層した膜電極接合体を製造する方法であって、拡散層となる材料が長尺状の織布であり、当該織布に少なくとも縦糸方向の剛性を低下させる工程を行った後、当該織布の縦糸方向を加熱ローラへの進入方向として送り込むことを特徴とする膜電極接合体の製造方法。   A method of manufacturing a membrane electrode assembly in which a material that becomes a diffusion layer on both sides of an electrolyte membrane is bonded and laminated while hot pressing with a heating roller, and a diffusion layer is laminated on both sides. The material for the diffusion layer is a long woven fabric, and after performing the process of reducing the rigidity in the warp direction at least on the woven fabric, the warp direction of the woven fabric is set as the entry direction to the heating roller. A method for producing a membrane electrode assembly, which comprises feeding in. 縦糸方向の剛性を低下させる工程は、多数の切り込みを拡散層となる材料に入れて少なくとも縦糸を分断する工程であることを特徴とする請求項2に記載の膜電極接合体の製造方法。   The method for producing a membrane electrode assembly according to claim 2, wherein the step of reducing the rigidity in the warp direction is a step of dividing at least the warp by putting a large number of incisions in a material to be a diffusion layer. 多数の切り込みを拡散層となる材料に入れる工程をロータリーカッターを用いて行うことを特徴とする請求項3に記載の膜電極接合体の製造方法。   The method for producing a membrane electrode assembly according to claim 3, wherein the step of putting a large number of cuts into a material to be a diffusion layer is performed using a rotary cutter. 多数の切り込みを拡散層となる材料に入れる工程を、形成される切り込みが触媒層に接着積層される面には達しないようにして行うことを特徴とする請求項3または4に記載の膜電極接合体の製造方法。   5. The membrane electrode according to claim 3 or 4, wherein the step of inserting a large number of cuts into the material to be the diffusion layer is performed so that the cuts that are formed do not reach the surface that is bonded and laminated to the catalyst layer. Manufacturing method of joined body. 電解質膜の両面に触媒層を積層した部材の双方の触媒層面に拡散層となる材料を加熱ローラでホットプレスしながら接着積層して両面に拡散層を積層した膜電極接合体を製造する方法であって、拡散層となる材料が長尺状の織布であり、当該織布から切り出した拡散層をその横糸方向が加熱ローラへの進入方向とし加熱ローラに送り込むことを特徴とする膜電極接合体の製造方法。   A method of manufacturing a membrane electrode assembly in which a material that becomes a diffusion layer on both sides of an electrolyte membrane is bonded and laminated while hot pressing with a heating roller, and a diffusion layer is laminated on both sides. The membrane electrode bonding is characterized in that the material for the diffusion layer is a long woven fabric, and the diffusion layer cut out from the woven fabric is fed into the heating roller with the weft direction as the direction of entry into the heating roller. Body manufacturing method. 電解質膜の両面に触媒層を積層した部材の双方の触媒層面に拡散層となる材料を加熱ローラでホットプレスしながら同時に接着積層して両面に拡散層を積層した膜電極接合体を製造する装置であって、上下一対の加熱ローラと、上下一対の加熱ローラの間に前記した電解質膜の両面に触媒層を積層した部材を送り込む手段と、拡散層となる材料を加熱ローラと電解質膜の両面に触媒層を積層した部材との間に送り込む拡散層材料送り手段とを備えており、前記拡散層材料送り手段は送り込まれる拡散層となる材料に多数の切り込みを入れる手段をさらに備えていることを特徴とする膜電極接合体を製造装置。   An apparatus for manufacturing a membrane electrode assembly in which a material that becomes a diffusion layer is hot-pressed with a heating roller at the same time on both sides of a member having a catalyst layer laminated on both sides of an electrolyte membrane, and the diffusion layer is laminated on both sides simultaneously. A pair of upper and lower heating rollers, means for feeding a member having a catalyst layer laminated on both surfaces of the electrolyte membrane between the pair of upper and lower heating rollers, and a material for the diffusion layer on both surfaces of the heating roller and the electrolyte membrane A diffusion layer material feeding means for feeding between the catalyst layer and the member laminated with the catalyst layer, and the diffusion layer material feeding means further comprises means for making a large number of cuts in the material to be the diffusion layer to be fed. An apparatus for producing a membrane electrode assembly characterized by the above. 送り込まれる拡散層となる材料に多数の切り込みを入れる手段は、ロータリーカッターによる切り込み手段であることを特徴とする請求項7に記載の膜電極接合体を製造装置。   8. The apparatus for producing a membrane electrode assembly according to claim 7, wherein the means for making a large number of cuts in the material to be fed into the diffusion layer is a cutting means using a rotary cutter. 送り込まれる拡散層となる材料に多数の切り込みを入れる手段は、形成される切り込みが触媒層に接着積層される面には達しないように切り込み深さが調整されていることを特徴とする請求項7または8に記載の膜電極接合体の製造装置。   The means for making a large number of cuts in the material that will be the diffusion layer to be fed is characterized in that the cut depth is adjusted so that the cuts that are formed do not reach the surface that is bonded and laminated to the catalyst layer. An apparatus for producing a membrane / electrode assembly according to 7 or 8. 電解質膜と、その両面に積層した触媒層と、その両面に積層した拡散層とを少なくとも備えた膜電極接合体であって、拡散層には触媒層に接しない面側から多数の切り込みが形成されていることを特徴とする膜電極接合体。   A membrane / electrode assembly comprising at least an electrolyte membrane, a catalyst layer laminated on both sides thereof, and a diffusion layer laminated on both sides thereof, wherein a number of cuts are formed in the diffusion layer from the side not in contact with the catalyst layer A membrane electrode assembly characterized by being made.
JP2003368002A 2003-10-28 2003-10-28 Manufacturing method and device of membrane electrode assembly laminating diffusion layers and membrane electrode assembly Pending JP2005135655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368002A JP2005135655A (en) 2003-10-28 2003-10-28 Manufacturing method and device of membrane electrode assembly laminating diffusion layers and membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368002A JP2005135655A (en) 2003-10-28 2003-10-28 Manufacturing method and device of membrane electrode assembly laminating diffusion layers and membrane electrode assembly

Publications (1)

Publication Number Publication Date
JP2005135655A true JP2005135655A (en) 2005-05-26

Family

ID=34645837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368002A Pending JP2005135655A (en) 2003-10-28 2003-10-28 Manufacturing method and device of membrane electrode assembly laminating diffusion layers and membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP2005135655A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946329B2 (en) 2008-04-23 2011-05-24 Hyundai Motor Company Automated system for manufacturing part of fuel cell stack
KR101845599B1 (en) * 2013-12-27 2018-04-04 도요타지도샤가부시키가이샤 Manufacturing method and manufacturing apparatus of electrode frame assembly for fuel cell
US11398639B2 (en) 2016-06-28 2022-07-26 Johnson Matthey Fuel Cells Limited System and method for the manufacture of membrane electrode assemblies

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946329B2 (en) 2008-04-23 2011-05-24 Hyundai Motor Company Automated system for manufacturing part of fuel cell stack
KR101845599B1 (en) * 2013-12-27 2018-04-04 도요타지도샤가부시키가이샤 Manufacturing method and manufacturing apparatus of electrode frame assembly for fuel cell
US10090538B2 (en) 2013-12-27 2018-10-02 Toyota Jidosha Kabushiki Kaisha Manufacturing method and manufacturing apparatus of electrode frame assembly for fuel cell
US11398639B2 (en) 2016-06-28 2022-07-26 Johnson Matthey Fuel Cells Limited System and method for the manufacture of membrane electrode assemblies

Similar Documents

Publication Publication Date Title
JP5228133B1 (en) Roll press facility for electrode material and method for producing electrode sheet
EP1752283B1 (en) Heat-resistant laminated conveyor belt and method for production thereof
JP5365450B2 (en) Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus
KR101776755B1 (en) Manufacturing device of fuel cell component and manufacturing method
JP5090613B2 (en) Method for producing die-cut catalyst decals
KR20210085623A (en) Method for producing a membrane-electrode assembly
US9203097B2 (en) Discretely supported wet side plates
JP2007018821A (en) Electrolyte membrane used in polymer electrolyte fuel cell, its manufacturing method and membrane-electrode assembly
JP2005135655A (en) Manufacturing method and device of membrane electrode assembly laminating diffusion layers and membrane electrode assembly
KR101747392B1 (en) Apparatus and method for manufacturing membrane-electrode assembly of fuel cell
JP6231259B2 (en) Method of manufacturing membrane electrode assembly for fuel cell
JP2010251136A (en) Device for manufacturing fuel cell and method for manufacturing the same
JP2008159377A (en) Joining apparatus for electrode for fuel cell and joining method
JP5979100B2 (en) Manufacturing method of membrane electrode assembly and electrolyte membrane winding roller
JP6044497B2 (en) Membrane electrode assembly manufacturing equipment
JP5257590B2 (en) Membrane-electrode assembly manufacturing method for fuel cell
JP2010146769A (en) Membrane-electrode assembly and fuel cell stack
JP2019175819A (en) Continuous production method of membrane electrode gas diffusion layer assembly
JP4407981B2 (en) Method and apparatus for producing spread mesh sheet
JP2010120293A (en) Method for continuously joining membrane-protective layer
JP2020027792A (en) Manufacturing apparatus for assembly of cells for fuel battery
KR20200078902A (en) Manufacturing device of membrane electrode assembly restraining deformation of both membrane electrode assembly and electrolyte membrane, and manufacturing method of membrane electrode assembly using the same
WO2009154203A1 (en) Gas flow passage forming member, method of manufacturing the gas flow passage forming member, and device for forming the gas flow passage forming member
EP3843185B1 (en) Method and device for manufacturing an active layer membrane assembly of a fuel cell or an electrolyser
JP2022075067A (en) Manufacturing method of electrode assembly for fuel cell