JP2005134451A - Optic/electric mixed mounting substrate - Google Patents

Optic/electric mixed mounting substrate Download PDF

Info

Publication number
JP2005134451A
JP2005134451A JP2003367346A JP2003367346A JP2005134451A JP 2005134451 A JP2005134451 A JP 2005134451A JP 2003367346 A JP2003367346 A JP 2003367346A JP 2003367346 A JP2003367346 A JP 2003367346A JP 2005134451 A JP2005134451 A JP 2005134451A
Authority
JP
Japan
Prior art keywords
substrate
opto
optical
vertical waveguide
electric hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003367346A
Other languages
Japanese (ja)
Inventor
Ryoichi Terauchi
亮一 寺内
Kenichiro Tanaka
健一郎 田中
Masao Kubo
雅男 久保
Chomei Matsushima
朝明 松嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003367346A priority Critical patent/JP2005134451A/en
Publication of JP2005134451A publication Critical patent/JP2005134451A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce optical propagation loss in the optical path along the substrate thickness direction of an optic/electric mixed mounting substrate. <P>SOLUTION: An optic/electric mixed mounting substrate 1 is provided with an electric wiring 3 which is formed on the surface of a substrate 2, an optical wiring (a waveguide core) 4 which is formed inside the substrate 2, a vertical direction waveguide 5 which guides optical signals along the thickness direction of the substrate 2 and an optical path changing structure 6 which is used to optically couple the optical wiring 4 and the vertical direction waveguide 5. The vertical direction waveguide 5 is formed by conducting partial material reform at a point P where laser light beams LB are irradiated using the electric wiring 3 as a reference for positioning. The optical path changing structure 6 is formed in a similar manner as in the case of the vertical direction waveguide 5. The vertical direction waveguide 5 is formed without conducting a mechanical elimination process and a material filling process. Therefore, the optic/electric mixed mounting substrate, in which conventional optical propagation loss caused by bubble generation due to resin filling and resin hardening deformation or the like is reduced, is obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気配線と光配線が混在する光電気混載基板に関する。   The present invention relates to an opto-electric hybrid board in which electrical wiring and optical wiring are mixed.

従来、電気配線と光配線(光導波路)が混在する複合基板である光電気混載基板において、基板内部の光導波路から、基板表面に実装した光信号と電気信号間の変換を行う光電気変換素子までの光路や、基板の厚さ方向に離れて存在する光導波路間の光路が形成されて用いられている。このような基板表面に対して垂直方向に光信号を伝播させるための光路(光導波路)を有する光電気混載基板として、例えば、図9に示すものが知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, in an opto-electric hybrid board, which is a composite board in which electrical wiring and optical wiring (optical waveguide) are mixed, a photoelectric conversion element that converts between an optical signal mounted on the substrate surface and an electrical signal from the optical waveguide inside the board And an optical path between optical waveguides that are separated from each other in the thickness direction of the substrate. As such an opto-electric hybrid board having an optical path (optical waveguide) for propagating an optical signal in a direction perpendicular to the substrate surface, for example, the one shown in FIG. 9 is known (see, for example, Patent Document 1). ).

この従来の光電気混載基板の形成方法を述べる。まず、図9(a)に示すように、電気配線基板90に、光電気変換素子を設置するための電極91が設けられ、貫通孔92が形成される。図9(b)に示すように、電気配線基板90の下面にコア93、クラッド94からなる光導波路板が樹脂で形成され、貫通孔にクラッド材93が充填・硬化され、図9(c)に示すように、さらに、全体を貫通する貫通孔96が形成される。次に、図9(d)に示すように、貫通孔96にコア材97が充填・硬化される。続いて、図9(e)に示すように、基板の下面から、切削加工やエッチング加工によりミラー98が形成され、基板平面内の方向から基板厚み方向に向かう光導波路が形成される。
再公表特許WO01/001176号公報
A method for forming this conventional opto-electric hybrid board will be described. First, as shown in FIG. 9A, an electrode 91 for installing a photoelectric conversion element is provided on an electrical wiring substrate 90, and a through hole 92 is formed. As shown in FIG. 9B, an optical waveguide plate composed of a core 93 and a clad 94 is formed of resin on the lower surface of the electric wiring board 90, and the clad material 93 is filled and cured in the through holes. As shown in FIG. 2, a through hole 96 penetrating the whole is further formed. Next, as shown in FIG. 9 (d), the core material 97 is filled and cured in the through holes 96. Subsequently, as shown in FIG. 9E, a mirror 98 is formed from the lower surface of the substrate by cutting or etching, and an optical waveguide from the direction in the substrate plane toward the substrate thickness direction is formed.
Republished patent WO01 / 001176

しかしながら、上述したような方法により形成された基板厚み方向の光導波路を有する光電気混載基板においては、基板を構成する部材の一部を除去する工程が必要であり、基板製造上の作業効率が良くない。また、クラッド部に孔をあけて、貫通孔の内部にコア材を充填させて光路を作製する方法では、光路に光伝播損失の原因となる気泡を発生させないようにすることが困難である。また、加工やコア材の硬化等に時間を要する。さらに、充填した樹脂を硬化させたときに収縮が発生すると、光路の伝播損失は著しく低下するという問題がある。   However, in the opto-electric hybrid board having the optical waveguide in the thickness direction of the board formed by the method as described above, a process of removing a part of the members constituting the board is necessary, and the work efficiency in manufacturing the board is reduced. Not good. Further, in the method of making an optical path by making a hole in the clad portion and filling the core material into the through hole, it is difficult to prevent bubbles that cause light propagation loss in the optical path. Moreover, time is required for processing, hardening of the core material, and the like. Furthermore, if shrinkage occurs when the filled resin is cured, there is a problem that the propagation loss of the optical path is significantly reduced.

本発明は、上記課題を解消するものであって、基板厚み方向の光路における光伝播損失を低減した光電気混載基板を提供することを目的とする。   The present invention solves the above-described problems, and an object thereof is to provide an opto-electric hybrid board with reduced light propagation loss in an optical path in the thickness direction of the board.

上記課題を達成するために、請求項1の発明は、基板に形成された電気信号を伝播させる電気配線と、基板に形成された光信号を基板面内方向に伝播させる光配線と、前記基板の厚み方向に光信号を導波させる垂直方向導波路とを備えた光電気混載基板において、前記光配線と前記垂直方向導波路間を光結合させるように光を偏向させる光路変更構造を備え、前記垂直方向導波路は、前記電気配線を位置決めの基準にして決定した基板上の位置にレーザ光を照射して材料改質を行うことにより形成されていることを特徴とする光電気混載基板である。   In order to achieve the above object, an invention according to claim 1 includes an electric wiring for propagating an electric signal formed on a substrate, an optical wiring for propagating an optical signal formed on the substrate in an in-plane direction of the substrate, and the substrate In an opto-electric hybrid board including a vertical waveguide that guides an optical signal in the thickness direction of the optical path, an optical path changing structure that deflects light so as to optically couple between the optical wiring and the vertical waveguide is provided, The vertical waveguide is formed by irradiating a laser beam at a position on the substrate determined with the electric wiring as a reference for positioning and performing material modification, and is an opto-electric hybrid board. is there.

請求項2の発明は、請求項1に記載の光電気混載基板において、前記垂直方向導波路の両端の断面積の大きさが互いに異なるものである。   According to a second aspect of the present invention, in the opto-electric hybrid board according to the first aspect, the cross-sectional areas at both ends of the vertical waveguide are different from each other.

請求項3の発明は、請求項1に記載の光電気混載基板において、前記垂直方向導波路の端部は、凸レンズ形状のものである。   According to a third aspect of the present invention, in the opto-electric hybrid board according to the first aspect, the end of the vertical waveguide has a convex lens shape.

請求項4の発明は、請求項1に記載の光電気混載基板において、フェムト秒レーザ光を照射することにより、基板を材料改質して形成されたものである。   According to a fourth aspect of the present invention, in the opto-electric hybrid board according to the first aspect, the substrate is subjected to material modification by irradiating femtosecond laser light.

請求項5の発明は、請求項1に記載の光電気混載基板において、前記垂直方向導波路は、屈折率が低い外周部と屈折率が高い中心部とを備えているものである。   According to a fifth aspect of the present invention, in the opto-electric hybrid board according to the first aspect, the vertical waveguide includes an outer peripheral portion having a low refractive index and a central portion having a high refractive index.

請求項6の発明は、請求項1に記載の光電気混載基板において、前記垂直方向導波路は、複数の光導波路で構成されているものである。   According to a sixth aspect of the present invention, in the opto-electric hybrid board according to the first aspect, the vertical waveguide is composed of a plurality of optical waveguides.

請求項7の発明は、請求項1に記載の光電気混載基板において、前記垂直方向導波路及び/又は前記光路変更構造の周囲に、レーザ光照射によりフォトニック結晶が形成されているものである。   A seventh aspect of the present invention is the opto-electric hybrid board according to the first aspect, wherein a photonic crystal is formed by laser light irradiation around the vertical waveguide and / or the optical path changing structure. .

請求項1の発明によれば、レーザ光を照射して部分的な材料改質を行うことにより、機械的な除去加工や材料充填を行うことなく垂直方向導波路を形成するので、気泡発生や樹脂硬化変形等による光伝播損失の発生を低減した光電気混載基板が得られる。また、非常に微細な光路を形成することが可能である。さらに、電気配線を位置決めの基準にして垂直方向導波路を形成するので、同様に、電気配線を位置決めの基準にして、光電気変換素子を垂直方向導波路との位置精度良く実装できる。   According to the invention of claim 1, by performing partial material modification by irradiating laser light, a vertical waveguide is formed without performing mechanical removal processing or material filling. An opto-electric hybrid board with reduced generation of light propagation loss due to resin curing deformation or the like can be obtained. It is also possible to form a very fine optical path. Further, since the vertical waveguide is formed with the electrical wiring as a reference for positioning, similarly, the photoelectric conversion element can be mounted with high positional accuracy with respect to the vertical waveguide by using the electrical wiring as a reference for positioning.

請求項2又は請求項3の発明によれば、例えば、垂直方向導波路の両端のうち、断面積の大きい方を光入射側として形成することにより、垂直方向導波路における光の入出射時の光学損失を低減することができる。   According to the invention of claim 2 or claim 3, for example, by forming the larger cross-sectional area of both ends of the vertical waveguide as the light incident side, at the time of light entering and exiting the vertical waveguide Optical loss can be reduced.

請求項4の発明によれば、フェムト秒レーザを用いて基板材料の局所的な改質が容易にできるので、垂直方向導波路を容易に形成できる。また、レーザ光を垂直方向に走査しなくても、基板内部の材料改質により垂直方向導波路が形成されるに伴い、レーザ光の自己収束機能により、順次、垂直方向導波路が基板表面側に向かって形成されるようにすることもできる。   According to the invention of claim 4, since the local modification of the substrate material can be easily performed using the femtosecond laser, the vertical waveguide can be easily formed. Even if the laser beam is not scanned in the vertical direction, as the vertical waveguide is formed by the material modification inside the substrate, the vertical waveguide is sequentially moved to the substrate surface side by the self-focusing function of the laser beam. It can also be made to form toward.

請求項5又は請求項6の発明によれば、光路の光伝播損失を低減できる。   According to invention of Claim 5 or Claim 6, the optical propagation loss of an optical path can be reduced.

請求項7の発明によれば、内部改質部を厳密な連続状態で形成しなくとも、フォトニック結晶で光を光路内に閉じこめることができ、垂直方向導波路を容易に形成できる。また、光路変更構造の周囲にフォトニック結晶を形成することで光路偏向時の光損失低減ができる。   According to the invention of claim 7, even if the internal reforming portion is not formed in a strict continuous state, light can be confined in the optical path by the photonic crystal, and the vertical waveguide can be easily formed. Further, by forming a photonic crystal around the optical path changing structure, it is possible to reduce the optical loss during the optical path deflection.

以下、本発明の一実施形態に係る光電気混載基板について、図面を参照して説明する。図1は、光電気混載基板1とその製造方法を示す。光電気混載基板1は、図1(a)に示すように、基板2の表面に形成された電気信号を伝播させる電気配線3と、基板2の内部に形成された光信号を伝播させる光配線(導波路コア)4と、基板2の厚み方向に光信号を導波させる垂直方向導波路5と、光配線4と垂直方向導波路間5を光結合させるように光を偏向させる光路変更構造6を備えている。光配線4は、光配線4より小さい屈折率を有する導波路クラッド41で囲まれて形成されている。そして、垂直方向導波路5は、基板2の表面から、このクラッド41の表面に至る、基板2の内部領域に形成されている。   Hereinafter, an opto-electric hybrid board according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an opto-electric hybrid board 1 and a manufacturing method thereof. As shown in FIG. 1A, the opto-electric hybrid board 1 includes an electric wiring 3 that propagates an electric signal formed on the surface of the substrate 2 and an optical wiring that propagates an optical signal formed inside the substrate 2. (Waveguide core) 4, a vertical waveguide 5 for guiding an optical signal in the thickness direction of the substrate 2, and an optical path changing structure for deflecting light so as to optically couple the optical wiring 4 and the vertical waveguide 5 6 is provided. The optical wiring 4 is formed by being surrounded by a waveguide clad 41 having a refractive index smaller than that of the optical wiring 4. The vertical waveguide 5 is formed in the internal region of the substrate 2 from the surface of the substrate 2 to the surface of the clad 41.

上述の垂直方向導波路5は、電気配線3を位置決めの基準にして決定した基板上の位置に、図1(b)に示すように、レーザ光LBを照射した点Pに部分的な材料改質を行うことにより基板の厚み方向に光信号を導波させるように形成されている。光路変更構造6も垂直方向導波路5と同様にレーザ光照射による部分的材料改質によって形成される。   As shown in FIG. 1B, the above-described vertical waveguide 5 partially improves the material at a point P irradiated with the laser beam LB at a position on the substrate determined by using the electrical wiring 3 as a positioning reference. It is formed so as to guide the optical signal in the thickness direction of the substrate by performing the quality. Similarly to the vertical waveguide 5, the optical path changing structure 6 is also formed by partial material modification by laser light irradiation.

ここで、光電気混載基板1の全体の製造工程の概要を述べる。まず、基板2と内部の光導波路(すなわち光配線4とクラッド41)が、それぞれの屈折率の異なる基板用、クラッド用、及び光配線用の樹脂を用いて、金型成型やフォトリソグラフィ法により、積層して形成される。次に、内部に導波路を有する基板2の表面に電気配線3が形成される。次に、光配線3の光路上に光路変更構造6がレーザ光を用いて形成され、また、垂直方向導波路5がレーザ光を用いて形成される。なお、これらの製造工程の順番は、適宜入れ替えることができる。   Here, an outline of the entire manufacturing process of the opto-electric hybrid board 1 will be described. First, the substrate 2 and the inner optical waveguide (that is, the optical wiring 4 and the clad 41) are made by molding or photolithography using resin for the substrate, the clad, and the optical wiring having different refractive indexes. Are formed by stacking. Next, the electrical wiring 3 is formed on the surface of the substrate 2 having a waveguide inside. Next, the optical path changing structure 6 is formed on the optical path of the optical wiring 3 using laser light, and the vertical waveguide 5 is formed using laser light. In addition, the order of these manufacturing processes can be changed suitably.

このレーザ光照射による部分的材料改質(光誘起屈折率変化と呼ばれる)は、レーザ光を照射した点Pにおいて局所的に行うことができ、また、その照射点をXYZ方向に走査することによって、比較的容易に任意の3次元形状の材料改質領域を形成することができる。光電気混載基板1を形成する上述の各樹脂は、レーザ光照射による材料改質、すなわちレーザ光照射による所望の光誘起屈折率変化をする樹脂を用いる必要がある。   This partial material modification by laser light irradiation (called photoinduced refractive index change) can be performed locally at the point P irradiated with the laser light, and by scanning the irradiation point in the XYZ directions. The material modified region having an arbitrary three-dimensional shape can be formed relatively easily. For each of the above-described resins forming the opto-electric hybrid board 1, it is necessary to use a material that undergoes material modification by laser light irradiation, that is, a resin that changes a desired light-induced refractive index by laser light irradiation.

また、光を所望の方向に導波するには、周囲よりも屈折率の大きな線状連続領域(すなわち光路)を作ればよい。そこで、光路形成位置にレーザ光の焦点を合わせ、所望する形成位置に沿ってレーザ光の焦点を移動させながら、レーザ光照射部を改質させることにより屈折率を大きくして、導波路が形成される。焦点の移動速度は、改質領域が途中でとぎれない速度以下にする必要がある。   Further, in order to guide light in a desired direction, a linear continuous region (that is, an optical path) having a refractive index larger than that of the surroundings may be formed. Therefore, the waveguide is formed by focusing the laser beam on the optical path formation position and increasing the refractive index by modifying the laser beam irradiation section while moving the laser beam focus along the desired formation position. Is done. The moving speed of the focal point needs to be equal to or lower than the speed at which the modified region cannot be interrupted.

焦点移動により垂直方向導波路5を形成する方法として、例えば、所望する形成位置の基板内部の所定深さにレーザ光の焦点位置を合わせて改質領域を形成し、必要に応じてその深さにおける面内方向(XY方向)のレーザ光走査により改質領域を広げ、続いて焦点位置を基板表面側(Z方向)に移動して連続した改質領域をさらに形成する、ということを繰り返す方法としてもよい。この手順を逆に、すなわち、浅い方から深い方に改質部を形成するのは、改質部においてレーザ光が散乱されるので好ましくない。   As a method of forming the vertical waveguide 5 by moving the focal point, for example, a modified region is formed by adjusting the focal position of the laser beam to a predetermined depth inside the substrate at a desired formation position, and the depth thereof is adjusted as necessary. A method in which the modified region is expanded by laser beam scanning in the in-plane direction (XY direction) and the focal position is moved to the substrate surface side (Z direction) to further form a continuous modified region. It is good. It is not preferable to reverse this procedure, that is, to form the modified portion from the shallower side to the deeper side because the laser beam is scattered in the modified portion.

レーザ光として、レーザ光照射部の周囲に熱影響を殆ど与えないフェムト秒レーザ光などが望ましい。レーザ加工条件は、例えば、レーザ波長800nm、パルス幅100fs,レーザ繰返し周波数82MHz、レーザ出力1〜7nJ/pulseである。なお、レーザ光照射による部分的材料改質について、例えば、本出願人による発明が、特開2002−14246号公報に開示されている。   As the laser light, femtosecond laser light or the like that hardly affects the surroundings of the laser light irradiation portion is desirable. The laser processing conditions are, for example, a laser wavelength of 800 nm, a pulse width of 100 fs, a laser repetition frequency of 82 MHz, and a laser output of 1 to 7 nJ / pulse. As for partial material modification by laser light irradiation, for example, an invention by the present applicant is disclosed in Japanese Patent Laid-Open No. 2002-14246.

このようにして製造された光電気混載基板1は、機械的な除去加工や材料充填を行うことなく垂直方向導波路5を形成するので、従来の機械加工孔に樹脂を充填して垂直方向導波路を形成するのと異なり、気泡発生や樹脂硬化変形等による光伝播損失の発生を低減した垂直方向導波路を備えた光電気混載基板となっている。また、形成方法が機械加工によらないので、より微細な垂直方向導波路5を形成することが可能であり、この光電気混載基板1は、光配線の集積化や基板の小型化に対応できる。   Since the opto-electric hybrid board 1 manufactured in this way forms the vertical waveguide 5 without performing mechanical removal processing or material filling, the conventional machining hole is filled with resin to guide the vertical guide. Unlike the formation of a waveguide, this is an opto-electric hybrid board provided with a vertical waveguide in which generation of light propagation loss due to bubble generation, resin hardening deformation, or the like is reduced. Further, since the forming method does not depend on machining, it is possible to form a finer vertical waveguide 5 and this opto-electric hybrid board 1 can cope with integration of optical wiring and miniaturization of the board. .

前出の、電気配線3を位置決めの基準にして基板2上の位置決めを行うこと、について説明する。電気信号を伝播させる電気配線3と光信号を伝播させる光配線4とが混在する複合基板(光電気混載基板)では、光配線4を伝播する光信号を垂直方向に取り出し、図1(a)に点線で示したように、基板表面に実装されたフォトダイオードなどの光電気変換素子Cまで伝播させるか、又は、基板表面に実装された面発光レーザなどから出射された光信号を基板面に平行に設けられた光配線まで伝播させる必要がある。このとき、垂直方向に伝播する光信号の損失(光電気結合損失)は、光が伝播する材料の吸収率や反射率、さらに光の広がり角、伝播距離に依存する。この他、特に、垂直方向導波路5の光入出射端面の位置と、光電気変換素子Cの受発光部C1の位置の位置合わせ精度は、光電気結合損失の大小に大きく影響する。   The above-described positioning on the substrate 2 using the electrical wiring 3 as a positioning reference will be described. In a composite substrate (an opto-electric hybrid board) in which the electrical wiring 3 for propagating the electrical signal and the optical wiring 4 for propagating the optical signal are mixed, the optical signal propagating through the optical wiring 4 is taken out in the vertical direction, and FIG. As shown by the dotted line in FIG. 2, the optical signal emitted from the surface-emitting laser or the like mounted on the substrate surface is propagated to the photoelectric conversion element C such as a photodiode mounted on the substrate surface. It is necessary to propagate to the optical wiring provided in parallel. At this time, the loss of the optical signal propagating in the vertical direction (photoelectric coupling loss) depends on the absorptance and reflectance of the material through which the light propagates, the light spread angle, and the propagation distance. In addition, in particular, the alignment accuracy between the position of the light incident / exit end face of the vertical waveguide 5 and the position of the light receiving / emitting portion C1 of the photoelectric conversion element C greatly affects the magnitude of the photoelectric coupling loss.

そこで、電気配線3を位置決めの基準にして垂直方向導波路5を形成し、その後、同様に、電気配線3を位置決めの基準として用いて光電気変換素子Cと垂直方向導波路5との位置合わせを行い、光電気変換素子Cを実装することで、位置合わせ精度が向上し、光電気結合損失の低減ができるようになる。すなわち、まず、光配線4と光路変更構造6の位置、及び光電気変換素子Cが実装される電気配線3の一部であるランド31の位置を計測する。光電気変換素子Cの受発光部C1の位置は、この計測したランド31の位置から算出することができる。その算出位置から、垂直方向導波路5を形成する位置(基板2内の空間領域)を求めて、垂直方向導波路5を精度良く形成することができる。   Therefore, the vertical waveguide 5 is formed using the electrical wiring 3 as a positioning reference, and thereafter, the alignment between the photoelectric conversion element C and the vertical waveguide 5 is similarly performed using the electrical wiring 3 as the positioning reference. By mounting the photoelectric conversion element C, the alignment accuracy is improved and the photoelectric coupling loss can be reduced. That is, first, the position of the optical wiring 4 and the optical path changing structure 6 and the position of the land 31 that is a part of the electrical wiring 3 on which the photoelectric conversion element C is mounted are measured. The position of the light emitting / receiving section C1 of the photoelectric conversion element C can be calculated from the measured position of the land 31. From the calculated position, a position (a space region in the substrate 2) where the vertical waveguide 5 is formed can be obtained, and the vertical waveguide 5 can be formed with high accuracy.

ところで、位置計測の結果、垂直方向導波路5の形成可能な位置が限られるため基板面に対して垂直にできない場合が発生する。この場合は、レーザ光照射による部分的材料改質が3次元的分布領域について可能である特質を活かして、厳密に垂直線に沿った光導波路ではなく、受発光部C1と光路変更構造6とを結んだ直線又は曲線に沿った、垂直方向導波路5を形成する。このようにして形成された垂直方向導波路5を備えた光電気混載基板1は、光電気結合損失の少ないものとなる。   By the way, as a result of the position measurement, the position where the vertical waveguide 5 can be formed is limited. In this case, taking advantage of the property that partial material modification by laser light irradiation is possible for the three-dimensional distribution region, not the optical waveguide strictly along the vertical line but the light emitting / receiving unit C1 and the optical path changing structure 6 The vertical waveguide 5 is formed along a straight line or a curve connecting the two. The opto-electric hybrid board 1 provided with the vertical waveguide 5 formed in this way has a small opto-electric coupling loss.

次に、本発明の他の一実施形態に係る光電気混載基板を、図2により説明する。この光電気混載基板1の垂直方向導波路5は、基板2の表面から、クラッド41を貫通して光配線4の内部までの領域に形成されている。この光電気混載基板1は、前出の図1に示した光電気混載基板よりも光電気結合損失の少ないものとなる。この垂直方向導波路5の形成に際しては、光路変更構造6にダメージを与えないように注意が払われている。   Next, an opto-electric hybrid board according to another embodiment of the present invention will be described with reference to FIG. The vertical waveguide 5 of the opto-electric hybrid board 1 is formed in a region from the surface of the board 2 to the inside of the optical wiring 4 through the clad 41. This opto-electric hybrid board 1 has less opto-electric coupling loss than the opto-electric hybrid board shown in FIG. In forming the vertical waveguide 5, attention is paid so as not to damage the optical path changing structure 6.

次に、本発明のさらに他の一実施形態に係る光電気混載基板を、図3により説明する。この光電気混載基板1は、基板2の厚み方向の異なる位置に形成された複数の光配線4の相互間を光結合する垂直方向導波路50を備えている。上下の対となる光配線4の対応する位置に光路変更構造6が具備され、その間に垂直方向導波路50が形成されている。光電気混載基板1は、多層光配線構造において、レーザ光照射による部分的材料改質により、光路変更構造6や垂直方向導波路5と同様に層間の垂直方向導波路50を形成して、層間の光伝播を可能とするものである。   Next, an opto-electric hybrid board according to still another embodiment of the present invention will be described with reference to FIG. The opto-electric hybrid board 1 includes a vertical waveguide 50 that optically couples a plurality of optical wirings 4 formed at different positions in the thickness direction of the board 2. An optical path changing structure 6 is provided at a position corresponding to the upper and lower optical wirings 4, and a vertical waveguide 50 is formed therebetween. The opto-electric hybrid board 1 has a multilayer optical wiring structure in which a vertical waveguide 50 between layers is formed by partial material modification by laser light irradiation, like the optical path changing structure 6 and the vertical waveguide 5. Light propagation.

次に、本発明のさらに他の一実施形態に係る光電気混載基板を、図4(a)(b)により説明する。これらの光電気混載基板1は、光電気変換素子の受発光部と垂直方向導波路間の光結合損失を低減するものである。図4(a)に示すように、基板2の表面の電気配線3に面発光レーザなどの発光する光電気変換素子を実装(不図示)し、基板2の表面から光配線4に光信号を導波する場合、垂直方向導波路5を、基板2の表面側断面が基板内部側断面より大きいテーパ状になるよう形成する。   Next, an opto-electric hybrid board according to still another embodiment of the present invention will be described with reference to FIGS. These opto-electric hybrid boards 1 reduce the optical coupling loss between the light emitting / receiving section of the photoelectric conversion element and the vertical waveguide. As shown in FIG. 4A, a photoelectric conversion element such as a surface emitting laser is mounted on the electrical wiring 3 on the surface of the substrate 2 (not shown), and an optical signal is transmitted from the surface of the substrate 2 to the optical wiring 4. In the case of waveguide, the vertical waveguide 5 is formed so that the cross section on the surface side of the substrate 2 has a larger taper shape than the cross section on the inner side of the substrate.

逆に、図4(b)に示すように、光配線4を伝播する光信号を垂直方向導波路5に伝播させて、基板2のフォトダイオード等(不図示)に光信号を受光させる場合、垂直方向導波路5の基板内部側断面が基板表面側断面より大きいテーパ状になるように形成する。このように両端のサイズが異なる垂直方向導波路5は、断面の大きな部分は、例えば内部側ではレーザ光を広い範囲で走査して、また基板2の表面側ではレーザ光をデフォーカスして加工することができる。   On the other hand, as shown in FIG. 4B, when the optical signal propagating through the optical wiring 4 is propagated to the vertical waveguide 5 and is received by a photodiode or the like (not shown) of the substrate 2, The vertical waveguide 5 is formed so that the cross section on the inner side of the substrate is tapered more than the cross section on the substrate surface side. As described above, the vertical waveguide 5 having different sizes at both ends is processed by scanning a laser beam over a wide range, for example, on the inner side, and defocusing the laser beam on the surface side of the substrate 2. can do.

次に、本発明のさらに他の一実施形態に係る光電気混載基板を、図5により説明する。この光電気混載基板1において、垂直方向導波路5の基板内側の端面の形状が凸レンズ状とされている。この端面の凸レンズにより、光配線4と垂直方向導波路5との間の光の入出射時の光学損失を低減させることができる。凸レンズ形状は、レーザ光のエネルギー分布を利用する方法や、凸レンズ部先端のみ、高倍率レンズによりレーザ光を集光して加工する方法によって形成することができる。   Next, an opto-electric hybrid board according to still another embodiment of the present invention will be described with reference to FIG. In this opto-electric hybrid board 1, the shape of the end face inside the vertical waveguide 5 is a convex lens. With this convex lens on the end face, it is possible to reduce optical loss when light enters and exits between the optical wiring 4 and the vertical waveguide 5. The convex lens shape can be formed by a method using the energy distribution of laser light or a method of condensing and processing laser light with a high-power lens only at the tip of the convex lens portion.

次に、本発明のさらに他の一実施形態に係る光電気混載基板を、図6により説明する。この光電気混載基板1の垂直方向導波路5は、屈折率の高い中央のコア51とその周りの屈折率の低いクラッド52から構成されている。このような二重構造は、前出の図1に示した光電気混載基板の垂直方向導波路に対し、その垂直方向導波路を形成するのに用いたレーザ光よりも強度の高いエネルギを有するレーザ光を用いて、垂直方向導波路の中央部に材料改質を起こして、さらに屈折率を高くして形成される。先に形成された低屈折率の垂直方向導波路5は、後から形成する高屈折率領域を形成するため、予め広く形成されている。また、レーザ照射により屈折率が低下する材料を用いる場合、予め形成した垂直方向導波路の周囲にレーザ光を照射して屈折率を低下させて、二重構造を形成することができる。   Next, an opto-electric hybrid board according to still another embodiment of the present invention will be described with reference to FIG. The vertical waveguide 5 of the opto-electric hybrid board 1 includes a central core 51 having a high refractive index and a clad 52 having a low refractive index around it. Such a double structure has energy higher than that of the laser beam used to form the vertical waveguide with respect to the vertical waveguide of the opto-electric hybrid board shown in FIG. The laser beam is used to cause a material modification at the central portion of the vertical waveguide and further increase the refractive index. The low-refractive-index vertical waveguide 5 formed in advance is formed in advance widely in order to form a high-refractive index region to be formed later. When a material whose refractive index is lowered by laser irradiation is used, a double structure can be formed by lowering the refractive index by irradiating laser light around a previously formed vertical waveguide.

次に、本発明のさらに他の一実施形態に係る光電気混載基板を、図7により説明する。この光電気混載基板1の垂直方向導波路5は、複数の単位導波路53の集合体として形成されている。個々の単位導波路53の小さな光入出射端を有する垂直方向導波路5からの光の広がりは、単体の大きな光入出射端を有する垂直方向導波路からの光の広がりと比較すると小さくなる。すなわち、この垂直方向導波路5から光配線4へ光を出射する際、光学損失を低減することができる。この垂直方向導波路5は、レーザ光を絞って形成した個々の単位導波路53を互いに隣接して形成される。   Next, an opto-electric hybrid board according to still another embodiment of the present invention will be described with reference to FIG. The vertical waveguide 5 of the opto-electric hybrid board 1 is formed as an assembly of a plurality of unit waveguides 53. The spread of light from the vertical waveguide 5 having a small light incident / exit end of each unit waveguide 53 is smaller than the spread of light from the vertical waveguide having a single large light incident / exit end. That is, when light is emitted from the vertical waveguide 5 to the optical wiring 4, optical loss can be reduced. The vertical waveguide 5 is formed by adjoining individual unit waveguides 53 formed by narrowing laser light.

次に、本発明のさらに他の一実施形態に係る光電気混載基板を、図8により説明する。この光電気混載基板1の垂直方向導波路5は、光信号が導波する領域は基板2の材質のままとして、周囲をレーザ光照射により材料改質して光を垂直方向導波路5内に閉じこめるように形成されている。この場合の材料改質は、改質部にレーザ光の焦点を合わせ、内部加工により、屈折率の異なる物質が周期的に並んだ構造を持つ結晶であるフォトニック結晶を形成するものである。また、フォトニック結晶とされる内部改質部を厳密な連続状態で形成しなくとも、フォトニック結晶で光を光路内に閉じこめることができ、垂直方向導波路を容易に形成できる。さらに、このフォトニック結晶を光路変更構造6の周囲にも形成することにより、光路変更時の光学損失の低減を図ることができる。フォトニック結晶の形成に用いるレーザは、周囲に熱影響をほとんど与えないフェムト秒レーザなどが適している。なお、本発明は、上記構成に限られることなく種々の変形が可能である。   Next, an opto-electric hybrid board according to still another embodiment of the present invention will be described with reference to FIG. The vertical waveguide 5 of the opto-electric hybrid board 1 is such that the region where the optical signal is guided remains the material of the substrate 2 and the surroundings are modified by laser light irradiation so that the light enters the vertical waveguide 5. It is formed to be confined. The material modification in this case is to form a photonic crystal, which is a crystal having a structure in which substances having different refractive indexes are periodically arranged by focusing the laser beam on the modified portion and performing internal processing. In addition, even if the internal modified portion that is a photonic crystal is not formed in a strictly continuous state, light can be confined in the optical path by the photonic crystal, and a vertical waveguide can be easily formed. Furthermore, by forming this photonic crystal also around the optical path changing structure 6, it is possible to reduce optical loss when changing the optical path. As a laser used for forming the photonic crystal, a femtosecond laser or the like that hardly affects the surroundings is suitable. The present invention is not limited to the above-described configuration, and various modifications can be made.

(a)は本発明の一実施形態に係る光電気混載基板の断面図、(b)は同光電気混載基板の製造方法を示す断面図。(A) is sectional drawing of the opto-electric hybrid board which concerns on one Embodiment of this invention, (b) is sectional drawing which shows the manufacturing method of the opto-electric hybrid board. 本発明の他の一実施形態に係る光電気混載基板の断面図。Sectional drawing of the opto-electric hybrid board | substrate which concerns on other one Embodiment of this invention. 本発明のさらに他の一実施形態に係る光電気混載基板の断面図。Sectional drawing of the opto-electric hybrid board | substrate which concerns on another one Embodiment of this invention. (a)(b)は本発明のさらに他の一実施形態に係る光電気混載基板の断面図。(A) (b) is sectional drawing of the opto-electric hybrid board | substrate which concerns on another one Embodiment of this invention. 本発明のさらに他の一実施形態に係る光電気混載基板の断面図。Sectional drawing of the opto-electric hybrid board | substrate which concerns on another one Embodiment of this invention. 本発明のさらに他の一実施形態に係る光電気混載基板の断面図。Sectional drawing of the opto-electric hybrid board | substrate which concerns on another one Embodiment of this invention. 本発明のさらに他の一実施形態に係る光電気混載基板の断面図。Sectional drawing of the opto-electric hybrid board | substrate which concerns on another one Embodiment of this invention. 本発明のさらに他の一実施形態に係る光電気混載基板の断面図。Sectional drawing of the opto-electric hybrid board | substrate which concerns on another one Embodiment of this invention. (a)〜(e)従来の光電気混載基板とその製造工程を示す断面図。(A)-(e) Sectional drawing which shows the conventional opto-electric hybrid board | substrate and its manufacturing process.

符号の説明Explanation of symbols

1 光電気混載基板
2 基板
3 電気配線
4 光配線
5 垂直方向導波路
6 光路変更構造
51 中心部
52 外周部
63 光導波路
LB レーザ光
DESCRIPTION OF SYMBOLS 1 Opto-electric hybrid board 2 Substrate 3 Electric wiring 4 Optical wiring 5 Vertical waveguide 6 Optical path change structure 51 Center part 52 Outer part 63 Optical waveguide LB Laser light

Claims (7)

基板に形成された電気信号を伝播させる電気配線と、基板に形成された光信号を基板面内方向に伝播させる光配線と、前記基板の厚み方向に光信号を導波させる垂直方向導波路とを備えた光電気混載基板において、
前記光配線と前記垂直方向導波路間を光結合させるように光を偏向させる光路変更構造を備え、
前記垂直方向導波路は、前記電気配線を位置決めの基準にして決定した基板上の位置にレーザ光を照射して材料改質を行うことにより形成されていることを特徴とする光電気混載基板。
An electric wiring for propagating an electric signal formed on the substrate, an optical wiring for propagating the optical signal formed on the substrate in the in-plane direction of the substrate, and a vertical waveguide for guiding the optical signal in the thickness direction of the substrate; In an opto-electric hybrid board with
An optical path changing structure for deflecting light so as to optically couple between the optical wiring and the vertical waveguide,
2. The opto-electric hybrid board according to claim 1, wherein the vertical waveguide is formed by irradiating a laser beam to a position on the board determined with the electric wiring as a reference for positioning and modifying the material.
前記垂直方向導波路の両端の断面積の大きさが互いに異なることを特徴とする請求項1に記載の光電気混載基板。   The opto-electric hybrid board according to claim 1, wherein the cross-sectional areas at both ends of the vertical waveguide are different from each other. 前記垂直方向導波路の端部は、凸レンズ形状であることを特徴とする請求項1に記載の光電気混載基板。   The opto-electric hybrid board according to claim 1, wherein an end of the vertical waveguide has a convex lens shape. 前記垂直方向導波路は、フェムト秒レーザ光を照射することにより、基板を材料改質して形成されたものであることを特徴とする請求項1に記載の光電気混載基板。   The opto-electric hybrid board according to claim 1, wherein the vertical waveguide is formed by modifying the substrate by irradiating femtosecond laser light. 前記垂直方向導波路は、屈折率が高い中心部と屈折率が低い外周部とを備えていることを特徴とする請求項1に記載の光電気混載基板。   The opto-electric hybrid board according to claim 1, wherein the vertical waveguide includes a central portion having a high refractive index and an outer peripheral portion having a low refractive index. 前記垂直方向導波路は、複数の光導波路で構成されていることを特徴とする請求項1に記載の光電気混載基板。   The opto-electric hybrid board according to claim 1, wherein the vertical waveguide is composed of a plurality of optical waveguides. 前記垂直方向導波路及び/又は前記光路変更構造の周囲に、レーザ光照射によりフォトニック結晶が形成されていることを特徴とする請求項1に記載の光電気混載基板。   The opto-electric hybrid board according to claim 1, wherein a photonic crystal is formed by laser light irradiation around the vertical waveguide and / or the optical path changing structure.
JP2003367346A 2003-10-28 2003-10-28 Optic/electric mixed mounting substrate Pending JP2005134451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367346A JP2005134451A (en) 2003-10-28 2003-10-28 Optic/electric mixed mounting substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367346A JP2005134451A (en) 2003-10-28 2003-10-28 Optic/electric mixed mounting substrate

Publications (1)

Publication Number Publication Date
JP2005134451A true JP2005134451A (en) 2005-05-26

Family

ID=34645377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367346A Pending JP2005134451A (en) 2003-10-28 2003-10-28 Optic/electric mixed mounting substrate

Country Status (1)

Country Link
JP (1) JP2005134451A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330697A (en) * 2005-04-25 2006-12-07 Kyocera Corp Optical coupling structure, substrate with built-in optical transmission function, and method for manufacturing such substrate
JP2006351718A (en) * 2005-06-14 2006-12-28 Nec Corp Optical element and optical module using it
JP2007017653A (en) * 2005-07-07 2007-01-25 Sony Corp Photoelectric converter, its manufacturing method, and optical information processor
JP2008299180A (en) * 2007-06-01 2008-12-11 Tokai Univ Method of manufacturing self-forming optical waveguide, and optical device equipped with the same
JP2009031633A (en) * 2007-07-30 2009-02-12 Kyocera Corp Optical transmission substrate, method of manufacturing the same, optical transmission apparatus, compound optical transmission board, and photoelectric hybrid board
WO2012029370A1 (en) * 2010-08-31 2012-03-08 京セラ株式会社 Optical transmission structure, method of manufacturing same, and optical transmission module
JP2013054369A (en) * 2012-10-23 2013-03-21 Ngk Spark Plug Co Ltd Wiring board with optical waveguide
US9360638B2 (en) 2010-08-31 2016-06-07 Kyocera Corporation Optical transmission body, method for manufacturing the same, and optical transmission module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330697A (en) * 2005-04-25 2006-12-07 Kyocera Corp Optical coupling structure, substrate with built-in optical transmission function, and method for manufacturing such substrate
JP2006351718A (en) * 2005-06-14 2006-12-28 Nec Corp Optical element and optical module using it
JP2007017653A (en) * 2005-07-07 2007-01-25 Sony Corp Photoelectric converter, its manufacturing method, and optical information processor
JP4654801B2 (en) * 2005-07-07 2011-03-23 ソニー株式会社 PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND OPTICAL INFORMATION PROCESSING DEVICE
JP2008299180A (en) * 2007-06-01 2008-12-11 Tokai Univ Method of manufacturing self-forming optical waveguide, and optical device equipped with the same
JP2009031633A (en) * 2007-07-30 2009-02-12 Kyocera Corp Optical transmission substrate, method of manufacturing the same, optical transmission apparatus, compound optical transmission board, and photoelectric hybrid board
WO2012029370A1 (en) * 2010-08-31 2012-03-08 京セラ株式会社 Optical transmission structure, method of manufacturing same, and optical transmission module
JPWO2012029370A1 (en) * 2010-08-31 2013-10-28 京セラ株式会社 Optical transmission structure, method for manufacturing the same, and optical transmission module
US9057827B2 (en) 2010-08-31 2015-06-16 Kyocera Corporation Optical transmission structure and method for manufacturing the same, and optical transmission module
US9360638B2 (en) 2010-08-31 2016-06-07 Kyocera Corporation Optical transmission body, method for manufacturing the same, and optical transmission module
JP2013054369A (en) * 2012-10-23 2013-03-21 Ngk Spark Plug Co Ltd Wiring board with optical waveguide

Similar Documents

Publication Publication Date Title
EP1522882B1 (en) Optical waveguide having mirror surface formed by laser beam machining
TWI495915B (en) The optical waveguide substrate having a positioning structure, a method of manufacturing the same, and a method of manufacturing the
EP2281215B1 (en) Integrated photonics device
US6907173B2 (en) Optical path changing device
JP6395134B2 (en) Optical waveguide device manufacturing method and laser processing apparatus
US9958607B2 (en) Light waveguide, method of manufacturing light waveguide, and light waveguide device
JP5014855B2 (en) Opto-electric integrated wiring board, manufacturing method thereof, and opto-electric integrated wiring system
US7242822B2 (en) Optical connection board and optical signal transmission
US7760979B2 (en) System and method for low loss waveguide bends
JP2005134451A (en) Optic/electric mixed mounting substrate
JP6394018B2 (en) Optical waveguide and electronic equipment
JP4225054B2 (en) Manufacturing method of photoelectric composite wiring board
JP4155160B2 (en) Manufacturing method of opto-electric hybrid board
JP4511291B2 (en) Manufacturing method of optical connection device and optical connection device
JP4549949B2 (en) Optical element
JP2010204324A (en) Optical waveguide, light transmission apparatus and electronic equipment
JP2006251183A (en) Three-dimensional optical waveguide and optical communication system
EP2613186B1 (en) Optical transmission structure, method of manufacturing same, and optical transmission module
JP2004302325A (en) Method of manufacturing photoelectric compound substrate
US10914893B2 (en) Optical waveguide laminate and method of manufacturing same
Hendrickx et al. Towards flexible routing schemes for polymer optical interconnections on printed circuit boards
CN113281860A (en) Photoelectric integrated circuit board communication system
Van Steenberge et al. Development of a technology for fabricating low-cost parallel optical interconnects
JP2005234456A (en) Manufacturing method of optical circuit substrate and optical circuit substrate
JP2012191246A (en) High resolution imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108