JP2005134288A - Operation method for nuclear power plant - Google Patents

Operation method for nuclear power plant Download PDF

Info

Publication number
JP2005134288A
JP2005134288A JP2003372047A JP2003372047A JP2005134288A JP 2005134288 A JP2005134288 A JP 2005134288A JP 2003372047 A JP2003372047 A JP 2003372047A JP 2003372047 A JP2003372047 A JP 2003372047A JP 2005134288 A JP2005134288 A JP 2005134288A
Authority
JP
Japan
Prior art keywords
reactor
power plant
nuclear power
temperature coefficient
coefficient measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003372047A
Other languages
Japanese (ja)
Inventor
Hidefumi Yamamoto
英文 山本
Seiji Goto
誠司 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2003372047A priority Critical patent/JP2005134288A/en
Publication of JP2005134288A publication Critical patent/JP2005134288A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation method for a nuclear power plant restraining a dielectric constant of reactor water from rising up, when measuring and inspecting a temperature coefficient of a moderator in start-up of the nuclear power plant. <P>SOLUTION: In this operation method for the nuclear power plant for measuring and inspecting the temperature coefficient of the moderator in the nuclear power plant, a degasing operation for a nuclear reactor is executed before measuring and inspecting the temperature coefficient of the moderator, or a control rod is operated to control neutrons in response to total organic carbon concentration and the dielectric constant of the reactor water after the nuclear reactor is brought into a critical state, so as to remove an total organic carbon. The dielectric constant of the reactor water is thereby restrained from being elevated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、原子力発電プラント起動時に減速材温度係数測定検査を実施する原子力発電プラント運転方法に関する。   The present invention relates to a method for operating a nuclear power plant in which a moderator temperature coefficient measurement inspection is performed when the nuclear power plant is started.

原子力発電プラント建設完了後の最初のプラント起動時には、原子炉の炉水温度が約50℃付近にて減速材の温度係数測定検査を実施し、原子炉の炉水温度が80℃まで昇温した後に原子炉脱気運転を行っている。   At the start of the first plant after the completion of the construction of the nuclear power plant, the temperature coefficient of the moderator was measured and inspected when the reactor water temperature was around 50 ° C, and the reactor water temperature was raised to 80 ° C. Later, reactor deaeration operation was performed.

図3は従来の原子力発電プラント運転方法の説明図である。原子炉の炉水温度が30℃であるときに復水器の真空上昇を開始し、復水器がほぼ真空状態となると原子炉を起動し原子炉を臨界状態とする。そして、原子炉の炉水温度が約50℃付近にて核加熱を開始し減速材温度係数測定検査(温度係数試験)を実施する。さらに、原子炉の炉水温度が80℃まで昇温した後に、主蒸気隔離弁(MSIV)及び主蒸気ドレン弁(MSドレン弁)を開いて原子炉を負圧にして原子炉の炉水を減圧沸騰させ原子炉脱気を行う。これにより、炉水に溶存している酸素および炭酸ガスを除去する。原子炉に関わる大規模工事後において、減速材温度係数測定検査を実施する場合も同様の運転を行う。   FIG. 3 is an explanatory diagram of a conventional nuclear power plant operating method. When the reactor water temperature is 30 ° C., the vacuum of the condenser starts to rise, and when the condenser is almost in a vacuum state, the reactor is started to bring the reactor into a critical state. Then, nuclear heating is started when the reactor water temperature is about 50 ° C., and a moderator temperature coefficient measurement inspection (temperature coefficient test) is performed. Furthermore, after the reactor water temperature rises to 80 ° C., the main steam isolation valve (MSIV) and the main steam drain valve (MS drain valve) are opened to make the reactor negative pressure and to supply the reactor water. The reactor is degassed by boiling under reduced pressure. Thereby, oxygen and carbon dioxide dissolved in the reactor water are removed. The same operation is performed when moderator temperature coefficient measurement inspection is performed after large-scale construction related to the nuclear reactor.

また、原子力発電プラントにおいては、主たる構成材料としてステンレス鋼やニッケル基合金を用い、また原子炉冷却材としては水を使用しているので、原子炉水が放射線分解することにより酸素や過酸化水素などの酸化性物質が生成され、生成された酸化性物質が原子炉水中に溶存して構成材料であるステンレス鋼やニッケル基合金の応力腐食割れを引き起こすことがある。そこで、原子炉水中に水素を注入することにより、原子炉水中の酸化性物質の生成を抑制し、材料の電気化学的電位(腐食電位)を低減させて応力腐食割れ発生を低減させるようにしたものがある(例えば特許文献1参照)。
特開2001−349983号公報(図1)
In nuclear power plants, stainless steel and nickel-base alloys are used as the main constituent materials, and water is used as the reactor coolant. Oxidizing substances such as these may be generated, and the generated oxidizing substances may be dissolved in the reactor water and cause stress corrosion cracking of stainless steel and nickel-based alloys as constituent materials. Therefore, by injecting hydrogen into the reactor water, the generation of oxidizing substances in the reactor water was suppressed, and the electrochemical potential (corrosion potential) of the material was reduced to reduce the occurrence of stress corrosion cracking. There are some (see, for example, Patent Document 1).
JP 2001-349983 A (FIG. 1)

しかし、減速材温度係数測定検査の実施時の核加熱状態において、原子炉脱気運転が行われていないこと、また、原子炉水に含まれる全有機炭素TOC(Total Organic Carbon)の放射線分解により炭酸イオン等が発生することから、炉水導電率の上昇量が大きくなる場合がある。炉水導電率が大きくなると、炉水導電率が正常値に復帰するまで核加熱および減速材温度係数測定検査を中断することになりプラント起動時間が長くなる可能性があった。   However, in the nuclear heating state at the time of the moderator temperature coefficient measurement and inspection, the reactor degassing operation is not performed, and the total organic carbon (TOC) contained in the reactor water is radiolyzed. Since carbonate ions and the like are generated, the amount of increase in the reactor water conductivity may increase. When the reactor water conductivity is increased, the nuclear heating and moderator temperature coefficient measurement and inspection are interrupted until the reactor water conductivity returns to a normal value, which may increase the plant start-up time.

本発明の目的は、原子力発電プラント起動時に減速材温度係数測定検査を実施する場合に、炉水導電率上昇を抑制することのできる原子力発電プラント運転方法を提供することである。   An object of the present invention is to provide a nuclear power plant operating method capable of suppressing an increase in reactor water conductivity when a moderator temperature coefficient measurement inspection is performed at the time of starting the nuclear power plant.

請求項1の発明に係わる原子力発電プラント運転方法は、減速材温度係数測定検査の実施前に原子炉の脱気運転を実施することを特徴とする。   The nuclear power plant operating method according to the invention of claim 1 is characterized in that the reactor is deaerated before the moderator temperature coefficient measurement and inspection.

請求項2の発明に係わる原子力発電プラント運転方法は、減速材温度係数測定検査の実施前に原子炉を臨界状態とし、全有機炭素濃度および炉水導電率に応じて制御棒を操作して中性子を制御し、全有機炭素を放射線分解し除去することを特徴とする。   According to a second aspect of the present invention, the nuclear power plant operating method sets the reactor to a critical state before conducting the moderator temperature coefficient measurement inspection, operates the control rod in accordance with the total organic carbon concentration and the reactor water conductivity, and It is characterized by controlling and removing all organic carbon by radiolysis.

請求項3の発明に係わる原子力発電プラント運転方法は、減速材温度係数測定検査の実施前に原子炉の脱気運転を実施し、原子炉を臨界状態とし、全有機炭素濃度および炉水導電率に応じて制御棒を操作して中性子を制御し、全有機炭素を放射線分解し除去することを特徴とする。   According to a third aspect of the present invention, the nuclear power plant operating method is such that the reactor is degassed before the moderator temperature coefficient measurement and inspection, the reactor is brought into a critical state, and the total organic carbon concentration and reactor water conductivity are measured. The neutron is controlled by operating the control rod according to the above, and the total organic carbon is removed by radiolysis.

請求項4の発明に係わる原子力発電プラント運転方法は、請求項1乃至3のいずれか1項の発明において、原子炉の脱気運転実施の際に、原子炉冷却材浄化系ポンプを2台並列運転から1台停止して1台運転とすることを特徴とする。   According to a fourth aspect of the present invention, there is provided a nuclear power plant operating method according to any one of the first to third aspects, wherein two reactor coolant purification system pumps are arranged in parallel when the reactor is deaerated. One unit is stopped from operation, and one unit is operated.

請求項5の発明に係わる原子力発電プラント運転方法は、請求項1乃至3のいずれか1項の発明において、原子炉脱気運転開始から所定時間後に主蒸気隔離弁を開操作することを特徴とする。   The nuclear power plant operating method according to the invention of claim 5 is characterized in that, in the invention of any one of claims 1 to 3, the main steam isolation valve is opened after a predetermined time from the start of the reactor degassing operation. To do.

本発明によれば、減速材温度係数測定検査の実施前に原子炉の脱気運転を実施するので、原子炉水の導電率の上昇を抑制することができる。原子炉の脱気運転実施の際に、原子炉冷却材浄化系ポンプを2台並列運転から1台停止して1台運転とするので、原子炉冷却材浄化系ポンプの有効吸込水頭を確保できる。従って、原子炉冷却材浄化系ポンプのキャビテーション発生を抑制でき、原子炉冷却材浄化系ポンプ損傷を回避できる。また、原子炉脱気運転開始から所定時間後に主蒸気隔離弁を開操作するので、原子炉脱気運転の開始時における原子炉水位変動を抑制できる。   According to the present invention, since the deaeration operation of the reactor is performed before the moderator temperature coefficient measurement inspection, an increase in the conductivity of the reactor water can be suppressed. When performing degassing operation of the reactor, two reactor coolant purification system pumps are stopped from parallel operation and one unit is operated, so that an effective suction head of the reactor coolant purification system pump can be secured. . Therefore, generation of cavitation in the reactor coolant purification system pump can be suppressed, and damage to the reactor coolant purification system pump can be avoided. Further, since the main steam isolation valve is opened after a predetermined time from the start of the reactor degassing operation, the fluctuation of the reactor water level at the start of the reactor degassing operation can be suppressed.

図1は本発明の実施の形態に係わる原子力発電プラント運転方法の説明図であり、図2は原子力発電プラントの系統図である。本発明の実施の形態は、図3に示した従来例に対し、減速材温度係数測定検査(温度係数試験)の実施前に原子炉の脱気運転や全有機炭素(TOC)分解運転を行うようにしたものである。   FIG. 1 is an explanatory diagram of a nuclear power plant operating method according to an embodiment of the present invention, and FIG. 2 is a system diagram of the nuclear power plant. In the embodiment of the present invention, the reactor degassing operation and the total organic carbon (TOC) decomposition operation are performed on the conventional example shown in FIG. 3 before the moderator temperature coefficient measurement inspection (temperature coefficient test). It is what I did.

図2において、原子炉11で発生した主蒸気は、主蒸気内側隔離弁12及び主蒸気外側隔離弁13を通って図示省略のタービン系統に導かれ、タービン系統で仕事を終えた蒸気は復水器19で水に戻され図示省略の給水系統により原子炉11に給水される。また、主蒸気ドレン内側隔離弁14及び主蒸気ドレン外側隔離弁15が設けられ、主蒸気ドレン弁17または主蒸気ドレン弁バイパス弁18を介してドレン水が復水器19に排出されるようになっている。なお、16は暖機弁、21は制御棒である。   In FIG. 2, the main steam generated in the nuclear reactor 11 is guided to a turbine system (not shown) through a main steam inner isolation valve 12 and a main steam outer isolation valve 13, and the steam that has finished work in the turbine system is condensed water. The water is returned to water by the vessel 19 and supplied to the reactor 11 by a water supply system (not shown). A main steam drain inner isolation valve 14 and a main steam drain outer isolation valve 15 are provided so that drain water is discharged to the condenser 19 via the main steam drain valve 17 or the main steam drain valve bypass valve 18. It has become. In addition, 16 is a warm-up valve and 21 is a control rod.

図1において、原子炉11の炉水温度が30℃であるときに復水器の真空上昇を開始し、復水器19がほぼ真空状態となると2台の原子炉冷却材浄化系ポンプ(CUWポンプ)20のうちの1台を停止して1台運転とする。原子炉冷却材浄化系ポンプ20を1台運転とするのは、ポンプ吸込圧力を確保し原子炉冷却材浄化系ポンプ20のキャビテーション発生を抑制するためである。   In FIG. 1, when the reactor water temperature of the reactor 11 is 30 ° C., the condenser vacuum starts to rise, and when the condenser 19 is almost in a vacuum state, two reactor coolant purification system pumps (CUW) One of the pumps 20 is stopped and one unit is operated. The reason why one reactor coolant purification system pump 20 is operated is to secure the pump suction pressure and suppress the occurrence of cavitation of the reactor coolant purification system pump 20.

本発明の実施の形態では、原子炉脱気運転を減速材温度係数測定検査(温度係数試験)の前、つまり炉水温度約50℃で実施するため、通常の80℃よりも原子炉冷却材浄化系ポンプ20の有効吸込水頭NPSHが小さくなり、設計有効吸込水頭NPSHを下回る可能性がある。そこで、原子炉冷却材浄化系ポンプ20を1台運転にすることで配管圧損を低減して有効吸込水頭NPSHを確保し、キャビテーションの発生を抑制し、原子炉冷却材浄化系ポンプ損傷を回避する。   In the embodiment of the present invention, the reactor degassing operation is performed before the moderator temperature coefficient measurement inspection (temperature coefficient test), that is, at a reactor water temperature of about 50 ° C. There is a possibility that the effective suction head NPSH of the purification system pump 20 becomes smaller and lower than the design effective suction head NPSH. Therefore, by operating one reactor coolant purification system pump 20, piping pressure loss is reduced and an effective suction head NPSH is secured, cavitation is suppressed, and damage to the reactor coolant purification system pump is avoided. .

そして、炉水温度50℃にて主蒸気ドレン弁(MSドレン弁)を開く。すなわち、主蒸気ドレン内側隔離弁14、主蒸気ドレン外側隔離弁15、暖機弁16、主蒸気ドレン弁17、主蒸気ドレンバイパス弁18を開することにより、原子炉11と復水器19とを連結し、減速材温度係数測定検査(温度係数試験)の前に原子炉11を負圧とし原子炉脱気運転を開始する。   Then, the main steam drain valve (MS drain valve) is opened at a reactor water temperature of 50 ° C. That is, by opening the main steam drain inner isolation valve 14, the main steam drain outer isolation valve 15, the warm-up valve 16, the main steam drain valve 17, and the main steam drain bypass valve 18, the reactor 11 and the condenser 19 Are connected, and before the moderator temperature coefficient measurement inspection (temperature coefficient test), the reactor 11 is set to a negative pressure and the reactor deaeration operation is started.

原子炉脱気運転開始から所定時間後(6時間後)に主蒸気隔離弁(MSIV)を開く。すなわち、主蒸気内側隔離弁12及び主蒸気外側隔離弁13を開操作することにより、原子炉11と主蒸気配管内の温度均一化を図り、主蒸気内側隔離弁12および主蒸気外側隔離弁13の開操作時の原子炉水位変動を抑制する。   The main steam isolation valve (MSIV) is opened after a predetermined time (6 hours) after the start of the reactor degassing operation. That is, by opening the main steam inner isolation valve 12 and the main steam outer isolation valve 13, the temperature inside the nuclear reactor 11 and the main steam pipe is made uniform, and the main steam inner isolation valve 12 and the main steam outer isolation valve 13. Suppresses reactor water level fluctuations during the opening operation.

通常の運転操作では原子炉脱気運転開始の直後に主蒸気隔離弁(MSIV)を開操作するが、そのため、蒸気凝縮による圧力変動で原子炉水位が変動する。そこで、主蒸気隔離弁(MSIV)を開する時期を原子炉脱気運転開始の後とすることで、原子炉11と主蒸気配管内の温度を均一にすることができ原子炉水位変動を抑制することができる。   In normal operation, the main steam isolation valve (MSIV) is opened immediately after the start of the reactor degassing operation. Therefore, the reactor water level fluctuates due to pressure fluctuation due to steam condensation. Therefore, by opening the main steam isolation valve (MSIV) after the start of the reactor degassing operation, the temperature in the reactor 11 and the main steam pipe can be made uniform, and the reactor water level fluctuation can be suppressed. can do.

そして、原子炉を起動し原子炉を臨界状態とし、低中性子レベルによるTOC分解運転を行う。TOC分解運転は、原子炉11を臨界にし、制御棒21を操作して低中性子レベルを維持しTOCの放射線分解・除去する運転であり、この実施の形態では、減速材温度係数測定検査(温度係数試験)の実施前に、原子炉を臨界状態とし全有機炭素(TOC)濃度および炉水導電率に応じて制御棒を操作して中性子を低レベルで制御し全有機炭素を放射線分解して除去する。つまり、TOCの放射線分解によって発生した炭酸イオン等により炉水導電率が上昇傾向を見せた場合は制御棒21を挿入して中性子を減少させる。   Then, the nuclear reactor is started to bring the nuclear reactor into a critical state, and a TOC decomposition operation at a low neutron level is performed. The TOC decomposition operation is an operation in which the reactor 11 is made critical and the control rod 21 is operated to maintain the low neutron level and the TOC is decomposed and removed. In this embodiment, the moderator temperature coefficient measurement inspection (temperature Before conducting the coefficient test, the reactor is placed in a critical state and the control rod is operated according to the total organic carbon (TOC) concentration and the reactor water conductivity to control the neutrons at a low level and radiolyze the total organic carbon. Remove. That is, when the reactor water conductivity shows a tendency to increase due to carbonate ions generated by radiolysis of TOC, the control rod 21 is inserted to reduce neutrons.

このように、TOCの放射線分解量を減少させて炉水導電率の上昇を抑制することにより、炉水導電率上昇を抑制しつつ炉水に含まれるTOCを減速材温度係数測定検査(温度係数試験)の前に除去する。その後に、核加熱を開始し減速材温度係数測定検査(温度係数試験)を実施する。   In this way, by reducing the amount of radiolysis of TOC and suppressing the increase in the reactor water conductivity, the TOC contained in the reactor water is measured with the moderator temperature coefficient measurement inspection (temperature coefficient) while suppressing the increase in the reactor water conductivity. Remove before test). After that, nuclear heating is started and a moderator temperature coefficient measurement inspection (temperature coefficient test) is performed.

本発明の実施の形態によれば、減速材温度係数測定検査の実施前に原子炉の脱気運転や全有機炭素を放射線分解し除去するので、温度係数測定検査時の導電率上昇を抑制することができる。また、原子炉の脱気運転の際には、原子炉冷却材浄化系ポンプを2台並列運転から1台停止し1台運転とするので、原子炉冷却材浄化系ポンプ20のキャビテーション発生やポンプ損傷を防止できる。また、原子炉脱気運転の開始から蒸気配管が十分に暖機される時間経過後に主蒸気隔離弁を開操作するので蒸気の凝縮がなく、原子炉水位変動を抑制できる。   According to the embodiment of the present invention, the degassing operation of the nuclear reactor and the total organic carbon are removed by radiolysis before the moderator temperature coefficient measurement inspection is performed, so that an increase in conductivity during the temperature coefficient measurement inspection is suppressed. be able to. Further, during the reactor degassing operation, two reactor coolant purification system pumps are stopped from parallel operation and one unit is operated, so that cavitation generation and pumping of the reactor coolant purification system pump 20 occur. Damage can be prevented. Further, since the main steam isolation valve is opened after the time when the steam pipe is sufficiently warmed up from the start of the reactor degassing operation, there is no condensation of steam, and the fluctuation of the reactor water level can be suppressed.

本発明の実施の形態に係わる原子力発電プラント運転方法の説明図。Explanatory drawing of the nuclear power plant operating method concerning embodiment of this invention. 原子力発電プラントの系統図。System diagram of nuclear power plant. 従来の原子力発電プラント運転方法の説明図。Explanatory drawing of the conventional nuclear power plant operation method.

符号の説明Explanation of symbols

11…原子炉、12…主蒸気内側隔離弁、13…主蒸気外側隔離弁、14…主蒸気ドレン内側隔離弁、15…主蒸気ドレン外側隔離弁、16…暖機弁、17…主蒸気ドレン弁、18…主蒸気ドレンバイパス弁、19…復水器、20…原子炉冷却材浄化系ポンプ、21…制御棒
DESCRIPTION OF SYMBOLS 11 ... Reactor, 12 ... Main steam inner isolation valve, 13 ... Main steam outer isolation valve, 14 ... Main steam drain inner isolation valve, 15 ... Main steam drain outer isolation valve, 16 ... Warm-up valve, 17 ... Main steam drain Valve, 18 ... Main steam drain bypass valve, 19 ... Condenser, 20 ... Reactor coolant purification system pump, 21 ... Control rod

Claims (5)

原子力発電プラントで減速材温度係数測定検査を実施する原子力発電プラント運転方法において、前記減速材温度係数測定検査の実施前に原子炉の脱気運転を実施することを特徴とする原子力発電プラント運転方法。   A nuclear power plant operating method for carrying out a moderator temperature coefficient measurement inspection in a nuclear power plant, wherein the reactor is deaerated before the moderator temperature coefficient measurement inspection is performed. . 原子力発電プラントで減速材温度係数測定検査を実施する原子力発電プラント運転方法において、前記減速材温度係数測定検査の実施前に原子炉を臨界状態とし、全有機炭素濃度および炉水導電率に応じて制御棒を操作して中性子を制御し、全有機炭素を放射線分解し除去することを特徴とする原子力発電プラント運転方法。   In a nuclear power plant operating method in which a moderator temperature coefficient measurement inspection is carried out at a nuclear power plant, the reactor is brought into a critical state before the moderator temperature coefficient measurement inspection is conducted, and the nuclear power plant is in accordance with the total organic carbon concentration and the reactor water conductivity. A method for operating a nuclear power plant, wherein a control rod is operated to control neutrons, and radiolytically removes all organic carbon. 原子力発電プラントで減速材温度係数測定検査を実施する原子力発電プラント運転方法において、前記減速材温度係数測定検査の実施前に原子炉の脱気運転を実施し、原子炉を臨界状態とし、全有機炭素濃度および炉水導電率に応じて制御棒を操作して中性子を制御し、全有機炭素を放射線分解し除去することを特徴とする原子力発電プラント運転方法。   In a nuclear power plant operating method in which a moderator temperature coefficient measurement inspection is performed at a nuclear power plant, a degassing operation of the reactor is performed before the moderator temperature coefficient measurement inspection is performed, the reactor is brought into a critical state, and all organic A method for operating a nuclear power plant characterized in that a control rod is operated according to a carbon concentration and reactor water conductivity to control neutrons, and radiolytically removes all organic carbon. 前記原子炉の脱気運転実施の際に、原子炉冷却材浄化系ポンプを2台並列運転から1台停止して1台運転とすることを特徴とする請求項1乃至3のいずれか1項記載の原子力発電プラント運転方法。   4. When performing deaeration operation of the nuclear reactor, one of the two reactor coolant purification system pumps is stopped from the parallel operation, and the single operation is performed. The nuclear power plant operating method as described. 原子炉脱気運転開始から所定時間後に主蒸気隔離弁を開操作することを特徴とする請求項1乃至3のいずれか1項記載の原子力発電プラント運転方法。   The nuclear power plant operating method according to any one of claims 1 to 3, wherein the main steam isolation valve is opened after a predetermined time from the start of the reactor degassing operation.
JP2003372047A 2003-10-31 2003-10-31 Operation method for nuclear power plant Pending JP2005134288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372047A JP2005134288A (en) 2003-10-31 2003-10-31 Operation method for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372047A JP2005134288A (en) 2003-10-31 2003-10-31 Operation method for nuclear power plant

Publications (1)

Publication Number Publication Date
JP2005134288A true JP2005134288A (en) 2005-05-26

Family

ID=34648528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372047A Pending JP2005134288A (en) 2003-10-31 2003-10-31 Operation method for nuclear power plant

Country Status (1)

Country Link
JP (1) JP2005134288A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111653373A (en) * 2020-05-07 2020-09-11 岭东核电有限公司 Nuclear power station pressurized water reactor critical test method and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111653373A (en) * 2020-05-07 2020-09-11 岭东核电有限公司 Nuclear power station pressurized water reactor critical test method and system
CN111653373B (en) * 2020-05-07 2022-04-19 岭东核电有限公司 Nuclear power station pressurized water reactor critical test method and system

Similar Documents

Publication Publication Date Title
JP4105052B2 (en) A method for mitigating stress corrosion cracking in nuclear plant structural materials.
KR910008360B1 (en) Method of vacuum degassing and refilling a reactor coolant system
US20130251086A1 (en) Reactor decontamination process and reagent
US8194816B2 (en) Boiling water reactor nuclear power plant with alcohol injection
JP2009031079A (en) Emergency core cooling system
JP5483385B2 (en) Nuclear plant management method
US4293382A (en) Method of starting up a nuclear reactor
JP2005134288A (en) Operation method for nuclear power plant
JP4668152B2 (en) Stress corrosion cracking mitigation method for nuclear reactor structural materials and boiling water nuclear power plant
JP2010054499A (en) Method to protect bwr reactor from corrosion during start-up
JP4420838B2 (en) Hydrogen injection method for nuclear power plant
JP7232702B2 (en) Pressurized water nuclear plant and method of operating pressurized water nuclear plant
JP2016223842A (en) Water treatment apparatus, and atomic power facility
JP2020160031A (en) Method for suppressing corrosion of carbon steel pipe
JPS6346397B2 (en)
JP4717388B2 (en) Hydrogen injection method for boiling water nuclear power plant
JP2011012973A (en) Method and device for hydrogen disposal in reactor containment vessel
CN112657931B (en) Method for cleaning lead-bismuth alloy on spent fuel
RU2543573C1 (en) Intracircuit passivation method of steel surfaces of fast neutron nuclear reactor
JP2005291815A (en) Corrosion thinning prevention method of carbon steel
JP3917957B2 (en) Small LOCA safety assessment method
JP2006250828A (en) Injection method for effective hydrogen in nuclear power plant
Blat-Yrieix et al. Feedback from Stainless Steels Corrosion related Issues during Maintenance Operation in Sodium Fast Reactor: SCC in caustic solution and Intergranular Corrosion by Acid Solution
JP2015175609A (en) Nuclear power plant and anticorrosion method for nuclear power plant
Wikmar et al. Importance of the reactor water clean-up as a sulphate source