JP2005133626A - Control device for engine - Google Patents

Control device for engine Download PDF

Info

Publication number
JP2005133626A
JP2005133626A JP2003370115A JP2003370115A JP2005133626A JP 2005133626 A JP2005133626 A JP 2005133626A JP 2003370115 A JP2003370115 A JP 2003370115A JP 2003370115 A JP2003370115 A JP 2003370115A JP 2005133626 A JP2005133626 A JP 2005133626A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
catalyst
deterioration
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003370115A
Other languages
Japanese (ja)
Other versions
JP4129221B2 (en
Inventor
Shinji Nakagawa
慎二 中川
Toshio Hori
堀  俊雄
Daisuke Watanabe
大輔 渡邉
Makoto Yokoyama
誠 横山
Yoichi Iiboshi
洋一 飯星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2003370115A priority Critical patent/JP4129221B2/en
Publication of JP2005133626A publication Critical patent/JP2005133626A/en
Application granted granted Critical
Publication of JP4129221B2 publication Critical patent/JP4129221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for an engine capable of determining not only degradation of exhaust emission control catalyst provided in an exhaust gas passage but also degradation of an air fuel ratio detection means without causing deterioration of exhaust gas at high accuracy in a relatively short period of time. <P>SOLUTION: The control device for the engine provided with the exhaust emission control catalyst in the exhaust gas passage and including the air fuel ratio detection means in a downstream of the catalyst is constructed with being provided with an individual cylinder air fuel ratio control means controlling to make air fuel ratio of air fuel mixture used for combustion in a specific cylinder different from that of other cylinders and a degradation determination means determining degradation of the catalyst and the air fuel ratio detection means based on signal provided by the air fuel ratio detection means. The individual cylinder air fuel ratio control means generates periodical vibration of air fuel ratio of, for example, a period equivalent to two engine rotation in an exhaust gas collecting part in an upstream of the catalyst in the exhaust gas passage by making air fuel ratio of the air fuel mixture used for combustion in just specific cylinder different from that of other cylinders. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エンジンの制御装置に係り、特に、排気通路に排気浄化用触媒を備えるとともに、該触媒の下流に空燃比検出手段を有するエンジンにおいて、前記触媒及び前記空燃比検出手段の劣化を確実に判定できるようにされたエンジンの制御装置に関する。   The present invention relates to an engine control device, and more particularly to an engine having an exhaust purification catalyst in an exhaust passage and having an air-fuel ratio detection means downstream of the catalyst, and reliably deteriorating the catalyst and the air-fuel ratio detection means. The present invention relates to a control device for an engine that can be easily determined.

エンジンから排出される排気(に含まれるHC、CO、NOx等の有害成分)を浄化するため、排気通路に三元触媒等の排気浄化用触媒を配備するのが一般的である。近年、北米、欧州、日本国内等における規制強化に伴い、排気浄化用触媒、空燃比センサに代表される排気浄化システムの診断精度も高精度化が要求されつつある。このことから、触媒及び空燃比センサが劣化したか否かを判定する方策が幾つか提案されている。
例えば、下記特許文献1には、触媒上流の空燃比センサ出力信号と触媒下流の空燃比センサ出力信号の相関から触媒の劣化を判定することが提案されている。
In order to purify exhaust exhausted from the engine (hazardous components such as HC, CO, NOx, etc.) contained in the engine, an exhaust purification catalyst such as a three-way catalyst is generally provided in the exhaust passage. In recent years, with the tightening of regulations in North America, Europe, Japan, etc., there has been a demand for higher accuracy in diagnosis of exhaust purification systems represented by exhaust purification catalysts and air-fuel ratio sensors. For this reason, several measures for determining whether or not the catalyst and the air-fuel ratio sensor have deteriorated have been proposed.
For example, Patent Document 1 below proposes determining deterioration of a catalyst from the correlation between an air-fuel ratio sensor output signal upstream of the catalyst and an air-fuel ratio sensor output signal downstream of the catalyst.

また、下記特許文献2には、上流空燃比センサ出力信号の周波数に基づいて下流空燃比センサ出力信号をフィルタ処理し、上流空燃比センサ信号とフィルタ処理後の下流空燃比センサ出力信号の振幅比から触媒の劣化を判定することが提案されている。   Further, in Patent Document 2 below, the downstream air-fuel ratio sensor output signal is filtered based on the frequency of the upstream air-fuel ratio sensor output signal, and the amplitude ratio between the upstream air-fuel ratio sensor signal and the filtered downstream air-fuel ratio sensor output signal is disclosed. From this, it is proposed to determine the deterioration of the catalyst.

一方、下記特許文献3には、排気通路における触媒上流(排気集合部)の平均空燃比の上下で空燃比を振動させたとき、上流平均空燃比に対する触媒下流の酸素センサ出力特性が触媒新品時と触媒劣化時で異なることに着目し、気筒毎に個別に空燃比を制御して空燃比を振動(変動)させることにより、触媒の劣化判定を行うことが提案されている。
特開平5−171924号公報(第1〜12頁、図1〜図6) 特開平7−305623号公報(第1〜19頁、図1〜図21) 特開平6−185345号公報(第1〜8頁、図1、図2)
On the other hand, in Patent Document 3 below, when the air-fuel ratio is oscillated above and below the average air-fuel ratio upstream of the catalyst (exhaust collecting portion) in the exhaust passage, the oxygen sensor output characteristics downstream of the catalyst with respect to the upstream average air-fuel ratio It has been proposed that the deterioration of the catalyst is judged by oscillating (fluctuating) the air-fuel ratio by individually controlling the air-fuel ratio for each cylinder.
JP-A-5-171924 (pages 1 to 12, FIGS. 1 to 6) Japanese Patent Laid-Open No. 7-305623 (pages 1 to 19, FIGS. 1 to 21) Japanese Patent Laid-Open No. 6-185345 (pages 1 to 8, FIGS. 1 and 2)

前記特許文献1,2に所載の制御装置では、エンジンの全気筒の空燃比を等価に補正し、触媒上流の排気集合部における平均空燃比の振動現象と触媒下流の空燃比の振動現象とを用いて、触媒の劣化を判定するようになっているが、この場合、平均空燃比が触媒の高効率浄化範囲を逸脱することがあり、触媒下流の排気悪化を招くおそれがある。また、触媒上流の空燃比振動の周期も0.2Hz〜1Hzと比較的長く、劣化判定に要する時間もそれに応じて長くなる。また、振動周期が変化するため、それに応じて、種々のフィルタ処理が必要となり処理が複雑になるという問題もある。   In the control devices described in Patent Documents 1 and 2, the air-fuel ratio of all cylinders of the engine is corrected equivalently, and the oscillation phenomenon of the average air-fuel ratio in the exhaust collecting section upstream of the catalyst and the oscillation phenomenon of the air-fuel ratio downstream of the catalyst In this case, the average air-fuel ratio may deviate from the high-efficiency purification range of the catalyst, which may cause deterioration of exhaust gas downstream of the catalyst. Further, the period of the air-fuel ratio oscillation upstream of the catalyst is relatively long as 0.2 Hz to 1 Hz, and the time required for the deterioration determination is accordingly increased. Further, since the vibration period changes, there is a problem that various filter processes are required and the process becomes complicated.

また、前記特許文献3に所載の制御装置では、触媒上流の平均空燃比をリッチからリーンまで所定範囲に制御し、触媒下流の酸素センサの出力との関係を演算する必要があり、排気が悪化(有害成分排出量が増加)する時間や劣化判定に要する時間が長くなるおそれがある。   In the control device described in Patent Document 3, it is necessary to control the average air-fuel ratio upstream of the catalyst within a predetermined range from rich to lean, and calculate the relationship with the output of the oxygen sensor downstream of the catalyst. There is a risk that the time required for deterioration (increase in harmful component emissions) and the time required for deterioration determination will become longer.

さらに、前記特許文献1、2、3に所載の制御装置は、いずれも、触媒の劣化(酸素貯蔵能力の低下)のみを判定するものであり、触媒下流の空燃比センサ、さらには、触媒上流の空燃比センサの劣化については、なんら配慮されていない。このため、例えば、触媒下流の空燃比センサが劣化した場合は、触媒が実際には劣化していないのに劣化したと誤判定してしまうおそれがある。   Furthermore, all of the control devices described in Patent Documents 1, 2, and 3 determine only the deterioration of the catalyst (decrease in oxygen storage capacity), the air-fuel ratio sensor downstream of the catalyst, and further the catalyst No consideration is given to the deterioration of the upstream air-fuel ratio sensor. For this reason, for example, when the air-fuel ratio sensor downstream of the catalyst deteriorates, there is a possibility that it may be erroneously determined that the catalyst has deteriorated although it has not actually deteriorated.

本発明は、前記した如くの問題を解消すべくなされたもので、その目的とするところは、排気通路に配在された排気浄化用触媒の劣化のみならず空燃比検出手段の劣化をも、排気の悪化を招くことなく比較的短時間で高精度に判定することができるようにされたエンジンの制御装置を提供することにある。   The present invention has been made to solve the problems as described above, and its purpose is not only the deterioration of the exhaust purification catalyst disposed in the exhaust passage, but also the deterioration of the air-fuel ratio detection means. It is an object of the present invention to provide an engine control device capable of making a highly accurate determination in a relatively short time without causing deterioration of exhaust.

前記の目的を達成すべく、本発明に係る制御装置の第1態様は、排気通路に排気浄化用触媒を備えるとともに、該触媒の下流に空燃比検出手段を有するエンジンに適用されるもので、特定の気筒において燃焼に供される混合気の空燃比を他の気筒におけるそれとは異ならしめるように制御する気筒別空燃比制御手段と、前記空燃比検出手段から得られる信号に基づいて、前記触媒及び又は前記空燃比検出手段の劣化を判定する劣化判定手段と、を備える(図1参照)。   In order to achieve the above object, a first aspect of the control device according to the present invention is applied to an engine having an exhaust purification catalyst in an exhaust passage and having an air-fuel ratio detection means downstream of the catalyst. Based on a signal obtained from the air-fuel ratio detection means and a cylinder-by-cylinder air-fuel ratio control means for controlling the air-fuel ratio of the air-fuel mixture used for combustion in a specific cylinder to be different from that in other cylinders, the catalyst And / or deterioration determining means for determining deterioration of the air-fuel ratio detecting means (see FIG. 1).

かかる第1態様においては、触媒(及び空燃比検出手段)の劣化判定にあたっては、燃焼に供される混合気の空燃比を特定の気筒(例えば1番気筒)については他の気筒(例えば2番、3番、4番気筒)におけるそれとは異なるように制御する。つまり、通常は全気筒において空燃比が同一(例えば、14.6)となるように制御されるのが普通であるが、本発明では少なくとも一つの気筒については空燃比をずらすように(例えば、12.0となるように)制御し、触媒上流の排気集合部において空燃比の周期的振動(変動)を生成し、その周期的空燃比変動に対する触媒下流の空燃比の応答を検出し、その検出結果から触媒及び又は触媒下流空燃比検出手段の劣化を判定するようにされる。   In the first aspect, in determining the deterioration of the catalyst (and the air-fuel ratio detection means), the air-fuel ratio of the air-fuel mixture used for combustion is set to another cylinder (for example, the second cylinder) for a specific cylinder (for example, the first cylinder). The third and fourth cylinders) are controlled differently. That is, normally, the air-fuel ratio is normally controlled so as to be the same (for example, 14.6) in all the cylinders, but in the present invention, the air-fuel ratio is shifted for at least one cylinder (for example, 12.0) to generate a periodic vibration (variation) of the air-fuel ratio in the exhaust collecting section upstream of the catalyst, and to detect the response of the air-fuel ratio downstream of the catalyst to the periodic air-fuel ratio fluctuation, The deterioration of the catalyst and / or the catalyst downstream air-fuel ratio detection means is determined from the detection result.

本発明に係る制御装置の第2態様では、前記空燃比検出手段から得られる信号を周波数解析する周波数解析手段を備え、前記劣化判定手段は、前記周波数解析手段により解析された所定周波数の位相とパワーに基づいて、前記触媒及び又は前記空燃比検出手段の性能劣化を判定するようにされる(図2参照)。   In a second aspect of the control device according to the present invention, the control device includes frequency analysis means for frequency analysis of a signal obtained from the air-fuel ratio detection means, and the deterioration determination means includes a phase of a predetermined frequency analyzed by the frequency analysis means and Based on the power, the performance degradation of the catalyst and / or the air-fuel ratio detection means is determined (see FIG. 2).

かかる第2態様においては、前記した如くの、特定の気筒において空燃比をずらすことにより触媒上流で発生する周期的空燃比変動に対する触媒下流の空燃比の応答を触媒下流空燃比検出手段で検出し、その信号を周波数解析し、得られた位相とパワーから触媒及び又は触媒下流空燃比センサの劣化を判定するようにされる。   In the second aspect, as described above, the catalyst downstream air-fuel ratio detecting means detects the response of the air-fuel ratio downstream of the catalyst to the periodic air-fuel ratio fluctuation generated upstream of the catalyst by shifting the air-fuel ratio in the specific cylinder. The signal is subjected to frequency analysis, and the deterioration of the catalyst and / or the catalyst downstream air-fuel ratio sensor is determined from the obtained phase and power.

本発明に係る制御装置の第3態様では、前記周波数解析手段は、前記排気通路における前記触媒上流の排気集合部で発生する空燃比の周期的振動に相当する周波数faの位相とパワーを解析し、前記劣化判定手段は、前記周波数faの位相とパワーに基づいて、前記触媒及び又は前記空燃比検出手段の性能劣化を判定するようにされる(図3参照)。   In a third aspect of the control device according to the present invention, the frequency analyzing means analyzes the phase and power of the frequency fa corresponding to the periodic vibration of the air-fuel ratio generated in the exhaust gas collecting portion upstream of the catalyst in the exhaust passage. The deterioration determining means determines the performance deterioration of the catalyst and / or the air-fuel ratio detecting means based on the phase and power of the frequency fa (see FIG. 3).

かかる第3態様においては、前記した如くの、特定の気筒において空燃比をずらすことにより触媒上流の排気集合部で発生する空燃比の周期的振動に相当する周波数faの周期的空燃比変動に対する触媒下流の空燃比応答を触媒下流空燃比検出手段で検出し、その信号を周波数解析し、周波数faの位相とパワーから触媒及び又は触媒下流空燃比センサの劣化を判定するようにされる。   In the third aspect, as described above, the catalyst with respect to the periodic air-fuel ratio fluctuation of the frequency fa corresponding to the periodic vibration of the air-fuel ratio generated in the exhaust gas collecting portion upstream of the catalyst by shifting the air-fuel ratio in the specific cylinder. The downstream air-fuel ratio response is detected by the catalyst downstream air-fuel ratio detection means, the frequency of the signal is analyzed, and the deterioration of the catalyst and / or the catalyst downstream air-fuel ratio sensor is determined from the phase and power of the frequency fa.

本発明に係る制御装置の第4態様では、前記劣化判定手段は、前記周波数解析手段により解析された所定周波数の位相が所定値A以下となり、かつ、そのパワーが所定値B以上となったとき、前記触媒が劣化したと判定するようにされる(図4参照)。   In the fourth aspect of the control device according to the present invention, the deterioration determining means is configured such that the phase of the predetermined frequency analyzed by the frequency analyzing means is a predetermined value A or less and the power is a predetermined value B or more. Then, it is determined that the catalyst has deteriorated (see FIG. 4).

ここで、触媒上流から下流への空燃比の伝達特性は、触媒内の酸素貯蔵能力と排気の輸送時間に依存する。触媒の性能は酸素貯蔵能力に依存することが知られており、酸素貯蔵能力が低下すると、触媒上流から下流への空燃比の伝達特性が変化する。この伝達特性を無駄時間+一次遅れ系(時定数)で考えると、触媒が劣化(酸素貯蔵能力が低下)するほど出力は無駄時間、時定数が共に小さくなる。このため、特定の気筒において空燃比をずらすことにより発生する空燃比の周期的振動を触媒入口(触媒上流の排気集合部)から入力した場合、触媒が劣化するほど、触媒入口の空燃比振動波形の位相と触媒出口の空燃比振動波形の位相とのずれは小さくなり、触媒入口振動波形のパワーに対する触媒出口振動波形のパワーの比は大きくなる傾向にある。このことから、上記のように触媒下流の空燃比検出手段から得られる信号を周波数解析し、所定周波数の位相が所定値A以下でかつパワーが所定値B以上となったとき、触媒が劣化したと判定することができる。   Here, the transfer characteristic of the air-fuel ratio from the upstream to the downstream of the catalyst depends on the oxygen storage capacity in the catalyst and the transport time of the exhaust. It is known that the performance of the catalyst depends on the oxygen storage capacity. When the oxygen storage capacity decreases, the transfer characteristic of the air-fuel ratio from the upstream side to the downstream side of the catalyst changes. If this transfer characteristic is considered as a dead time + first-order lag system (time constant), the dead time and the time constant become smaller as the catalyst deteriorates (the oxygen storage capacity decreases). For this reason, when the periodic vibration of the air-fuel ratio generated by shifting the air-fuel ratio in a specific cylinder is input from the catalyst inlet (exhaust collecting part upstream of the catalyst), the air-fuel ratio vibration waveform at the catalyst inlet is deteriorated as the catalyst deteriorates. And the phase of the air-fuel ratio vibration waveform at the catalyst outlet become smaller, and the ratio of the power of the catalyst outlet vibration waveform to the power of the catalyst inlet vibration waveform tends to increase. From this, the signal obtained from the air-fuel ratio detection means downstream of the catalyst as described above is subjected to frequency analysis, and when the phase of the predetermined frequency is equal to or less than the predetermined value A and the power is equal to or greater than the predetermined value B, the catalyst has deteriorated. Can be determined.

本発明に係る制御装置の第5態様では、前記劣化判定手段は、前記周波数解析手段により解析された所定周波数の位相が所定値C以上となり、かつ、そのパワーが所定値D以下となったとき、前記空燃比検出手段が劣化したと判定するようにされる(図5参照)。   In the fifth aspect of the control device according to the present invention, the deterioration determining means is configured such that the phase of the predetermined frequency analyzed by the frequency analyzing means is equal to or greater than a predetermined value C and the power thereof is equal to or less than the predetermined value D. Then, it is determined that the air-fuel ratio detecting means has deteriorated (see FIG. 5).

ここで、空燃比検出手段(例えば、Oセンサ)の伝達特性を無駄時間+一次遅れ系(時定数)で考えると、劣化するほど、時定数は大きくなる。このことから、特定の気筒において空燃比をずらすことにより発生する空燃比の周期的振動を触媒入口から入力した場合、触媒下流の空燃比検出手段が劣化するほど、触媒入口振動波形のパワーに対する触媒出口振動波形のパワーの比は小さくなる傾向にある。このことから、上記のように触媒下流の空燃比検出手段から得られる信号を周波数解析し、所定周波数のパワーが所定値D以下となったとき、触媒下流の空燃比検出手段が劣化したと判定することができる。 Here, when considering the transfer characteristic of the air-fuel ratio detection means (for example, the O 2 sensor) in terms of dead time + first-order lag system (time constant), the time constant increases as it deteriorates. From this, when the periodic vibration of the air-fuel ratio generated by shifting the air-fuel ratio in a specific cylinder is input from the catalyst inlet, the catalyst with respect to the power of the catalyst inlet vibration waveform is deteriorated as the air-fuel ratio detection means downstream of the catalyst deteriorates. The power ratio of the exit vibration waveform tends to be small. From this, the signal obtained from the air-fuel ratio detection means downstream of the catalyst as described above is frequency-analyzed, and it is determined that the air-fuel ratio detection means downstream of the catalyst has deteriorated when the power at the predetermined frequency becomes equal to or less than the predetermined value D. can do.

本発明に係る制御装置の第6態様では、前記所定周波数の位相及びパワーの変化履歴を記憶する履歴記憶手段を備え、前記劣化判定手段は、前記履歴記憶手段に記憶された前記変化履歴に基づいて、所定期間における前記位相の減少量が所定値以上となり、かつ、前記所定期間における前記パワーの増加量が所定値以上となったとき、前記触媒が劣化したと判定し、前記所定期間における前記位相の減少量が所定値以下となり、かつ、前記所定期間における前記パワーの減少量が所定値以上となったとき、前記空燃比検出手段が劣化したと判定するようにされる(図6参照)。   According to a sixth aspect of the control device of the present invention, the control device includes history storage means for storing a change history of the phase and power of the predetermined frequency, and the deterioration determination means is based on the change history stored in the history storage means. When the amount of decrease in the phase during a predetermined period is equal to or greater than a predetermined value and the amount of increase in the power during the predetermined period is equal to or greater than a predetermined value, it is determined that the catalyst has deteriorated, and When the amount of phase decrease is equal to or less than a predetermined value and the amount of power decrease during the predetermined period is equal to or greater than a predetermined value, it is determined that the air-fuel ratio detecting means has deteriorated (see FIG. 6). .

かかる第6態様においては、触媒(及び空燃比検出手段)の劣化判定にあたっては、特定の気筒において空燃比をずらすように制御し、その際、触媒出口の空燃比の振動波形のパワー及び位相を演算、記憶しておく。ここで、触媒が劣化すると、第4態様で述べたように、位相は小さくなり、パワーは大きくなる。また、触媒下流の空燃比検出手段が劣化(応答性が低下)すると、第5態様の結果から、位相は変化せず、パワーは小さくなる。このことから、記憶されたパワー及び位相の変化履歴に基づいて、触媒劣化と触媒下流の空燃比検出手段の劣化とを同時に分離して判定することができる。   In the sixth aspect, in determining the deterioration of the catalyst (and the air-fuel ratio detection means), control is performed so as to shift the air-fuel ratio in a specific cylinder, and at that time, the power and phase of the vibration waveform of the air-fuel ratio at the catalyst outlet are controlled. Calculate and store. Here, when the catalyst deteriorates, as described in the fourth aspect, the phase becomes smaller and the power becomes larger. Further, when the air-fuel ratio detection means downstream of the catalyst deteriorates (responsiveness decreases), the phase does not change and the power decreases from the result of the fifth aspect. Thus, based on the stored power and phase change history, catalyst deterioration and deterioration of the air-fuel ratio detection means downstream of the catalyst can be separated and determined at the same time.

本発明に係る制御装置の第7態様では、第3態様における周波数faは、エンジンが2回転する周期に相当する周波数とされる。
すなわち、前記した如くに、特定の気筒において空燃比をずらすように制御した際に発生する空燃比の周期的振動は、4サイクルエンジンの場合、エンジンが2回転する周期に相当するので、この周期である周波数faを劣化判定に用いるようにされる。
In the seventh aspect of the control device according to the present invention, the frequency fa in the third aspect is a frequency corresponding to a cycle in which the engine rotates twice.
That is, as described above, the periodic vibration of the air-fuel ratio that occurs when the air-fuel ratio is controlled to shift in a specific cylinder corresponds to the cycle of the engine rotating twice in the case of a 4-cycle engine. The frequency fa is used for deterioration determination.

本発明に係る第8態様では、前記排気通路における前記触媒上流の排気集合部における空燃比が目標値となるように燃焼に供される混合気の空燃比を制御する平均空燃比制御手段を備える(図7参照)。言い換えれば、特定の気筒において空燃比をずらすように制御した際に発生する空燃比の周期的振動の中心となる空燃比(平均空燃比)が目標値となるように制御する平均空燃比制御手段を備える。   According to an eighth aspect of the present invention, there is provided an average air-fuel ratio control means for controlling the air-fuel ratio of the air-fuel mixture used for combustion so that the air-fuel ratio in the exhaust gas collection section upstream of the catalyst in the exhaust passage becomes a target value. (See FIG. 7). In other words, the average air-fuel ratio control means for controlling the air-fuel ratio (average air-fuel ratio) that becomes the center of the periodic oscillation of the air-fuel ratio that occurs when the air-fuel ratio is controlled to be shifted in a specific cylinder to the target value. Is provided.

本発明に係る制御装置の第9態様では、前記平均空燃比制御手段は、前記排気通路における前記触媒上流の排気集合部に配在された空燃比検出手段の出力に基づいて、燃焼に供せられる混合気の空燃比をフィードバック制御するようにされる(図8参照)。   In a ninth aspect of the control apparatus according to the present invention, the average air-fuel ratio control means is used for combustion based on the output of the air-fuel ratio detection means disposed in the exhaust gas collecting portion upstream of the catalyst in the exhaust passage. The air-fuel ratio of the air-fuel mixture is feedback controlled (see FIG. 8).

すなわち、前記排気集合部にも空燃比検出手段を配設し、該空燃比検出手段の出力に基づいて、特定の気筒において空燃比をずらすように制御した際に発生する空燃比の周期的振動の中心となる空燃比(平均空燃比)が目標値となるように燃焼に供せられる混合気の空燃比をフィードバック制御するようにされる。   That is, an air-fuel ratio detecting means is also provided in the exhaust collecting portion, and the periodic vibration of the air-fuel ratio generated when the air-fuel ratio is controlled to be shifted in a specific cylinder based on the output of the air-fuel ratio detecting means. The air-fuel ratio of the air-fuel mixture used for combustion is feedback-controlled so that the air-fuel ratio (average air-fuel ratio) at the center of the engine becomes the target value.

本発明に係る制御装置の第10態様においては、前記目標値は、前記触媒の浄化効率が最も高くなる値に設定される。
前記第8、第9、第10態様により、劣化判定のために特定の気筒において空燃比をずらしても触媒に流入する排気の空燃比は、目標値(触媒の浄化効率が最も高くなる値、例えば理論空燃比=14.6)付近で維持されるので、外部に排出される排気の悪化(有害成分の増加)を避けられる。
In the tenth aspect of the control device according to the present invention, the target value is set to a value at which the purification efficiency of the catalyst is highest.
According to the eighth, ninth, and tenth aspects, the air-fuel ratio of the exhaust gas flowing into the catalyst even if the air-fuel ratio is shifted in a specific cylinder for deterioration determination is a target value (a value that provides the highest purification efficiency of the catalyst, For example, since it is maintained in the vicinity of the theoretical air-fuel ratio = 14.6), deterioration of exhaust discharged outside (increase in harmful components) can be avoided.

本発明に係る制御装置の第11態様では、前記触媒上流の空燃比検出手段から得られる信号を周波数解析する周波数解析手段を備え、前記劣化判定手段は、前記周波数解析手段により解析された、エンジンの2回転成分の位相(Phase1)及びパワー(Power1)から前記触媒上流の空燃比検出手段の劣化を判定するとともに、前記触媒上流の空燃比検出手段の劣化情報、並びに、前記位相(Phase1)及び前記パワー(Power1)と、前記触媒下流の空燃比検出手段からの信号を周波数解析して得られる、エンジンの2回転成分の位相(Phase2)及びパワー(Power2)と、の関係に基づいて、前記触媒及び又は前記触媒下流の空燃比検出手段の劣化を判定することを特徴としている(図9参照)。   In an eleventh aspect of the control apparatus according to the present invention, the controller includes frequency analysis means for frequency analysis of a signal obtained from the air-fuel ratio detection means upstream of the catalyst, and the deterioration determination means is an engine analyzed by the frequency analysis means. The deterioration of the air-fuel ratio detection means upstream of the catalyst is determined from the phase (Phase1) and power (Power1) of the two rotation components of the engine, the deterioration information of the air-fuel ratio detection means upstream of the catalyst, and the phase (Phase1) and Based on the relationship between the power (Power1) and the phase (Phase2) and power (Power2) of the two-rotation components of the engine obtained by frequency analysis of the signal from the air-fuel ratio detection means downstream of the catalyst, The deterioration of the catalyst and / or the air-fuel ratio detection means downstream of the catalyst is determined (see FIG. 9).

すなわち、この第11態様においては、特定の気筒において空燃比をずらすことにより触媒上流で発生する空燃比の周期的振動を触媒上流の空燃比検出手段で検出し、その出力信号を周波数解析し、その位相(Phase1)とパワー(Power1)から触媒上流の空燃比センサの応答劣化を検出する。さらに、その応答劣化を考慮して、触媒上流空燃比検出手段の出力から得られる位相(Phase1)とパワー(Power1)と、触媒下流空燃比検出手段の出力から得られる位相(Phase2)とパワー(Power2)の関係から、触媒及び触媒下流の空燃比検出手段の劣化を判定するようにされる。   That is, in this eleventh aspect, the air-fuel ratio periodic oscillation generated upstream of the catalyst by shifting the air-fuel ratio in the specific cylinder is detected by the air-fuel ratio detection means upstream of the catalyst, and the output signal is subjected to frequency analysis, Response deterioration of the air-fuel ratio sensor upstream of the catalyst is detected from the phase (Phase 1) and power (Power 1). Further, in consideration of the response deterioration, the phase (Phase 1) and power (Power 1) obtained from the output of the catalyst upstream air-fuel ratio detecting means, and the phase (Phase 2) and power (Power 2) obtained from the output of the catalyst downstream air-fuel ratio detecting means ( From the relationship of Power 2), the deterioration of the catalyst and the air-fuel ratio detection means downstream of the catalyst is determined.

本発明に係る制御装置の第12態様では、前記平均空燃比制御手段は、前記劣化判定手段から得られる、前記触媒上流の空燃比検出手段の劣化情報、前記触媒の劣化情報、及び、前記触媒下流の空燃比検出手段の劣化情報のうちの少なくとも一つに基づいて、燃焼に供せられる混合気の空燃比をフィードバック制御するようにされる(図10参照)。   In a twelfth aspect of the control device according to the present invention, the average air-fuel ratio control means is obtained from the deterioration determination means, the deterioration information of the air-fuel ratio detection means upstream of the catalyst, the deterioration information of the catalyst, and the catalyst Based on at least one of the deterioration information of the downstream air-fuel ratio detection means, the air-fuel ratio of the air-fuel mixture provided for combustion is feedback-controlled (see FIG. 10).

ここで、触媒上流の空燃比検出手段の応答性は、前記触媒の入口(排気集合部)の平均空燃比を目標値とするフィードバック制御を行う際に影響する。そこで、空燃比検出手段の応答性変化(劣化)に応じて、フィードバック制御のパラメータ(例えば、フィードバックゲイン)を変え、常にフィードバック制御を最適化するようにされる。   Here, the responsiveness of the air-fuel ratio detection means upstream of the catalyst affects when feedback control is performed with the average air-fuel ratio of the catalyst inlet (exhaust collecting portion) as a target value. Therefore, the feedback control parameter (for example, feedback gain) is changed in accordance with the responsiveness change (deterioration) of the air-fuel ratio detection means, so that the feedback control is always optimized.

本発明に係る制御装置の第13態様においては、前記劣化判定手段から得られる、前記触媒上流の空燃比検出手段の劣化情報、前記触媒の劣化情報、及び、前記触媒下流の空燃比検出手段の劣化情報に基づいて、前記触媒上流の空燃比検出手段、前記触媒、及び、前記触媒下流の空燃比検出手段の正常時に対する前記触媒下流の排気悪化量を演算する排気悪化量演算手段を備える(図11参照)。   In a thirteenth aspect of the control device according to the present invention, the deterioration information of the air-fuel ratio detection means upstream of the catalyst, the deterioration information of the catalyst, and the air-fuel ratio detection means downstream of the catalyst obtained from the deterioration determination means. An exhaust deterioration amount calculating means for calculating an exhaust deterioration amount downstream of the catalyst with respect to a normal time of the air-fuel ratio detection means upstream of the catalyst, the catalyst, and the air-fuel ratio detection means downstream of the catalyst based on the deterioration information ( FIG. 11).

ここで、三元触媒での排気浄化性能は、触媒の性能だけでなく、触媒上流の空燃比検出手段の性能、触媒下流の空燃比検出手段の性能も大きく影響する。このことから、触媒及び触媒上下流の空燃比検出手段の劣化状態を検出(判定)し、排気浄化システムの性能を総合的に診断し、触媒下流の排気悪化量を演算するようにされる。   Here, the exhaust purification performance of the three-way catalyst is greatly influenced not only by the performance of the catalyst, but also by the performance of the air-fuel ratio detection means upstream of the catalyst and the performance of the air-fuel ratio detection means downstream of the catalyst. From this, the deterioration state of the catalyst and the air-fuel ratio detection means upstream and downstream of the catalyst is detected (determined), the performance of the exhaust purification system is comprehensively diagnosed, and the exhaust deterioration amount downstream of the catalyst is calculated.

本発明に係る制御装置の第14態様においては、前記気筒別空燃比制御手段は、各気筒に対して配備された燃料噴射弁の燃料噴射態様(燃料噴射量、燃料噴射時期、一燃焼サイクル中の噴射回数等)及び又は吸排気弁の開閉態様(開閉時期、リフト量等)を気筒毎に個別に制御可能とされる。   In a fourteenth aspect of the control apparatus according to the present invention, the cylinder-by-cylinder air-fuel ratio control means includes a fuel injection mode (fuel injection amount, fuel injection timing, one combustion cycle) of a fuel injection valve provided for each cylinder. And the opening / closing mode (opening / closing timing, lift amount, etc.) of the intake / exhaust valve can be individually controlled for each cylinder.

本発明に係る制御装置の第15態様では、前記気筒別空燃比制御手段は、燃焼に供される混合気の空燃比を一気筒のみ他の気筒と異ならしめることにより、前記排気通路における前記触媒上流の排気集合部において空燃比に周期的振動を発生させるようにされる(図12参照)。
すなわち、一気筒のみ平均空燃比よりリッチもしくはリーンにすることでも、触媒上流の排気集合部における空燃比に周期的な振動を発生することが可能である。
In a fifteenth aspect of the control apparatus according to the present invention, the cylinder-by-cylinder air-fuel ratio control means makes the catalyst in the exhaust passage different by making the air-fuel ratio of the air-fuel mixture provided for combustion differ from other cylinders only by one cylinder. Periodic vibration is generated in the air-fuel ratio in the upstream exhaust collecting portion (see FIG. 12).
In other words, even if only one cylinder is richer or leaner than the average air-fuel ratio, it is possible to generate periodic oscillations in the air-fuel ratio in the exhaust gas collection section upstream of the catalyst.

以上に述べた本発明に係る制御装置は、特に、排ガス規制が強化されている車載用エンジンに好適である。
以上より、本発明においては、気筒間の空燃比を不均一にすることで、特にエンジンの2回転周期に相当する空燃比の振動を、簡易にかつ高精度に、触媒入口で生成し、それを基本信号として、触媒及びその下流の空燃比センサの診断を行うことを特徴とするものである。
The control device according to the present invention described above is particularly suitable for an in-vehicle engine in which exhaust gas regulations are strengthened.
As described above, in the present invention, by making the air-fuel ratio between the cylinders non-uniform, in particular, vibration of the air-fuel ratio corresponding to the two rotation cycles of the engine can be generated easily and accurately at the catalyst inlet. Is used as a basic signal to diagnose the catalyst and the air-fuel ratio sensor downstream thereof.

本発明に係る制御装置は、触媒の劣化判定にあたっては、燃焼に供される混合気の空燃比を特定(一つ又は複数)の気筒については他の気筒におけるそれとは異なるように制御することで、触媒上流の排気集合部において空燃比の周期的振動(好ましくはエンジンの2回転周期に相当する変動)を生成し、その周期的空燃比変動に対する触媒下流の空燃比の応答を検出し、その検出結果から触媒の劣化を判定するようにされるので、触媒の劣化のみならず空燃比検出手段の劣化をも、排気の悪化を招くことなく比較的短時間で高精度に判定することができる。   The control apparatus according to the present invention controls the deterioration of the catalyst by controlling the air-fuel ratio of the air-fuel mixture used for combustion so that the specific (one or more) cylinders are different from those in the other cylinders. Then, a periodic vibration of the air-fuel ratio (preferably a fluctuation corresponding to two engine rotation cycles) is generated in the exhaust gas collection section upstream of the catalyst, and a response of the air-fuel ratio downstream of the catalyst to the periodic air-fuel ratio fluctuation is detected, Since the deterioration of the catalyst is determined from the detection result, not only the deterioration of the catalyst but also the deterioration of the air-fuel ratio detection means can be determined with high accuracy in a relatively short time without causing deterioration of the exhaust gas. .

以下、本発明の実施の形態を図面を参照しながら詳細に説明する。
[第1実施形態]
図13は、本発明に係る制御装置の第1実施形態を、それが適用された車載用エンジンの一例と共に示す概略構成図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 13 is a schematic configuration diagram showing a first embodiment of a control device according to the present invention together with an example of an in-vehicle engine to which the control device is applied.

図示のエンジン10は、多気筒エンジンであって、シリンダ12と、このシリンダ12内に摺動自在に嵌挿されたピストン15と、を有し、該ピストン15上方には燃焼室17が画成される。燃焼室17には、点火プラグ35が臨設されている。   The illustrated engine 10 is a multi-cylinder engine, and includes a cylinder 12 and a piston 15 slidably inserted into the cylinder 12, and a combustion chamber 17 is defined above the piston 15. Is done. A spark plug 35 is provided in the combustion chamber 17.

燃料の燃焼に供せられる空気は、吸気通路20の始端部に設けられたエアクリーナ21から取り入れられ、エアフローセンサ24を通り、電制スロットル弁25を通ってコレクタ27に入り、このコレクタ27から前記吸気通路20(の分岐通路部)の下流端に配在された吸気弁28を介して各気筒の燃焼室17に吸入される。   Air to be used for fuel combustion is taken in from an air cleaner 21 provided at the start end of the intake passage 20, passes through an air flow sensor 24, enters an electric throttle valve 25, and enters a collector 27. The air is sucked into the combustion chambers 17 of the respective cylinders via an intake valve 28 disposed at the downstream end of the intake passage 20 (a branch passage portion thereof).

前記吸気通路20の下流部分(分岐通路部)には、燃料噴射弁30が臨設されており、この燃料噴射弁30には、図示されていないが、燃料タンク、燃料ポンプ、燃圧レギュレータ等を備えた燃料供給系により所定圧力に調圧された燃料が供給されるようになっている。   A fuel injection valve 30 is provided adjacent to the downstream portion (branch passage portion) of the intake passage 20, and this fuel injection valve 30 includes a fuel tank, a fuel pump, a fuel pressure regulator, etc. (not shown). The fuel adjusted to a predetermined pressure by the fuel supply system is supplied.

燃焼室17に吸入された空気と燃料噴射弁30から噴射された燃料との混合気は、点火プラグ35により点火されて爆発燃焼せしめられ、その燃焼廃ガス(排気)は、燃焼室17から排気弁48を介して排気通路40の上流部分を形成する個別通路部40A(図15参照)に排出され、その個別通路部40Aから排気集合部40Bを通って排気通路40に配備された三元触媒50に流入して浄化された後、外部に排出される。   The mixture of the air sucked into the combustion chamber 17 and the fuel injected from the fuel injection valve 30 is ignited by the spark plug 35 and explosively burned, and the combustion waste gas (exhaust gas) is exhausted from the combustion chamber 17. The three-way catalyst is discharged to the individual passage portion 40A (see FIG. 15) forming the upstream portion of the exhaust passage 40 through the valve 48, and is disposed in the exhaust passage 40 from the individual passage portion 40A through the exhaust collecting portion 40B. After flowing into 50 and being purified, it is discharged to the outside.

また、排気通路40における三元触媒50より下流側にはOセンサ51が配在され、排気通路40における触媒50より上流側の排気集合部40BにはA/Fセンサ52が配在されている。 Further, an O 2 sensor 51 is disposed downstream of the three-way catalyst 50 in the exhaust passage 40, and an A / F sensor 52 is disposed in the exhaust collecting portion 40 B upstream of the catalyst 50 in the exhaust passage 40. Yes.

前記A/Fセンサ52は、排気中に含まれる酸素の濃度に対して線形の出力特性を持つ。排気中の酸素濃度と空燃比の関係はほぼ線形になっており、したがって、酸素濃度を検出するA/Fセンサ52により、前記排気集合部における空燃比を求めることが可能となる。また、前記Oセンサ51からの信号により、三元触媒50下流の酸素濃度もしくはストイキに対してリッチもしくはリーンであるかを求めることができる。 The A / F sensor 52 has a linear output characteristic with respect to the concentration of oxygen contained in the exhaust gas. The relationship between the oxygen concentration in the exhaust gas and the air-fuel ratio is substantially linear. Therefore, the A / F sensor 52 that detects the oxygen concentration can determine the air-fuel ratio in the exhaust gas collecting portion. Further, from the signal from the O 2 sensor 51, it is possible to determine whether the oxygen concentration or stoichiometry downstream of the three-way catalyst 50 is rich or lean.

また、燃焼室17から排気通路40に排出された排気ガスの一部は、必要に応じてEGR通路41を介して吸気通路20に導入され、吸気通路20の分岐通路部を介して各気筒の燃焼室17に還流される。前記EGR通路41には、EGR率を調整するためのEGRバルブ42が介装されている。   Further, a part of the exhaust gas discharged from the combustion chamber 17 to the exhaust passage 40 is introduced into the intake passage 20 through the EGR passage 41 as necessary, and is supplied to each cylinder through the branch passage portion of the intake passage 20. It returns to the combustion chamber 17. The EGR passage 41 is provided with an EGR valve 42 for adjusting the EGR rate.

そして、本実施形態の制御装置1においては、エンジン10の種々の制御を行うため、マイクロコンピュータを内蔵するコントロールユニット100が備えられている。
コントロールユニット100は、基本的には、図14に示される如くに、CPU101、入力回路102、入出力ポート103、RAM104、ROM105等で構成される。
And in the control apparatus 1 of this embodiment, in order to perform various control of the engine 10, the control unit 100 incorporating a microcomputer is provided.
As shown in FIG. 14, the control unit 100 basically includes a CPU 101, an input circuit 102, an input / output port 103, a RAM 104, a ROM 105, and the like.

コントロールユニット100には、入力信号として、エアフローセンサ24により検出される吸入空気量に応じた信号、スロットルセンサ28により検出されるスロットル弁25の開度に応じた信号、クランク角センサ37から得られるクランクシャフト18の回転(エンジン回転数)・位相をあらわす信号、排気通路40における三元触媒50より下流側に配置されたOセンサ51により検出される排気中の酸素濃度に応じた信号、排気通路40における触媒50より上流側の排気集合部40Bに配置されたA/Fセンサ52により検出される酸素濃度(空燃比)に応じた信号、シリンダ12に配設された水温センサ16により検出されるエンジン冷却水温に応じた信号、アクセルセンサ36から得られるアクセルペダル19の踏み込み量(運転者の要求トルクを示す)に応じた信号等が供給される。 The control unit 100 obtains, as input signals, a signal corresponding to the intake air amount detected by the air flow sensor 24, a signal corresponding to the opening of the throttle valve 25 detected by the throttle sensor 28, and a crank angle sensor 37. A signal representing the rotation (engine speed) and phase of the crankshaft 18, a signal corresponding to the oxygen concentration in the exhaust detected by the O 2 sensor 51 disposed downstream of the three-way catalyst 50 in the exhaust passage 40, and the exhaust A signal corresponding to the oxygen concentration (air-fuel ratio) detected by the A / F sensor 52 disposed in the exhaust collecting portion 40B upstream of the catalyst 50 in the passage 40, is detected by the water temperature sensor 16 disposed in the cylinder 12. A signal corresponding to the engine coolant temperature, the depression of the accelerator pedal 19 obtained from the accelerator sensor 36 A signal or the like corresponding to the amount (indicating the driver's required torque) is supplied.

コントロールユニット100においては、A/Fセンサ52、酸素センサ51、スロットルセンサ28、エアフローセンサ24、クランク角センサ37、水温センサ16、及びアクセルセンサ36、等の各センサの出力が入力され、入力回路102にてノイズ除去等の信号処理を行った後、入出力ポート103に送られる。入力ポートの値はRAM104に保管され、CPU101内で演算処理される。演算処理の内容を記述した制御プログラムはROM105に予め書き込まれている。制御プログラムに従って演算された各アクチュエータ操作量を表す値はRAM104に保管された後、入出力ポート103に送られる。   In the control unit 100, outputs of sensors such as the A / F sensor 52, the oxygen sensor 51, the throttle sensor 28, the air flow sensor 24, the crank angle sensor 37, the water temperature sensor 16, and the accelerator sensor 36 are input, and the input circuit. After signal processing such as noise removal is performed at 102, the signal is sent to the input / output port 103. The value of the input port is stored in the RAM 104 and processed in the CPU 101. A control program describing the contents of the arithmetic processing is written in the ROM 105 in advance. A value representing each actuator operation amount calculated according to the control program is stored in the RAM 104 and then sent to the input / output port 103.

点火プラグ35に対する作動信号は点火出力回路116内の一次側コイルの通流時はONとなり、非通流時はOFFとなるON・OFF信号がセットされる。点火時期はONからOFFになる時点である。入出力ポート103にセットされた点火プラグ35用の信号は点火出力回路116で点火に必要な十分なエネルギーに増幅され点火プラグ35に供給される。また、燃料噴射弁30の駆動信号は開弁時ON、閉弁時OFFとなるON・OFF信号がセットされ、燃料噴射弁駆動回路117で燃料噴射弁30を開弁するのに十分なエネルギーに増幅されて燃料噴射弁30に送られる。電制スロットル弁25の目標開度を実現する駆動信号は、電制スロットル弁駆動回路118を経て、電制スロットル弁25に送られる。   The operation signal for the spark plug 35 is set to an ON / OFF signal that is ON when the primary coil in the ignition output circuit 116 is energized and is OFF when the primary coil is not energized. The ignition timing is the time when the ignition timing changes from ON to OFF. The signal for the spark plug 35 set in the input / output port 103 is amplified to a sufficient energy necessary for ignition by the ignition output circuit 116 and supplied to the spark plug 35. The drive signal for the fuel injection valve 30 is set to an ON / OFF signal that is ON when the valve is opened and OFF when the valve is closed. The fuel injection valve drive circuit 117 has sufficient energy to open the fuel injection valve 30. Amplified and sent to the fuel injection valve 30. A drive signal for realizing the target opening degree of the electric throttle valve 25 is sent to the electric throttle valve 25 via the electric throttle valve drive circuit 118.

コントロールユニット100ではA/Fセンサ52の信号から三元触媒50上流の空燃比を算出し、Oセンサ51の信号から、三元触媒50下流の酸素濃度もしくはストイキに対してリッチもしくはリーンであるかを算出する。また、両センサ51、52の出力を用いて三元触媒50の浄化効率が最適となるよう燃料噴射量もしくは吸入空気量を逐次補正するF/B制御を行う。 The control unit 100 calculates the air-fuel ratio upstream of the three-way catalyst 50 from the signal of the A / F sensor 52, and is rich or lean with respect to the oxygen concentration or stoichiometry downstream of the three-way catalyst 50 from the signal of the O 2 sensor 51. Calculate. In addition, F / B control is performed to sequentially correct the fuel injection amount or the intake air amount so that the purification efficiency of the three-way catalyst 50 is optimized using the outputs of the sensors 51 and 52.

次に、コントロールユニット100が実行する制御の内容を具体的に説明する。
図15は、制御システム図で、コントロールユニット100は、機能ブロック図で示されている如くの、基本燃料噴射量演算部121、#1(1番気筒)空燃比補正量演算部122、空燃比補正項演算部123、劣化診断許可判定部124、周波数成分演算部125、及び、劣化性能演算部126を備えている。通常運転時(劣化判定時以外)は、基本燃料噴射量Tp及び空燃比補正項Lalphaにより全気筒の空燃比が理論空燃比となるよう各気筒燃料噴射量Tiが演算される。応答特性検出許可時は、排気集合部40B(三元触媒50の入口)で空燃比の周期的振動を起こすべく1番気筒#1の当量比(空燃比とは反比例する)のみ所定量増量し燃料噴射量をTi1とする構成となっている。以下、各ブロック121〜126の詳細説明を行う。
Next, details of the control executed by the control unit 100 will be described.
FIG. 15 is a control system diagram. The control unit 100 includes a basic fuel injection amount calculation unit 121, a # 1 (first cylinder) air-fuel ratio correction amount calculation unit 122, an air-fuel ratio, as shown in the functional block diagram. A correction term calculation unit 123, a deterioration diagnosis permission determination unit 124, a frequency component calculation unit 125, and a deterioration performance calculation unit 126 are provided. During normal operation (other than when determining deterioration), each cylinder fuel injection amount Ti is calculated by the basic fuel injection amount Tp and the air-fuel ratio correction term Alpha so that the air-fuel ratio of all cylinders becomes the stoichiometric air-fuel ratio. When the response characteristic detection is permitted, only the equivalent ratio of the first cylinder # 1 (inversely proportional to the air-fuel ratio) is increased by a predetermined amount so as to cause periodic vibration of the air-fuel ratio at the exhaust collecting portion 40B (inlet of the three-way catalyst 50). The fuel injection amount is Ti1. Hereinafter, each block 121 to 126 will be described in detail.

基本燃料噴射量演算部121(図16参照)
本演算部121では、エンジン10の吸入空気量に基づいて任意の運転条件において目標トルクと目標空燃比を同時に実現する燃料噴射量を演算する。具体的には、図16に示されるように、エンジン回転数Neと吸入空気量Qaに基づいて、基本燃料噴射量Tpを演算する。ここにKは定数であり、吸入空気量Qaに対して常に理論空燃比を実現するよう調整するための値である。またCylはエンジン10の気筒数(ここでは4)を表す。
Basic fuel injection amount calculation unit 121 (see FIG. 16)
The calculation unit 121 calculates a fuel injection amount that simultaneously realizes the target torque and the target air-fuel ratio under an arbitrary operating condition based on the intake air amount of the engine 10. Specifically, as shown in FIG. 16, the basic fuel injection amount Tp is calculated based on the engine speed Ne and the intake air amount Qa. Here, K is a constant and is a value for adjusting the intake air amount Qa so as to always realize the stoichiometric air-fuel ratio. Cyl represents the number of cylinders of the engine 10 (here, 4).

空燃比補正項演算部123(図17参照)
ここでは、A/Fセンサ52で検出される空燃比に基づいて、任意の運転条件において排気通路集合部40B(触媒50入口)の平均空燃比が目標空燃比(目標値)となるようF/B制御する。具体的には、図17に示されるように、目標空燃比TabfとA/Fセンサ検出空燃比Rabfとの偏差Dltabfから、空燃比補正項LalphaをPI制御により演算する。空燃比補正項Lalphaは前述の基本燃料噴射量Tpに乗ぜられる。
Air-fuel ratio correction term calculation unit 123 (see FIG. 17)
Here, based on the air-fuel ratio detected by the A / F sensor 52, the F / is set so that the average air-fuel ratio of the exhaust passage assembly 40B (catalyst 50 inlet) becomes the target air-fuel ratio (target value) under arbitrary operating conditions. B control. Specifically, as shown in FIG. 17, the air-fuel ratio correction term Alpha is calculated by PI control from the deviation Dltabf between the target air-fuel ratio Tabf and the A / F sensor detected air-fuel ratio Rabf. The air-fuel ratio correction term Alpha is multiplied by the basic fuel injection amount Tp described above.

劣化診断許可判定部124(図18参照)
本判定部124では、三元触媒50及びOセンサ51の劣化診断の許可判定を行う。具体的には図18に示されるように、Twn≧Twndag、かつ、ΔNe≦DNedag、かつ、ΔQa≦Dqadag、かつ、Fcmpdag=0のとき、応答特性検出許可フラグFpdag=1とし、応答特性の検出を許可する。それ以外のときは応答特性検出禁止し、Fpdag=0とする。
ここに、
Twn:エンジン冷却水温
ΔNe:エンジン回転数変化率
ΔQa:空気流入量変化率
である。ΔNe及びΔQaは前回jobで演算される値と今回jobで演算される値との差としてもよい。
Deterioration diagnosis permission determination unit 124 (see FIG. 18)
In this determination unit 124, permission determination for deterioration diagnosis of the three-way catalyst 50 and the O 2 sensor 51 is performed. Specifically, as shown in FIG. 18, when Twn ≧ Twndag, ΔNe ≦ DNedag, ΔQa ≦ Dqadag, and Fmpmpdag = 0, the response characteristic detection permission flag Fpdag = 1 is set, and the response characteristic is detected. Allow. Otherwise, response characteristic detection is prohibited and Fpdag = 0.
here,
Twn: engine coolant temperature ΔNe: engine speed change rate ΔQa: air inflow rate change rate. ΔNe and ΔQa may be the difference between the value calculated in the previous job and the value calculated in the current job.

#1(1番気筒)空燃比補正量演算部122(図19参照)
本演算部122では、#1(1番気筒)の空燃比補正量の演算を行う。通常運転時、すなわちFpdag=0のときは、前述の基本燃料噴射量Tp及びF/B制御操作量Lalphaにより排気通路集合部(触媒入口)の空燃比が目標空燃比となるよう各気筒に対する燃料噴射量が演算される。Fpdag=1のときは、排気通路集合部40Bで空燃比の振動を起こすべく1番気筒#1の当量比のみ所定量Kchos1だけ増量する。具体的には図19に示される処理にて行う。すなわち、Fpdag=1のときは1番気筒当量比変化量Chos1=Kchos1とし、Fpdag=0のときはChos1=0とする。なお、Kchos1の値はエンジン及び触媒の特性に合わせて排気が悪化しないよう設定するのが好ましい。
# 1 (first cylinder) air-fuel ratio correction amount calculation unit 122 (see FIG. 19)
The calculation unit 122 calculates the air-fuel ratio correction amount for # 1 (first cylinder). During normal operation, that is, when Fpdag = 0, the fuel for each cylinder is set so that the air-fuel ratio of the exhaust passage assembly (catalyst inlet) becomes the target air-fuel ratio by the basic fuel injection amount Tp and the F / B control operation amount Alpha. The injection amount is calculated. When Fpdag = 1, only the equivalent ratio of the first cylinder # 1 is increased by a predetermined amount Kchos1 in order to cause the air-fuel ratio oscillation in the exhaust passage collecting portion 40B. Specifically, the processing is shown in FIG. That is, when Fpdag = 1, the first cylinder equivalence ratio change amount Chos1 = Kchos1, and when Fpdag = 0, Chos1 = 0. The value of Kchos1 is preferably set so that the exhaust does not deteriorate according to the characteristics of the engine and the catalyst.

周波数成分演算部125(図20参照)
本演算部125では、触媒50下流のOセンサ51の出力信号の周波数解析を行う。具体的には、図20に示されるように、Oセンサ51の出力信号をDFT(Discrete Fourier Transform)を用いてエンジン10の2回転周期に相当する周波数のパワースペクトルPower2及び位相スペクトルPhase2を演算する。ここでは、特定の周波数のみのスペクトルを演算するため、FFT(Fast Fourier Transform)ではなくDFTを用いる。なお、サンプリング周期は、サンプリング定理より、エンジン2回転周期の2倍より大きければよいが、ここでは、クランク角センサ37からの気筒判別信号(4気筒の場合、180°毎に出力)により割り込み処理を行う。なお、DFTの処理内容については、多くの文献、書物があるので、ここでは、省略する。
Frequency component calculation unit 125 (see FIG. 20)
The calculation unit 125 performs frequency analysis of the output signal of the O 2 sensor 51 downstream of the catalyst 50. Specifically, as shown in FIG. 20, the output signal of the O 2 sensor 51 is calculated by using a DFT (Discrete Fourier Transform) to calculate a power spectrum Power2 and a phase spectrum Phase2 having a frequency corresponding to two rotation cycles of the engine 10. To do. Here, in order to calculate a spectrum of only a specific frequency, DFT is used instead of FFT (Fast Fourier Transform). Note that the sampling period may be larger than twice the engine two-rotation period according to the sampling theorem, but here, the interrupt processing is performed by the cylinder discrimination signal from the crank angle sensor 37 (output every 180 ° in the case of four cylinders). I do. Since there are many documents and books about the processing contents of DFT, they are omitted here.

劣化性能演算部126(図21参照)
ここでは、周波数成分演算部125で求められたPower2、Phase2を用いて、触媒50及びOセンサ51の劣化判定を行う。具体的には、図21に示されるように(Phase2)≦(所定値A)、かつ、(Power2)≧(所定値B)のとき触媒50が劣化したと判定するものである。また、(Phase2)≧(所定値C)、かつ、(Power2)≦(所定値D)のときOセンサ20が劣化したと判定する。また、触媒50の劣化及び酸素センサ51の劣化のいずれの場合も、劣化報知灯57(図15参照)を点灯(Fdat=1)し、例えば運転者に劣化を通知する。所定値A〜Dは、エンジン及び触媒の特性及び目標とする診断性能に応じて経験的に決めるのがよい。
Deterioration performance calculator 126 (see FIG. 21)
Here, deterioration determination of the catalyst 50 and the O 2 sensor 51 is performed using Power 2 and Phase 2 obtained by the frequency component calculation unit 125. Specifically, as shown in FIG. 21, when (Phase 2) ≦ (predetermined value A) and (Power 2) ≧ (predetermined value B), it is determined that the catalyst 50 has deteriorated. Further, when (Phase 2) ≧ (predetermined value C) and (Power 2) ≦ (predetermined value D), it is determined that the O 2 sensor 20 has deteriorated. Further, in both cases of the deterioration of the catalyst 50 and the deterioration of the oxygen sensor 51, the deterioration notification lamp 57 (see FIG. 15) is turned on (Fdat = 1) to notify the driver of the deterioration, for example. The predetermined values A to D are preferably determined empirically according to the characteristics of the engine and the catalyst and the target diagnostic performance.

このような構成とされた本実施形態の制御装置1では、触媒50の劣化判定にあたっては、燃焼に供される混合気の空燃比を1番気筒#1については他の気筒(#2、#3、#4)におけるそれとは異なるように制御することで、触媒50上流の排気集合部40Bにおいて空燃比の周期的振動(エンジン10の2回転周期に相当する変動)を生成し、その周期的空燃比変動に対する触媒50下流の空燃比の応答をOセンサ51の出力に基づいて検出し、その検出結果から触媒50の劣化を判定するようにされるので、触媒50の劣化のみならずOセンサ51の劣化をも、排気の悪化を招くことなく比較的短時間で高精度に判定することができる。 In the control device 1 of the present embodiment configured as described above, when determining the deterioration of the catalyst 50, the air-fuel ratio of the air-fuel mixture to be used for combustion is set to other cylinders (# 2, #) for the first cylinder # 1. 3 and # 4), control is performed differently from that in the exhaust collecting portion 40B upstream of the catalyst 50 to generate a periodic vibration of the air-fuel ratio (variation corresponding to two rotation cycles of the engine 10). Since the response of the air-fuel ratio downstream of the catalyst 50 to the air-fuel ratio fluctuation is detected based on the output of the O 2 sensor 51, the deterioration of the catalyst 50 is determined from the detection result. The deterioration of the two sensors 51 can also be determined with high accuracy in a relatively short time without causing deterioration of exhaust.

[第2実施形態]
次に、本発明に係る制御装置の第2実施形態を説明する。第2実施形態の各部の構成は、前述した第1実施形態(図13〜図21)のものと、劣化性能演算部126(図21)以外の部分は略同じであるので、重複説明を省略し、以下においては、本実施形態の劣化性能演算部226について図22を参照しながら説明する。
[Second Embodiment]
Next, a second embodiment of the control device according to the present invention will be described. Since the configuration of each part of the second embodiment is substantially the same as that of the first embodiment (FIGS. 13 to 21) described above, except for the degradation performance calculation unit 126 (FIG. 21), a duplicate description is omitted. In the following, the degradation performance calculation unit 226 of this embodiment will be described with reference to FIG.

本実施形態の劣化性能演算部226は、周波数成分演算部で求められたPower2、Phase2を用いて、触媒50及びOセンサ51の劣化判定を行う。具体的には、Phase2及びPower2(の履歴)を一旦記憶しておく。記憶手段としては、RAM、フラッシュROM、外部HDD(Hard Disk Drave)等を用いることができる。記憶されているPhase2(0)とPhase2(k)の差をΔPhase2とし、記憶されているPower2(0)とPower2(k)の差をΔPower2とする。なお、Phase2(0)とPhase2(k)は、一定期間T前後の位相及びパワースペクトルとし、kの方が0よりも時間的には後で演算された結果である。(ΔPhase2)≧(所定値E)、かつ、−(ΔPower2)≧(所定値F)のとき、触媒50が劣化したと判定し、また、(ΔPhase2)≦(所定値G)、かつ、(ΔPower2)≧(所定値H)のとき、Oセンサ51が劣化したと判定する。
また、触媒50の劣化及びOセンサ51の劣化のいずれの場合も、劣化報知灯57を点灯(Fdat=1)し、例えば運転者に劣化を通知する。
The deterioration performance calculation unit 226 of the present embodiment performs deterioration determination of the catalyst 50 and the O 2 sensor 51 using Power2 and Phase2 obtained by the frequency component calculation unit. Specifically, Phase 2 and Power 2 (history thereof) are temporarily stored. As the storage means, a RAM, a flash ROM, an external HDD (Hard Disk Drave), or the like can be used. The difference between the stored Phase 2 (0) and Phase 2 (k) is ΔPhase2, and the difference between the stored Power 2 (0) and Power 2 (k) is ΔPower2. Note that Phase2 (0) and Phase2 (k) are the phases and power spectra before and after the fixed period T, and k is the result of calculation later in time than 0. When (ΔPhase2) ≧ (predetermined value E) and − (ΔPower2) ≧ (predetermined value F), it is determined that the catalyst 50 has deteriorated, and (ΔPhase2) ≦ (predetermined value G) and (ΔPower2 ) ≧ (predetermined value H), it is determined that the O 2 sensor 51 has deteriorated.
Further, in any case of the deterioration of the catalyst 50 and the deterioration of the O 2 sensor 51, the deterioration notification lamp 57 is turned on (Fdat = 1) to notify the driver of the deterioration, for example.

なお、Power2(0)、Phase2(0)は、触媒50及びOセンサ51が新品時の特性としてチューニングしておくのもよい。また、所定値A〜Dは、エンジン及び触媒の特性及び目標とする診断性能に応じて経験的に決めるのがよい。上述の一定期間Tも触媒もしくはOセンサの性能が変化するダイナミクスを考慮して決めるのがよい。 Incidentally, Power2 (0), Phase2 ( 0) may be the catalyst 50 and the O 2 sensor 51 is kept tuned as characteristics at the time of a new. The predetermined values A to D are preferably determined empirically according to the characteristics of the engine and the catalyst and the target diagnostic performance. The above-mentioned fixed period T is also preferably determined in consideration of dynamics in which the performance of the catalyst or the O 2 sensor changes.

このように、本実施形態の制御装置2においては、触媒50(及びOセンサ51)の劣化判定にあたっては、特定の気筒(1番気筒#1)において空燃比を他の気筒とは異ならしめるように制御し、その際、Oセンサ51の出力から触媒50下流の空燃比の振動波形のパワー及び位相を演算し、その履歴を記憶しておく。ここで、触媒50が劣化すると、前述したようにように、位相は小さくなり、パワーは大きくなる。また、触媒50下流のOセンサ51が劣化(応答性が低下)すると、前述したように、位相は変化せず、パワーは小さくなる。このことから、記憶されたパワー及び位相の変化履歴に基づいて、触媒50の劣化と触媒50下流のOセンサ51の劣化とを同時に分離して判定することができる。
これにより、触媒下流のOセンサ51の劣化に起因して触媒50が劣化したと誤判定してしまうことを回避できる。
As described above, in the control device 2 of the present embodiment, when determining the deterioration of the catalyst 50 (and the O 2 sensor 51), the air-fuel ratio in the specific cylinder (first cylinder # 1) is made different from that of other cylinders. In this case, the power and phase of the vibration waveform of the air-fuel ratio downstream of the catalyst 50 are calculated from the output of the O 2 sensor 51, and the history is stored. Here, when the catalyst 50 deteriorates, as described above, the phase becomes smaller and the power becomes larger. Further, when the O 2 sensor 51 downstream of the catalyst 50 deteriorates (responsiveness decreases), as described above, the phase does not change and the power decreases. From this, based on the stored power and phase change history, it is possible to separately determine the deterioration of the catalyst 50 and the deterioration of the O 2 sensor 51 downstream of the catalyst 50.
Accordingly, it is possible to avoid erroneous determination that the catalyst 50 has deteriorated due to the deterioration of the O 2 sensor 51 downstream of the catalyst.

[第3実施形態]
次に、本発明に係る制御装置の第3実施形態を、図23に示される制御システム図を参照しながら説明する。第3実施形態の制御装置3における各部の構成は、前述した第1実施形態(図13〜図21)のものと、周波数成分演算部125(図20)及び劣化性能演算部126(図21)以外の部分は略同じであるので、重複説明を省略し、以下においては、本実施形態の周波数成分演算部(第1周波数成分演算部325A、第2周波数成分演算部325B)及び劣化性能演算部326について説明する。
[Third Embodiment]
Next, a third embodiment of the control device according to the present invention will be described with reference to the control system diagram shown in FIG. The structure of each part in the control apparatus 3 of 3rd Embodiment is the thing of 1st Embodiment (FIGS. 13-21) mentioned above, the frequency component calculating part 125 (FIG. 20), and the degradation performance calculating part 126 (FIG. 21). Since the parts other than are substantially the same, redundant description is omitted, and in the following, the frequency component calculation unit (first frequency component calculation unit 325A, second frequency component calculation unit 325B) and deterioration performance calculation unit of the present embodiment will be described. 326 will be described.

第1周波数成分演算部325A、第2周波数演算部325B(図24参照)
第1周波数演算部325Aでは、触媒50上流のA/Fセンサ52の出力信号の周波数解析を行い、第2周波数成分演算部325Bでは、触媒50下流のOセンサ51の出力信号の周波数解析を行う。
First frequency component calculation unit 325A, second frequency calculation unit 325B (see FIG. 24)
The first frequency calculation unit 325A performs frequency analysis of the output signal of the A / F sensor 52 upstream of the catalyst 50, and the second frequency component calculation unit 325B performs frequency analysis of the output signal of the O 2 sensor 51 downstream of the catalyst 50. Do.

具体的には、第1周波数成分演算部325Aにおいては、図24に示されるように、A/Fセンサ52の出力信号をDFTを用いてエンジン10の2回転周期に相当する周波数のパワースペクトルPower1及び位相スペクトルPhase1を演算する。ここでは、特定の周波数のみのスペクトルを演算するため、FFTではなくDFTを用いる。なお、サンプリング周期は、サンプリング定理より、エンジン2回転周期の2倍より大きければよいが、ここでは、一般的にクランク角センサ37からの気筒判別信号(4気筒の場合、180°毎に出力)により割り込み処理を行う。なお、DFTの処理内容については、多くの文献、書物があるので、ここでは、省略する。また、第2周波数成分演算部325Bにおいても、触媒50下流のOセンサ51の出力信号をDFTを用いてエンジン10の2回転周期に相当する周波数のパワースペクトルPower2及び位相スペクトルPhase2を演算する(第1実施形態と同様)。 Specifically, in the first frequency component calculation unit 325A, as shown in FIG. 24, the output signal of the A / F sensor 52 is a power spectrum Power1 having a frequency corresponding to two rotation cycles of the engine 10 using DFT. And the phase spectrum Phase1 is calculated. Here, in order to calculate a spectrum of only a specific frequency, DFT is used instead of FFT. The sampling period may be larger than twice the engine two-rotation period according to the sampling theorem. However, here, generally, a cylinder discrimination signal from the crank angle sensor 37 (in the case of four cylinders, output every 180 °) Interrupt processing. Since there are many documents and books about the processing contents of DFT, they are omitted here. Also in the second frequency component calculation unit 325B, the output signal of the O 2 sensor 51 downstream of the catalyst 50 is calculated using the DFT to calculate a power spectrum Power2 and a phase spectrum Phase2 having a frequency corresponding to two rotation cycles of the engine 10 ( Same as in the first embodiment).

劣化性能演算部326(図25参照)
ここでは、第1周波数成分演算部325Aで求められたPower1、Phase1及び第2周波数成分演算部325Bで求められたPower2、Phase2を用いて、A/Fセンサ52、触媒50、及び、Oセンサ51の劣化判定を行う。具体的には、図25に示されるように、(Phase1)≧(所定値E)、かつ、(Power2)≦(所定値F)のとき、A/Fセンサ52が劣化したと判定する。また、この診断において、A/Fセンサ52が劣化していないと判定されたときのみ、(Phase2−Phase1)≦(所定値G)、かつ、(Power2/Phase1)≧(所定値H)のとき、触媒50が劣化したと判定する。また、(Phase2−Phase1)≧(所定値I)、かつ、(Power2/Power1)≦(所定値J)のとき、Oセンサ51が劣化したと判定する。また、A/Fセンサ52の劣化、触媒50の劣化及び、Oセンサ20の劣化のいずれの場合も、劣化報知灯57を点灯(Fdat=1)し、例えば運転者に劣化を通知する。所定値E〜Jは、エンジン及び触媒の特性及び目標とする診断性能に応じて経験的に決めるのがよい。
Degradation performance calculation unit 326 (see FIG. 25)
Here, the A / F sensor 52, the catalyst 50, and the O 2 sensor are used by using Power 1 and Phase 1 obtained by the first frequency component computing unit 325 A and Power 2 and Phase 2 obtained by the second frequency component computing unit 325 B. 51 is judged for deterioration. Specifically, as shown in FIG. 25, when (Phase 1) ≧ (predetermined value E) and (Power 2) ≦ (predetermined value F), it is determined that the A / F sensor 52 has deteriorated. In this diagnosis, only when it is determined that the A / F sensor 52 is not deteriorated, when (Phase2-Phase1) ≦ (predetermined value G) and (Power2 / Phase1) ≧ (predetermined value H) It is determined that the catalyst 50 has deteriorated. Further, when (Phase2-Phase1) ≧ (predetermined value I) and (Power2 / Power1) ≦ (predetermined value J), it is determined that the O 2 sensor 51 has deteriorated. Further, in any case of the deterioration of the A / F sensor 52, the deterioration of the catalyst 50, and the deterioration of the O 2 sensor 20, the deterioration notification lamp 57 is turned on (Fdat = 1) to notify the driver of the deterioration, for example. The predetermined values E to J are preferably determined empirically according to the characteristics of the engine and the catalyst and the target diagnostic performance.

[第4実施形態]
次に、本発明に係る制御装置の第4実施形態を、図26に示される制御システム図を参照しながら説明する。第4実施形態の制御装置4における各部の構成は、前述した第3実施形態(図23〜図25)のものと、劣化性能演算部326(図25)及び空燃比補正項演算部123(第1実施形態の図17)以外の部分は略同じであるので、重複説明を省略し、以下においては、本実施形態の劣化性能演算部426及び空燃比補正項演算部423について説明する。
[Fourth Embodiment]
Next, a fourth embodiment of the control device according to the present invention will be described with reference to the control system diagram shown in FIG. The configuration of each part in the control device 4 of the fourth embodiment is the same as that of the above-described third embodiment (FIGS. 23 to 25), the deterioration performance calculating unit 326 (FIG. 25), and the air-fuel ratio correction term calculating unit 123 (first). Since parts other than FIG. 17) of 1 embodiment are substantially the same, duplication description is abbreviate | omitted and the deterioration performance calculating part 426 and the air-fuel ratio correction term calculating part 423 of this embodiment are demonstrated below.

劣化性能演算部426(図27参照)
本演算部426では、劣化指数Ind1,Ind2a,Ind2b,Ind3が演算され、空燃比補正項演算部423に反映される点が第3実施形態のものと異なる。なお、触媒下流Oセンサ51の出力は空燃比補正項演算部423に入力される。
Deterioration performance calculation unit 426 (see FIG. 27)
This calculation unit 426 is different from that of the third embodiment in that deterioration indexes Ind1, Ind2a, Ind2b, and Ind3 are calculated and reflected in the air-fuel ratio correction term calculation unit 423. Note that the output of the catalyst downstream O 2 sensor 51 is input to the air-fuel ratio correction term calculation unit 423.

図27に示される劣化性能演算部426では、第1周波数成分演算部325Aで求められたPower1、Phase1及び第2周波数成分演算部325Bで求められたPower2、Phase2を用いて、A/Fセンサ52の劣化指数Ind1、触媒50の劣化指数Ind2a,Ind2b及びOセンサ51の劣化指数Ind3の演算を行う。具体的には、図27に示されるように、Power1からA/Fセンサ52の劣化指数Ind1を求める。Power1とInd1の関係は、実験から求めるのがよい。また、Phase2から触媒50の劣化指数Ind2a、Power2から触媒50の劣化指数Ind2bを、Power2からOセンサ51の劣化指数Ind3を求める。ただし、Ind2a及びInd2bの更新は、触媒50の性能変化が発生したときに行い、Ind3の更新はOセンサ51の性能変化が発生したときに行う。各々の性能変化判定は、図27の上部に示されているように、第2実施形態の劣化性能演算部226(図22)に準じる。ただし、Phase2(k)、Phase2(k+n)、Power2(k)、Power2(k+n)は、一定期間T前後の位相及びパワースペクトルとし、k+nの方がkよりも時間的には後で演算された結果であり、kはシフトしていく。すなわち、一定期間T毎に、Phase2及びPower2を演算し、その変化量から触媒50及びOセンサ51の特性変化を検出し、変化量が一定値を超えた場合は、劣化指数を更新する。上述の一定期間Tも触媒50もしくはOセンサ51の性能が変化するダイナミクスを考慮して決めるのがよい。 In the deterioration performance calculation unit 426 shown in FIG. 27, the A / F sensor 52 is used by using Power1, Phase1 obtained by the first frequency component calculation unit 325A, and Power2 and Phase2 obtained by the second frequency component calculation unit 325B. The deterioration index Ind1 of the catalyst 50, the deterioration index Ind2a and Ind2b of the catalyst 50, and the deterioration index Ind3 of the O 2 sensor 51 are calculated. Specifically, as shown in FIG. 27, the degradation index Ind1 of the A / F sensor 52 is obtained from Power1. The relationship between Power1 and Ind1 should be obtained from experiments. Further, the deterioration index Ind2b the deterioration index Ind2a, Power2 catalyst 50 from the catalyst 50 from Phase2, determine the deterioration index Ind3 of the O 2 sensor 51 from Power2. However, Ind2a and Ind2b are updated when a change in the performance of the catalyst 50 occurs, and Ind3 is updated when a change in the performance of the O 2 sensor 51 occurs. Each performance change determination conforms to the degradation performance calculation unit 226 (FIG. 22) of the second embodiment, as shown in the upper part of FIG. However, Phase2 (k), Phase2 (k + n), Power2 (k), and Power2 (k + n) are the phase and power spectrum before and after a certain period T, and k + n was calculated later in time than k. As a result, k shifts. That is, Phase 2 and Power 2 are calculated for each fixed period T, and changes in the characteristics of the catalyst 50 and the O 2 sensor 51 are detected from the change amounts. If the change amounts exceed a certain value, the deterioration index is updated. It is preferable that the predetermined period T is determined in consideration of dynamics in which the performance of the catalyst 50 or the O 2 sensor 51 changes.

空燃比補正項演算部423(図28参照)
この演算部423では、空燃比補正項の演算と、図27に示される劣化性能演算部426で演算されたA/Fセンサ52の劣化指数Ind1、触媒50の劣化指数Ind2a,Ind2b及びOセンサ51の劣化指数Ind3の反映を行う。具体的には、図28に示されるように、目標空燃比TabfとA/Fセンサ検出空燃比Rabfとの偏差Dltabfから、空燃比補正項LalphaをPI制御により演算する。空燃比補正項Lalphaは前述の基本燃料噴射量Tpに乗ぜられる。また目標空燃比Tabfは、触媒下流Oセンサ出力RVOが目標出力TgRVOの偏差に基づいてPI制御で求める。また、本PI制御には、触媒モデルベースの無駄時間補正項を施す。A/Fセンサ52の劣化指数Ind1は、空燃比補正項Lalphaを演算するPI制御のPゲイン、Iゲインの調整に用いる。またOセンサ51の劣化指数Ind3は目標空燃比Tabfを演算するPI制御のPゲイン、Iゲインの調整に用いる。また触媒50劣化指数Ind2a,Ind2bは触媒モデルベースの無駄時間補正部分に、下記に示すように反映する。
Air-fuel ratio correction term calculation unit 423 (see FIG. 28)
The calculation unit 423 calculates the air-fuel ratio correction term, the deterioration index Ind1 of the A / F sensor 52 calculated by the deterioration performance calculation unit 426 shown in FIG. 27, the deterioration indexes Ind2a, Ind2b, and the O 2 sensor of the catalyst 50. The degradation index Ind3 of 51 is reflected. Specifically, as shown in FIG. 28, the air-fuel ratio correction term Alpha is calculated by PI control from the deviation Dltabf between the target air-fuel ratio Tabf and the A / F sensor detected air-fuel ratio Rabf. The air-fuel ratio correction term Alpha is multiplied by the basic fuel injection amount Tp described above. The target air-fuel ratio Tabf is obtained by PI control based on the deviation of the catalyst downstream O 2 sensor output RVO 2 from the target output TgRVO 2 . In addition, a dead time correction term based on the catalyst model is applied to this PI control. The deterioration index Ind1 of the A / F sensor 52 is used to adjust the P gain and I gain of PI control for calculating the air-fuel ratio correction term Alpha. The deterioration index Ind3 of the O 2 sensor 51 is used for adjusting the P gain and I gain of PI control for calculating the target air-fuel ratio Tabf. Further, the catalyst 50 deterioration indexes Ind2a and Ind2b are reflected in the dead time correction portion of the catalyst model base as shown below.

触媒モデルベース補正(図29参照)
図29に示すように、無駄時間補償は、触媒50の伝達特性のうち、無駄時間の部分を除いた伝達特性(図中では、(A)の部分で一次遅れ系)と無駄時間の部分も含む伝達特性(図中では、(B)の部分で一次遅れ+無駄時間)のそれぞれから得られる出力の差Mhosを演算することで構成される。ここに、Ind2bは一次遅れ系の時定数として反映され、また、Ind2bは無駄時間として反映される。
なお、上記実施形態では、いずれも三元触媒50下流の空燃比検出手段としてOセンサ51を用いたが、Oセンサの変わりにA/Fセンサを用いてもよい。
Catalyst model base correction (see Fig. 29)
As shown in FIG. 29, the dead time compensation includes the transfer characteristics of the catalyst 50 excluding the dead time portion (in the figure, the first-order lag system in the portion (A)) and the dead time portion. It is configured by calculating the output difference Mhos obtained from each of the included transfer characteristics (in the drawing, (B), first order delay + dead time). Here, Ind2b is reflected as a time constant of a first-order lag system, and Ind2b is reflected as a dead time.
In the above embodiments, the O 2 sensor 51 is used as the air-fuel ratio detection means downstream of the three-way catalyst 50, but an A / F sensor may be used instead of the O 2 sensor.

本発明に係る制御装置の第1態様の説明に供される図。The figure which is provided for description of the 1st aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第2態様の説明に供される図。The figure which is provided for description of the 2nd aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第3態様の説明に供される図。The figure which is provided for description of the 3rd aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第4態様の説明に供される図。The figure which is provided for description of the 4th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第5態様の説明に供される図。The figure which is provided for description of the 5th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第6態様の説明に供される図。The figure which is provided for description of the 6th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第8態様の説明に供される図。The figure which is provided for description of the 8th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第9態様の説明に供される図。The figure which is provided for description of the 9th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第11態様の説明に供される図。The figure which is provided for description of the 11th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第12態様の説明に供される図。The figure which is provided for description of the 12th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第13態様の説明に供される図。The figure which is provided for description of the 13th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第15態様の説明に供される図。The figure which is provided for description of the 15th aspect of the control apparatus which concerns on this invention. 本発明に係るエンジンの制御装置の第1実施形態の全体構成を示す制御システム図。The control system figure which shows the whole structure of 1st Embodiment of the control apparatus of the engine which concerns on this invention. 第1実施形態におけるコントロールユニットの内部構成図。The internal block diagram of the control unit in 1st Embodiment. 第1実施形態の制御システム図。The control system figure of 1st Embodiment. 第1実施形態における基本燃料噴射量演算部の説明に供される図。The figure which is provided for description of the basic fuel injection amount calculating part in 1st Embodiment. 第1実施形態における空燃比補正項演算部の説明に供される図。The figure which is provided for description of the air-fuel ratio correction term calculation unit in the first embodiment. 第1実施形態における劣化診断許可判定部の説明に供される図。The figure which is provided for description of the deterioration diagnosis permission determination part in 1st Embodiment. 第1実施形態における1番気筒空燃比補正量演算部の説明に供される図。The figure which is provided for description of the first cylinder air-fuel ratio correction amount calculation unit in the first embodiment. 第1実施形態における周波数成分演算部の説明に供される図。The figure which is provided for description of the frequency component calculating part in 1st Embodiment. 第1実施形態における劣化性能演算部の説明に供される図。The figure with which it uses for description of the degradation performance calculating part in 1st Embodiment. 第2実施形態における劣化性能演算部の説明に供される図。The figure which is provided for description of the degradation performance calculating part in 2nd Embodiment. 第3実施形態の制御システム図。The control system figure of 3rd Embodiment. 第3実施形態における第1周波数成分演算部の説明に供される図。The figure which is provided for description of the 1st frequency component calculating part in 3rd Embodiment. 第3実施形態における劣化性能演算部の説明に供される図。The figure which is provided for description of the degradation performance calculating part in 3rd Embodiment. 第4実施形態の制御システム図。The control system figure of 4th Embodiment. 第4実施形態における劣化性能演算部の説明に供される図。The figure with which it uses for description of the degradation performance calculating part in 4th Embodiment. 第4実施形態における空燃比補正項演算部の説明に供される図。The figure which is provided for description of the air fuel ratio correction term calculating part in 4th Embodiment. 第4実施形態における触媒モデルベース補正の説明に供される図。The figure which is provided for description of the catalyst model base correction in the fourth embodiment.

符号の説明Explanation of symbols

1(2、3、4) 第1(第2、第3、第4)実施形態の制御装置
10 エンジン
16 水温センサ
17 燃焼室
19 アクセルペダル
20 吸気通路
21 エアクリーナ
24 エアフローセンサ
25 電制スロットル弁
27 コレクタ
28 スロットル開度センサ
30 燃料噴射弁
35 点火プラグ
36 アクセル開度センサ
37 クランク角(エンジン回転数)センサ
40 排気通路
40B 排気集合部
41 EGR通路
50 三元触媒
51 Oセンサ
52 A/Fセンサ
100 コントロールユニット
121 基本燃料噴射量演算部
122 空燃比補正量演算部
123、423 空燃比補正項演算部
124 劣化診断許可判定部
125、325A、325B 周波数成分演算部
126、226、326、426 劣化性能演算部
1 (2, 3, 4) Control device 10 of first (second, third, fourth) embodiment Engine 16 Water temperature sensor 17 Combustion chamber 19 Accelerator pedal 20 Intake passage 21 Air cleaner 24 Air flow sensor 25 Electric throttle valve 27 Collector 28 Throttle opening sensor 30 Fuel injection valve 35 Spark plug 36 Accelerator opening sensor 37 Crank angle (engine speed) sensor 40 Exhaust passage 40B Exhaust collecting part 41 EGR passage 50 Three-way catalyst 51 O 2 sensor 52 A / F sensor 100 Control unit 121 Basic fuel injection amount calculation unit 122 Air-fuel ratio correction amount calculation unit 123, 423 Air-fuel ratio correction term calculation unit 124 Deterioration diagnosis permission determination unit 125, 325A, 325B Frequency component calculation units 126, 226, 326, 426 Deterioration performance Calculation unit

Claims (16)

排気通路に排気浄化用触媒を備えるとともに、該触媒の下流に空燃比検出手段を有するエンジンの制御装置であって、
特定の気筒における燃焼に供される混合気の空燃比を他の気筒におけるそれとは異ならしめるように制御する気筒別空燃比制御手段と、前記空燃比検出手段から得られる信号に基づいて、前記触媒及び又は前記空燃比検出手段の劣化を判定する劣化判定手段と、を備えていることを特徴とするエンジンの制御装置。
An engine control apparatus comprising an exhaust purification catalyst in an exhaust passage and having an air-fuel ratio detection means downstream of the catalyst,
Based on a signal obtained from the air-fuel ratio detection means and a cylinder-by-cylinder air-fuel ratio control means for controlling the air-fuel ratio of the air-fuel mixture supplied for combustion in a specific cylinder to be different from that in other cylinders, the catalyst And / or a deterioration determining means for determining deterioration of the air-fuel ratio detecting means.
前記空燃比検出手段から得られる信号を周波数解析する周波数解析手段を備え、前記劣化判定手段は、前記周波数解析手段により解析された所定周波数の位相とパワーに基づいて、前記触媒及び又は前記空燃比検出手段の劣化を判定することを特徴とする請求項1に記載のエンジンの制御装置。   Frequency analysis means for frequency analysis of a signal obtained from the air-fuel ratio detection means, the deterioration determination means, based on the phase and power of the predetermined frequency analyzed by the frequency analysis means, the catalyst and / or the air-fuel ratio The engine control device according to claim 1, wherein the deterioration of the detecting means is determined. 前記周波数解析手段は、前記排気通路における前記触媒上流の排気集合部で発生する空燃比の周期的振動に相当する周波数faの位相とパワーを解析し、前記劣化判定手段は、前記周波数faの位相とパワーに基づいて、前記触媒及び又は前記空燃比検出手段の劣化を判定することを特徴とする請求項2に記載のエンジンの制御装置。   The frequency analysis means analyzes the phase and power of the frequency fa corresponding to the periodic vibration of the air-fuel ratio generated in the exhaust gas collecting portion upstream of the catalyst in the exhaust passage, and the deterioration determination means is the phase of the frequency fa 3. The engine control apparatus according to claim 2, wherein deterioration of the catalyst and / or the air-fuel ratio detecting means is determined based on the power. 前記劣化判定手段は、前記周波数解析手段により解析された所定周波数の位相が所定値以下となり、かつ、そのパワーが所定値以上となったとき、前記触媒が劣化したと判定することを特徴とする請求項2又は3に記載のエンジンの制御装置。   The deterioration determining means determines that the catalyst has deteriorated when the phase of the predetermined frequency analyzed by the frequency analyzing means is a predetermined value or less and the power is a predetermined value or more. The engine control device according to claim 2 or 3. 前記劣化判定手段は、前記周波数解析手段により解析された所定周波数の位相が所定値以上となり、かつ、そのパワーが所定値以下となったとき、前記空燃比検出手段が劣化したと判定することを特徴とする請求項2から4のいずれか一項に記載のエンジンの制御装置。   The deterioration determining means determines that the air-fuel ratio detecting means has deteriorated when the phase of the predetermined frequency analyzed by the frequency analyzing means is equal to or greater than a predetermined value and its power is equal to or less than a predetermined value. The engine control apparatus according to any one of claims 2 to 4, wherein the engine control apparatus is characterized in that: 前記所定周波数の位相及びパワーの変化履歴を記憶する履歴記憶手段を備え、前記劣化判定手段は、前記履歴記憶手段に記憶された前記変化履歴に基づいて、所定期間における前記位相の減少量が所定値以上となり、かつ、前記所定期間における前記パワーの増加量が所定値以上となったとき、前記触媒が劣化したと判定し、前記所定期間における前記位相の減少量が所定値以下となり、かつ、前記所定期間における前記パワーの減少量が所定値以上となったとき、前記空燃比検出手段が劣化したと判定することを特徴とする請求項2から5のいずれか一項に記載のエンジンの制御装置。   A history storage means for storing a change history of the phase and power of the predetermined frequency is provided, and the deterioration determination means determines a decrease amount of the phase in a predetermined period based on the change history stored in the history storage means. And when the amount of increase in power in the predetermined period is equal to or greater than a predetermined value, it is determined that the catalyst has deteriorated, the amount of decrease in the phase in the predetermined period is equal to or less than a predetermined value, and 6. The engine control according to claim 2, wherein the air-fuel ratio detection unit is determined to have deteriorated when the power reduction amount in the predetermined period becomes equal to or greater than a predetermined value. 6. apparatus. 前記周波数faは、エンジンが2回転する周期に相当することを特徴とする請求項3に記載のエンジンの制御装置。   The engine control device according to claim 3, wherein the frequency fa corresponds to a cycle in which the engine rotates twice. 前記排気通路における前記触媒上流の排気集合部における空燃比が目標値となるように燃焼に供される混合気の空燃比を制御する平均空燃比制御手段を備えていることを特徴とする請求項1から7のいずれか一項に記載のエンジンの制御装置。   The air-fuel ratio control means for controlling the air-fuel ratio of the air-fuel mixture supplied for combustion so that the air-fuel ratio in the exhaust gas collecting section upstream of the catalyst in the exhaust passage becomes a target value. The engine control device according to any one of 1 to 7. 前記平均空燃比制御手段は、前記排気通路における前記触媒上流の排気集合部に配在された空燃比検出手段の出力に基づいて、燃焼に供せられる混合気の空燃比をフィードバック制御することを特徴とする請求項8に記載のエンジンの制御装置。   The average air-fuel ratio control means performs feedback control on the air-fuel ratio of the air-fuel mixture provided for combustion based on the output of the air-fuel ratio detection means disposed in the exhaust gas collecting portion upstream of the catalyst in the exhaust passage. The engine control apparatus according to claim 8, wherein 前記目標値は、前記触媒の浄化効率が最も高くなる値に設定されていることを特徴とする請求項8又は9に記載のエンジンの制御装置。   The engine control device according to claim 8 or 9, wherein the target value is set to a value at which the purification efficiency of the catalyst is highest. 前記触媒上流の空燃比検出手段から得られる信号を周波数解析する周波数解析手段を備え、前記劣化判定手段は、前記周波数解析手段により解析された、エンジンの2回転成分の位相(Phase1)及びパワー(Power1)から前記触媒上流の空燃比検出手段の劣化を判定するとともに、前記触媒上流の空燃比検出手段の劣化情報、並びに、前記位相(Phase1)及び前記パワー(Power1)と、前記触媒下流の空燃比検出手段からの信号を周波数解析して得られる、エンジンの2回転成分の位相(Phase2)及びパワー(Power2)と、の関係に基づいて、前記触媒及び又は前記触媒下流の空燃比検出手段の劣化を判定することを特徴とする請求項9又は10に記載のエンジンの制御装置。   Frequency analysis means for analyzing the frequency of the signal obtained from the air-fuel ratio detection means upstream of the catalyst is provided, and the deterioration determination means analyzes the phase (Phase 1) and power (Phase 1) and power (phase 1) of the engine's two rotation components analyzed by the frequency analysis means. The deterioration of the air-fuel ratio detection means upstream of the catalyst is determined from Power 1), the deterioration information of the air-fuel ratio detection means upstream of the catalyst, the phase (Phase 1) and the power (Power 1), and the air downstream of the catalyst. Based on the relationship between the phase (Phase 2) and the power (Power 2) of the two rotation components of the engine obtained by frequency analysis of the signal from the fuel ratio detection means, the catalyst and / or the air-fuel ratio detection means downstream of the catalyst are detected. 11. The engine control device according to claim 9, wherein deterioration is determined. 前記平均空燃比制御手段は、前記劣化判定手段から得られる、前記触媒上流の空燃比検出手段の劣化情報、前記触媒の劣化情報、及び、前記触媒下流の空燃比検出手段の劣化情報のうちの少なくとも一つに基づいて、燃焼に供せられる混合気の空燃比をフィードバック制御することを特徴とする請求項11に記載のエンジンの制御装置。   The average air-fuel ratio control means includes the deterioration information of the air-fuel ratio detection means upstream of the catalyst, the deterioration information of the catalyst, and the deterioration information of the air-fuel ratio detection means downstream of the catalyst obtained from the deterioration determination means. The engine control device according to claim 11, wherein the air-fuel ratio of the air-fuel mixture supplied for combustion is feedback-controlled based on at least one. 前記劣化判定手段から得られる、前記触媒上流の空燃比検出手段の劣化情報、前記触媒の劣化情報、及び、前記触媒下流の空燃比検出手段の劣化情報に基づいて、前記触媒上流の空燃比検出手段、前記触媒、及び、前記触媒下流の空燃比検出手段の正常時に対する前記触媒下流の排気悪化量を演算する排気悪化量演算手段を備えていることを特徴とする請求項11又は12に記載のエンジンの制御装置。   Based on the deterioration information of the air-fuel ratio detection means upstream of the catalyst, the deterioration information of the catalyst, and the deterioration information of the air-fuel ratio detection means downstream of the catalyst obtained from the deterioration determination means, the air-fuel ratio detection upstream of the catalyst The exhaust gas deterioration amount calculating means for calculating the exhaust gas deterioration amount downstream of the catalyst with respect to the normal state of the means, the catalyst, and the air / fuel ratio detection means downstream of the catalyst is provided. Engine control device. 前記気筒別空燃比制御手段は、各気筒に対して配備された燃料噴射弁の燃料噴射態様及び又は吸排気弁の開閉態様を気筒毎に個別に制御可能とされていることを特徴とする請求項1から13のいずれか一項に記載のエンジンの制御装置。   The cylinder-by-cylinder air-fuel ratio control means is capable of individually controlling a fuel injection mode of a fuel injection valve provided for each cylinder and an opening / closing mode of an intake / exhaust valve for each cylinder. Item 14. The engine control device according to any one of Items 1 to 13. 前記気筒別空燃比制御手段は、燃焼に供される混合気の空燃比を一気筒のみ他の気筒と異ならしめることにより、前記排気通路における前記触媒上流の排気集合部において空燃比に周期的振動を発生させるようにされていることを特徴とする請求項1から14のいずれか一項に記載のエンジンの制御装置。   The cylinder-by-cylinder air-fuel ratio control means periodically oscillates the air-fuel ratio in the exhaust gas collection section upstream of the catalyst in the exhaust passage by making the air-fuel ratio of the mixture supplied for combustion differ from other cylinders by only one cylinder. The engine control device according to any one of claims 1 to 14, wherein the engine control device is configured to generate. 請求項1から15のいずれか一項に記載のエンジンの制御装置を搭載した車両。   A vehicle equipped with the engine control device according to any one of claims 1 to 15.
JP2003370115A 2003-10-30 2003-10-30 Engine control device Expired - Fee Related JP4129221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370115A JP4129221B2 (en) 2003-10-30 2003-10-30 Engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370115A JP4129221B2 (en) 2003-10-30 2003-10-30 Engine control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008058916A Division JP2008185035A (en) 2008-03-10 2008-03-10 Engine control device

Publications (2)

Publication Number Publication Date
JP2005133626A true JP2005133626A (en) 2005-05-26
JP4129221B2 JP4129221B2 (en) 2008-08-06

Family

ID=34647221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370115A Expired - Fee Related JP4129221B2 (en) 2003-10-30 2003-10-30 Engine control device

Country Status (1)

Country Link
JP (1) JP4129221B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202442A (en) * 2007-02-19 2008-09-04 Denso Corp Deterioration determination device for exhaust emission control system
KR100962875B1 (en) 2008-08-14 2010-06-09 현대자동차일본기술연구소 Catalyst deterioration diagnosis device and method
JP2011047332A (en) * 2009-08-27 2011-03-10 Toyota Motor Corp Device for determining air-fuel ratio imbalance between cylinders of internal combustion engine
JP2012229663A (en) * 2011-04-27 2012-11-22 Honda Motor Co Ltd Air fuel ratio control device for internal combustion engine
JP2013024199A (en) * 2011-07-25 2013-02-04 Bosch Corp Extremely lean zone responsiveness diagnostic method of lambda sensor and common rail type fuel injection control device
US8413497B2 (en) 2010-03-09 2013-04-09 Denso Corporation Abnormality diagnostic device of internal combustion engine with turbocharger
JP2013217295A (en) * 2012-04-09 2013-10-24 Hitachi Automotive Systems Ltd Engine control device
WO2014112427A1 (en) * 2013-01-18 2014-07-24 日立オートモティブシステムズ株式会社 Control device and control method of engine
JP2019019783A (en) * 2017-07-19 2019-02-07 国立研究開発法人 海上・港湾・航空技術研究所 Engine control method, engine control program and engine controller using engine state observation instrument
JP2020186730A (en) * 2020-08-13 2020-11-19 国立研究開発法人 海上・港湾・航空技術研究所 Engine control method, engine control program, and engine control device using engine state observation device
WO2023079791A1 (en) * 2021-11-04 2023-05-11 日立Astemo株式会社 Control device and control method for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181149A (en) * 1990-11-15 1992-06-29 Mitsubishi Motors Corp Diagnosis for deterioration of catalyst
JPH09158714A (en) * 1995-10-03 1997-06-17 Toyota Motor Corp Catalyst deterioration judging device of internal combustion engine
JP2000220489A (en) * 1999-01-27 2000-08-08 Hitachi Ltd Control device for engine
JP2001041098A (en) * 1999-07-21 2001-02-13 Hyundai Motor Co Ltd Engine misfire detection system using frequency analysis and detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181149A (en) * 1990-11-15 1992-06-29 Mitsubishi Motors Corp Diagnosis for deterioration of catalyst
JPH09158714A (en) * 1995-10-03 1997-06-17 Toyota Motor Corp Catalyst deterioration judging device of internal combustion engine
JP2000220489A (en) * 1999-01-27 2000-08-08 Hitachi Ltd Control device for engine
JP2001041098A (en) * 1999-07-21 2001-02-13 Hyundai Motor Co Ltd Engine misfire detection system using frequency analysis and detection method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202442A (en) * 2007-02-19 2008-09-04 Denso Corp Deterioration determination device for exhaust emission control system
US8087231B2 (en) 2007-02-19 2012-01-03 Denso Corporation Deterioration-determination apparatus for exhaust gas purifying system
KR100962875B1 (en) 2008-08-14 2010-06-09 현대자동차일본기술연구소 Catalyst deterioration diagnosis device and method
JP2011047332A (en) * 2009-08-27 2011-03-10 Toyota Motor Corp Device for determining air-fuel ratio imbalance between cylinders of internal combustion engine
US8510017B2 (en) 2009-08-27 2013-08-13 Toyota Jidosha Kabushiki Kaisha Cylinder-to-cylinder air/fuel ratio imbalance determination system of internal combustion engine
US8413497B2 (en) 2010-03-09 2013-04-09 Denso Corporation Abnormality diagnostic device of internal combustion engine with turbocharger
JP2012229663A (en) * 2011-04-27 2012-11-22 Honda Motor Co Ltd Air fuel ratio control device for internal combustion engine
JP2013024199A (en) * 2011-07-25 2013-02-04 Bosch Corp Extremely lean zone responsiveness diagnostic method of lambda sensor and common rail type fuel injection control device
JP2013217295A (en) * 2012-04-09 2013-10-24 Hitachi Automotive Systems Ltd Engine control device
WO2014112427A1 (en) * 2013-01-18 2014-07-24 日立オートモティブシステムズ株式会社 Control device and control method of engine
JP2014137041A (en) * 2013-01-18 2014-07-28 Hitachi Automotive Systems Ltd Device and method for controlling engine
US10012160B2 (en) 2013-01-18 2018-07-03 Hitachi Automotive Systems, Ltd. Control device and control method of engine
JP2019019783A (en) * 2017-07-19 2019-02-07 国立研究開発法人 海上・港湾・航空技術研究所 Engine control method, engine control program and engine controller using engine state observation instrument
JP2020186730A (en) * 2020-08-13 2020-11-19 国立研究開発法人 海上・港湾・航空技術研究所 Engine control method, engine control program, and engine control device using engine state observation device
JP7232532B2 (en) 2020-08-13 2023-03-03 国立研究開発法人 海上・港湾・航空技術研究所 ENGINE CONTROL METHOD, ENGINE CONTROL PROGRAM AND ENGINE CONTROL DEVICE USING ENGINE STATE OBSERVER
WO2023079791A1 (en) * 2021-11-04 2023-05-11 日立Astemo株式会社 Control device and control method for internal combustion engine

Also Published As

Publication number Publication date
JP4129221B2 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
JP4130800B2 (en) Engine control device
JP4464876B2 (en) Engine control device
JP4700079B2 (en) Device for determining an air-fuel ratio imbalance between cylinders
EP1657415B1 (en) Engine Self-diagnosis system
JP3878398B2 (en) Engine self-diagnosis device and control device
US7168240B2 (en) Control apparatus for an internal combustion engine
JP4129221B2 (en) Engine control device
JP2008185035A (en) Engine control device
JP2008180225A (en) Engine control device
JP2006052684A (en) Control device of engine
JP2012145054A (en) Apparatus for detecting fluctuation abnormality of air-fuel ratios among cylinders of multi-cylinder internal combustion engine
US9429089B2 (en) Control device of engine
JP2014181650A (en) Abnormality detecting device of multicylinder-type internal combustion engine
JP3550756B2 (en) Air-fuel ratio control device for internal combustion engine
JP4276136B2 (en) Engine diagnostic equipment
JP2006233781A (en) Catalyst diagnostic device for internal combustion engine
JP6252093B2 (en) Cylinder air-fuel ratio variation abnormality detection device
US9057337B2 (en) Air-fuel ratio control system for internal combustion engine
JP4275046B2 (en) Engine control device
JP2005240618A (en) Engine control device
JP2005009401A (en) Exhaust emission control device for internal combustion engine
JP3879596B2 (en) Air-fuel ratio sensor state determination device
JP4446873B2 (en) Air-fuel ratio control device for internal combustion engine
JPH08128317A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2009281358A (en) Deterioration diagnosing device for exhaust emission control catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4129221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees