JP2005134250A - Method for adjusting resistance value of heater for heating membrane gas sensor - Google Patents

Method for adjusting resistance value of heater for heating membrane gas sensor Download PDF

Info

Publication number
JP2005134250A
JP2005134250A JP2003370934A JP2003370934A JP2005134250A JP 2005134250 A JP2005134250 A JP 2005134250A JP 2003370934 A JP2003370934 A JP 2003370934A JP 2003370934 A JP2003370934 A JP 2003370934A JP 2005134250 A JP2005134250 A JP 2005134250A
Authority
JP
Japan
Prior art keywords
heater
resistance value
gas sensor
voltage
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003370934A
Other languages
Japanese (ja)
Inventor
Takeshi Matsubara
健 松原
Takuya Suzuki
卓弥 鈴木
Kenji Kunihara
健二 国原
Mitsuo Kobayashi
光男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2003370934A priority Critical patent/JP2005134250A/en
Publication of JP2005134250A publication Critical patent/JP2005134250A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To simply and inexpensively adjust the electric resistance of a membrane heater of a membrane gas sensor without having to build a new part in a sensor circuit or trim a heat pattern. <P>SOLUTION: The membrane heater 3 is formed via a support film 2, a sensitive film electrode 6 is formed via an insulating film 4, and a sensitive film 7 are formed on it on a substrate formed by hollowing out one side surface of an Si substrate 1 into a diaphragm shape. The membrane heater 3 of the membrane gas sensor is heated by the impression of a voltage greater than that at normal use to change its resistance value. By adjusting the impressing voltage in such a way that the value takes a desired value, it is possible to simply and inexpensively adjust the electrical value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、電池駆動を念頭においた低消費電力型薄膜ガスセンサに関する。   The present invention relates to a low power consumption thin film gas sensor with battery driving in mind.

一般的にガスセンサは、ガス漏れ警報器などの用途に用いられ、ある特定ガス、例えばCO,CH4,C38,CH3OH等に選択的に感応するデバイスであり、その性格上、高感度,高選択性,高応答性,高信頼性,低消費電力が必要不可欠である。
ところで、家庭用として普及しているガス漏れ警報器には、都市ガス用やプロパンガス用の可燃性ガス検知を目的としたものと、燃焼機器の不完全燃焼ガス検知を目的としたもの、または、両方の機能を合わせ持ったものなどがあるが、いずれもコストや設置性の問題から普及率はそれほど高くない。そういった事情から、普及率の向上を図るべく設置性の改善、具体的には電池駆動としコードレス化することが望まれている。
In general, a gas sensor is a device that is used for applications such as a gas leak alarm and is selectively sensitive to a specific gas, such as CO, CH 4 , C 3 H 8 , CH 3 OH, etc. High sensitivity, high selectivity, high response, high reliability, and low power consumption are indispensable.
By the way, gas leak alarms that are widely used for household use include those for the purpose of detecting flammable gases for city gas and propane gas, and those for the purpose of detecting incomplete combustion gases in combustion equipment, or However, the penetration rate is not so high due to cost and installation problems. Under such circumstances, it is desired to improve the installation property, specifically, to be battery-driven and cordless in order to improve the diffusion rate.

電池駆動を実現するためには低消費電力化が最も重要であるが、接触燃焼用や半導体式のガスセンサでは、100℃〜500℃の高温に加熱し検知する必要がある。これから、SnO2などの粉体を焼結した従来の方法では、スクリーン印刷等の方法を用いても厚みを薄くするには限界があり、電池駆動に用いるには熱容量が大きすぎた。そこで、ヒーター,感知膜を1μm以下の薄膜で形成し、さらに、微細加工プロセスによりダイアフラム構造などの低熱容量構造とした薄膜ガスセンサの実現が待たれていた。 Low power consumption is the most important for realizing battery driving. However, in catalytic combustion and semiconductor type gas sensors, it is necessary to detect by heating to a high temperature of 100 ° C. to 500 ° C. Thus, in the conventional method in which powder such as SnO 2 is sintered, there is a limit to reducing the thickness even if a method such as screen printing is used, and the heat capacity is too large to be used for battery driving. Therefore, the realization of a thin film gas sensor in which a heater and a sensing film are formed with a thin film of 1 μm or less and a low heat capacity structure such as a diaphragm structure by a fine processing process has been awaited.

接触燃焼式や半導体式の薄膜ガスセンサにおいては、感応膜表面温度50℃〜100℃の条件下での化学反応を利用するため、センサの温度制御にはヒーターが必要であり、そのヒーター特性のばらつきはセンサ特性のばらつきにも大きく影響を与える。
一方、薄膜ガスセンサに用いるヒーターとしては、厚さ数ミクロン以下の金属薄膜が用いられるが、薄膜ヒーターの抵抗値を成膜後やパターニング後に調整する場合には、例えば特許文献1のように補正抵抗を別に取り付けたり、または、パターンをレーザー等により削るトリミングの方法がある。
In the catalytic combustion type and semiconductor type thin film gas sensors, a heater is required to control the temperature of the sensor because a chemical reaction is used under the condition that the surface temperature of the sensitive film is 50 ° C to 100 ° C. Greatly affects variations in sensor characteristics.
On the other hand, a metal thin film having a thickness of several microns or less is used as a heater used in the thin film gas sensor. When the resistance value of the thin film heater is adjusted after film formation or patterning, for example, a correction resistor as in Patent Document 1 is used. There is a trimming method in which the pattern is attached separately or the pattern is cut with a laser or the like.

しかし、レーザー等による微細加工を個々のセンサに施すことはコスト高になる。そもそも薄膜ガスセンサの構成上、ヒーターの上部には感応層や選択燃焼層が形成されることが多いため、最終的なセンサ抵抗値の調整をトリミングにより実施することは困難である。
また、特許文献2のように、フローセンサ用に使用する薄膜ヒーターについて、ヒーター消費電力が一定になるようフィードバック制御する回路を組み込むことにより、ヒーターのばらつきや温度抵抗係数を決まった値に補正するという方法がある。
However, it is expensive to apply fine processing to each sensor using a laser or the like. In the first place, because of the structure of the thin film gas sensor, a sensitive layer and a selective combustion layer are often formed on the upper part of the heater, so that it is difficult to adjust the final sensor resistance value by trimming.
Further, as in Patent Document 2, for a thin film heater used for a flow sensor, by incorporating a feedback control circuit so that the heater power consumption is constant, variations in the heater and temperature resistance coefficient are corrected to predetermined values. There is a method.

特開2000−180406号公報(第3頁、図8)JP 2000-180406 A (page 3, FIG. 8) 特開平11−037818号公報(第19頁、図1)Japanese Patent Laid-Open No. 11-037818 (19th page, FIG. 1)

しかしながら、上記特許文献2に示す方法では、スクリーニング作業工程を不要または簡略化できるが、部品点数の増加により、機器本体へのコスト高につながるという問題がある。
したがって、この発明の課題は、センサ回路に新たに部品を組み込んだり、ヒーターパターンをトリミングすることなく、薄膜ヒーターの電気抵抗を調整し得るようにすることにある。
However, the method disclosed in Patent Document 2 can eliminate or simplify the screening process, but there is a problem that an increase in the number of parts leads to high costs for the device body.
Accordingly, an object of the present invention is to make it possible to adjust the electric resistance of a thin film heater without newly incorporating parts into the sensor circuit or trimming the heater pattern.

上記課題を解決するため、この発明では、ヒーターの抵抗を測定しながら所定の抵抗値になるまで、ヒーターへの印加電圧を上昇させアニールすることを特徴とする。つまり、ヒーターに電圧を印加して加熱することにより、ヒーターを構成する原子の配置が変化する結果、電気抵抗値が変化する。一度変化した抵抗値は、調整時に印加した電圧(ヒーター温度)以下の電圧を印加しても、もはや変化しないというアニール機能(効果)を利用するものである。   In order to solve the above-mentioned problems, the present invention is characterized in that annealing is performed by increasing the voltage applied to the heater until a predetermined resistance value is obtained while measuring the resistance of the heater. That is, by applying a voltage to the heater and heating it, the electric resistance value changes as a result of the arrangement of atoms constituting the heater changing. The resistance value once changed utilizes an annealing function (effect) that no longer changes even when a voltage equal to or lower than the voltage (heater temperature) applied during adjustment is applied.

この発明によれば、ヒーターに電圧を印加して加熱することにより、その抵抗値を調整するようにしたので、新たに部品を組み込んだり、ヒーター抵抗に外的な微細加工を施すことなく、所定の値に調整できる。その結果、コストが低減されるだけでなく、特性のそろったガスセンサを提供できる利点もある。   According to the present invention, since the resistance value is adjusted by applying a voltage to the heater and heating it, the predetermined value can be obtained without newly incorporating parts or applying external fine processing to the heater resistance. Can be adjusted to As a result, not only the cost is reduced, but also there is an advantage that a gas sensor with uniform characteristics can be provided.

図1はこの発明を説明するためのフローチャートである。これは、例えば図2に示す構造の薄膜ガスセンサに対し、例えばマイクロコンピュータ(マイコン)を利用して実施するものである。まず、図2の薄膜ガスセンサから説明する。
両面に熱酸化膜が付いたSiウエハ1上に、ダイアフラム構造の支持層および熱絶縁層2としてSi34とSiO2膜を順次プラズマCVD法にて形成する。次にヒーター層3,SiO2絶縁層4の順にスパッタ法で形成する。その上に、接合層5,感知層電極6を形成する。成膜はRFマグネトロンスパッタリング装置を用い、通常のスパッタリング法によって行なう。次いで、感知層であるSnO2を成膜する。成膜はRFマグネトロンスパッタリング装置を用い、反応スパッタリング法によって行なう。ターゲットにはSbを0.5wt%を有するSnO2を用いる。最後に、Si基板1の裏面からエッチングによりシリコンを除去し、ダイアフラム構造とする。
FIG. 1 is a flowchart for explaining the present invention. This is performed, for example, using a microcomputer for the thin film gas sensor having the structure shown in FIG. First, the thin film gas sensor of FIG. 2 will be described.
Si 3 N 4 and SiO 2 films are sequentially formed by plasma CVD on a Si wafer 1 having a thermal oxide film on both sides as a support layer having a diaphragm structure and a thermal insulating layer 2. Next, the heater layer 3 and the SiO 2 insulating layer 4 are formed in this order by sputtering. A bonding layer 5 and a sensing layer electrode 6 are formed thereon. Film formation is performed by an ordinary sputtering method using an RF magnetron sputtering apparatus. Next, SnO 2 as a sensing layer is formed. Film formation is performed by a reactive sputtering method using an RF magnetron sputtering apparatus. SnO 2 having 0.5 wt% Sb is used as the target. Finally, silicon is removed from the back surface of the Si substrate 1 by etching to form a diaphragm structure.

以上のようにして得られたセンサのヒーター層3に対し、上述のマイコンから指示を与えることで直流電圧を印加し、電圧値を徐々に上げながら、そのときの抵抗値を測定する(図1のステップS1参照)。
いま、熱容量Cのヒーターに電力Qを投入した場合、温度Tとの間には定常的に、
T=Q/C
の関係が成立する。すなわち、ヒーターの熱容量Cに対し十分長い時間電力を投入した場合、温度はヒーターへの投入電力Q、つまりヒーターの消費電力Pに比例する。サーモビューアによる温度測定から、ヒーターが5mWの消費電力の時に100℃、30mWの消費電力の時に450℃であることが分かっているので、他の消費電力の時のヒーター温度が推定できる。本質的に、ヒーター抵抗の変化は、ヒーター温度の変化で生じていると考えられるので、ヒーターの材料やパターンにより、個々の場合の消費電力とヒーター温度との対応付けが必要である。
A direct current voltage is applied to the heater layer 3 of the sensor obtained as described above by giving an instruction from the above-mentioned microcomputer, and the resistance value at that time is measured while gradually increasing the voltage value (FIG. 1). Step S1).
Now, when electric power Q is input to the heater with the heat capacity C, the temperature T is constantly
T = Q / C
The relationship is established. That is, when power is applied for a sufficiently long time to the heat capacity C of the heater, the temperature is proportional to the input power Q to the heater, that is, the power consumption P of the heater. From the temperature measurement by the thermoviewer, it is known that the heater is 100 ° C. when the power consumption is 5 mW, and 450 ° C. when the power consumption is 30 mW. Therefore, the heater temperature at other power consumption can be estimated. Essentially, the change in the heater resistance is considered to be caused by the change in the heater temperature. Therefore, it is necessary to associate the power consumption and the heater temperature in each case depending on the material and pattern of the heater.

図3にヒーターの消費電力と電圧印加時のヒーター抵抗値を示す。図示のように、30mW以下の場合は0〜30mWの間で消費電力を変化させると、抵抗値は消費電力に対し一対一で決まる。これに対し、30mWを超えて消費電力を与えた場合は、図4のようにヒーター抵抗値は消費電力の超過分αに応じて増加している。
図5はこの超過分αに対するヒーター抵抗値の増加分を示す。超過分αの増加に対し、ほぼ二乗の割合でヒーター抵抗の変化分が増加していることが分かる。
FIG. 3 shows the heater power consumption and the heater resistance value when a voltage is applied. As shown in the figure, when the power consumption is changed between 0 to 30 mW in the case of 30 mW or less, the resistance value is determined one-to-one with respect to the power consumption. On the other hand, when power consumption is applied exceeding 30 mW, the heater resistance value increases in accordance with the excess power consumption α as shown in FIG.
FIG. 5 shows an increase in the heater resistance value with respect to the excess α. It can be seen that the change in the heater resistance increases at a rate of approximately square with respect to the increase of the excess α.

図6は、同じセンサのヒーターに1分30秒の間直流電圧を印加し続けた後に、電圧
をオフ(OFF)したときの抵抗値を、ヒーターの消費電力に対してプロットしたものである。電圧をOFFしたときのヒーター抵抗値は、印加電圧に関係なく一定であることが分かる。
図7は図5と同じく超過分αに対するヒーター抵抗値の増加分を示すグラフである。図5,図7からヒーター加熱時,電圧OFF時ともに消費電力の超過分に対し、ほぼ二乗の割合でヒーター抵抗の変化分が増加するという関係が成立する。なお、このような処理をして変化したヒーター抵抗値は、30mW以下での加熱に対しては履歴を示さず、消費電力と抵抗値は1対1の関係にある。
FIG. 6 is a plot of the resistance value when the voltage is turned off after the DC voltage is continuously applied to the heater of the same sensor for 1 minute 30 seconds against the power consumption of the heater. It can be seen that the heater resistance value when the voltage is turned off is constant regardless of the applied voltage.
FIG. 7 is a graph showing an increase in the heater resistance value with respect to the excess α as in FIG. 5 and 7, the relationship that the heater resistance change increases at a rate of approximately square with respect to the excess power consumption both when the heater is heated and when the voltage is OFF. In addition, the heater resistance value which changed by such a process does not show a history with respect to heating at 30 mW or less, and the power consumption and the resistance value have a one-to-one relationship.

実際には、ヒーターによって履歴を生じる範囲が異なるため、電圧印加(ステップS1)→ヒーター抵抗測定(ステップS1,S2)→電圧印加(ステップS4)→…のサイクルを自動的に行なう調整装置を用い、効率よく調整を行なうようにする。これにより、ヒーターを目標とする抵抗値に調整することができる。そのためには、図1のフローチャートのようにステップS1〜S4を経て、再びステップS1に戻るようなループを形成すると有効である。なお、ステップS2は電圧OFFにしてヒーター抵抗を測定するステップ、ステップS3は測定した抵抗値が目標値に達したかどうかを判断するステップ、ステップS4は目標値に達しないため(N)、設定電圧を増加させるステップである。   Actually, since the range in which the history is generated differs depending on the heater, an adjustment device that automatically performs a cycle of voltage application (step S1) → heater resistance measurement (steps S1, S2) → voltage application (step S4) →. Make adjustments efficiently. Thereby, the heater can be adjusted to a target resistance value. For this purpose, it is effective to form a loop through steps S1 to S4 and then back to step S1 as in the flowchart of FIG. Note that step S2 is a step of measuring the heater resistance with the voltage turned OFF, step S3 is a step of determining whether or not the measured resistance value has reached the target value, and step S4 is not set to the target value (N). This is a step of increasing the voltage.

この発明の実施の形態を示すフローチャートFlowchart showing an embodiment of the present invention この発明が適用される薄膜ガスセンサを示す構造断面図Structural sectional view showing a thin film gas sensor to which the present invention is applied ヒーター抵抗値に履歴が生じない範囲で電圧を印加したときのヒーター消費電力とヒーター抵抗値との関係を示すグラフA graph showing the relationship between heater power consumption and heater resistance when voltage is applied within a range where no history of heater resistance occurs ヒーター抵抗値に履歴が生じる範囲まで電圧を印加したときのヒーター消費電力とヒーター抵抗値との関係を示すグラフA graph showing the relationship between heater power consumption and heater resistance when voltage is applied to a range where a history of heater resistance occurs. ヒーター抵抗値に履歴が生じる範囲まで電圧を印加したときの、超過した消費電力と電圧印加時のヒーター抵抗値増加の関係を示すグラフA graph showing the relationship between the excess power consumption and the increase in heater resistance when a voltage is applied to a range where a history of heater resistance occurs. ヒーター抵抗値に履歴が生じる範囲まで電圧を印加したときの、ヒーター消費電力と電圧Off時のヒーター抵抗値との関係を示すグラフA graph showing the relationship between the heater power consumption and the heater resistance value when the voltage is off when voltage is applied to the range where the history of the heater resistance value occurs. ヒーター抵抗値に履歴が生じる範囲まで電圧を印加したときの、超過した消費電力と電圧Off時のヒーター抵抗値増加との関係を示すグラフA graph showing the relationship between the excess power consumption and the increase in heater resistance when the voltage is turned off when a voltage is applied to the range where the history of the heater resistance occurs.

符号の説明Explanation of symbols

1…Siウエハ(シリコン基板)、2…支持層および熱絶縁層、3…ヒーター層、4…SiO2絶縁層、5…接合層、6…感知層電極、7…感知層。
1 ... Si wafer (silicon substrate), 2 ... support layer and heat insulating layer, 3 ... heater layer, 4 ... SiO 2 insulating layer, 5 ... bonding layer, 6 ... sensing layer electrode, 7 ... sensitive layer.

Claims (1)

Si基板の一側面がダイアフラム様にくりぬかれた基板面上に、支持膜を介して薄膜ヒーターを形成し、電気絶縁膜を介して感知膜電極を形成した上に感知膜を形成した薄膜ガスセンサの前記薄膜ヒーターに対し、通常使用時に印加される電圧を超える電圧を印加して薄膜ヒーターの温度を上昇させ、薄膜ヒーターの電気抵抗値の調整を行なうことを特徴とする薄膜ガスセンサの加熱用ヒーターの抵抗値調整方法。
A thin-film gas sensor in which a thin film heater is formed on a substrate surface in which one side of a Si substrate is hollowed out like a diaphragm via a support film, a sensing film electrode is formed via an electrical insulating film, and a sensing film is formed. A heating heater for a thin film gas sensor, wherein a voltage exceeding a voltage applied during normal use is applied to the thin film heater to increase the temperature of the thin film heater, and the electric resistance value of the thin film heater is adjusted. Resistance value adjustment method.
JP2003370934A 2003-10-30 2003-10-30 Method for adjusting resistance value of heater for heating membrane gas sensor Pending JP2005134250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370934A JP2005134250A (en) 2003-10-30 2003-10-30 Method for adjusting resistance value of heater for heating membrane gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370934A JP2005134250A (en) 2003-10-30 2003-10-30 Method for adjusting resistance value of heater for heating membrane gas sensor

Publications (1)

Publication Number Publication Date
JP2005134250A true JP2005134250A (en) 2005-05-26

Family

ID=34647792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370934A Pending JP2005134250A (en) 2003-10-30 2003-10-30 Method for adjusting resistance value of heater for heating membrane gas sensor

Country Status (1)

Country Link
JP (1) JP2005134250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168795A (en) * 2017-12-19 2018-06-15 江苏金风科技有限公司 Pressure-detecting device and its control method
JP2020056752A (en) * 2018-10-04 2020-04-09 株式会社デンソー Trimming device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168795A (en) * 2017-12-19 2018-06-15 江苏金风科技有限公司 Pressure-detecting device and its control method
JP2020056752A (en) * 2018-10-04 2020-04-09 株式会社デンソー Trimming device
JP7059880B2 (en) 2018-10-04 2022-04-26 株式会社デンソー Trimming device

Similar Documents

Publication Publication Date Title
JP4640960B2 (en) Thin film gas sensor
EP4191238A1 (en) Gas sensing method and device
US20060219698A1 (en) Feedback control system and method for maintaining constant resistance operation of electrically heated elements
JP2009210341A (en) Gas detection device
JP2016170161A (en) Thermal conductivity gas sensor
JP2017166826A (en) Gas sensor
US11774422B2 (en) Selective multi-gas detection through pulse heating in a gas sensor
Samaeifar et al. Simple fabrication and characterization of a platinum microhotplate based on suspended membrane structure
JP4830714B2 (en) Anomaly detection method for thin film gas sensor
JP2007155501A (en) Gas alarm
JP2016050825A (en) Gas sensor
JP2005134250A (en) Method for adjusting resistance value of heater for heating membrane gas sensor
JP4970584B2 (en) Thin film gas sensor
US20210293735A1 (en) Gas sensor
JP2004037402A (en) Thin film gas sensor
JP5111180B2 (en) Thermal flow meter
JP4900319B2 (en) Thin film gas sensor, gas leak alarm, thin film gas sensor setting adjustment device, and thin film gas sensor setting adjustment method
JPH11201929A (en) Membrane gas sensor
JP2008298617A (en) Contact combustion type gas sensor and manufacturing method of contact combustion type gas sensor
JP2010066009A (en) Thin film gas sensor
JP4779076B2 (en) Thin film gas sensor
JP3997843B2 (en) Gas detector
JP2019015703A (en) Oxidative gas sensor, gas alarm, controller, and control method
JP4851610B2 (en) Thin film gas sensor
JP4670293B2 (en) Gas flow sensor device