【0001】
【発明の属する技術分野】
本発明は電子時計に関する。
【0002】
【従来の技術】
従来、発電手段で発電された電力を蓄電手段に蓄電を行い、これを電源として回路の駆動をおこない、また蓄電手段の電圧を検出し、運針のタイミングを変えるなどして蓄電手段の電圧の低下をユーザーに報知する電子時計は広く知られている。
【0003】
この様な発電機能付きの時計では、蓄電手段の電圧が低下した場合、なるべく蓄電手段の電圧低下を防ぐために、付加機能などを禁止する事が望ましい。
【0004】
一方、外部操作スイッチを操作する事により、モータを駆動させ時刻を電気的に修正するいわゆる電磁修正機能をそなえた電子時計も広く知られている。
【0005】
【発明が解決しようとする課題】
上述のような発電機能付きの時計にこの電磁修正機能を付加した場合、蓄電手段の電圧を検出した場合は、電磁修正を禁止することで蓄電手段の電圧低下を防ぐことが望ましい。しかしながら、連続電磁修正を行っている時の電圧検出で、蓄電手段の電圧が規定値以下で有ることを検出してしまった場合に、電磁修正を解除してしまうと、時刻を正しく合わせることが出来なくなってしまう。
本発明は上記課題を解決し、電磁修正機能を備えた電子時計において確実な修正操作を可能としたシステムを提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明は、電源と、外部操作スイッチと、当該外部操作スイッチを操作することにより時刻表示手段を駆動する表示駆動手段と、を備えた電子時計に於いて、前記電源の電圧が所定値以下になると検出信号を出力する電圧検出手段と、当該電圧検出手段の出力に基づき前記表示駆動手段の動作を禁止する駆動禁止手段を備え、当該駆動禁止手段は前記表示駆動手段の動作中に前記電圧検出手段が検出信号を出力しても前記表示駆動手段の動作禁止を行わない事を特徴とする。
【0007】
【発明の実施の形態】
以下図面を用いて本発明の実施形態の一例を記述する。図1は本発明の一実施形態におけるシステム構成のブロック図である。図2は本発明の一実施形態における電磁修正を行わない状態で蓄電手段の電圧低下を検出した場合のタイムチャートである。図3は本発明の一実施形態における連続電磁修正中の電圧検出で蓄電手段の電圧低下を検出した場合のタイムチャートである。
【0008】
先ず本発明の一実施形態のシステム構成を図1を用いて説明する。
本発明は、発振回路1と、発振回路1の発振信号を受ける分周回路2と、分周回路2で分周された信号をさらに20秒周期信号S20Sにする20秒カウンタ3と、20秒周期信号S20Sの信号を更に分周して1分周期信号S1Mを作る1分カウンタ4と、1分周期の信号から使用者に充電を警告する運針である充電警告運針タイミング信号TPを作成する充電警告運針タイミング作成回路5と、20秒周期信号S20Sと充電警告運針タイミング信号TPを入力し運針の周期を選択して運針タイミング信号DPを出力する運針周期選択回路6と、外部操作スイッチ14aと、外部操作スイッチ14aの操作から単発電磁修正信号CSと分周回路2の分周信号を受けてスイッチが規定時間以上長く押されていた場合に連続電磁修正信号HSを出力するスイッチ信号作成回路14bと、単発電磁修正信号CSと連続電磁修正信号HSを入力し分周回路2と20秒カウンタ3と1分カウンタ4をリセットするリセット信号RSを作成するリセット信号作成回路15と、単発電磁修正信号CSと連続電磁修正信号HSを入力しそれぞれに応じた修正パルスを出力する修正パルス作成回路16と、修正パルス作成回路16の出力と運針周期選択回路6の出力をOR7aを介して入力しモータ駆動用の波形を作成する波形整形回路7と、波形整形回路7で作成されたモータ駆動用の波形を入力してモータ9を駆動するモータ駆動回路8及びモータ駆動用のコイル8aと、モータ9が駆動されることによって図示しない輪列を介して駆動される指針10と、システム全体の駆動を行うための電力を発電する発電手段11と、発電手段11で発電された電力を蓄える蓄電手段12と、蓄電手段12の電圧の高低を検出し電圧検出信号BDを作成する電圧検出回路13と、入力D−FF17aとAND17bで構成され電圧検出信号BDと連続修正信号HSと運針タイミング信号DPを入力し修正パルス作成回路16とスイッチ信号作成回路の動作を禁止する修正パルス作成禁止回路17で構成される。
【0009】
先ず、図2を用いて、電磁修正を行っていない状態で電圧検出を行い、蓄電手段12の電圧低下を検出した場合について説明を行う。
なお、本発明の一実施形態では、外部操作スイッチ14aをプッシュボタンとし、スイッチを押したとき(スイッチON)に”H”レベル、スイッチを離す(スイッチOFF)と”L”レベルがスイッチ信号作成回路にそれぞれ入力される。
【0010】
本実施形態では指針10は、蓄電手段12の電圧が1.25Vを超えているときは20秒毎に指針10を駆動する20秒運針を行い、1.25V以下では1分周期250ms間隔で3回連続運針をする充電警告運針を行う方式を採用している。また電圧検出回路13が蓄電手段12の電圧を検出するためのサンプリングは通常時では1分に一回、一分周期信号S1Mの立ち下がりから約500ms前に行われ、その時に蓄電手段12の電圧が1.25V以下であることを検出した場合は、電圧検出信号BDが”H”レベルになる。
【0011】
先ず電圧検出回路13が蓄電手段12の電圧が1.25Vを超えている場合について説明すると、電圧検出信号BDは“L”レベルを出力し、運針周期選択回路6は20秒周期信号S20Sを運針タイミング信号DPとして出力する。
また、波形整形回路7では20秒周期の運針タイミング信号DPを入力して、20秒毎にモータ駆動信号を作成し、モータ駆動回路8からコイル8aに出力される運針パルスは、20秒周期信号S20Sの立ち下がりと同タイミングで出力される。
なお波形整形回路7は電圧検出信号BDの“L”レベルを入力して、モータの電圧に応じてモータ駆動を行いやすいモータ駆動信号を作成する。
【0012】
ここで蓄電手段12の電圧が1.25V以下になると電圧検出信号BDは“H”レベルとなる。この信号が運針周期選択回路6に入力されると、運針周期選択回路6では運針の周期をそれまでの20秒周期信号S20Sから充電警告運針タイミング作成回路5で作成される、1分周期信号S1Mの立ち下がりから、250ms間隔3回連続の充電警告運針タイミング信号TPに切り替える。
すなわち運針タイミング信号DPが20秒周期信号S20Sから、充電警告運針タイミング信号TPになる。
これにより、モータ駆動回路8からコイル8aに出力される運針パルスは、充電警告信号TPの立ち下がりと同タイミングで出力する。
また、波形整形回路7では電圧検出信号BDの“H”レベル入力し、電源電圧の低下に対してモータの駆動を行いやすいように、運針パルスの形状を、20秒運針時のパルス形状から充電警告運針時のパルス形状に切り替える。
【0013】
更に、電圧検出信号BDはAND17bに入力される。
この時連続電磁修正を行っていない、すなわち連続電磁修正信号HSが”L”レベルの場合、連続電磁修正信号HSはインバータ17cを介して”H”レベルになりAND17bに入力され、AND17bのもう一方の入力である電圧検出信号BDが”H”レベルなので、AND17bの出力は”H”レベルになる。
AND17bの”H”レベル出力はD−FF17aへのデータ入力部に入力され、D−FF17aは約500ms後に出力される運針タイミング信号DP(この時は電圧検出信号BDが”H”レベルであるので、運針タイミング信号DPは充電警告タイミング信号TPとなる)をクロックとして、運針タイミング信号DPの立ち下がりでデータ入力部を読み込み、出力Qは”H”レベル信号としてラッチされる。
D−FF17aの”H”レベル出力をうけて、スイッチ信号作成回路14と修正パルス作成回路16の動作は禁止される。
以降電圧検出回路13が蓄電手段12の電圧が1.25V以上を検出するまで、修正パルス作成回路16とスイッチ信号作成回路14は非動作となり電磁修正を禁止する。
【0014】
次に図3を用いて、電磁修正を行っている最中の電圧検出で、蓄電手段12の電圧低下を検出した場合について説明を行う。
【0015】
外部操作スイッチ14aをONすると、先ず単発電磁修正信号CSが出力される。
単発電磁修正信号CSは修正パルス作成回路16に入力され、修正パルス作成回路16は単発電磁修正信号CSの立ち上がりに同期して1回だけ修正パルスを出力し、指針10は一回だけ運針を行う。
単発電磁修正信号CSを入力したリセット信号作成回路15は単発電磁修正信号CSの立ち上がり(外部操作スイッチ14aをONしたとき)に同期して、分周回路2と20秒カウンタ3と1分カウンタ4をリセットするリセット信号RSを1回出力する。
これにより、以降の計時は単発電磁修正信号CSの立ち上がりを起点として行われる様になる。
【0016】
外部操作スイッチ14aが規定時間以上(本実施形態では1秒)ONされ続けると、スイッチ信号作成回路14は連続電磁修正信号HSを出力する。
この連続電磁修正信号HSは外部操作スイッチ14aがOFFされるまで出力を続ける。
連続電磁修正信号HSを入力した修正パルス作成回路では、連続電磁修正信号HSの立ち上がりから立ち下がるまでのあいだ、規定周期毎(本実施形態では16Hz毎)に連続して修正パルスを出力し、指針10は16Hz周期で連続して運針を行う。
さらに、連続電磁修正信号HSを入力したリセット信号作成回路15は連続電磁修正信号HSの立ち下がり(外部操作スイッチ14aをOFFしたとき)に同期して、分周回路2と20秒カウンタ3と1分カウンタ4をリセットするリセット信号RSを1回出力する。
これより、以降の計時動作は連続電磁修正信号の立ち下がりを起点として行われるようになる。
【0017】
連続電磁修正中にも電圧検出回路13は蓄電手段12の電圧検出を行う。
本実施形態では連続電磁修正中は通常時と電圧検出のサンプリングタイミングを変えており、連続電磁修正中は連続電磁修正信号HSが立ち上がってから、12秒毎に電圧検出を行う。
この時の電圧検出で、蓄電手段12の電圧低下を検出した場合は、電圧検出信号BDが“H”レベルになり、通常時と同じように、運針周期選択回路6は20秒周期信号S20Sから充電警告運針タイミング信号TPに切り替える。
すなわち運針タイミング信号DPが20秒周期信号S20Sから、充電警告運針タイミング信号TPになる。
但し、充電警告運針タイミングでの運針は連続電磁修正解除(外部操作スイッチ14aをOFF)後から1分後に出力される。
また、波形整形回路7は運針パルスの形状を、20秒運針時のパルス形状から充電警告運針時のパルス形状に切り替える。
なお、運新パルスの形状は連続電磁修正中でも、電圧検出の直後に切り替えられる。
【0018】
さらに、電圧検出信号BDはAND17bに入力されるが、AND17bのもう一方の入力である連続電磁修正信号HSは”H”レベルのであり、連続電磁修正信号HSはインバータ17cを介して”L”レベルとなりAND17bに入力されるので、AND17bの出力は連続電磁修正中では”L”レベルになる。
従って、D−FF17aのデータ入力も”L”レベルなのでD−FF17aの出力Qは”L”レベルであり、連続電磁修正中に蓄電手段12の電圧低下を検出しても、スイッチ信号作成回路14と修正パルス作成回路16の動作は禁止されず、連続電磁修正を維持することが出来る。
【0019】
蓄電手段12の電圧低下を検出した状態で連続電磁修正を解除すると、先ず前述の如くリセット信号作成回路15が連続電磁修正信号HSの立ち下がりに同期してリセット信号RSを出力し、分周回路2と20秒カウンタ3と1分カウンタ4をリセットしされ、リセットしたタイミングを起点として計時を行う。
【0020】
また、連続電磁修正信号HSが”L”レベルとなり、インバータ17Cを介して”H”レベルとなりAND17bに入力される。AND17bのもう一方の入力である電圧検出信号BDは”H”レベルであるから、AND17bの出力は”H”レベルとなり、D−FF17aのデータ入力部に入力される。
しかしAND17bの出力が”H”レベルになった時点では、D−FF17aのクロックである、運針タイミング信号DPはまだ”H”レベルに固定であるため、データ入力部は読み込まれない。
【0021】
このとき、D−FF17aのクロックである運針タイミング信号DPは、電圧検出信号BDが“H”レベルであるので、20秒周期信号S20Sから充電警告運針タイミング信号TPに切り替わっている。
【0022】
前述したように、連続電磁修正を解除した時に、分周回路2と20秒カウンタ3と1分カウンタ4をリセットされているので、運針タイミング信号DPが“H”レベルから“L”レベルになるのは、連続修正を解除した時点から1分後ということになる。
すなわちD−FF17aのデータ入力の読み込みは、連続電磁修正を解除した時点から1分後に行われる。
よって、連続電磁修正の解除後から1分の間は再度電磁修正を行うことが可能である。
【0023】
また、電磁修正を行うと、単発電磁修正でも連続電磁修正でも必ず分周回路2と20秒カウンタ3と1分カウンタ4のリセットを行うため、電磁修正を行った後再度、電磁修正を行える1分間は、その都度更新されることになる。
【0024】
電磁修正解除後に1分が経ち、運針タイミング信号DPが“H”レベルから“L”レベルになった時点でD−FF17aはデータ入力部(“H”レベル)を読み込み、出力Qは“H”レベル信号としてラッチされる。
D−FF17aの“H”レベル出力をうけて、スイッチ信号作成回路14と修正パルス作成回路16の動作は禁止される。以降電圧検出回路13が蓄電手段12の電圧が1.25V以上を検出するまで、修正パルス作成回路16とスイッチ信号作成回路14は非動作となり電磁修正を禁止する。
【0025】
【発明の効果】
以上のように本発明では、電圧検出手段の出力に基づき表示駆動手段の動作を禁止する駆動禁止手段を備えたので、蓄電手段の電圧低下時に電磁修正を禁止することが出来るため蓄電手段の電圧低下を極力抑えることが出来る。
【0026】
また駆動禁止手段は表示駆動手段の動作中に電圧検出手段が検出信号を出力しても表示駆動手段の動作禁止を行わないようにしたので、使用者が連続電磁修正を止めるまでは継続して行うことが出来る。
【0027】
またスイッチ操作の操作終了後からカウント開始するカウンタを設け、カウンタの制御に基づき駆動禁止手段が動作するようにしたので、連続電磁修正操作を終了してから一定の期間は修正が可能となり使用者に混乱を招くことの無いシステムを提供出来る。
【0028】
また外部操作スイッチの短時間操作と長時間操作に基づきパルス作成回路にそれぞれ異なる制御信号を出力するスイッチ信号作成手段を設け、長時間操作に基づく制御信号により駆動禁止手段を制御するようにしたので、連続電磁修正を行うときのみ修正操作を継続することが出来る。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すシステムブロック図である。
【図2】本発明の一実施形態における電磁修正を行わない場合のタイムチャートである。
【図3】本発明の一実施形態における電磁修正を行った場合のタイムチャートである。
【符号の説明】
1 発振回路
2 分周回路
3 20秒カウンタ
4 1分カウンタ
5 充電警告運針タイミング作成回路
6 運針周期選択回路
7 波形整形回路
8 モータ駆動回路
10 指針
11 発電手段
12 蓄電手段
13 電圧検出回路
14a 外部操作スイッチ
14 スイッチ信号作成回路
15 リセット信号作成回路
16 修正パルス作成回路
17 修正パルス作成禁止回路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic timepiece.
[0002]
[Prior art]
Conventionally, the power generated by the power generation means is stored in the power storage means, and the circuit is driven using this power as a power source, and the voltage of the power storage means is decreased by detecting the voltage of the power storage means and changing the timing of hand movement. An electronic timepiece that informs the user of this is widely known.
[0003]
In such a timepiece with a power generation function, when the voltage of the power storage means decreases, it is desirable to prohibit an additional function or the like in order to prevent a voltage drop of the power storage means as much as possible.
[0004]
On the other hand, an electronic timepiece having a so-called electromagnetic correction function for driving a motor to electrically correct the time by operating an external operation switch is also widely known.
[0005]
[Problems to be solved by the invention]
When this electromagnetic correction function is added to a timepiece with a power generation function as described above, it is desirable to prevent a voltage drop of the power storage means by prohibiting electromagnetic correction when the voltage of the power storage means is detected. However, if the voltage detection during continuous electromagnetic correction detects that the voltage of the power storage means is below the specified value, the time can be set correctly if the electromagnetic correction is canceled. It will not be possible.
An object of the present invention is to solve the above-mentioned problems and to provide a system that enables a reliable correction operation in an electronic timepiece having an electromagnetic correction function.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an electronic timepiece including a power source, an external operation switch, and a display driving unit that drives a time display unit by operating the external operation switch. Voltage detection means for outputting a detection signal when the voltage of the voltage becomes equal to or less than a predetermined value, and drive inhibition means for inhibiting the operation of the display drive means based on the output of the voltage detection means, the drive inhibition means being the display drive means Even if the voltage detection means outputs a detection signal during the operation, the display drive means is not prohibited from operating.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a system configuration according to an embodiment of the present invention. FIG. 2 is a time chart when a voltage drop of the power storage means is detected without performing electromagnetic correction in one embodiment of the present invention. FIG. 3 is a time chart when a voltage drop of the power storage means is detected by voltage detection during continuous electromagnetic correction in one embodiment of the present invention.
[0008]
First, the system configuration of an embodiment of the present invention will be described with reference to FIG.
The present invention includes an oscillating circuit 1, a frequency dividing circuit 2 that receives an oscillation signal from the oscillating circuit 1, a 20-second counter 3 that further converts the signal divided by the frequency dividing circuit 2 into a 20-second periodic signal S20S, 1-minute counter 4 that further divides the signal of the periodic signal S20S to generate the 1-minute periodic signal S1M, and charging that generates a charging warning hand timing signal TP that is a hand movement that warns the user of charging from the 1-minute signal. A warning hand timing generation circuit 5, a 20 second cycle signal S20S and a charging warning hand timing signal TP, a hand movement period selection circuit 6 for selecting a hand movement period and outputting a hand movement timing signal DP, an external operation switch 14a, When a single electromagnetic correction signal CS and a frequency dividing signal of the frequency dividing circuit 2 are received from the operation of the external operation switch 14a and the switch is pressed for a predetermined time or longer, the continuous electromagnetic correction signal HS A switch signal generating circuit 14b for outputting, a reset signal generating circuit for generating a reset signal RS for inputting the single electromagnetic correction signal CS and the continuous electromagnetic correction signal HS and resetting the frequency dividing circuit 2, the 20-second counter 3, and the 1-minute counter 4. 15, a correction pulse generating circuit 16 that inputs a single-shot electromagnetic correction signal CS and a continuous electromagnetic correction signal HS and outputs a correction pulse corresponding to each of them, an output of the correction pulse generating circuit 16, and an output of the hand movement cycle selection circuit 6 are OR7a A waveform shaping circuit 7 for inputting a motor waveform to generate a motor driving waveform, a motor driving circuit 8 for driving a motor 9 by inputting a motor driving waveform generated by the waveform shaping circuit 7 and a motor driving waveform The coil 8a, the pointer 10 that is driven through a gear train (not shown) when the motor 9 is driven, and the electric power for driving the entire system. Power generation means 11 for generating power, power storage means 12 for storing the power generated by the power generation means 11, a voltage detection circuit 13 for detecting the voltage level of the power storage means 12 and creating a voltage detection signal BD, and an input D-FF 17a And a correction pulse generation prohibiting circuit 17 for inputting the voltage detection signal BD, the continuous correction signal HS, and the hand movement timing signal DP and prohibiting the operation of the correction pulse generating circuit 16 and the switch signal generating circuit.
[0009]
First, the case where voltage detection is performed in a state where electromagnetic correction is not performed and a voltage drop of the power storage unit 12 is detected will be described with reference to FIG.
In one embodiment of the present invention, the external operation switch 14a is a push button, and when the switch is pressed (switch ON), the “H” level is generated. When the switch is released (switch OFF), the “L” level is generated. Each is input to the circuit.
[0010]
In this embodiment, when the voltage of the power storage means 12 exceeds 1.25 V, the pointer 10 performs 20-second movement for driving the pointer 10 every 20 seconds, and at 1.25 V or less, the pointer 10 moves at intervals of 250 ms. The system uses a charging warning hand movement that moves continuously. Sampling for the voltage detection circuit 13 to detect the voltage of the power storage means 12 is normally performed once a minute, about 500 ms before the falling edge of the one-minute periodic signal S1M. Is detected to be 1.25 V or less, the voltage detection signal BD becomes “H” level.
[0011]
First, when the voltage detection circuit 13 explains the case where the voltage of the power storage means 12 exceeds 1.25 V, the voltage detection signal BD outputs the “L” level, and the hand movement cycle selection circuit 6 moves the 20-second cycle signal S20S. Output as timing signal DP.
Further, the waveform shaping circuit 7 inputs a hand movement timing signal DP with a cycle of 20 seconds, creates a motor drive signal every 20 seconds, and the hand movement pulse output from the motor drive circuit 8 to the coil 8a is a 20-second cycle signal. It is output at the same timing as the fall of S20S.
The waveform shaping circuit 7 receives the “L” level of the voltage detection signal BD and creates a motor drive signal that facilitates motor drive according to the motor voltage.
[0012]
Here, when the voltage of the power storage means 12 becomes 1.25 V or less, the voltage detection signal BD becomes “H” level. When this signal is input to the hand movement cycle selection circuit 6, the hand movement cycle selection circuit 6 generates a one-minute cycle signal S1M which is created by the charge warning hand timing generation circuit 5 from the 20-second cycle signal S20S. Is switched to the charging warning hand timing signal TP that is continuous three times at intervals of 250 ms.
That is, the hand movement timing signal DP changes from the 20-second period signal S20S to the charging warning hand movement timing signal TP.
As a result, the hand movement pulse output from the motor drive circuit 8 to the coil 8a is output at the same timing as the fall of the charging warning signal TP.
In addition, the waveform shaping circuit 7 inputs the “H” level of the voltage detection signal BD, and charges the shape of the hand movement pulse from the pulse shape at the time of the 20 second hand movement so that the motor can be driven easily in response to a decrease in the power supply voltage. Switch to the pulse shape at the time of warning operation.
[0013]
Further, the voltage detection signal BD is input to the AND 17b.
If continuous electromagnetic correction is not performed at this time, that is, if the continuous electromagnetic correction signal HS is “L” level, the continuous electromagnetic correction signal HS becomes “H” level via the inverter 17c and is input to the AND 17b, and the other of the AND 17b. Since the voltage detection signal BD, which is the input of, is at “H” level, the output of the AND 17 b becomes “H” level.
The “H” level output of the AND 17b is input to the data input unit to the D-FF 17a, and the D-FF 17a outputs the hand movement timing signal DP after about 500 ms (since the voltage detection signal BD is at the “H” level at this time). The hand movement timing signal DP becomes the charging warning timing signal TP), the data input section is read at the fall of the hand movement timing signal DP, and the output Q is latched as an “H” level signal.
Upon receiving the “H” level output of the D-FF 17a, the operations of the switch signal generation circuit 14 and the correction pulse generation circuit 16 are prohibited.
Thereafter, until the voltage detection circuit 13 detects that the voltage of the power storage means 12 is 1.25 V or more, the correction pulse generation circuit 16 and the switch signal generation circuit 14 are inactivated and electromagnetic correction is prohibited.
[0014]
Next, with reference to FIG. 3, a case where a voltage drop in the power storage unit 12 is detected by voltage detection during electromagnetic correction will be described.
[0015]
When the external operation switch 14a is turned ON, a single electromagnetic correction signal CS is first output.
The single-shot electromagnetic correction signal CS is input to the correction pulse generation circuit 16, and the correction pulse generation circuit 16 outputs the correction pulse only once in synchronization with the rising of the single-shot electromagnetic correction signal CS, and the pointer 10 moves the needle only once. .
The reset signal generation circuit 15 to which the single-shot electromagnetic correction signal CS is input synchronizes with the rising of the single-shot electromagnetic correction signal CS (when the external operation switch 14a is turned on), the frequency dividing circuit 2, the 20-second counter 3, and the one-minute counter 4 The reset signal RS for resetting is output once.
As a result, the subsequent timing is started from the rise of the single electromagnetic correction signal CS.
[0016]
When the external operation switch 14a is kept ON for a specified time or longer (1 second in this embodiment), the switch signal generation circuit 14 outputs a continuous electromagnetic correction signal HS.
The continuous electromagnetic correction signal HS continues to be output until the external operation switch 14a is turned off.
In the correction pulse generating circuit to which the continuous electromagnetic correction signal HS is input, the correction pulse is continuously output for every specified period (in this embodiment, every 16 Hz) until the continuous electromagnetic correction signal HS rises and falls. No. 10 moves continuously with a period of 16 Hz.
Further, the reset signal generation circuit 15 to which the continuous electromagnetic correction signal HS is input synchronizes with the falling of the continuous electromagnetic correction signal HS (when the external operation switch 14a is turned OFF), and the frequency dividing circuit 2 and the 20-second counters 3 and 1 A reset signal RS for resetting the minute counter 4 is output once.
As a result, the subsequent timing operation is performed starting from the falling edge of the continuous electromagnetic correction signal.
[0017]
The voltage detection circuit 13 detects the voltage of the power storage means 12 even during continuous electromagnetic correction.
In this embodiment, the voltage detection sampling timing is changed during normal electromagnetic correction and during normal electromagnetic correction, and during continuous electromagnetic correction, voltage detection is performed every 12 seconds after the continuous electromagnetic correction signal HS rises.
When the voltage detection at this time detects the voltage drop of the power storage means 12, the voltage detection signal BD becomes "H" level, and the hand movement cycle selection circuit 6 starts from the 20-second cycle signal S20S as in the normal state. Switch to the charging warning hand timing signal TP.
That is, the hand movement timing signal DP changes from the 20-second period signal S20S to the charging warning hand movement timing signal TP.
However, the operation at the charging warning operation timing is output one minute after the release of continuous electromagnetic correction (external operation switch 14a is turned OFF).
Further, the waveform shaping circuit 7 switches the shape of the hand movement pulse from the pulse shape at the time of 20 second hand movement to the pulse shape at the time of charge warning hand movement.
The shape of the new pulse is switched immediately after voltage detection even during continuous electromagnetic correction.
[0018]
Further, the voltage detection signal BD is input to the AND 17b, but the continuous electromagnetic correction signal HS which is the other input of the AND 17b is at the “H” level, and the continuous electromagnetic correction signal HS is set to the “L” level via the inverter 17c. Therefore, the output of the AND 17b becomes “L” level during the continuous electromagnetic correction.
Accordingly, since the data input of the D-FF 17a is also at the "L" level, the output Q of the D-FF 17a is at the "L" level. Even if the voltage drop of the power storage means 12 is detected during the continuous electromagnetic correction, the switch signal generating circuit 14 The operation of the correction pulse generation circuit 16 is not prohibited, and continuous electromagnetic correction can be maintained.
[0019]
When the continuous electromagnetic correction is canceled in a state where the voltage drop of the power storage means 12 is detected, first, as described above, the reset signal generating circuit 15 outputs the reset signal RS in synchronization with the falling of the continuous electromagnetic correction signal HS, and the frequency dividing circuit 2 and 20-second counter 3 and 1-minute counter 4 are reset, and time is measured from the reset timing.
[0020]
Further, the continuous electromagnetic correction signal HS becomes “L” level, becomes “H” level via the inverter 17C, and is input to the AND 17b. Since the voltage detection signal BD, which is the other input of the AND 17b, is at the “H” level, the output of the AND 17b is at the “H” level and is input to the data input section of the D-FF 17a.
However, when the output of the AND 17b becomes “H” level, the hand movement timing signal DP, which is the clock of the D-FF 17a, is still fixed at “H” level, so the data input section is not read.
[0021]
At this time, since the voltage detection signal BD is at “H” level, the hand movement timing signal DP that is the clock of the D-FF 17a is switched from the 20-second period signal S20S to the charging warning hand movement timing signal TP.
[0022]
As described above, when the continuous electromagnetic correction is canceled, the frequency dividing circuit 2, the 20-second counter 3, and the 1-minute counter 4 are reset, so that the hand movement timing signal DP is changed from the “H” level to the “L” level. This is one minute after the point when the continuous correction is canceled.
That is, reading of the data input of the D-FF 17a is performed one minute after the time point when the continuous electromagnetic correction is canceled.
Therefore, the electromagnetic correction can be performed again for one minute after the cancellation of the continuous electromagnetic correction.
[0023]
In addition, when the electromagnetic correction is performed, the frequency dividing circuit 2, the 20-second counter 3, and the 1-minute counter 4 are always reset in both the single electromagnetic correction and the continuous electromagnetic correction. The minutes will be updated each time.
[0024]
One minute has passed after the electromagnetic correction is canceled, and when the hand movement timing signal DP changes from the “H” level to the “L” level, the D-FF 17a reads the data input section (“H” level) and the output Q is “H”. It is latched as a level signal.
Upon receiving the “H” level output of the D-FF 17a, the operations of the switch signal generation circuit 14 and the correction pulse generation circuit 16 are prohibited. Thereafter, until the voltage detection circuit 13 detects that the voltage of the power storage means 12 is 1.25 V or more, the correction pulse generation circuit 16 and the switch signal generation circuit 14 are inactivated and electromagnetic correction is prohibited.
[0025]
【The invention's effect】
As described above, in the present invention, since the drive prohibiting means for prohibiting the operation of the display driving means based on the output of the voltage detecting means is provided, the electromagnetic correction can be prohibited when the voltage of the power storage means is lowered. Reduction can be suppressed as much as possible.
[0026]
In addition, since the drive prohibition means does not prohibit the operation of the display drive means even if the voltage detection means outputs a detection signal during the operation of the display drive means, it continues until the user stops the continuous electromagnetic correction. Can be done.
[0027]
In addition, a counter that starts counting after the end of the switch operation is provided, and the drive prohibiting means operates based on the control of the counter. Therefore, the correction can be made for a certain period after the end of the continuous electromagnetic correction operation. A system that does not cause confusion can be provided.
[0028]
In addition, switch signal generation means that outputs different control signals to the pulse generation circuit based on the short time operation and long time operation of the external operation switch is provided, and the drive prohibition means is controlled by the control signal based on the long time operation. The correction operation can be continued only when continuous electromagnetic correction is performed.
[Brief description of the drawings]
FIG. 1 is a system block diagram showing an embodiment of the present invention.
FIG. 2 is a time chart when electromagnetic correction is not performed in an embodiment of the present invention.
FIG. 3 is a time chart when electromagnetic correction is performed in an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Oscillation circuit 2 Frequency dividing circuit 3 20 second counter 4 1 minute counter 5 Charge warning hand timing generation circuit 6 Hand movement period selection circuit 7 Wave shape shaping circuit 8 Motor drive circuit 10 Pointer 11 Power generation means 12 Power storage means 13 Voltage detection circuit 14a External operation Switch 14 Switch signal generation circuit 15 Reset signal generation circuit 16 Correction pulse generation circuit 17 Correction pulse generation prohibition circuit