JP2005133660A - Internal combustion engine control device and method - Google Patents

Internal combustion engine control device and method Download PDF

Info

Publication number
JP2005133660A
JP2005133660A JP2003371598A JP2003371598A JP2005133660A JP 2005133660 A JP2005133660 A JP 2005133660A JP 2003371598 A JP2003371598 A JP 2003371598A JP 2003371598 A JP2003371598 A JP 2003371598A JP 2005133660 A JP2005133660 A JP 2005133660A
Authority
JP
Japan
Prior art keywords
fuel
internal combustion
combustion engine
injection
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003371598A
Other languages
Japanese (ja)
Other versions
JP4269895B2 (en
Inventor
Toshimi Kashiwakura
利美 柏倉
Shinichiro Nokawa
真一郎 能川
Masaharu Ichise
雅春 市瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003371598A priority Critical patent/JP4269895B2/en
Publication of JP2005133660A publication Critical patent/JP2005133660A/en
Application granted granted Critical
Publication of JP4269895B2 publication Critical patent/JP4269895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restraint the torque of an internal combustion engine from being degraded by restraining fuel injected into a cylinder from being unevenly diffused. <P>SOLUTION: This internal combustion engine control device 10 controls an internal combustion engine equipped with cylinder injection valves and pistons formed with cavities having side walls. The internal combustion engine controller 10 comprises a combustion discrimination section 21 for discriminating if combustion of the internal combustion engine is performed in a homogeneous combustion region, and an injection timing determination section 22 for prohibiting fuel injection from the cylinder injection valve in such a period that fuel injected from the cylinder injection valve collides with the side wall of the cavity formed on the piston, in the case that the combustion region is taken as a homogeneous combustion region. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、筒内噴射弁を備える内燃機関を均質燃焼領域において運転する場合における内燃機関の制御装置及び内燃機関の制御方法に関する。   The present invention relates to a control device for an internal combustion engine and a control method for the internal combustion engine when an internal combustion engine including a cylinder injection valve is operated in a homogeneous combustion region.

気筒内に直接燃料を噴射して点火する、いわゆる直噴の内燃機関は、圧縮行程中に気筒内へ直接燃料を噴射して、いわゆる成層燃焼を実現させて運転することにより、燃費を向上させるとともに、CO2の排出量を低減させることができる。また、直噴の内燃機関は、吸入行程中に気筒内へ直接燃料を噴射して気筒内へ燃料を拡散させて燃焼させる、いわゆる均質燃焼の下で運転することもできる。これにより、直噴の内燃機関を均質燃焼領域で運転する際に高出力を得ることもできる。このような利点から、近年、直噴の火花点火式内燃機関が注目されており、実用化されている。 A so-called direct-injection internal combustion engine that directly injects fuel into a cylinder and ignites it improves fuel efficiency by injecting fuel directly into the cylinder during the compression stroke and operating so-called stratified combustion. At the same time, the amount of CO 2 emission can be reduced. Further, the direct injection internal combustion engine can be operated under so-called homogeneous combustion in which fuel is directly injected into the cylinder during the intake stroke and the fuel is diffused into the cylinder and burned. As a result, a high output can be obtained when the direct injection internal combustion engine is operated in the homogeneous combustion region. Due to such advantages, in recent years, direct-injection spark ignition internal combustion engines have attracted attention and have been put into practical use.

特許文献1には、均質燃焼で運転される場合において、吸気行程中に筒内噴射弁から燃料を噴射するとともに、少なくとも機関回転数が低回転のときには必要な燃料を複数回に分割して噴射することにより、スモークの発生を抑制する筒内噴射式の火花点火機関が開示されている。   In Patent Document 1, when operating with homogeneous combustion, fuel is injected from the in-cylinder injection valve during the intake stroke, and at least when the engine speed is low, the necessary fuel is divided into multiple injections. Thus, an in-cylinder injection spark ignition engine that suppresses the generation of smoke is disclosed.

特開平7−119507号公報JP-A-7-119507

しかし、特許文献1に開示されたように、吸気行程中において複数回に分割して気筒内へ燃料を噴射する場合、燃料噴射の時期によっては燃料の拡散が不均一となって、内燃機関のトルクを減少させる場合もある。そこで、この発明は、上記に鑑みてなされたものであって、均質燃焼時において、筒内に噴射された燃料の拡散不均一を抑制して、内燃機関のトルク低下を抑制できる内燃機関の制御装置及び内燃機関の制御方法を提供することを目的とする。   However, as disclosed in Patent Document 1, when fuel is injected into a cylinder divided into a plurality of times during the intake stroke, fuel diffusion becomes uneven depending on the timing of fuel injection, and the internal combustion engine The torque may be reduced. Therefore, the present invention has been made in view of the above, and control of an internal combustion engine that can suppress non-uniform diffusion of fuel injected into a cylinder and suppress torque reduction of the internal combustion engine during homogeneous combustion. It is an object of the present invention to provide an apparatus and a control method for an internal combustion engine.

本発明者らは、上述の目的を達成するために鋭意研究した結果、特に頂部にキャビティを設けたピストンを備える内燃機関においては、吸気行程のある範囲で筒内噴射弁から噴射した燃料はキャビティの壁面に衝突し、キャビティの底面へ巻き込むように拡散することを見出した。そして、これにより、気筒内へ噴射した燃料は底面に偏在し、気筒内に導入された空気と十分に混合されず、内燃機関のトルク低下を招くことを見出した。本発明はかかる観点から完成されたものである。   As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that the fuel injected from the in-cylinder injection valve within a certain range of the intake stroke is a cavity, particularly in an internal combustion engine including a piston having a cavity at the top. It has been found that it diffuses so as to collide with the wall surface of the wall and wrap around the bottom surface of the cavity. As a result, it has been found that the fuel injected into the cylinder is unevenly distributed on the bottom surface and is not sufficiently mixed with the air introduced into the cylinder, resulting in a decrease in torque of the internal combustion engine. The present invention has been completed from this viewpoint.

上述の目的を達成するために、本発明に係る内燃機関の制御装置は、筒内噴射弁と、側壁を有するキャビティが形成されたピストンとを備える内燃機関を制御するものであり、前記内燃機関の燃焼が均質燃焼領域か否かを判定する燃焼判定部と、均質燃焼領域である場合、前記筒内噴射弁から噴射される燃料が前記キャビティの側壁に衝突する期間においては、前記筒内噴射弁からの燃料噴射を禁止する噴射時期決定部と、を含んで構成されることを特徴とする。   In order to achieve the above-described object, a control device for an internal combustion engine according to the present invention controls an internal combustion engine including an in-cylinder injection valve and a piston having a cavity having a side wall. A combustion determination unit that determines whether or not combustion is in the homogeneous combustion region, and in the homogeneous combustion region, the in-cylinder injection is performed during a period in which the fuel injected from the in-cylinder injection valve collides with the side wall of the cavity. And an injection timing determining unit that prohibits fuel injection from the valve.

このような構成により、この内燃機関の制御装置では、筒内噴射した燃料がピストンの側壁へ衝突するおそれを効果的に低減できる。これにより、気筒内に噴射された燃料の拡散不均一を抑制して、均質燃焼時において、キャビティを有するピストンを備える内燃機
関のトルク低下を抑制することができる。
With such a configuration, the control device for the internal combustion engine can effectively reduce the possibility that the fuel injected into the cylinder will collide with the side wall of the piston. Thereby, it is possible to suppress the uneven diffusion of the fuel injected into the cylinder, and to suppress the torque reduction of the internal combustion engine including the piston having the cavity during the homogeneous combustion.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御装置において、前記筒内噴射弁から噴射される燃料が前記キャビティの側壁に衝突する期間は、点火上死点前260度以上点火上死点前300度以下の範囲であることを特徴とする。   In the internal combustion engine control apparatus according to the present invention, the period during which the fuel injected from the in-cylinder injection valve collides with the side wall of the cavity is 260 before ignition top dead center. It is characterized by being in a range of not less than 300 degrees and not more than 300 degrees before ignition top dead center.

このような範囲で筒内噴射弁からの燃料噴射を禁止すれば、筒内噴射した燃料がピストンの側壁へ衝突するおそれを効果的に低減できる。これにより、気筒内に噴射された燃料の拡散不均一を抑制して、均質燃焼時において、キャビティを有するピストンを備える内燃機関のトルク低下を抑制することができる。   If the fuel injection from the in-cylinder injection valve is prohibited in such a range, the risk that the in-cylinder injected fuel collides with the side wall of the piston can be effectively reduced. Thereby, it is possible to suppress the uneven diffusion of the fuel injected into the cylinder, and to suppress the torque reduction of the internal combustion engine including the piston having the cavity during the homogeneous combustion.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御装置において、前記噴射時期決定部は、前記筒内噴射弁からの燃料噴射が禁止される期間よりも遅角側で燃料を噴射させる第1の噴射形態と、前記筒内噴射弁からの燃料噴射が禁止される期間よりも進角側で燃料を噴射させる第2の噴射形態とを選択できるとともに、前記内燃機関の機関回転数が所定の回転数よりも低い場合には前記第1の噴射形態を選択し、前記機関回転数が前記所定の回転数よりも高い場合には前記第2の噴射形態を選択して、前記筒内噴射弁から燃料を噴射させることを特徴とする。   Further, the internal combustion engine control apparatus according to the present invention is characterized in that, in the internal combustion engine control apparatus, the injection timing determining unit is on a more retarded side than a period during which fuel injection from the in-cylinder injection valve is prohibited. A first injection mode for injecting fuel and a second injection mode for injecting fuel on the advance side of a period during which fuel injection from the in-cylinder injection valve is prohibited can be selected. When the engine speed is lower than the predetermined engine speed, the first injection mode is selected. When the engine speed is higher than the predetermined engine speed, the second injection mode is selected. The fuel is injected from the in-cylinder injection valve.

このように、筒内噴射した燃料がピストンの側壁へ衝突する期間を避けて筒内噴射するので、筒内に噴射された燃料の拡散不均一を抑制できる。その結果、均質燃焼時において、キャビティを有するピストンを備える内燃機関のトルク低下を抑制することができる。さらに、本発明では、機関回転数に応じて筒内噴射弁による燃料噴射時期を変化させるので、空気冷却によるトルク向上効果と、燃料と空気との混合促進によるトルク向上効果とを有効に利用できる。その結果、内燃機関のトルクを向上させることができる。   In this way, since in-cylinder injection is performed while avoiding a period in which the fuel injected into the cylinder collides with the side wall of the piston, uneven diffusion of the fuel injected into the cylinder can be suppressed. As a result, it is possible to suppress a decrease in torque of an internal combustion engine including a piston having a cavity during homogeneous combustion. Furthermore, in the present invention, since the fuel injection timing by the in-cylinder injection valve is changed according to the engine speed, the torque improvement effect by air cooling and the torque improvement effect by the promotion of mixing of fuel and air can be used effectively. . As a result, the torque of the internal combustion engine can be improved.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御装置において、噴射時期決定部は、前記内燃機関の機関回転数が前記所定の回転数以上になったときに、前記筒内噴射弁の噴射形態を前記第1の噴射形態から前記第2の噴射形態に切り替えるとともに、噴射形態を切り替えるときには、前記第1の噴射形態と前記第2の噴射形態との両方により前記筒内噴射弁から燃料を噴射させることを特徴とする。   Further, the internal combustion engine control apparatus according to the present invention is characterized in that, in the internal combustion engine control apparatus, when the engine speed of the internal combustion engine becomes equal to or higher than the predetermined rotational speed, When the injection mode of the in-cylinder injection valve is switched from the first injection mode to the second injection mode, and when the injection mode is switched, the cylinder is controlled by both the first injection mode and the second injection mode. The fuel is injected from the inner injection valve.

このような構成により、筒内に噴射された燃料の拡散不均一を抑制して、均質燃焼時において、キャビティを有するピストンを備える内燃機関のトルク低下を抑制できる。さらに、本発明では、筒内噴射弁の燃料噴射時期を切り替えるにあたっては、吸気上死点付近と吸気下死点付近との2回に分割して、所定の期間、筒内噴射弁から気筒内へ燃料を噴射する。これにより、筒内噴射弁の燃料噴射時期切替に起因するノッキングの発生を抑制できるとともに、燃料噴射時期切替時における円滑なトルク変化特性を実現できる。   With such a configuration, it is possible to suppress the uneven diffusion of the fuel injected into the cylinder, and to suppress the torque reduction of the internal combustion engine including the piston having the cavity during the homogeneous combustion. Further, in the present invention, when the fuel injection timing of the in-cylinder injection valve is switched, the fuel injection timing is divided into twice near the intake top dead center and near the intake bottom dead center. Inject fuel into Thereby, the occurrence of knocking due to the fuel injection timing switching of the in-cylinder injection valve can be suppressed, and a smooth torque change characteristic at the time of fuel injection timing switching can be realized.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御装置において、噴射形態を切り替えるときには、前記第1の噴射形態と前記第2の噴射形態との両方をそれぞれ所定回数用いることを特徴とする。   Further, the internal combustion engine control apparatus according to the present invention uses both the first injection form and the second injection form a predetermined number of times when the injection form is switched in the control apparatus for the internal combustion engine. It is characterized by that.

このように、前記第1の噴射形態と前記第2の噴射形態との両方をそれぞれ所定回数用いれば、滑らかに筒内噴射弁の燃料噴射時期を切り替えることができる。   Thus, if both the first injection mode and the second injection mode are used a predetermined number of times, the fuel injection timing of the in-cylinder injection valve can be switched smoothly.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御装置において、前記内燃機関に対して噴射する全燃料噴射量が所定量以上となった場合に、前記第1の噴射形態と前記第2の噴射形態との両方を用いることを特徴とする。   Further, the internal combustion engine control apparatus according to the present invention is characterized in that, in the internal combustion engine control apparatus, the first injection is performed when a total fuel injection amount to be injected into the internal combustion engine is equal to or greater than a predetermined amount. Both the form and the second injection form are used.

内燃機関に対する全燃料噴射量は、燃料噴射時期切替に起因するノッキングやトルク変動と相関が強い。したがって、前記全燃料噴射量を用いれば、燃料噴射時期の切替時において、第1の噴射形態と第2の噴射形態との両方をそれぞれ所定回数用いるか否かを判定する精度が向上する。   The total fuel injection amount for the internal combustion engine has a strong correlation with knocking and torque fluctuation caused by the fuel injection timing switching. Therefore, if the total fuel injection amount is used, the accuracy of determining whether or not to use both the first injection mode and the second injection mode a predetermined number of times when switching the fuel injection timing is improved.

また、次の本発明に係る内燃機関の制御方法は、筒内噴射弁と、側壁を有するキャビティが形成されたピストンとを備える内燃機関を制御するにあたり、前記内燃機関の燃焼が均質燃焼領域か否かを判定する手順と、均質燃焼領域である場合、前記筒内噴射弁から噴射される燃料が前記キャビティの側壁に衝突する期間においては、前記筒内噴射弁からの燃料噴射を禁止する手順と、を含むことを特徴とする。   Further, in the control method for an internal combustion engine according to the present invention, when controlling an internal combustion engine including an in-cylinder injection valve and a piston having a cavity having a side wall, the combustion of the internal combustion engine is in a homogeneous combustion region. And a procedure for prohibiting fuel injection from the in-cylinder injection valve during a period in which the fuel injected from the in-cylinder injection valve collides with the side wall of the cavity in the homogeneous combustion region It is characterized by including these.

このような構成により、筒内噴射した燃料がピストンの側壁へ衝突するおそれを効果的に低減できる。これにより、気筒内に噴射された燃料の拡散不均一を抑制して、均質燃焼時において、キャビティを有するピストンを備える内燃機関のトルク低下を抑制することができる。   With such a configuration, it is possible to effectively reduce the possibility that the fuel injected into the cylinder will collide with the side wall of the piston. Thereby, it is possible to suppress the uneven diffusion of the fuel injected into the cylinder, and to suppress the torque reduction of the internal combustion engine including the piston having the cavity during the homogeneous combustion.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御装置において、前記内燃機関の機関回転数が所定の回転数よりも低い場合には、前記筒内噴射弁からの燃料噴射が禁止される期間よりも遅角側で前記筒内噴射弁が燃料を噴射し、前記機関回転数が前記所定の回転数よりも高い場合には、前記筒内噴射弁からの燃料噴射が禁止される期間よりも進角側で前記筒内噴射弁が燃料を噴射することを特徴とする。   Further, the internal combustion engine control apparatus according to the present invention is such that in the internal combustion engine control apparatus, when the engine speed of the internal combustion engine is lower than a predetermined speed, the fuel from the in-cylinder injection valve When the in-cylinder injection valve injects fuel on the retard side from the period during which injection is prohibited, and the engine speed is higher than the predetermined speed, fuel injection from the in-cylinder injection valve is performed. The in-cylinder injection valve injects fuel on a more advanced side than the prohibited period.

このように、筒内噴射した燃料がピストンの側壁へ衝突する期間を避けて筒内噴射するので、筒内に噴射された燃料の拡散不均一を抑制できる。その結果、均質燃焼時において、キャビティを有するピストンを備える内燃機関のトルク低下を抑制することができる。さらに、本発明では、機関回転数に応じて筒内噴射弁による燃料噴射時期を変化させるので、空気冷却によるトルク向上効果と、燃料と空気との混合促進によるトルク向上効果とを有効に利用できる。その結果、内燃機関のトルクを向上させることができる。   In this way, since in-cylinder injection is performed while avoiding a period in which the fuel injected into the cylinder collides with the side wall of the piston, uneven diffusion of the fuel injected into the cylinder can be suppressed. As a result, it is possible to suppress a decrease in torque of an internal combustion engine including a piston having a cavity during homogeneous combustion. Furthermore, in the present invention, since the fuel injection timing by the in-cylinder injection valve is changed according to the engine speed, the torque improvement effect by air cooling and the torque improvement effect by the promotion of mixing of fuel and air can be used effectively. . As a result, the torque of the internal combustion engine can be improved.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御装置において、前記所定の回転数よりも低い機関回転数から前記所定の回転数よりも高い機関回転数へ移行する際の所定期間は、前記筒内噴射弁からの燃料噴射が禁止される期間よりも進角側と遅角側との両方で前記筒内噴射弁が燃料を噴射することを特徴とする。   In the internal combustion engine control apparatus according to the present invention, when the internal combustion engine control apparatus shifts from an engine speed lower than the predetermined speed to an engine speed higher than the predetermined speed. The predetermined injection period is characterized in that the in-cylinder injection valve injects fuel on both the advance side and the retard side with respect to the period in which fuel injection from the in-cylinder injection valve is prohibited.

このような構成により、筒内に噴射された燃料の拡散不均一を抑制して、均質燃焼時において、キャビティを有するピストンを備える内燃機関のトルク低下を抑制できる。さらに、本発明では、筒内噴射弁の燃料噴射時期を切り替えるにあたっては、吸気上死点付近と吸気下死点付近との2回に分割して、筒内噴射弁から気筒内へ燃料を噴射する。これにより、筒内噴射弁の燃料噴射時期切替に起因するノッキングの発生を抑制できるとともに、燃料噴射時期切替時における円滑なトルク変化特性を実現できる。   With such a configuration, it is possible to suppress the uneven diffusion of the fuel injected into the cylinder, and to suppress the torque reduction of the internal combustion engine including the piston having the cavity during the homogeneous combustion. Furthermore, in the present invention, when switching the fuel injection timing of the in-cylinder injection valve, fuel is injected into the cylinder from the in-cylinder injection valve by dividing into two times, near the intake top dead center and near the intake bottom dead center. To do. Thereby, the occurrence of knocking due to the fuel injection timing switching of the in-cylinder injection valve can be suppressed, and a smooth torque change characteristic at the time of fuel injection timing switching can be realized.

また、次の本発明に係る内燃機関の制御装置は、前記内燃機関の制御装置において、前記内燃機関に対して噴射する全燃料噴射量が所定量以上となった場合に、前記筒内噴射弁からの燃料噴射が禁止される期間よりも進角側と遅角側との両方で筒内噴射弁が燃料を噴射することを特徴とする。   Further, the internal combustion engine control apparatus according to the present invention is such that, in the control apparatus for an internal combustion engine, when the total fuel injection amount to be injected to the internal combustion engine exceeds a predetermined amount, the in-cylinder injection valve The in-cylinder injection valve injects fuel on both the advance side and the retard side with respect to the period during which fuel injection from is prohibited.

内燃機関に対する全燃料噴射量は、燃料噴射時期切替に起因するノッキングやトルク変動と相関が強い。したがって、前記全燃料噴射量を用いれば、燃料噴射時期の切替時において、第1の噴射形態と第2の噴射形態との両方をそれぞれ所定回数用いるか否かを判定する精度が向上する。   The total fuel injection amount for the internal combustion engine has a strong correlation with knocking and torque fluctuation caused by the fuel injection timing switching. Therefore, if the total fuel injection amount is used, the accuracy of determining whether or not to use both the first injection mode and the second injection mode a predetermined number of times when switching the fuel injection timing is improved.

以上説明したように、この発明に係る内燃機関の制御装置及び内燃機関の制御方法によれば、均質燃焼時において、筒内に噴射された燃料の拡散不均一を回避して、内燃機関のトルク低下を抑制できる。   As described above, according to the internal combustion engine control apparatus and internal combustion engine control method according to the present invention, during homogeneous combustion, the unevenness of the fuel injected into the cylinder is avoided, and the torque of the internal combustion engine is reduced. Reduction can be suppressed.

以下、本発明の実施するための最良の形態について、図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施例の構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。また、本発明はレシプロ式の内燃機関に対して好適に適用でき、特に乗用車やバス、あるいはトラック等の車両に搭載される内燃機関に対して好ましい。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements of the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same. The present invention can be preferably applied to a reciprocating internal combustion engine, and is particularly preferable for an internal combustion engine mounted on a vehicle such as a passenger car, a bus, or a truck.

実施例1の本発明に係る内燃機関の制御装置は、筒内に燃料を噴射する筒内噴射弁を備えるとともに、ピストン頂部にキャビティが形成されている内燃機関の制御に用いられるものである。そして、実施例1の本発明に係る内燃機関の制御装置及び制御方法は、均質燃焼領域で前記内燃機関が運転される場合、前記筒内噴射弁から噴射される燃料が前記キャビティの側壁に衝突する期間においては、前記筒内噴射弁からの燃料噴射を禁止する点に特徴がある。   The control apparatus for an internal combustion engine according to the first embodiment of the present invention is used for controlling an internal combustion engine having an in-cylinder injection valve for injecting fuel into a cylinder and having a cavity formed at the top of a piston. In the control apparatus and control method for an internal combustion engine according to the first embodiment of the present invention, when the internal combustion engine is operated in a homogeneous combustion region, the fuel injected from the in-cylinder injection valve collides with the side wall of the cavity. In this period, fuel injection from the in-cylinder injection valve is prohibited.

図1は、本発明の実施例1に係る内燃機関の制御装置により内燃機関を制御する場合の一例を示す概念図である。内燃機関の制御装置10の制御対象である内燃機関1はガソリンを燃料としたレシプロ式の内燃機関であり、気筒1s内に燃料Fを噴射する筒内噴射弁2を備える。そして、筒内噴射弁2により、内燃機関1へ燃料Fを供給する。このように、内燃機関1は、筒内噴射弁2により直接気筒1s内へ燃料Fを筒内噴射する、いわゆる直噴の内燃機関である。なお、本発明は、吸気通路4内に燃料を噴射するポート噴射弁3(図1では点線で示す)をさらに備える内燃機関に対しても適用することができる。   FIG. 1 is a conceptual diagram illustrating an example in which an internal combustion engine is controlled by a control device for an internal combustion engine according to a first embodiment of the present invention. The internal combustion engine 1 that is a control target of the control device 10 of the internal combustion engine is a reciprocating internal combustion engine that uses gasoline as fuel, and includes an in-cylinder injection valve 2 that injects fuel F into the cylinder 1s. Then, the fuel F is supplied to the internal combustion engine 1 by the in-cylinder injection valve 2. As described above, the internal combustion engine 1 is a so-called direct injection internal combustion engine in which the fuel F is directly injected into the cylinder 1 s by the in-cylinder injection valve 2. The present invention can also be applied to an internal combustion engine that further includes a port injection valve 3 (indicated by a dotted line in FIG. 1) that injects fuel into the intake passage 4.

吸気通路4から気筒1s内に導入される空気は、筒内噴射弁2から噴射される燃料Fと混合気を形成し、この混合気が点火プラグ7で着火されて燃焼する。混合気の燃焼圧力はピストン5に伝えられ、ピストン5を往復運動させる。ピストン5の往復運動はクランク軸6で回転運動に変換されて、内燃機関1の出力として取り出される。クランク軸6にはクランク角センサ41が取り付けられており、クランク角センサ41の出力をECU(Engine Control Unit)30が取得して、筒内噴射弁2に燃料を噴射させる時期の制御に使用する。   The air introduced into the cylinder 1s from the intake passage 4 forms an air-fuel mixture with the fuel F injected from the in-cylinder injection valve 2, and this air-fuel mixture is ignited by the spark plug 7 and burns. The combustion pressure of the air-fuel mixture is transmitted to the piston 5 and causes the piston 5 to reciprocate. The reciprocating motion of the piston 5 is converted into rotational motion by the crankshaft 6 and is taken out as the output of the internal combustion engine 1. A crank angle sensor 41 is attached to the crankshaft 6, and an ECU (Engine Control Unit) 30 acquires the output of the crank angle sensor 41 and uses it to control the timing of injecting fuel into the in-cylinder injection valve 2. .

ECU30は、アクセル開度センサ42、エアフローセンサ43、その他の各種センサ類からの出力等の出力を取得して、内燃機関1の運転を制御する。また、この実施例において、本発明に係る内燃機関の制御装置10はECU30に接続されており、本発明に係る内燃機関の制御方法を実現するにあたっては、ECU30が備える内燃機関1の制御機能機能を利用できるように構成されている。   The ECU 30 acquires outputs such as outputs from the accelerator opening sensor 42, the airflow sensor 43, and other various sensors, and controls the operation of the internal combustion engine 1. Further, in this embodiment, the control device 10 for the internal combustion engine according to the present invention is connected to the ECU 30, and when realizing the control method for the internal combustion engine according to the present invention, the control function function of the internal combustion engine 1 provided in the ECU 30. Is configured to be available.

この内燃機関1が備えるピストン5は、ピストン頂部5tにキャビティ5cが形成されている。このキャビティ5cは、側壁5cwと底面5cuとを有する。成層燃焼時においては、圧縮行程でピストン5が点火上死点近傍に位置したときに、筒内噴射弁2からキャビティ5cへ向かって燃料を噴射する。これにより、点火プラグ7近傍に燃料の濃い混合気を形成して、成層燃焼時においても、安定して燃料を燃焼させることができる。   The piston 5 provided in the internal combustion engine 1 has a cavity 5c formed in the piston top 5t. The cavity 5c has a side wall 5cw and a bottom surface 5cu. During stratified combustion, when the piston 5 is positioned near the ignition top dead center in the compression stroke, fuel is injected from the in-cylinder injection valve 2 toward the cavity 5c. As a result, a fuel-rich mixture is formed in the vicinity of the spark plug 7, and the fuel can be stably burned even during stratified combustion.

図2−1は、吸気下死点付近で筒内に燃料を噴射した場合における燃料の拡散状態を示
す説明図である。図2−2は、吸気上死点付近で筒内に燃料を噴射した場合における燃料の拡散状態を示す説明図である。図2−3は、BTDC260度〜300度で筒内に燃料を噴射した場合における燃料の拡散状態を示す説明図である。また、図3は、機関回転数と燃料噴射時期との関係を示す説明図である。気筒1s内への燃料噴射時期は、点火上死点を0度としたときのクランク角CAで表す。また、気筒1s内への燃料噴射時期は、BTDC(Before Top Death Center:上死点前)で表し、このときの上死点は点火上死点である。図2−1〜図2−3は、いずれも均質燃焼領域における気筒内の状態を表しており、以下の説明は均質燃焼領域が前提である。そして、均質燃焼領域では吸気行程で気筒1s内へ燃料を噴射する。
FIG. 2A is an explanatory diagram illustrating a fuel diffusion state when fuel is injected into the cylinder in the vicinity of the intake bottom dead center. FIG. 2B is an explanatory diagram showing a fuel diffusion state when fuel is injected into the cylinder near the intake top dead center. FIGS. 2-3 is explanatory drawing which shows the spreading | diffusion state of a fuel at the time of injecting a fuel in a cylinder at BTDC 260-300 degree | times. FIG. 3 is an explanatory diagram showing the relationship between the engine speed and the fuel injection timing. The fuel injection timing into the cylinder 1s is represented by a crank angle CA when the ignition top dead center is 0 degree. The fuel injection timing into the cylinder 1s is represented by BTDC (Before Top Death Center), and the top dead center at this time is the ignition top dead center. FIGS. 2-1 to 2-3 each show a state in the cylinder in the homogeneous combustion region, and the following explanation is based on the homogeneous combustion region. In the homogeneous combustion region, fuel is injected into the cylinder 1s during the intake stroke.

図2−1に示すように、吸気下死点付近(図3に示すBゾーン)で筒内噴射弁2により気筒1s内へ燃料を噴射した場合、燃料の噴霧50は、ピストン5に形成されるキャビティ5cの外であって排気弁47側のピストン頂部5tへ向かって噴射される。そして、気筒1sの内壁1swに沿ってシリンダヘッド1shに向かって拡散する。この場合には、気筒1s内において燃料の噴霧50が拡散する空間を大きくとることができるので、機関回転数NEが比較的低い領域においては燃料と空気とが十分に混合される。その結果、燃料の気化潜熱による空気冷却効果を有効に利用して、空気の充填効率を向上させることにより、内燃機関1のトルクを向上させることができる。一方、燃料の噴射から点火までの時間は短くなるので、機関回転数NEが大きくなると、燃料と空気との混合が不十分になりやすい。したがって、吸気下死点付近、すなわち図3に示すBゾーンでの燃料噴射は、機関回転数NEが低回転から中回転、より具体的には機関回転数NEが4000rpm(Revolution Per Minute)前後までとすることが好ましい。   As shown in FIG. 2A, when fuel is injected into the cylinder 1 s by the in-cylinder injection valve 2 in the vicinity of the intake bottom dead center (B zone shown in FIG. 3), the fuel spray 50 is formed on the piston 5. Injected toward the piston top 5t on the exhaust valve 47 side outside the cavity 5c. Then, it diffuses toward the cylinder head 1sh along the inner wall 1sw of the cylinder 1s. In this case, since the space in which the fuel spray 50 diffuses in the cylinder 1s can be made large, the fuel and air are sufficiently mixed in a region where the engine speed NE is relatively low. As a result, the torque of the internal combustion engine 1 can be improved by effectively using the air cooling effect due to the latent heat of vaporization of the fuel and improving the air charging efficiency. On the other hand, since the time from fuel injection to ignition is shortened, when the engine speed NE increases, the fuel and air are likely to be insufficiently mixed. Therefore, in the fuel injection in the vicinity of the intake bottom dead center, that is, in the B zone shown in FIG. 3, the engine speed NE is low to medium, more specifically, the engine speed NE is around 4000 rpm (Revolution Per Minute). It is preferable that

次に、図2−2に示すように、吸気上死点付近(図3に示すAゾーン)で筒内噴射弁2により気筒1s内へ燃料を噴射した場合、燃料の噴霧50は、ピストン5のキャビティ5c内へ噴射される。そして、底面5cuを通って側壁5cwに沿って拡散していく。ここで、側壁5cwは、排気弁47側の壁面であり、燃料の噴霧50の進行方向側に位置する壁面である。この場合には、気筒1s内において燃料の噴霧50が拡散する空間を大きくとることができず、また、燃料の噴霧50の拡散時間も十分に確保できない。しかし、燃料噴射から点火までの時間を確保することができるので、燃料噴射後における燃料と空気との混合を促進することができる。ここで、機関回転数NEが大きい場合、内燃機関1のトルクを向上させるためには燃料と空気との混合を促進させることが効果的である。したがって、機関回転数NEが高回転域(NEが4000rpm前後以上)においては、吸気上死点付近、すなわち図3に示すAゾーンで燃料を噴射することが好ましい。これにより、高回転域において、内燃機関1のトルクを向上させることができる。   Next, as shown in FIG. 2B, when the fuel is injected into the cylinder 1s by the in-cylinder injection valve 2 near the intake top dead center (A zone shown in FIG. 3), the fuel spray 50 Is injected into the cavity 5c. Then, it diffuses along the side wall 5cw through the bottom surface 5cu. Here, the side wall 5 cw is a wall surface on the exhaust valve 47 side, and is a wall surface located on the traveling direction side of the fuel spray 50. In this case, the space in which the fuel spray 50 diffuses in the cylinder 1 s cannot be made large, and the diffusion time of the fuel spray 50 cannot be secured sufficiently. However, since the time from fuel injection to ignition can be secured, mixing of fuel and air after fuel injection can be promoted. Here, when the engine speed NE is large, in order to improve the torque of the internal combustion engine 1, it is effective to promote the mixing of fuel and air. Therefore, when the engine speed NE is high (NE is about 4000 rpm or more), it is preferable to inject fuel in the vicinity of the intake top dead center, that is, the A zone shown in FIG. Thereby, the torque of the internal combustion engine 1 can be improved in a high rotation range.

一方、図2−3に示すように、クランク角CAがBTDC260度以上BTDC300度以下で気筒1s内に燃料を噴射した場合、燃料の噴霧50はピストン5のキャビティ5cの側壁5cwに衝突し、底面5cuへ巻き込むように拡散する。これにより、気筒1s内へ噴射した燃料の噴霧50はピストン5の底面5cuに偏在し、気筒1s内に導入された空気と十分に混合されない。その結果、内燃機関1のトルク低下を招いてしまう。このため、ピストン5にキャビティ5cが形成されている場合、クランク角CAがBTDC260度以上300度以下の領域、すなわち図3の燃料噴射禁止ゾーン(Cゾーン)においては、気筒1s内への燃料噴射を禁止する。   On the other hand, as shown in FIG. 2-3, when the fuel is injected into the cylinder 1s with a crank angle CA of BTDC 260 degrees or more and BTDC 300 degrees or less, the fuel spray 50 collides with the side wall 5cw of the cavity 5c of the piston 5, It spreads so as to be wound around 5 cu. Thus, the fuel spray 50 injected into the cylinder 1s is unevenly distributed on the bottom surface 5cu of the piston 5 and is not sufficiently mixed with the air introduced into the cylinder 1s. As a result, the torque of the internal combustion engine 1 is reduced. For this reason, when the cavity 5c is formed in the piston 5, the fuel injection into the cylinder 1s is performed in the region where the crank angle CA is BTDC 260 ° or more and 300 ° or less, that is, in the fuel injection inhibition zone (C zone) in FIG. Is prohibited.

実施例1の本発明では、燃料が側壁5cwへ衝突して、燃料と空気との混合が悪化する領域での燃料噴射を禁止する。これにより、実施例1の本発明では、キャビティ5cへの燃料衝突に起因する燃料の拡散不均一を抑制できるので、キャビティ5cを有するピストン5を備える内燃機関1のトルク低下を抑制することができる。   In the present invention of the first embodiment, fuel injection is prohibited in a region where the fuel collides with the side wall 5cw and the mixing of fuel and air deteriorates. Thereby, in this invention of Example 1, since the spreading | diffusion nonuniformity of the fuel resulting from the fuel collision to the cavity 5c can be suppressed, the torque fall of the internal combustion engine 1 provided with the piston 5 which has the cavity 5c can be suppressed. .

さらに、実施例1の本発明においては、機関回転数NEに応じて筒内噴射弁2による気筒1s内への燃料噴射時期を切り替える。より具体的には、機関回転数NEが所定の回転数NEcよりも低い場合には、吸気下死点付近(図3のBゾーン)で筒内噴射弁2から燃料を噴射し、機関回転数NEが所定の回転数NEcよりも大きい場合には、吸気上死点付近(図3のAゾーン)で筒内噴射弁2から燃料を噴射するように切り替える。   Further, in the present invention of the first embodiment, the fuel injection timing into the cylinder 1s by the in-cylinder injection valve 2 is switched according to the engine speed NE. More specifically, when the engine speed NE is lower than the predetermined engine speed NEc, fuel is injected from the in-cylinder injection valve 2 near the intake bottom dead center (B zone in FIG. 3), and the engine speed is increased. When NE is larger than the predetermined rotational speed NEc, switching is performed so that fuel is injected from the in-cylinder injection valve 2 in the vicinity of the intake top dead center (A zone in FIG. 3).

すなわち、所定の回転数NEcと機関回転数NEとに基づき、筒内噴射弁2による燃料の噴射が禁止される期間(図3のCゾーン)を避けて、吸気上死点側(Cゾーンを基準に進角側)と吸気下死点側(Cゾーンを基準に遅角側)とで筒内噴射弁2から燃料を噴射する。これにより、機関回転数NEに応じて異なる、空気冷却によるトルク向上効果と、燃料と空気との混合促進によるトルク向上効果とを効果的に利用して、内燃機関1のトルクを向上させることができる。   That is, based on the predetermined engine speed NEc and the engine speed NE, avoiding the period during which fuel injection by the in-cylinder injection valve 2 is prohibited (C zone in FIG. 3), the intake top dead center side (C zone Fuel is injected from the in-cylinder injection valve 2 on the advance side with respect to the reference and on the intake bottom dead center side (the retard side with reference to the C zone). Thus, the torque of the internal combustion engine 1 can be improved by effectively utilizing the torque improvement effect by air cooling and the torque improvement effect by promoting the mixing of fuel and air, which differ depending on the engine speed NE. it can.

ここで、吸気上死点付近とは、クランク角CAがBTDC300度以上BTDC360度以下の範囲であり、吸気下死点付近とは、クランク角CAがBTDC180度以上BTDC260度以下の範囲である。また、本発明でいう第1の噴射形態とは、筒内噴射弁2からの燃料噴射が禁止される期間(図3のCゾーン)よりも遅角側で燃料を噴射させる噴射形態であり、吸気下死点付近(図3のBゾーン)で筒内噴射弁2から燃料を噴射することを意味する。また、本発明でいう第2の噴射形態とは、筒内噴射弁2からの燃料噴射が禁止される期間(図3のCゾーン)よりも進角側で燃料を噴射させる噴射形態であり、吸気上死点付近(図3のAゾーン)で筒内噴射弁2から燃料を噴射することを意味する。   Here, the vicinity of the intake top dead center is a range where the crank angle CA is BTDC 300 degrees or more and BTDC 360 degrees or less, and the vicinity of the intake bottom dead center is a range where the crank angle CA is BTDC 180 degrees or more and BTDC 260 degrees or less. Further, the first injection mode referred to in the present invention is an injection mode in which fuel is injected on the retard side from a period during which fuel injection from the in-cylinder injection valve 2 is prohibited (C zone in FIG. 3). This means that fuel is injected from the in-cylinder injection valve 2 in the vicinity of the intake bottom dead center (B zone in FIG. 3). Further, the second injection mode referred to in the present invention is an injection mode in which fuel is injected on the advance side from the period during which fuel injection from the in-cylinder injection valve 2 is prohibited (C zone in FIG. 3). This means that fuel is injected from the cylinder injection valve 2 in the vicinity of the intake top dead center (A zone in FIG. 3).

また、筒内噴射弁2による気筒1s内への燃料噴射時期を、吸気下死点付近から吸気上死点付近へ切り替えるとき、所定の回転数NEcを超えると同時に燃料噴射時期を切り替えると、次のような問題が発生する。まず、空気冷却の効果が発揮されにくくなることにより充填効率が急激に変化するとともに、燃料と空気との混合が促進されるので、内燃機関1には急激なトルク変動が発生する。また、吸気上死点付近においては、ピストン5の表面温度が高いため、燃料噴射によるピストン5の表面温度が急激に低下することによる熱衝撃が発生したり、ノッキングが発生したりする。その結果、ドライバビリティを低下させたり、内燃機関1の耐久性を低下させたりするおそれがある。   Further, when the fuel injection timing into the cylinder 1s by the in-cylinder injection valve 2 is switched from the vicinity of the intake bottom dead center to the vicinity of the intake top dead center, if the fuel injection timing is switched simultaneously with exceeding the predetermined rotational speed NEc, The problem like this occurs. First, since the effect of air cooling becomes less effective, the charging efficiency changes abruptly and the mixing of fuel and air is promoted, so that a sudden torque fluctuation occurs in the internal combustion engine 1. Moreover, since the surface temperature of the piston 5 is high in the vicinity of the intake top dead center, a thermal shock or knocking occurs due to a rapid decrease in the surface temperature of the piston 5 due to fuel injection. As a result, there is a possibility that drivability may be reduced or durability of the internal combustion engine 1 may be reduced.

かかる問題に対して、本発明では、噴射切替時期から所定の期間Δθ(図3)では、吸気上死点付近(Aゾーン)と吸気下死点付近(Bゾーン)との2回に分割して、気筒1s内へ燃料を噴射する。これにより、筒内噴射弁2の燃料噴射時期切替時におけるノッキングの発生を抑制できるとともに、燃料噴射時期切替時における円滑なトルク変化特性を実現できる。また、ピストン5表面の急激な温度変化を抑制して、熱衝撃によるピストン5の耐久性低下を抑制できる。   In order to deal with such a problem, in the present invention, in the predetermined period Δθ (FIG. 3) from the injection switching timing, it is divided into the vicinity of the intake top dead center (A zone) and the intake bottom dead center (B zone). Thus, the fuel is injected into the cylinder 1s. As a result, the occurrence of knocking at the time of fuel injection timing switching of the in-cylinder injection valve 2 can be suppressed, and a smooth torque change characteristic at the time of fuel injection timing switching can be realized. In addition, a rapid temperature change on the surface of the piston 5 can be suppressed, and a decrease in the durability of the piston 5 due to thermal shock can be suppressed.

図4は、実施例1の本発明に係る内燃機関の制御装置の構成を示す説明図である。図4を用いて、本発明の実施例に係る内燃機関の制御装置10の構成を説明する。内燃機関の制御装置10は、処理部10pと、記憶部10mとを含んで構成される。処理部10pは、さらに燃焼判定部21と、噴射時期決定部22と、噴射割合決定部23とを含んで構成される。ここで、燃焼判定部21と、噴射時期決定部22と、噴射割合決定部23とが、本発明に係る内燃機関の制御方法を実行する部分となる。   FIG. 4 is an explanatory diagram showing the configuration of the control device for an internal combustion engine according to the present invention in the first embodiment. The configuration of the control apparatus 10 for an internal combustion engine according to the embodiment of the present invention will be described with reference to FIG. The control device 10 for an internal combustion engine includes a processing unit 10p and a storage unit 10m. The processing unit 10p further includes a combustion determination unit 21, an injection timing determination unit 22, and an injection ratio determination unit 23. Here, the combustion determination part 21, the injection timing determination part 22, and the injection ratio determination part 23 become a part which performs the control method of the internal combustion engine which concerns on this invention.

記憶部10mと、燃焼判定部21と、噴射時期決定部22と、噴射割合決定部23とは、内燃機関の制御装置10の入出力ポート(I/O)29を介して接続される。これにより、記憶部10mと、燃焼判定部21と、噴射時期決定部22と、噴射割合決定部23とは、それぞれ双方向でデータをやり取りできるように構成される。なお、装置構成上の必要に応じて片方向でデータを送受信するようにしてもよい。   The storage unit 10m, the combustion determination unit 21, the injection timing determination unit 22, and the injection ratio determination unit 23 are connected via an input / output port (I / O) 29 of the control device 10 for the internal combustion engine. Thereby, the memory | storage part 10m, the combustion determination part 21, the injection timing determination part 22, and the injection ratio determination part 23 are comprised so that each can exchange data bidirectionally. Note that data may be transmitted and received in one direction as required in the device configuration.

内燃機関の制御装置10とECU30とは、内燃機関の制御装置10の入出力ポート(I/O)29を介して接続されており、両者間で相互にデータをやり取りすることができる。これにより、内燃機関の制御装置10はECU30が有する内燃機関制御データを取得したり、ECUを介して内燃機関1の各種センサからの情報を取得したり、あるいは内燃機関の制御装置10の制御をECU30のエンジン制御ルーチンに割り込ませたりすることができる。また、本発明に係る内燃機関の制御装置10は、ECU30に組み込んでもよく、ECU30の機能の一部により、本発明に係る内燃機関の制御装置10の機能を実現してもよい。   The control device 10 of the internal combustion engine and the ECU 30 are connected via an input / output port (I / O) 29 of the control device 10 of the internal combustion engine, and can exchange data with each other. Thereby, the control device 10 of the internal combustion engine acquires the internal combustion engine control data that the ECU 30 has, acquires information from various sensors of the internal combustion engine 1 via the ECU, or controls the control device 10 of the internal combustion engine. The engine control routine of the ECU 30 can be interrupted. Further, the control device 10 for the internal combustion engine according to the present invention may be incorporated in the ECU 30, and the function of the control device 10 for the internal combustion engine according to the present invention may be realized by a part of the function of the ECU 30.

記憶部10mには、本発明に係る内燃機関の制御方法の処理手順を含むコンピュータプログラムや、後述する燃料噴射割合マップ55、その他のデータマップ等が格納されている。ここで、記憶部10mは、RAM(Random Access Memory)のような揮発性のメモリ、フラッシュメモリ等の不揮発性のメモリ、あるいはこれらの組み合わせにより構成することができる。また、処理部10pは、メモリ及びCPUにより構成することができる。   The storage unit 10m stores a computer program including a processing procedure of a control method for an internal combustion engine according to the present invention, a fuel injection ratio map 55 described later, other data maps, and the like. Here, the storage unit 10m can be configured by a volatile memory such as a RAM (Random Access Memory), a nonvolatile memory such as a flash memory, or a combination thereof. The processing unit 10p can be configured by a memory and a CPU.

上記コンピュータプログラムは、処理部10pやECU30にすでに記録されているコンピュータプログラムとの組み合わせによって、本発明に係る内燃機関の制御方法の処理手順を実現できるものであってもよい。この処理部10pは、前記コンピュータプログラムの代わりに専用のハードウェアを用いて、燃焼判定部21、噴射時期決定部22及び噴射割合決定部23の機能を実現するものであってもよい。次に、この内燃機関の制御装置10を用いて、本発明の実施例に係る内燃機関の制御方法を実現する手順を説明する。なお、この説明にあたっては、適宜図1、3、4を参照されたい。   The computer program may be capable of realizing the processing procedure of the control method for an internal combustion engine according to the present invention by a combination with a computer program already recorded in the processing unit 10p or the ECU 30. The processing unit 10p may realize the functions of the combustion determination unit 21, the injection timing determination unit 22, and the injection ratio determination unit 23 using dedicated hardware instead of the computer program. Next, a procedure for realizing the control method of the internal combustion engine according to the embodiment of the present invention by using the control device 10 for the internal combustion engine will be described. In this description, please refer to FIGS.

図5は、実施例1の本発明に係る内燃機関の制御方法の制御手順を示すフローチャートである。本発明の実施例に係る内燃機関の制御方法を実現するにあたり、まず、ECU30が、内燃機関1の負荷や機関回転数NE等から、内燃機関1が必要とする全燃料噴射量TAUを算出する(ステップS101)。次に、内燃機関の制御装置10の燃焼判定部21が、均質燃焼領域であるか否かを判定する(ステップS102)。均質燃焼領域であるか否かは、内燃機関1のアクセル開度や吸気通路4の圧力等から判定する。均質燃焼領域は一般に高負荷運転領域であり、いわゆるWOT(Wide Open Throttle)の領域である。したがって、高負荷領域(WOT領域)であれば均質燃焼領域と判断することができる。例えば、アクセル開度がおよそ8割以上の場合に、均質燃焼領域(高負荷運転領域)と判定される。また、実施例1の本発明では、BTDC260度以上300度以下の領域においては、噴射時期決定部22が筒内噴射弁2からの燃料噴射を禁止する。これにより、ピストン5に形成されたキャビティ5cへ燃料の噴霧50が偏在することを回避できるので、内燃機関1のトルク低下を抑制できる。   FIG. 5 is a flowchart showing a control procedure of the control method of the internal combustion engine according to the present invention in the first embodiment. In realizing the control method of the internal combustion engine according to the embodiment of the present invention, first, the ECU 30 calculates the total fuel injection amount TAU required by the internal combustion engine 1 from the load of the internal combustion engine 1, the engine speed NE, and the like. (Step S101). Next, the combustion determination unit 21 of the control device 10 for the internal combustion engine determines whether or not it is a homogeneous combustion region (step S102). Whether or not it is in a homogeneous combustion region is determined from the accelerator opening of the internal combustion engine 1, the pressure in the intake passage 4, and the like. The homogeneous combustion region is generally a high-load operation region, which is a so-called WOT (Wide Open Throttle) region. Therefore, it can be determined as a homogeneous combustion region in a high load region (WOT region). For example, when the accelerator opening is approximately 80% or more, it is determined as the homogeneous combustion region (high load operation region). Further, in the present invention of the first embodiment, the injection timing determination unit 22 prohibits fuel injection from the in-cylinder injection valve 2 in the region of BTDC 260 degrees or more and 300 degrees or less. Accordingly, it is possible to avoid the fuel spray 50 from being unevenly distributed in the cavity 5 c formed in the piston 5, so that a reduction in torque of the internal combustion engine 1 can be suppressed.

燃焼判定部21が均質燃焼領域ではないと判定した場合は(ステップS102;No)、成層燃焼領域で内燃機関1を運転する(ステップS113)。均質燃焼領域であると燃焼判定部21が判定した場合(ステップS102;Yes)、噴射時期決定部22が、筒内噴射弁2による燃料噴射時期を吸気上死点付近(Aゾーン)とするか否かを判定する。この判定は、均質燃焼領域におけるトルク向上に対し、空気冷却が支配的か、燃料と空気との混合が支配的かを基準とする。より具体的には、例えば機関回転数NEが、予め定めた所定の回転数NEc以上であるか否かで判定する。(ステップS103)。すなわち、機関回転数NEが所定の回転数NEc(図3参照)以上である場合には、燃料と空気との混合が支配的な領域なので、噴射時期決定部22は筒内噴射弁2による燃料噴射時期を吸気上死点付近とする。所定の回転数NEcは、内燃機関1の仕様にもよるが、例えば4000rpm前後である。   When the combustion determination unit 21 determines that the region is not in the homogeneous combustion region (step S102; No), the internal combustion engine 1 is operated in the stratified combustion region (step S113). If the combustion determination unit 21 determines that it is in the homogeneous combustion region (step S102; Yes), whether the injection timing determination unit 22 sets the fuel injection timing by the in-cylinder injection valve 2 to the vicinity of the intake top dead center (A zone). Determine whether or not. This determination is based on whether air cooling is dominant or fuel / air mixing is dominant with respect to torque improvement in the homogeneous combustion region. More specifically, for example, the determination is made based on whether or not the engine speed NE is equal to or higher than a predetermined speed NEc. (Step S103). That is, when the engine speed NE is equal to or higher than the predetermined engine speed NEc (see FIG. 3), since the mixture of fuel and air is dominant, the injection timing determination unit 22 determines the fuel generated by the in-cylinder injection valve 2. The injection timing is set to the vicinity of the intake top dead center. The predetermined rotational speed NEc is, for example, around 4000 rpm, although it depends on the specifications of the internal combustion engine 1.

燃料噴射時期を吸気上死点付近とする場合は(ステップS103;Yes)、筒内噴射弁2の燃料噴射時期を吸気下死点付近から吸気上死点付近に切り替える。このとき、本発明においては、筒内噴射弁2の燃料噴射時期を切り替えるときから所定の期間Δθ(図3)は、吸気上死点付近及び吸気下死点付近の両方で筒内噴射弁2により燃料を噴射させてから、燃料噴射時期を吸気上死点付近に切り替える。この実施例では、所定の回転数NEcになったときに筒内噴射弁2の燃料噴射時期を切り替えるが、この場合、例えば前記所定の期間Δθは、前記所定の回転数NEcから予め定めた回転数だけ内燃機関1が回転する期間とすることができる。   When the fuel injection timing is set to the vicinity of the intake top dead center (step S103; Yes), the fuel injection timing of the in-cylinder injection valve 2 is switched from the vicinity of the intake bottom dead center to the vicinity of the intake top dead center. At this time, in the present invention, the in-cylinder injection valve 2 is in the vicinity of the intake top dead center and the intake bottom dead center for a predetermined period Δθ (FIG. 3) from when the fuel injection timing of the in-cylinder injection valve 2 is switched. After injecting fuel, the fuel injection timing is switched to the vicinity of the intake top dead center. In this embodiment, the fuel injection timing of the in-cylinder injection valve 2 is switched when the predetermined rotational speed NEc is reached. In this case, for example, the predetermined period Δθ is a predetermined rotation from the predetermined rotational speed NEc. The period during which the internal combustion engine 1 rotates by a certain number can be set.

吸気上死点付近及び吸気下死点付近の両方で筒内噴射弁2により燃料を噴射させる場合、噴射時期決定部22は、フラグFが0か否かを判定する(ステップS104)。このフラグFは、筒内噴射弁2の燃料噴射時期を吸気下死点付近から吸気上死点付近に切り替える際に、最初に機関回転数NEが所定の回転数NEc以上となった場合にのみ、吸気上死点付近及び吸気下死点付近の両方で、筒内噴射弁2により所定の期間(回数)だけ燃料を噴射させるために用いられる。なお、このフラグFは、筒内噴射弁2の燃料噴射時期を吸気下死点付近から吸気上死点付近に切り替える際に、吸気上死点付近及び吸気下死点付近の両方で筒内噴射弁2により燃料を噴射させた場合にF=1となる。   When fuel is injected by the in-cylinder injection valve 2 near both the intake top dead center and the intake bottom dead center, the injection timing determination unit 22 determines whether or not the flag F is 0 (step S104). This flag F is used only when the engine speed NE is initially equal to or higher than the predetermined engine speed NEc when the fuel injection timing of the cylinder injection valve 2 is switched from the vicinity of the intake bottom dead center to the vicinity of the intake top dead center. The in-cylinder injection valve 2 is used to inject fuel for a predetermined period (number of times) both near the intake top dead center and near the intake bottom dead center. The flag F is used for in-cylinder injection near both the intake top dead center and the intake bottom dead center when the fuel injection timing of the in-cylinder injection valve 2 is switched from the vicinity of the intake bottom dead center to the vicinity of the intake top dead center. When fuel is injected by the valve 2, F = 1.

フラグFが0のときには(ステップS104;Yes)、筒内噴射弁2の燃料噴射時期を吸気下死点付近から吸気上死点付近に切り替える際には、まだ吸気上死点付近及び吸気下死点付近の両方で筒内噴射弁2により燃料を噴射していないと判断できる。このため、筒内噴射弁2の燃料噴射時期を切り替える際に、吸気上死点付近及び吸気下死点付近の両方で筒内噴射弁2により所定の期間(回数)、燃料を噴射させる。   When the flag F is 0 (step S104; Yes), when the fuel injection timing of the in-cylinder injection valve 2 is switched from the vicinity of the intake bottom dead center to the vicinity of the intake top dead center, it is still near the intake top dead center and the intake bottom dead center. It can be determined that the fuel is not injected by the in-cylinder injection valve 2 both near the point. Therefore, when the fuel injection timing of the in-cylinder injection valve 2 is switched, fuel is injected by the in-cylinder injection valve 2 for a predetermined period (number of times) both near the intake top dead center and near the intake bottom dead center.

ここで、燃料噴射時期切替に起因するノッキングやトルク変動は、燃料噴射量に依存し、燃料噴射量が大きくなるほど顕著になる。このため、噴射時期決定部22は、全燃料噴射量TAUと所定の基準燃料噴射量Qcとを比較する(ステップS105)。TAU<Qcのときは(ステップS105;No)、噴射割合決定部23が吸気上死点付近(Aゾーン)における燃料噴射量QA=TAUとし、吸気下死点付近(Bゾーン)における燃料噴射量QB=0にする(ステップS114)。そして、噴射時期決定部22は、筒内噴射弁2の燃料噴射時期を吸気上死点付近に設定し、切り替える(ステップS111)。筒内噴射弁2は吸気上死点付近、すなわち、クランク角CAがBTDC300度以上BTDC360度以下の範囲で燃料を噴射する(ステップS112)。このとき、吸気上死点側と吸気下死点側との両方で燃料を噴射する期間Δθは設けない。   Here, knocking and torque fluctuation resulting from the fuel injection timing switching depend on the fuel injection amount, and become more prominent as the fuel injection amount increases. For this reason, the injection timing determination unit 22 compares the total fuel injection amount TAU with a predetermined reference fuel injection amount Qc (step S105). When TAU <Qc (step S105; No), the injection ratio determination unit 23 sets the fuel injection amount QA = TAU near the intake top dead center (A zone), and the fuel injection amount near the intake bottom dead center (B zone). QB = 0 is set (step S114). Then, the injection timing determination unit 22 sets the fuel injection timing of the in-cylinder injection valve 2 in the vicinity of the intake top dead center and switches (step S111). The in-cylinder injection valve 2 injects fuel in the vicinity of the intake top dead center, that is, the crank angle CA is in the range of BTDC 300 degrees to BTDC 360 degrees (step S112). At this time, there is no period Δθ for injecting fuel on both the intake top dead center side and the intake bottom dead center side.

次に、TAU≧Qcの場合(ステップS105;Yes)、噴射時期決定部22は、吸気上死点付近及び吸気下死点付近の両方で筒内噴射弁2により燃料を噴射させるように燃料噴射時期を決定する。このとき、吸気上死点付近における燃料噴射量をQA、吸気下死点付近における燃料噴射量をQBとすると、噴射割合決定部23は、QA=QB=TAU/2となるように燃料噴射量を設定する(ステップS106)。そして、筒内噴射弁2は、噴射時期決定部22の決定した燃料噴射時期に基づいて、吸気上死点付近及び吸気下死点付近の両方で燃料を噴射する(ステップS107)。なお、実施例1においてはQA:QB=1:1としたが、両者の比率はこれに限定されるものではない。また、上記例では、吸気下死点付近の噴射から吸気上死点付近の噴射へ切り替える際、全燃料噴射量TAUが所定の基準燃料噴射量Qc以上の場合にのみ、吸気上死点付近及び吸気下死点付近の両方で筒内噴射弁2が燃料を噴射する。しかし、これに限られず、筒内噴射弁2の燃料噴射時期を切り替える際には、全燃料噴射量TAUの大きさにかかわらず、常に吸気上死点付近及び吸気下死点付近の両方で、筒内噴射弁2に所定の回数だけ燃料を噴射させてもよい。   Next, when TAU ≧ Qc (step S105; Yes), the injection timing determination unit 22 performs fuel injection so that fuel is injected by the in-cylinder injection valve 2 both near the intake top dead center and near the intake bottom dead center. Decide when. At this time, if the fuel injection amount in the vicinity of the intake top dead center is QA and the fuel injection amount in the vicinity of the intake bottom dead center is QB, the injection ratio determination unit 23 sets the fuel injection amount so that QA = QB = TAU / 2. Is set (step S106). The in-cylinder injection valve 2 then injects fuel both near the intake top dead center and near the intake bottom dead center based on the fuel injection timing determined by the injection timing determination unit 22 (step S107). In Example 1, QA: QB = 1: 1, but the ratio of both is not limited to this. In the above example, when switching from the injection near the intake bottom dead center to the injection near the intake top dead center, only when the total fuel injection amount TAU is equal to or greater than the predetermined reference fuel injection amount Qc, The in-cylinder injection valve 2 injects fuel both near the intake bottom dead center. However, the present invention is not limited to this. When the fuel injection timing of the in-cylinder injection valve 2 is switched, regardless of the total fuel injection amount TAU, always near both the intake top dead center and the intake bottom dead center. Fuel may be injected into the in-cylinder injection valve 2 a predetermined number of times.

このように、実施例1の本発明では、内燃機関1の全燃料噴射量に基づいて、吸気上死点付近と吸気下死点付近との2回に分割して筒内噴射するか否かを判定する。燃料噴射時期切替に起因するノッキングやトルク変動は、内燃機関1の全燃料噴射量TAUと相関が強い。したがって、全燃料噴射量TAUを用いれば、吸気上死点付近と吸気下死点付近との2回に分割して筒内噴射するか否かの判定精度が向上する。これによって、より確実に燃料噴射時期切替に起因するノッキングやトルク変動を抑制することができる。   As described above, according to the present invention of the first embodiment, whether or not the in-cylinder injection is divided into two portions near the intake top dead center and the intake bottom dead center based on the total fuel injection amount of the internal combustion engine 1. Determine. Knocking and torque fluctuation caused by the fuel injection timing switching have a strong correlation with the total fuel injection amount TAU of the internal combustion engine 1. Therefore, if the total fuel injection amount TAU is used, it is possible to improve the accuracy of determining whether or not to perform in-cylinder injection divided into two times, near the intake top dead center and near the intake bottom dead center. As a result, knocking and torque fluctuation caused by the fuel injection timing switching can be more reliably suppressed.

実施例1において、吸気上死点側及び吸気下死点側の両方で燃料を噴射させる前記所定の期間Δθは、燃料噴射回数nによって判定する。燃料噴射回数nが所定の燃料噴射回数n2(この例では20回)に達するまで、すなわち、機関回転数NEが2×n2回転するまで、吸気行程における吸気上死点側及び吸気下死点側の両方に分割して燃料を噴射させる(ステップS108;Yes)。このときには、吸気上死点側及び吸気下死点側それぞれにおいてn2回づつ、筒内噴射弁2から燃料を噴射する。 In the first embodiment, the predetermined period Δθ in which fuel is injected on both the intake top dead center side and the intake bottom dead center side is determined by the number of fuel injections n. Until the fuel injection number n reaches a predetermined fuel injection number n 2 (in this example, 20 times), that is, until the engine speed NE rotates 2 × n 2 , the intake top dead center side and the intake bottom dead end in the intake stroke Fuel is injected by dividing into both points (step S108; Yes). At this time, the fuel is injected from the in-cylinder injection valve 2 n 2 times on each of the intake top dead center side and the intake bottom dead center side.

燃料噴射回数nが所定の燃料噴射回数n2に達したら(ステップS108;No)、噴射時期決定部22は、フラグFを1とする(ステップS109)。これにより、最初に機関回転数NEが所定の回転数NEc以上となったときにのみ、吸気上死点付近及び吸気下死点付近の両方で筒内噴射弁2により、所定の機関(回数)だけ燃料を噴射させることができる。フラグF=1としたら、噴射割合決定部23は、吸気上死点付近(Aゾーン)における燃料噴射量QA=TAUに設定し、吸気下死点付近(Bゾーン)における燃料噴射量QB=0に設定する(ステップS110)。そして、噴射時期決定部22は、筒内噴射弁2による燃料噴射時期を吸気上死点付近における燃料噴射に設定し、切り替える(ステップS111)。筒内噴射弁2は吸気上死点付近、すなわち、クランク角CAがBTDC300度以上BTDC360度以下の範囲で燃料を噴射する(ステップS112)。 When the fuel injection number n reaches the predetermined fuel injection number n 2 (step S108; No), the injection timing determination unit 22 sets the flag F to 1 (step S109). As a result, only when the engine speed NE is initially equal to or higher than the predetermined engine speed NEc, the cylinder injection valve 2 is used to generate a predetermined engine (number of times) near both the intake top dead center and the intake bottom dead center. Only fuel can be injected. If the flag F = 1, the injection ratio determination unit 23 sets the fuel injection amount QA = TAU near the intake top dead center (A zone), and the fuel injection amount QB = 0 near the intake bottom dead center (B zone). (Step S110). Then, the injection timing determination unit 22 sets the fuel injection timing by the in-cylinder injection valve 2 to the fuel injection in the vicinity of the intake top dead center, and switches (step S111). The in-cylinder injection valve 2 injects fuel in the vicinity of the intake top dead center, that is, the crank angle CA is in the range of BTDC 300 degrees to BTDC 360 degrees (step S112).

ここで、ピストン前記所定の期間Δθは、ピストン5の温度(例えば内燃機関1の冷却水温度から推定)や内燃機関1のボア・ストロークの違い等に応じて、最適な値を決定する。さらに、機関回転数NEが上昇するときのみならず、機関回転数NEが下降するときにおける燃料噴射時期の切替においても、吸気上死点側及び吸気下死点側の両方で燃料を噴射してもよい。   Here, an optimum value of the predetermined period Δθ of the piston is determined in accordance with the temperature of the piston 5 (e.g., estimated from the coolant temperature of the internal combustion engine 1), the difference in the bore stroke of the internal combustion engine 1, and the like. Further, not only when the engine speed NE rises but also when the fuel injection timing is switched when the engine speed NE falls, fuel is injected at both the intake top dead center side and the intake bottom dead center side. Also good.

フラグFが1のときには(ステップS104;No)、すでに吸気上死点付近及び吸気下死点付近の両方で筒内噴射弁2により所定の機関(回数)だけ燃料を噴射して、筒内噴射弁2の燃料噴射時期を吸気上死点付近に切り替えた場合であると判断できる。このため、噴射割合決定部23は、吸気上死点付近(Aゾーン)における燃料噴射量QA=TAUに設定し、吸気下死点付近(Bゾーン)における燃料噴射量QB=0に設定する(ステップS115)。そして、噴射時期決定部22は、筒内噴射弁2による燃料噴射時期を吸気上死点における燃料噴射として(ステップS111)。筒内噴射弁2は吸気上死点付近、すなわち、クランク角CAがBTDC300度以上BTDC360度以下の範囲で燃料を噴射する(ステップS112)。なお、一旦フラグF=1とした後は、機関回転数NEが所定の回転数NEcよりも小さくなった場合にフラグFを0にして、その後NE≧NEcとなった場合の燃料噴射時期の切替に備えるようにしてもよい。   When the flag F is 1 (step S104; No), fuel is already injected by the in-cylinder injection valve 2 by a predetermined engine (number of times) near both the intake top dead center and the intake bottom dead center. It can be determined that the fuel injection timing of the valve 2 is switched to the vicinity of the intake top dead center. Therefore, the injection ratio determination unit 23 sets the fuel injection amount QA = TAU near the intake top dead center (A zone) and sets the fuel injection amount QB = 0 near the intake bottom dead center (B zone) ( Step S115). Then, the injection timing determination unit 22 sets the fuel injection timing by the in-cylinder injection valve 2 as fuel injection at the intake top dead center (step S111). The in-cylinder injection valve 2 injects fuel in the vicinity of the intake top dead center, that is, the crank angle CA is in the range of BTDC 300 degrees to BTDC 360 degrees (step S112). Once the flag F = 1, the flag F is set to 0 when the engine speed NE is smaller than the predetermined engine speed NEc, and then the fuel injection timing is switched when NE ≧ NEc. You may make it prepare for.

機関回転数NEが所定の回転数NEcよりも小さい場合、噴射時期決定部22は空気冷却が支配的な領域と判定する(ステップS103;No)。このとき、噴射割合決定部23は、吸気下死点付近(Bゾーン)における燃料噴射量QB=TAUに、吸気上死点付近(Aゾーン)における燃料噴射量QA=0となるように燃料噴射量を設定する(ステップS116)。噴射時期決定部22は、燃料噴射時期を吸気下死点付近(Bゾーン)に設定し、切り替える(ステップS117)。筒内噴射弁2は、吸気下死点付近、すなわちクランク角CAがBTDC180度以上BTDC260度以下の範囲で、燃料噴射量QB=T
AUで燃料を噴射する(ステップS118)。
When the engine speed NE is smaller than the predetermined engine speed NEc, the injection timing determination unit 22 determines that the air cooling is a dominant region (Step S103; No). At this time, the injection ratio determination unit 23 performs the fuel injection so that the fuel injection amount QB = TAU near the intake bottom dead center (B zone) becomes the fuel injection amount QA = 0 near the intake top dead center (A zone). The amount is set (step S116). The injection timing determination unit 22 sets the fuel injection timing in the vicinity of the intake bottom dead center (B zone) and switches (step S117). The in-cylinder injection valve 2 has a fuel injection amount QB = T in the vicinity of the intake bottom dead center, that is, in a range where the crank angle CA is BTDC 180 degrees or more and BTDC 260 degrees or less.
Fuel is injected by AU (step S118).

以上、実施例1の本発明では、筒内噴射した燃料がピストンの側壁へ衝突して、燃料と空気との混合が悪化する領域での燃料噴射を禁止する。これにより、気筒内に噴射された燃料の拡散不均一を抑制して、キャビティを有するピストンを備える内燃機関のトルク低下を抑制することができる。   As described above, in the present invention of the first embodiment, fuel injection in a region where the fuel injected into the cylinder collides with the side wall of the piston and the mixing of fuel and air deteriorates is prohibited. As a result, it is possible to suppress the non-uniformity of diffusion of the fuel injected into the cylinder and to suppress the torque reduction of the internal combustion engine including the piston having the cavity.

また、実施例1の本発明においては、筒内噴射した燃料がピストンの側壁へ衝突する期間を避けるとともに、機関回転数に応じて筒内噴射弁による気筒内への燃料噴射時期を切り替える。これにより、上記作用・効果に加え、さらに空気冷却によるトルク向上効果と、燃料と空気との混合促進によるトルク向上効果とを効果的に利用できるので、内燃機関1のトルクを向上させることができる。   Further, in the present invention of the first embodiment, a period in which the fuel injected into the cylinder collides with the side wall of the piston is avoided, and the fuel injection timing into the cylinder by the cylinder injection valve is switched according to the engine speed. As a result, in addition to the above actions and effects, the torque improvement effect by air cooling and the torque improvement effect by promoting the mixing of fuel and air can be effectively utilized, so the torque of the internal combustion engine 1 can be improved. .

また、実施例1の本発明では、噴射切替時期から所定の期間は、吸気上死点付近と吸気下死点付近との2回に分割して、筒内噴射弁から気筒内へ燃料を筒内噴射する。これにより、筒内噴射弁の燃料噴射時期切替に起因するノッキングの発生を抑制できるとともに、燃料噴射時期切替時においては円滑なトルク変化特性を実現できる。また、ピストン表面の急激な温度変化を抑制して、熱衝撃によるピストンの耐久性低下を抑制できる。なお、実施例1で開示した構成は、以下の実施例においても適宜適用することができる。   Further, in the present invention of the first embodiment, the fuel is injected into the cylinder from the in-cylinder injection valve by dividing the predetermined period from the injection switching timing into twice near the intake top dead center and near the intake bottom dead center. Inject inside. As a result, the occurrence of knocking due to the fuel injection timing switching of the in-cylinder injection valve can be suppressed, and a smooth torque change characteristic can be realized at the time of fuel injection timing switching. In addition, a rapid temperature change on the piston surface can be suppressed, and a decrease in the durability of the piston due to thermal shock can be suppressed. The configuration disclosed in the first embodiment can be applied as appropriate in the following embodiments.

実施例2の本発明は、上記実施例1とほぼ同様の構成であるが、吸気上死点付近及び吸気下死点付近の両方で燃料を噴射する際に、吸気上死点付近での燃料噴射量と吸気下死点付近での燃料噴射量とを機関回転数に応じて変化させる点に特徴がある。次の説明において、上記実施例1と同様の構成についてはその説明を省略する。   The present invention of the second embodiment has substantially the same configuration as that of the first embodiment, but the fuel near the intake top dead center when fuel is injected near both the intake top dead center and the intake bottom dead center. It is characterized in that the injection amount and the fuel injection amount near the intake bottom dead center are changed according to the engine speed. In the following description, the description of the same configuration as in the first embodiment is omitted.

実施例2の本発明では、吸気上死点付近での噴射に切り替える際に、吸気上死点付近と吸気下死点付近との両方で筒内噴射するにあたり、機関回転数NEに応じて吸気上死点付近と吸気下死点付近との燃料噴射量を変化させる。実施例2においては、機関回転数NEの上昇とともに、吸気上死点付近(Aゾーン)での燃料噴射割合を増加させる。図6は、実施例2の本発明に係る内燃機関の制御装置及び制御方法に用いる燃料噴射割合マップを示す説明図である。ここで、図6は、吸気上死点付近における燃料噴射割合(以下Aゾーン噴射割合)daと機関回転数との関係を示し、機関回転数NEの増加とともに、Aゾーン噴射割合daを増加させる。   In the present invention of the second embodiment, when switching to injection near the intake top dead center, when in-cylinder injection is performed near both the intake top dead center and the intake bottom dead center, the intake air depends on the engine speed NE. The amount of fuel injection between the top dead center and the intake bottom dead center is changed. In the second embodiment, as the engine speed NE increases, the fuel injection ratio near the intake top dead center (A zone) is increased. FIG. 6 is an explanatory diagram showing a fuel injection ratio map used in the control device and control method for an internal combustion engine according to the present invention in the second embodiment. FIG. 6 shows the relationship between the fuel injection ratio (hereinafter referred to as A zone injection ratio) da and the engine speed in the vicinity of the intake top dead center, and the A zone injection ratio da is increased as the engine speed NE increases. .

内燃機関1の全燃料噴射量をTAUとすると、吸気上死点付近(Aゾーン)での筒内噴射弁2による燃料噴射量QA、及び吸気下死点付近(Bゾーン)での筒内噴射弁2による燃料噴射量QBは、次のように決定される。
QA=da×TAU
QB=(1−da)×TAU
これにより、吸気上死点付近における燃料噴射量QAを機関回転数NEの増加とともに増加させ、吸気下死点付近における燃料噴射量QBを機関回転数の増加とともに減少させることができる。
If the total fuel injection amount of the internal combustion engine 1 is TAU, the fuel injection amount QA by the in-cylinder injection valve 2 near the intake top dead center (A zone) and the in-cylinder injection near the intake bottom dead center (B zone) The fuel injection amount QB by the valve 2 is determined as follows.
QA = da × TAU
QB = (1-da) × TAU
As a result, the fuel injection amount QA in the vicinity of the intake top dead center can be increased as the engine speed NE increases, and the fuel injection amount QB in the vicinity of the intake bottom dead center can be decreased as the engine speed increases.

このように制御するためのデータを記述した燃料噴射割合マップ55は、内燃機関の制御装置10の記憶部10mに格納されている。そして、噴射割合決定部23が機関回転数NEをこの燃料噴射割合マップ55に与え、機関回転数NEに応じた吸気上死点付近及び吸気下死点付近での燃料噴射量QA及びQBを決定する。筒内噴射弁2は、噴射割合決定部23で決定された燃料噴射量QA、QB、及び噴射時期決定部22によって決定された燃料噴射時期に基づいて、燃料を気筒1s内へ噴射する。なお、燃料噴射割合マップ55
に記述されるAゾーン噴射割合daは、図6の実線に示すような線形のみならず、図6に示す点線あるいは一点鎖線に示すような非線形としてもよい。
The fuel injection ratio map 55 describing the data for controlling in this way is stored in the storage unit 10m of the control device 10 for the internal combustion engine. The injection ratio determining unit 23 gives the engine speed NE to the fuel injection ratio map 55, and determines the fuel injection amounts QA and QB near the intake top dead center and the intake bottom dead center according to the engine speed NE. To do. The in-cylinder injection valve 2 injects fuel into the cylinder 1s based on the fuel injection amounts QA and QB determined by the injection ratio determination unit 23 and the fuel injection timing determined by the injection timing determination unit 22. The fuel injection ratio map 55
The A-zone injection ratio da described in is not limited to the linear as shown by the solid line in FIG. 6, but may be non-linear as shown by the dotted line or the alternate long and short dash line shown in FIG.

以上、実施例2の本発明によれば、筒内噴射弁2の燃料噴射時期を切り替える際に発生する内燃機関1のトルク変動をさらに抑制できる。また、この切替に際して発生するノッキングや、ピストン5に対する熱衝撃もより緩和することができる。その結果、吸気上死点付近及び吸気下死点付近における筒内噴射弁2の燃料噴射量を一定にした場合と比較して、より滑らかに筒内噴射弁2の燃料噴射時期を切り替えることができる。   As mentioned above, according to this invention of Example 2, the torque fluctuation of the internal combustion engine 1 which generate | occur | produces when switching the fuel injection timing of the cylinder injection valve 2 can further be suppressed. Further, knocking generated at the time of switching and thermal shock to the piston 5 can be further alleviated. As a result, the fuel injection timing of the in-cylinder injection valve 2 can be switched more smoothly than in the case where the fuel injection amount of the in-cylinder injection valve 2 in the vicinity of the intake top dead center and the intake bottom dead center is constant. it can.

以上のように、本発明に係る内燃機関の制御装置及び制御方法は、筒内噴射弁と、キャビティが形成されたピストンとを備える内燃機関に適し、特に均質燃焼領域でトルクを向上させることに適している。   As described above, the control device and control method for an internal combustion engine according to the present invention are suitable for an internal combustion engine including an in-cylinder injection valve and a piston having a cavity formed therein, particularly for improving torque in a homogeneous combustion region. Are suitable.

本発明の実施例1に係る内燃機関の制御装置により内燃機関を制御する場合の一例を示す概念図である。It is a conceptual diagram which shows an example in the case of controlling an internal combustion engine with the control apparatus of the internal combustion engine which concerns on Example 1 of this invention. 吸気下死点付近で筒内に燃料を噴射した場合における燃料の拡散状態を示す説明図である。It is explanatory drawing which shows the spreading | diffusion state of a fuel at the time of injecting a fuel in a cylinder in the vicinity of an intake bottom dead center. 図2−2は、吸気上死点付近で筒内に燃料を噴射した場合における燃料の拡散状態を示す説明図である。FIG. 2B is an explanatory diagram showing a fuel diffusion state when fuel is injected into the cylinder near the intake top dead center. 図2−3は、BTDC260度〜300度で筒内に燃料を噴射した場合における燃料の拡散状態を示す説明図である。FIGS. 2-3 is explanatory drawing which shows the spreading | diffusion state of a fuel at the time of injecting a fuel in a cylinder at BTDC 260-300 degree | times. 機関回転数と燃料噴射時期との関係を示す説明図である。It is explanatory drawing which shows the relationship between an engine speed and fuel injection timing. 実施例1の本発明に係る内燃機関の制御装置の構成を示す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing a configuration of a control device for an internal combustion engine according to the present invention of Example 1; 実施例1の本発明に係る内燃機関の制御方法の制御手順を示すフローチャートである。2 is a flowchart showing a control procedure of the control method of the internal combustion engine according to the present invention of Embodiment 1. 実施例2の本発明に係る内燃機関の制御装置及び制御方法に用いる燃料噴射割合マップを示す説明図である。It is explanatory drawing which shows the fuel-injection ratio map used for the control apparatus and control method of the internal combustion engine which concerns on this invention of Example 2. FIG.

符号の説明Explanation of symbols

1 内燃機関
1s 気筒
1sh シリンダヘッド
1sw 内壁
2 筒内噴射弁
3 ポート噴射弁
4 吸気通路
5 ピストン
5c キャビティ
5cu 底面
5cw 側壁
t ストン頂部
10 内燃機関の制御装置
10m 記憶部
10p 処理部
21 燃焼判定部
22 噴射時期決定部
23 噴射割合決定部
47 排気弁
50 燃料の噴霧
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 1s Cylinder 1sh Cylinder head 1sw Inner wall 2 In-cylinder injection valve 3 Port injection valve 4 Intake passage 5 Piston 5c Cavity 5cu Bottom 5cw Side wall t Stone top 10 Internal combustion engine controller 10m Storage unit 10p Processing unit 21 Combustion determination unit 22 Injection timing determination unit 23 Injection ratio determination unit 47 Exhaust valve 50 Fuel spray

Claims (10)

筒内噴射弁と、側壁を有するキャビティが形成されたピストンとを備える内燃機関を制御するものであり、
前記内燃機関の燃焼が均質燃焼領域か否かを判定する燃焼判定部と、
均質燃焼領域である場合、前記筒内噴射弁から噴射される燃料が前記キャビティの側壁に衝突する期間においては、前記筒内噴射弁からの燃料噴射を禁止する噴射時期決定部と、
を含んで構成されることを特徴とする内燃機関の制御装置。
An internal combustion engine including an in-cylinder injection valve and a piston having a cavity having a side wall;
A combustion determination unit for determining whether combustion of the internal combustion engine is in a homogeneous combustion region;
An injection timing determination unit that prohibits fuel injection from the in-cylinder injection valve in a period in which the fuel injected from the in-cylinder injection valve collides with the side wall of the cavity when the homogeneous combustion region is present;
A control apparatus for an internal combustion engine, comprising:
前記筒内噴射弁から噴射される燃料が前記キャビティの側壁に衝突する期間は、点火上死点前260度以上点火上死点前300度以下の範囲であることを特徴とする請求項1に記載の内燃機関の制御装置。   The period in which the fuel injected from the in-cylinder injection valve collides with the side wall of the cavity is in a range of 260 degrees before ignition top dead center or more and 300 degrees before ignition top dead center. The internal combustion engine control device described. 前記噴射時期決定部は、
前記筒内噴射弁からの燃料噴射が禁止される期間よりも遅角側で燃料を噴射させる第1の噴射形態と、前記筒内噴射弁からの燃料噴射が禁止される期間よりも進角側で燃料を噴射させる第2の噴射形態とを選択できるとともに、
前記内燃機関の機関回転数が所定の回転数よりも低い場合には前記第1の噴射形態を選択し、前記機関回転数が前記所定の回転数よりも高い場合には前記第2の噴射形態を選択して、前記筒内噴射弁から燃料を噴射させることを特徴とする請求項1又は2に記載の内燃機関の制御装置。
The injection timing determination unit
A first injection mode in which fuel is injected at a retarded angle side relative to a period during which fuel injection from the in-cylinder injection valve is prohibited; and an advance side from a period during which fuel injection from the in-cylinder injection valve is prohibited And a second injection mode for injecting fuel with
When the engine speed of the internal combustion engine is lower than a predetermined speed, the first injection mode is selected, and when the engine speed is higher than the predetermined speed, the second injection mode is selected. 3. The control device for an internal combustion engine according to claim 1, wherein fuel is injected from the in-cylinder injection valve.
前記噴射時期決定部は、
前記内燃機関の機関回転数が前記所定の回転数以上になったときに、前記筒内噴射弁の噴射形態を前記第1の噴射形態から前記第2の噴射形態に切り替えるとともに、
噴射形態を切り替えるときには、前記第1の噴射形態と前記第2の噴射形態との両方により前記筒内噴射弁から燃料を噴射させることを特徴とする請求項3に記載の内燃機関の制御装置。
The injection timing determination unit
When the engine speed of the internal combustion engine becomes equal to or higher than the predetermined speed, the injection mode of the in-cylinder injection valve is switched from the first injection mode to the second injection mode,
4. The control device for an internal combustion engine according to claim 3, wherein when the injection mode is switched, the fuel is injected from the in-cylinder injection valve by both the first injection mode and the second injection mode.
噴射形態を切り替えるときには、前記第1の噴射形態と前記第2の噴射形態との両方をそれぞれ所定回数用いることを特徴とする請求項4に記載の内燃機関の制御装置。   5. The control device for an internal combustion engine according to claim 4, wherein when the injection mode is switched, both the first injection mode and the second injection mode are used a predetermined number of times. 前記内燃機関に対して噴射する全燃料噴射量が所定量以上となった場合に、前記第1の噴射形態と前記第2の噴射形態との両方を用いることを特徴とする請求項4又は5に記載の内燃機関の制御装置。   6. The method according to claim 4, wherein both the first injection mode and the second injection mode are used when a total fuel injection amount to be injected into the internal combustion engine becomes a predetermined amount or more. The control apparatus of the internal combustion engine described in 1. 筒内噴射弁と、側壁を有するキャビティが形成されたピストンとを備える内燃機関を制御するにあたり、
前記内燃機関の燃焼が均質燃焼領域か否かを判定する手順と、
均質燃焼領域である場合、前記筒内噴射弁から噴射される燃料が前記キャビティの側壁に衝突する期間においては、前記筒内噴射弁からの燃料噴射を禁止する手順と、
を含むことを特徴とする内燃機関の制御方法。
In controlling an internal combustion engine including an in-cylinder injection valve and a piston formed with a cavity having a side wall,
Determining whether combustion of the internal combustion engine is in a homogeneous combustion region;
A procedure for prohibiting fuel injection from the in-cylinder injection valve during a period in which the fuel injected from the in-cylinder injection valve collides with the side wall of the cavity when it is a homogeneous combustion region;
A control method for an internal combustion engine comprising:
前記内燃機関の機関回転数が所定の回転数よりも低い場合には、前記筒内噴射弁からの燃料噴射が禁止される期間よりも遅角側で前記筒内噴射弁が燃料を噴射し、
前記機関回転数が前記所定の回転数よりも高い場合には、前記筒内噴射弁からの燃料噴射が禁止される期間よりも進角側で前記筒内噴射弁が燃料を噴射することを特徴とする請求項7に記載の内燃機関の制御方法。
When the engine speed of the internal combustion engine is lower than a predetermined speed, the in-cylinder injection valve injects fuel on the retard side of a period during which fuel injection from the in-cylinder injection valve is prohibited,
When the engine speed is higher than the predetermined speed, the in-cylinder injection valve injects fuel on the advance side of a period during which fuel injection from the in-cylinder injection valve is prohibited. A control method for an internal combustion engine according to claim 7.
前記所定の回転数よりも低い機関回転数から前記所定の回転数よりも高い機関回転数へ移行する際の所定期間は、前記筒内噴射弁からの燃料噴射が禁止される期間よりも進角側と遅角側との両方で前記筒内噴射弁が燃料を噴射することを特徴とする請求項8に記載の内燃機関の制御方法。   The predetermined period when the engine rotational speed lower than the predetermined rotational speed is shifted to the engine rotational speed higher than the predetermined rotational speed is more advanced than the period during which fuel injection from the in-cylinder injection valve is prohibited. 9. The method of controlling an internal combustion engine according to claim 8, wherein the in-cylinder injection valve injects fuel on both the side and the retard side. 前記内燃機関に対して噴射する全燃料噴射量が所定量以上となった場合に、前記筒内噴射弁からの燃料噴射が禁止される期間よりも進角側と遅角側との両方で前記筒内噴射弁が燃料を噴射することを特徴とする請求項9に記載の内燃機関の制御方法。   When the total fuel injection amount to be injected into the internal combustion engine is equal to or greater than a predetermined amount, both the advance side and the retard side of the fuel injection from the in-cylinder injection valve are prohibited. The method for controlling an internal combustion engine according to claim 9, wherein the in-cylinder injection valve injects fuel.
JP2003371598A 2003-10-31 2003-10-31 Control device for internal combustion engine and control method for internal combustion engine Expired - Fee Related JP4269895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003371598A JP4269895B2 (en) 2003-10-31 2003-10-31 Control device for internal combustion engine and control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003371598A JP4269895B2 (en) 2003-10-31 2003-10-31 Control device for internal combustion engine and control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005133660A true JP2005133660A (en) 2005-05-26
JP4269895B2 JP4269895B2 (en) 2009-05-27

Family

ID=34648205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371598A Expired - Fee Related JP4269895B2 (en) 2003-10-31 2003-10-31 Control device for internal combustion engine and control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4269895B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043108B1 (en) * 2006-07-28 2011-06-20 도요타지도샤가부시키가이샤 Fuel injection control method for a direct injection spark ignition internal combustion engine
US8479705B2 (en) 2008-01-25 2013-07-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043108B1 (en) * 2006-07-28 2011-06-20 도요타지도샤가부시키가이샤 Fuel injection control method for a direct injection spark ignition internal combustion engine
US8479705B2 (en) 2008-01-25 2013-07-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Also Published As

Publication number Publication date
JP4269895B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
US6725825B1 (en) Method and system for controlling combustion mode in an internal combustion engine
US7051701B2 (en) Direct fuel injection/spark ignition engine control device
US7104255B2 (en) Method and apparatus for controlling operation of internal combustion engine, and the internal combustion engine
US9222423B2 (en) Direct injection event-based engine starting
US7096853B2 (en) Direct fuel injection/spark ignition engine control device
JP5741352B2 (en) Start control device for compression self-ignition engine
JP4424147B2 (en) Exhaust gas purification device for internal combustion engine
KR100476780B1 (en) Combustion method for multistage combustion engine
JP4407581B2 (en) Gas fuel engine
CN105840333A (en) Method and system for exhaust catalyst warming
US7104249B2 (en) Direct fuel injection/spark ignition engine control device
US20040216714A1 (en) Fuel injection control device for a direct fuel injection engine
JP4285201B2 (en) Control device for internal combustion engine and control method for internal combustion engine
EP1164276B1 (en) Internal combustion engine with external assist for stable auto-ignition
JP4269895B2 (en) Control device for internal combustion engine and control method for internal combustion engine
JP4046055B2 (en) In-cylinder internal combustion engine
JP2005133637A (en) Internal combustion engine, control device of internal combustion engine and control method for internal combustion engine
JP4345439B2 (en) Control device for internal combustion engine and control method for internal combustion engine
JP2006046276A (en) Ignition control device for direct spark ignition type internal combustion engine
JP2002138908A (en) Cylinder injection spark ignition type internal combustion engine
JP2003083067A (en) Piston temperature controller for internal combustion engine
JP4026197B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JP4078894B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006170109A (en) Ignition control device for cylinder direct injection type internal combustion engine
JP2001271689A (en) Operating method for internal combustion engine, control element for internal combustion engine control device, the internal combustion engine and internal combustion engine control device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees