JP2005133576A - Diesel engine - Google Patents

Diesel engine Download PDF

Info

Publication number
JP2005133576A
JP2005133576A JP2003367819A JP2003367819A JP2005133576A JP 2005133576 A JP2005133576 A JP 2005133576A JP 2003367819 A JP2003367819 A JP 2003367819A JP 2003367819 A JP2003367819 A JP 2003367819A JP 2005133576 A JP2005133576 A JP 2005133576A
Authority
JP
Japan
Prior art keywords
injection
fuel
preliminary
diesel engine
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003367819A
Other languages
Japanese (ja)
Inventor
Yuji Yanagawa
祐治 柳川
Jun Takemura
純 竹村
Megumi Shigahara
恵 信ヶ原
Michihiro Hatake
道博 畠
Kazuo Kurata
和郎 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003367819A priority Critical patent/JP2005133576A/en
Priority to CNB2004100868203A priority patent/CN100451320C/en
Priority to DE102004052415A priority patent/DE102004052415A1/en
Publication of JP2005133576A publication Critical patent/JP2005133576A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diesel engine in which the preliminary injection is made in an exhaust stroke range without the immediate ignition by obtaining a sufficient premixed time so that premixed combustion is promoted, and main injection fuel is quickly vaporized and burned in a combustion chamber raised in temperature so as to enable both the reductions in a formation amount of NOx and discharge of a smoke (PM). <P>SOLUTION: The diesel engine 1 is provided with a fuel injection device M to conduct main injection Js of high-pressure fuel into the combustion chamber 7 near a compression top dead center, and conduct the preliminary injection Js before the main injection, and a controller 27 to control the fuel injection device M corresponding to the operation condition. The controller 27 controls the injection so as to conduct the preliminary injection before the opening position tintop of a suction valve in a latter part of the exhaust stroke. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主噴射に先立ち予備噴射を行なうディーゼルエンジンに係り、特に、NOxの生成を抑制しつつ黒煙の排出量を低減できるディーゼルエンジンに関するものである。   The present invention relates to a diesel engine that performs preliminary injection prior to main injection, and more particularly to a diesel engine that can reduce the amount of black smoke emission while suppressing the generation of NOx.

ディーゼルエンジンではその排気中に含まれるNOxの低減、燃焼時の騒音の低減を目的とし、燃料の噴射時期を遅らせることが行なわれていたが、このようなタイミングリタードを行なうと黒煙の排出量が増加する。そこで高圧噴射を実施して燃料の微粒化を向上させることで黒煙の排出量を改善している。しかし、この場合には燃焼温度が上昇してNOxの排出量が増加してしまう。   Diesel engines have been designed to delay fuel injection for the purpose of reducing NOx contained in the exhaust gas and reducing noise during combustion. Will increase. Therefore, the discharge of black smoke is improved by improving the atomization of fuel by implementing high-pressure injection. However, in this case, the combustion temperature rises and the amount of NOx emissions increases.

このように、ディーゼルエンジンにおいてはNOxの生成を抑制することと黒煙の排出量を低減することはトレードオフの関係にあり、両者とも改善することは困難とされていた。そこで、主噴射に先立ち圧縮上死点前20〜60°CAのタイミングでパイロット噴射(予備噴射)を別途行なうことで、希薄混合気を形成してNOxの低減、スモーク(PM)の排出量の低減を図ることが行なわれている。   Thus, in a diesel engine, suppressing the generation of NOx and reducing the emission amount of black smoke are in a trade-off relationship, and it has been difficult to improve both. Therefore, by separately performing pilot injection (preliminary injection) at a timing of 20 to 60 ° CA before compression top dead center prior to main injection, a lean air-fuel mixture is formed, NOx reduction, and smoke (PM) emissions are reduced. Reductions are being made.

例えば、燃料噴射系がコモンレールの場合は、エンジンコントローラで高圧インジェクタの駆動タイミング(噴射時期)、電磁弁コイルへの通電時間(燃料噴射量)をそれぞれ制御して、主噴射およびそれに先立ちパイロット噴射を実現している。
更に、燃料噴射系が分配型ポンプの場合はプランジャーとノズルの間の噴射管経路上に開閉電磁弁を設けておき、この開閉電磁弁のコイルへの通電時間(燃料噴射量)をパイロット噴射(予備噴射)と主噴射の各タイミングでそれぞれ開閉制御して、主噴射およびそれに先立ちパイロット噴射を実現している。
For example, when the fuel injection system is a common rail, the engine controller controls the drive timing (injection timing) of the high-pressure injector and the energization time (fuel injection amount) to the solenoid valve coil, respectively. Realized.
Further, when the fuel injection system is a distributed pump, an open / close solenoid valve is provided on the injection pipe path between the plunger and the nozzle, and the energization time (fuel injection amount) to the coil of this open / close solenoid valve is pilot-injected. Opening and closing control is performed at each timing of (preliminary injection) and main injection to realize main injection and pilot injection prior to that.

なお、特開平10−141124号公報(特許文献1)には、燃料噴射装置がコモンレールを用い、図8に示すように、吸入行程の初期における第1の予備噴射Jsと、圧縮行程の中期または後期における第2の予備噴射であるパイロット噴射Jpと、圧縮上死点近傍の主噴射Jmとを行なう燃料噴射装置が開示される。   In JP-A-10-141124 (Patent Document 1), the fuel injection device uses a common rail, and as shown in FIG. 8, the first preliminary injection Js in the initial stage of the intake stroke and the middle stage of the compression stroke or A fuel injection device that performs pilot injection Jp, which is the second preliminary injection in the latter period, and main injection Jm near the compression top dead center is disclosed.

ここでは圧縮行程の進行に応じて第1の予備噴射Jsによる希薄混合気(熱容量大のため着火しない)を形成し、この状態でパイロット噴射Jpが成されることでパイロット噴射燃料が速やかに気化して一部自己着火する。その後の主噴射時Jmにおいて両予備噴射で昇温した燃焼室で主噴射燃料が速やかに気化し燃焼し、両予備噴射による希薄混合気も一気に燃焼する。この場合、第1の予備噴射量Jsとパイロット噴射量Jpと主噴射量Jmを調整することで、NOxの生成を抑制し、スモーク(PM)の排出量を低減できるとしている。   Here, as the compression stroke progresses, a lean air-fuel mixture (not ignited due to a large heat capacity) is formed by the first preliminary injection Js, and the pilot injection Jp is formed in this state so that the pilot injected fuel is quickly gasified. Partly self-ignited. In the subsequent main injection Jm, the main injection fuel quickly vaporizes and burns in the combustion chamber whose temperature has been increased by both preliminary injections, and the lean air-fuel mixture by both preliminary injections also burns at once. In this case, by adjusting the first preliminary injection amount Js, the pilot injection amount Jp, and the main injection amount Jm, the generation of NOx can be suppressed and the smoke (PM) emission amount can be reduced.

特開平10−141124号公報JP-A-10-141124

ところで、本発明者等は、主噴射およびそれに先立つ予備噴射を行ない圧縮行程で希薄混合気を形成する予混合圧縮着火方式のディーゼルエンジンにおいて、NOxの生成量、スモーク(PM)の排出量の増減特性を明らかにするため、予備噴射時期を進角、遅角変位させて、各運転状態での特性を調査した。   By the way, in the diesel engine of the premixed compression ignition system that performs the main injection and the preliminary injection preceding it to form a lean mixture in the compression stroke, the inventors have increased or decreased the NOx generation amount and the smoke (PM) emission amount. In order to clarify the characteristics, the preliminary injection timing was advanced and retarded, and the characteristics in each operating state were investigated.

ここでは、予備噴射時期を進角、遅角変位させるにあたり、多気筒ディーゼルエンジンを2000rpmで、平均有効圧を0.6MPaとし、主噴射時期を上死点前0.6°として、EGRオンで運転した。ここで予備噴射時期の変化に応じてNOx生成量と、スモーク(PM)の排出量とを測定し、その測定値の特性を、図5、図6に一例として示した。   Here, in order to advance and retard the preliminary injection timing, the multi-cylinder diesel engine is set to 2000 rpm, the average effective pressure is set to 0.6 MPa, the main injection timing is set to 0.6 ° before top dead center, and EGR is turned on. Drove. Here, the NOx generation amount and the smoke (PM) discharge amount were measured according to the change in the preliminary injection timing, and the characteristics of the measured values are shown as an example in FIGS. 5 and 6.

ここで、予備噴射時期が排気行程にある間は吸気弁開時期の前後でNOxが減少し、予備噴射時期が吸気上死点TDC後の吸気行程では上死点後で排気弁閉位置近傍までの領域でNOxが多少増加し、その後低減しているが、吸気上死点TDC前後域で予備噴射時期を変化させた場合、NOx生成量の変化は比較的小さい。   Here, while the preliminary injection timing is in the exhaust stroke, NOx decreases before and after the intake valve opening timing, and in the intake stroke after the intake top dead center TDC, the preliminary injection timing reaches the vicinity of the exhaust valve closing position after the top dead center. NOx slightly increases in this region and then decreases, but when the preliminary injection timing is changed in the region around the intake top dead center TDC, the change in the NOx generation amount is relatively small.

一方、予備噴射時期の変化に応じたスモーク(PM)発生量は、予備噴射時期が排気行程にあり、吸気弁開時期の前後で大きく増減変化し、予備噴射時期が上死点TDC後の吸気行程では排気弁閉位置近傍より後の領域で急増している。
このように、吸気上死点TDC前後域で予備噴射時期を変化させた場合、スモーク(PM)発生量は吸気行程の排気弁閉位置近傍より後の領域で急増し、排気行程で吸気弁開時期前に大きく低減することが判明した。
On the other hand, the amount of smoke (PM) generated according to the change in the preliminary injection timing changes greatly before and after the intake valve opening timing when the preliminary injection timing is in the exhaust stroke, and the preliminary injection timing is the intake air after the top dead center TDC. In the stroke, it increases rapidly in the region after the vicinity of the exhaust valve closing position.
As described above, when the preliminary injection timing is changed around the intake top dead center TDC, the amount of smoke (PM) increases rapidly in the region after the exhaust valve close position in the intake stroke, and the intake valve opens in the exhaust stroke. It turned out to be greatly reduced before the time.

このため、主噴射および予備噴射を行なう予混合圧縮着火方式のディーゼルエンジンにおいて、NOxの生成量とスモーク(PM)の排出量を共に低減させるためには、予備噴射を排気行程であって吸気弁開時期の前の領域である吸気TOP領域Einで行なうことが有効と推測される。
なお、特許文献1に開示の予混合圧縮着火方式のディーゼルエンジンにおいては、第1予備噴射Ts、パイロット噴射Tpおよび主噴射Tmをそれぞれ所定噴射量で行なうことで、NOxと、スモーク(PM)の排出量を低減しているが、第1予備噴射Tsが吸気行程初期で排気弁閉弁直後(図8で符号p1位置)で行なわれており、図6の特性を考慮すると、本来スモーク(PM)の排出量を十分に低減できるとは思われない。
Therefore, in a premixed compression ignition type diesel engine that performs main injection and preliminary injection, in order to reduce both the amount of NOx generated and the amount of smoke (PM) discharged, preliminary injection is performed in the exhaust stroke, and the intake valve It is estimated that it is effective to perform in the intake TOP region Ein, which is the region before the opening timing.
Note that in the premixed compression ignition type diesel engine disclosed in Patent Document 1, the first preliminary injection Ts, the pilot injection Tp, and the main injection Tm are respectively performed at predetermined injection amounts, so that NOx and smoke (PM) can be obtained. Although the discharge amount is reduced, the first preliminary injection Ts is performed immediately after the exhaust valve is closed at the initial stage of the intake stroke (position p1 in FIG. 8). Considering the characteristics of FIG. ) Emissions are not expected to be sufficiently reduced.

本発明は上述の経緯に応じて成されたものであり、予備噴射を排気行程域で行なうことで、すぐには着火せずに十分な予混合時間を得ることにより、予混合燃焼を促進し、温度昇温した燃焼室で主噴射燃料が速やかに気化して燃焼してNOxの生成量とスモーク(PM)の排出量を共に低減できるディーゼルエンジンを提供することを目的とする。   The present invention has been made in accordance with the above-described circumstances. By performing preliminary injection in the exhaust stroke region, premix combustion is promoted by obtaining sufficient premix time without immediately igniting. Another object of the present invention is to provide a diesel engine capable of reducing both NOx production and smoke (PM) emission by quickly evaporating and burning main injection fuel in a combustion chamber whose temperature has been raised.

この発明の請求項1に係るディーゼルエンジンは、燃焼室に高圧燃料を圧縮上死点の近傍において主噴射すると共にこの主噴射に先立ち予備噴射を行なう燃料噴射装置と、運転状態に応じて上記噴射装置を制御するコントローラと、を備えたディーゼルエンジンにおいて、上記コントローラは上記予備噴射を排気行程後期で吸気弁開前に行なうように噴射制御することを特徴とする。   According to a first aspect of the present invention, a diesel engine mainly injects high-pressure fuel into a combustion chamber in the vicinity of the compression top dead center and performs preliminary injection prior to the main injection, and the injection according to the operating state. And a controller for controlling the apparatus, wherein the controller performs injection control so that the preliminary injection is performed at a later stage of the exhaust stroke and before the intake valve is opened.

請求項2に係るディーゼルエンジンは、ピストン頂部のキャビティーに高圧燃料を圧縮上死点の近傍において主噴射すると共にこの主噴射に先立ち予備噴射を行なう燃料噴射装置と、運転状態に応じて上記噴射装置を制御するコントローラと、を備えたディーゼルエンジンにおいて、上記コントローラは上記予備噴射を排気行程後期で吸気弁開前で上記キャビティー内壁に燃料が全て到達する時期に行なうよう噴射制御することを特徴とする。   According to a second aspect of the present invention, there is provided a diesel engine that mainly injects high-pressure fuel into the cavity at the top of the piston in the vicinity of the compression top dead center and performs preliminary injection prior to the main injection, and the injection according to the operating state. And a controller for controlling the device, wherein the controller performs injection control so that the preliminary injection is performed at a time when all of the fuel reaches the cavity inner wall in the late stage of the exhaust stroke and before the intake valve is opened. And

この発明の請求項1によれば、予備噴射をこのような噴射開始時期に行なうことにより、予備噴射燃料がピストン頂部のキャビティー内壁や頂壁面に噴射され、この際、比較的筒内温度が低い状態で燃料が供給されるため、すぐには着火せず、十分な予混合時間が得られることとなり、予混合燃焼が促進され、温度昇温した燃焼室で主噴射燃料が速やかに気化して燃焼するのでNOxとスモーク(PM)の発生量が減少する。しかも、予備噴射燃料によって十分な予混合が成され予混合燃焼が促進されるので、主噴射期間での予混合燃焼域が減少して拡散燃焼に至るのでNOxも減少する上にPMも低減し、即ち、PM−NOxのトレードオフが改善される。   According to the first aspect of the present invention, by performing preliminary injection at such injection start timing, the pre-injected fuel is injected into the cavity inner wall and the top wall surface of the piston top, and at this time, the in-cylinder temperature is relatively low. Since the fuel is supplied in a low state, ignition does not occur immediately and sufficient premixing time is obtained, premixed combustion is promoted, and the main injection fuel is quickly vaporized in the combustion chamber whose temperature has been raised. The amount of NOx and smoke (PM) generated decreases. In addition, since the pre-injected fuel provides sufficient pre-mixing and pre-mix combustion is promoted, the pre-mix combustion area in the main injection period is reduced to reach diffusion combustion, so NOx is reduced and PM is also reduced. That is, the PM-NOx trade-off is improved.

この発明の請求項2によれば、予備噴射をこのような噴射開始時期に行なうことにより、予備噴射燃料がピストン頂部のキャビティー内壁内に燃料が全て到達するように噴射され、この際、比較的筒内温度が低い状態で燃料が供給されるため、すぐには着火せず、十分な予混合時間が得られることとなり、予混合燃焼(均一燃焼)が促進され、温度昇温した燃焼室で主噴射燃料が速やかに気化して燃焼するのでスモーク(PM)が減少し、しかも、予備噴射燃料が全てキャビティー内壁に到達するので、噴射燃料のシリンダ内壁への付着を確実に防止でき、オイル稀釈(オイルダイリューション)を抑制できる。   According to the second aspect of the present invention, the preliminary injection is performed at such an injection start timing, so that the preliminary injection fuel is injected so that all of the fuel reaches the cavity inner wall of the top of the piston. Because the fuel is supplied at a low temperature in the target cylinder, it will not ignite immediately, and sufficient premixing time will be obtained, premixed combustion (uniform combustion) will be promoted, and the temperature of the combustion chamber will rise Because the main injected fuel vaporizes and burns quickly, smoke (PM) decreases, and all the pre-injected fuel reaches the inner wall of the cavity, so that it is possible to reliably prevent the injected fuel from adhering to the inner wall of the cylinder, Oil dilution can be suppressed.

図1にはこの発明の実施の形態としてのディーゼルエンジン1と、同ディーゼルエンジン(以後単にエンジンと記す)1の本体2に搭載される燃料噴射装置Mの全体構成を示す。
エンジン1の本体2はその上部にシリンダブロック3とその上側に一体結合されたシリンダヘッド4と、不図示のヘッドカバーを備える。エンジン1は同一構成の気筒を複数有する多気筒エンジンであるが、ここでは重複説明を避けるため、1つの気筒を主に説明する。ここでシリンダブロック3は内部のシリンダ5内にピストン6を上下摺動可能に配備し、シリンダ5、ピストン6、シリンダヘッド4の下壁間に燃焼室7を容積可変に形成している。
FIG. 1 shows an overall configuration of a diesel engine 1 as an embodiment of the present invention and a fuel injection device M mounted on a main body 2 of the diesel engine (hereinafter simply referred to as an engine) 1.
The main body 2 of the engine 1 includes a cylinder block 3 at an upper portion thereof, a cylinder head 4 integrally coupled to the upper side thereof, and a head cover (not shown). Although the engine 1 is a multi-cylinder engine having a plurality of cylinders having the same configuration, here, only one cylinder will be mainly described in order to avoid redundant description. Here, the cylinder block 3 has a piston 6 slidably disposed in an internal cylinder 5, and a combustion chamber 7 is formed between the lower walls of the cylinder 5, the piston 6, and the cylinder head 4 in a variable volume.

シリンダヘッド4の下壁には燃焼室7に対向して燃料噴射弁8が取り付けられ、しかも、燃料噴射弁8と干渉しない位置に吸気弁9で開閉される吸気ポート11と、排気弁12で開閉される排気ポート13が形成される。吸排気弁9、12はエンジンクランクシャフトの回転を不図示の動弁系を介し受けて開閉駆動する。   A fuel injection valve 8 is attached to the lower wall of the cylinder head 4 so as to face the combustion chamber 7, and an intake port 11 that is opened and closed by the intake valve 9 at a position that does not interfere with the fuel injection valve 8 and an exhaust valve 12. An exhaust port 13 that is opened and closed is formed. The intake / exhaust valves 9 and 12 are driven to open and close by receiving rotation of the engine crankshaft through a valve system (not shown).

吸気ポート11は吸気路IN側よりのエアを吸気弁9の開時に燃焼室7に導入させる。尚、吸入空気量Qaを調整するスロットル弁17を配置しても良い。排気ポート13は排気弁12の開時に燃焼室7の排気を不図示の排気ガス浄化装置を備える排気路EX側に排出させるように形成される。なお、排気ガス浄化装置は酸化触媒とパティキュレートフィルタを直列配備した周知の連続再生式排気ガス浄化装置等を利用できる。   The intake port 11 introduces air from the intake passage IN side into the combustion chamber 7 when the intake valve 9 is opened. A throttle valve 17 for adjusting the intake air amount Qa may be disposed. The exhaust port 13 is formed so that when the exhaust valve 12 is opened, the exhaust from the combustion chamber 7 is exhausted to the exhaust passage EX side having an exhaust gas purification device (not shown). As the exhaust gas purification device, a known continuous regeneration exhaust gas purification device in which an oxidation catalyst and a particulate filter are arranged in series can be used.

吸気ポート11と排気ポート13間には中間部にEGR制御弁19を備えたEGR通路21が配備され、これらにより、排気ポート13の排気ガスを吸気ポート11に還流させてNOx排出量を抑制する排気ガス再循環装置(EGR装置)16を形成している。
ピストン6はその頂壁にキャビティー22を凹設され、ピストンが上死点近傍に達した際にキャビティーの内周壁221に向けて燃料噴射弁8の複数の噴口よりの燃料粒を噴霧可能に形成されている。
Between the intake port 11 and the exhaust port 13, an EGR passage 21 having an EGR control valve 19 is provided in the middle, and thereby, exhaust gas in the exhaust port 13 is recirculated to the intake port 11 to suppress the NOx emission amount. An exhaust gas recirculation device (EGR device) 16 is formed.
The piston 6 has a cavity 22 recessed in the top wall, and when the piston reaches near the top dead center, fuel particles from a plurality of nozzles of the fuel injection valve 8 can be sprayed toward the inner peripheral wall 221 of the cavity. Is formed.

ここで、燃料噴射弁8の複数の噴口よりの燃料粒の噴射角βとキャビティー22の開口形状とに関連して、図3、4に示すように、クランク角領域がEinにおいて、噴射燃料がキャビティー22の内壁に全て到達でき、同領域を外れた上死点離隔領域Eoutでは、噴射燃料が一部あるいは全てキャビティー22外に達するように設定されている。   Here, in relation to the injection angle β of the fuel particles from the plurality of injection holes of the fuel injection valve 8 and the opening shape of the cavity 22, as shown in FIGS. Can reach all the inner wall of the cavity 22, and in the top dead center separation region Eout outside the region, the injection fuel is set to partially or entirely reach the outside of the cavity 22.

図1に示すように、この燃料噴射弁8とコモンレール24と燃料ポンプ25は燃料噴射装置Mの要部を成す。ここで、燃料タンク38の燃料は燃料供給管18及び燃料ポンプ25を介してコモンレール24に供給される。コモンレール24に供給された燃料は各噴射管23を介して燃料噴射弁8に供給される。コモンレール24には内部の燃料圧を検出するための燃料圧センサ26が取付けられ、同燃料圧センサ26の出力信号(レール圧)Prはエンジンコントローラ(以後、単にECUと記す)27に出力される。ECU27のレール圧制御回路はコモンレール24内のレール圧Prが目標燃料圧となるように燃料ポンプ25の吐出量を制御している。   As shown in FIG. 1, the fuel injection valve 8, the common rail 24, and the fuel pump 25 constitute a main part of the fuel injection device M. Here, the fuel in the fuel tank 38 is supplied to the common rail 24 via the fuel supply pipe 18 and the fuel pump 25. The fuel supplied to the common rail 24 is supplied to the fuel injection valve 8 through each injection pipe 23. A fuel pressure sensor 26 for detecting an internal fuel pressure is attached to the common rail 24, and an output signal (rail pressure) Pr of the fuel pressure sensor 26 is output to an engine controller (hereinafter simply referred to as an ECU) 27. . The rail pressure control circuit of the ECU 27 controls the discharge amount of the fuel pump 25 so that the rail pressure Pr in the common rail 24 becomes the target fuel pressure.

なお、図1には第1気筒の燃料噴射弁8及びその燃料供給系を示したが、その他の気筒も同様構成の燃料噴射弁及びその燃料供給系を備え、それらの各電磁アクチュエータも各々ECU27に接続される。
ECU27はデジタルコンピュータからなり、双方向性バス28によって互いに接続されたROM(リードオンリメモリ)29、RAM(ランダムアクセスメモリ)31、CPU(マイクロプロセッサ)32、入力ポート33および出力ポート34を備え、ここでは、特に、燃料供給制御手段としての機能を備える。
Although FIG. 1 shows the fuel injection valve 8 of the first cylinder and its fuel supply system, the other cylinders also have a fuel injection valve and its fuel supply system having the same configuration, and each of these electromagnetic actuators is also connected to the ECU 27. Connected to.
The ECU 27 is a digital computer, and includes a ROM (read only memory) 29, a RAM (random access memory) 31, a CPU (microprocessor) 32, an input port 33 and an output port 34 connected to each other by a bidirectional bus 28. Here, in particular, a function as a fuel supply control means is provided.

車両のアクセルペダル35にはアクセルペダル36の踏込み量(アクセル開度)θaに比例した出力電圧を発生する負荷センサ37が接続され、負荷センサ37の出力電圧は不図示のAD変換器を介して入力ポート33に入力される。更に入力ポート33には不図示のクランクシャフトが例えば30°回転する毎に出力パルスδθ(エンジン回転数信号)を発生するクランク角センサ39が接続される。しかもクランク角センサ39には気筒判別装置42が併設され,これにより、多気筒エンジンの個々のシリンダの判別信号δcを出力する。一方、出力ポート34は噴射弁駆動回路D2(図2参照)を介して燃料噴射弁8に,ポンプ駆動回路D1(図2参照)を介して燃料ポンプ25に、不図示の駆動回路を介してEGR制御弁19にそれぞれ接続されている。   A load sensor 37 that generates an output voltage proportional to the depression amount (accelerator opening) θa of the accelerator pedal 36 is connected to the accelerator pedal 35 of the vehicle. The output voltage of the load sensor 37 is passed through an AD converter (not shown). Input to the input port 33. Further, a crank angle sensor 39 that generates an output pulse δθ (engine speed signal) every time a crankshaft (not shown) rotates, for example, by 30 ° is connected to the input port 33. In addition, the crank angle sensor 39 is provided with a cylinder discriminating device 42, which outputs a discrimination signal δc for each cylinder of the multi-cylinder engine. On the other hand, the output port 34 is connected to the fuel injection valve 8 via an injection valve drive circuit D2 (see FIG. 2), to the fuel pump 25 via a pump drive circuit D1 (see FIG. 2), and via a drive circuit (not shown). Each is connected to the EGR control valve 19.

ECU27はクランク角センサ39、負荷センサ37及び燃料圧センサ26より各検出信号を取り込み、燃料噴射弁8、燃料ポンプ25及びEGR制御弁19等を制御する。
ここで、ECU27は燃料供給制御手段として機能し、図2に示すような各機能を備える。
即ち,燃料供給制御手段はエンジン回転数Neとエンジン負荷としてのアクセル開度θaとレール圧Prを取込み、噴射量演算部A1とレール圧演算部A2と噴射時期演算部A3とを駆動する。
The ECU 27 takes in the detection signals from the crank angle sensor 39, the load sensor 37, and the fuel pressure sensor 26, and controls the fuel injection valve 8, the fuel pump 25, the EGR control valve 19, and the like.
Here, the ECU 27 functions as a fuel supply control means, and has various functions as shown in FIG.
That is, the fuel supply control means takes in the engine speed Ne, the accelerator opening θa as the engine load, and the rail pressure Pr, and drives the injection amount calculation unit A1, the rail pressure calculation unit A2, and the injection timing calculation unit A3.

燃料供給制御手段の噴射量演算部A1はメインおよび予備噴射量Qm、Qsをマップmp1で演算するもので、この噴射量マップmp1はエンジン回転数Neとアクセル開度θaに基づくエンジンの全運転域を所定数の領域eqに区分して、各区分運転域毎に最適なメインおよび予備噴射量Qm、Qsを設定する。   The injection amount calculation unit A1 of the fuel supply control means calculates the main and preliminary injection amounts Qm, Qs using a map mp1, and this injection amount map mp1 is the entire engine operating range based on the engine speed Ne and the accelerator opening θa. Are divided into a predetermined number of regions eq, and optimum main and preliminary injection amounts Qm and Qs are set for each of the divided operation regions.

燃料供給制御手段のレール圧演算部A2はレール圧Prをレール圧マップmp2で演算するもので、このレール圧マップmp2は噴射量Qf(=Qm+Qs)を3つの大中小の量で区分し、これをパラメータとして、エンジン回転数Ne相当のレール圧Prを設定する。この目標燃料圧となるレール圧Prはポンプ駆動回路D1に入力され、ここではコモンレール24内のレール圧Prが目標燃料圧となるように燃料ポンプ25の吐出量を制御する。   The rail pressure calculation unit A2 of the fuel supply control means calculates the rail pressure Pr by the rail pressure map mp2, and this rail pressure map mp2 divides the injection amount Qf (= Qm + Qs) into three large, medium and small amounts. Is set as a parameter to set a rail pressure Pr corresponding to the engine speed Ne. The rail pressure Pr as the target fuel pressure is input to the pump drive circuit D1, and here, the discharge amount of the fuel pump 25 is controlled so that the rail pressure Pr in the common rail 24 becomes the target fuel pressure.

更に、上述の噴射量演算部A1は、レール圧演算部A2からのレール圧Prを3つの大、中、小の圧力域に区分し、即ち、Pra以下、Prb(>Pra)以下、Prc(>Prb)以下に区分する。ここでは区分したレール圧Prの該当域毎に、メインおよび予備噴射量Qm、Qs相当のメインおよび予備噴射期間Tm、Ts(図3参照)を演算するマップmp3a〜mp3c(図2参照)を備える。噴射量演算部A1は区分したレール圧Prの該当域に対応するマップmp3a〜mp3cを求め、そのマップに沿って最適なメインおよび予備噴射期間Tm、Tsを演算する。これらメインおよび予備噴射期間Tm、Tsは噴射弁駆動回路D2の噴射期間制御部に入力される。   Further, the injection amount calculation unit A1 divides the rail pressure Pr from the rail pressure calculation unit A2 into three large, medium, and small pressure regions, that is, Pra or less, Prb (> Pra) or less, Prc ( > Prb) Classification is made as follows. Here, maps mp3a to mp3c (refer to FIG. 2) for calculating main and preliminary injection amounts Qm and Qs and main and preliminary injection periods Tm and Ts (refer to FIG. 3) are provided for each corresponding region of the divided rail pressure Pr. . The injection amount calculation unit A1 calculates maps mp3a to mp3c corresponding to the corresponding areas of the divided rail pressure Pr, and calculates the optimum main and preliminary injection periods Tm and Ts along the map. The main and preliminary injection periods Tm and Ts are input to the injection period control unit of the injection valve drive circuit D2.

燃料供給制御手段の噴射時期演算部A3はメイン噴射時期tm及び予備噴射時期tsをマップmp4で演算する。ここで、噴射時期マップmp4はエンジン回転数Neとアクセル開度θaに基づくエンジンの全運転域を所定数の領域etに区分して各区分運転域毎に最適なメイン噴射時期tm及び及び予備噴射時期tsを設定できる。   The injection timing calculation unit A3 of the fuel supply control means calculates the main injection timing tm and the preliminary injection timing ts using the map mp4. Here, the injection timing map mp4 divides the entire operating range of the engine based on the engine speed Ne and the accelerator opening θa into a predetermined number of regions et and optimizes the main injection timing tm and the preliminary injection for each divided operating range. The time ts can be set.

更に、噴射時期演算部A3は求めたメイン噴射時期tm及び予備噴射時期tsを噴射弁駆動回路D2の噴射時期制御部に入力する。
ここでメイン噴射時期tmは高回転高負荷域を比較的進角させ、中回転中負荷域及び低回転低負荷域を比較的遅角させるような特性に設定する。
一方、予備噴射時期tsは排気行程後期(吸気上死点前)での吸気弁開位置前tintop(図4参照)で、しかも、キャビティー22の内壁に燃料が全て到達することができる時期であるクランク角領域Ein(図3、4参照)に行なうように設定される。
Further, the injection timing calculation unit A3 inputs the obtained main injection timing tm and preliminary injection timing ts to the injection timing control unit of the injection valve drive circuit D2.
Here, the main injection timing tm is set to such a characteristic that the high rotation / high load region is relatively advanced and the middle rotation / middle load region and the low rotation / low load region are relatively retarded.
On the other hand, the preliminary injection timing ts is tintop (see FIG. 4) before the intake valve opening position in the late stage of the exhaust stroke (before intake top dead center), and is the time when all the fuel can reach the inner wall of the cavity 22. It is set to be performed in a certain crank angle region Ein (see FIGS. 3 and 4).

なお、この予備噴射時期tsより予備噴射が所定噴射期間Ts行なわれるが、この所定噴射期間Tsが吸気弁開位置前tintopより遅角側(図3、4で右側)にずれ込む運転域が生じないよう、予め、予備噴射時期tsbは十分に進角設定される。   Note that the preliminary injection is performed for the predetermined injection period Ts from the preliminary injection timing ts, but there is no operating region in which the predetermined injection period Ts is shifted to the retard side (right side in FIGS. 3 and 4) from tintop before the intake valve opening position. Thus, the preliminary injection timing tsb is sufficiently advanced in advance.

この場合、予備噴射時期tsbは、キャビティー22の内壁に燃料が全て到達することができる時期であるクランク角領域Einで行なうよう設定されるが、基本的には、予備噴射の燃料粒がシリンダ内壁側に飛散して付着することを確実に防止して、オイル稀釈(オイルダイリューション)を抑制できるのであればよい。このため、一部の燃料粒がピストン頂壁のキャビティー22の周縁部a(図1参照)近傍に飛散するような運転域においては、燃料粒はシリンダ内壁側までは到達しないことより、キャビティー22の内壁に燃料が全て到達することがなくてもよく、この点より、上述の予備噴射時期tsを進角設定する上での許容幅を拡大できる。   In this case, the preliminary injection timing tsb is set to be performed in the crank angle region Ein, which is a timing at which all the fuel can reach the inner wall of the cavity 22, but basically, the fuel particles of the preliminary injection are cylinders. It suffices if the oil dilution (oil dilution) can be suppressed by reliably preventing scattering and adhesion to the inner wall side. For this reason, in the operation region where some fuel particles are scattered in the vicinity of the peripheral edge portion a (see FIG. 1) of the cavity 22 of the piston top wall, the fuel particles do not reach the cylinder inner wall side. It is not necessary for all the fuel to reach the inner wall of the tee 22. From this point, the allowable range for setting the advance injection timing ts can be increased.

このようなエンジンの駆動時に、ECU27の燃料供給制御手段は図7の燃料供給制御ルーチンを実行する。
ECU27は不図示のメインルーチンでNOx排出量を抑制する排気ガス再循環装置(EGR装置)16を駆動し,その他の周知のエンジン制御を実行し、その途中で図7の燃料供給制御ルーチンのステップs1に達する。ステップs1では、エンジン回転数Ne、エンジン負荷であるアクセル開度θa、その他の不図示のエンジン運転情報を取り込む。ステップs2ではエンジン回転数Ne及びアクセル開度θa相当のエンジン運転域eq(図2のmp1参照)を求め、同エンジン運転域eqに応じたメインおよび予備噴射量Qm、Qsを演算する。ステップs3ではメインおよび予備噴射量Qm、Qsの加算値を噴射量Qf(=Qm+Qs)として算出し、次いで、ここでの噴射量Qfが、レール圧マップmp2において、3つの大、中、小の量で区分された何れかの噴射量領域に相当するか演算し、同演算された噴射量領域に対応する特性線(mp2において大中小と付記)と、エンジン回転数Neに相当する目標値であるレール圧Proを演算する。
When such an engine is driven, the fuel supply control means of the ECU 27 executes the fuel supply control routine of FIG.
The ECU 27 drives an exhaust gas recirculation device (EGR device) 16 that suppresses the NOx emission amount in a main routine (not shown), executes other well-known engine control, and steps in the fuel supply control routine of FIG. Reach s1. In step s1, the engine speed Ne, the accelerator opening θa that is the engine load, and other engine operation information (not shown) are captured. In step s2, an engine operating range eq (see mp1 in FIG. 2) corresponding to the engine speed Ne and the accelerator opening θa is obtained, and main and preliminary injection amounts Qm and Qs corresponding to the engine operating range eq are calculated. In step s3, an addition value of the main and preliminary injection amounts Qm and Qs is calculated as an injection amount Qf (= Qm + Qs). Next, the injection amount Qf is calculated as three large, medium, and small values in the rail pressure map mp2. It is calculated whether it corresponds to any one of the injection amount areas divided by the amount, and a characteristic line corresponding to the calculated injection amount area (added as large, medium and small in mp2) and a target value corresponding to the engine speed Ne. A certain rail pressure Pro is calculated.

ステップs4に達すると、演算した目標値であるレール圧Proが3つの大(Prc以上)、中(Prc>Prb>Pra)、小(Pra以下)の圧力域のいずれのレール圧域に入るか演算する。次いで、レール圧域に対応するレール圧マップmp3a〜mp3c2(図2参照)の一つを選択し、選択したレール圧マップを用い、メインおよび予備噴射量Qm、Qs相当のメインおよび予備噴射期間Tm、Tsをそれぞれ演算する。   When step s4 is reached, whether the rail pressure Pro, which is the calculated target value, falls into one of the three large (Prc or higher), medium (Prc> Prb> Pra), or small (Pra or lower) pressure ranges. Calculate. Next, one of the rail pressure maps mp3a to mp3c2 (see FIG. 2) corresponding to the rail pressure range is selected, and the main and preliminary injection amounts Qm and Qs corresponding to the main and preliminary injection periods Tm are selected using the selected rail pressure map. , Ts, respectively.

ステップs5に達するとエンジン回転数Ne及びアクセル開度θa相当のエンジン運転域etを求め、同エンジン運転域et相当のメインおよび予備噴射時期tm、tsを演算する。
この後、ステップs6ではメインおよび予備噴射期間Tm、Tsを噴射弁駆動回路D2の噴射期間制御部d2−1に入力し、メイン噴射時期tm及び予備噴射時期tsを噴射時期制御部d2−2に入力する。これにより、噴射弁駆動回路D2は判別信号δcおよび出力パルスδθ(単位クランク角信号)をカウントし、予備噴射時期tsより予備噴射期間Tsの予備噴射Jsを実行し、メイン噴射時期tmよりメイン噴射期間Tmのメイン噴射Jmを実行する。
When step s5 is reached, an engine operating range et corresponding to the engine speed Ne and the accelerator opening θa is obtained, and main and preliminary injection timings tm and ts corresponding to the engine operating range et are calculated.
Thereafter, in step s6, the main and preliminary injection periods Tm and Ts are input to the injection period control unit d2-1 of the injection valve drive circuit D2, and the main injection timing tm and the preliminary injection timing ts are input to the injection timing control unit d2-2. input. Thereby, the injection valve drive circuit D2 counts the discrimination signal δc and the output pulse δθ (unit crank angle signal), executes the preliminary injection Js of the preliminary injection period Ts from the preliminary injection timing ts, and performs the main injection from the main injection timing tm. The main injection Jm for the period Tm is executed.

更に、ステップs7では、演算した目標値のレール圧Proをポンプ駆動回路D1に入力する。これにより、ポンプ駆動回路D1は現在のレール圧Prnが目標値Proに一致するように燃料ポンプ25を駆動制御する。
これにより、予備噴射が排気行程後期(吸気上死点前)で、吸気弁開位置前tintop(図4参照)で、しかも、キャビティー22の内壁に燃料が全て到達することができる時期であるクランク角領域Ein(図3、4参照)に燃料噴射制御することができる。
Further, in step s7, the calculated rail pressure Pro of the target value is input to the pump drive circuit D1. As a result, the pump drive circuit D1 drives and controls the fuel pump 25 so that the current rail pressure Prn matches the target value Pro.
Thus, the preliminary injection is in the late stage of the exhaust stroke (before the intake top dead center), before the intake valve opening position tintop (see FIG. 4), and at the time when all the fuel can reach the inner wall of the cavity 22. Fuel injection can be controlled in the crank angle region Ein (see FIGS. 3 and 4).

この時、予備噴射Jsされた燃料粒は、比較的筒内温度が低い状態のため、すぐには着火せず、十分な予混合時間が得られることとなり、予混合燃焼が(均一燃焼)が促進され、温度昇温した燃焼室7で主噴射Jmされた燃料が速やかに気化して燃焼するのでNOxとスモーク(PM)の発生量が減少する。   At this time, since the pre-injected fuel particles have a relatively low in-cylinder temperature, they do not ignite immediately, and a sufficient premixing time is obtained. The fuel that has been promoted and the temperature of the combustion chamber 7 that has been subjected to the main injection Jm is rapidly vaporized and burned in the combustion chamber 7, so that the amount of NOx and smoke (PM) generated is reduced.

しかも、予備噴射燃料が全てキャビティー22の内壁に到達するので、噴射燃料のシリンダ5側の内壁への付着を確実に防止でき、オイル稀釈(オイルダイリューション)を確実に抑制できる。
更に、予備噴射Js燃料によって十分な予混合が成され予混合燃焼が促進されるので、主噴射期間での予混合燃焼域が相対的に減少して拡散燃焼に至るのでNOxも減少する上にPMも低減し、即ち、PM−NOxのトレードオフが改善される。
In addition, since all of the pre-injected fuel reaches the inner wall of the cavity 22, it is possible to reliably prevent the injected fuel from adhering to the inner wall on the cylinder 5 side and to reliably suppress oil dilution (oil dilution).
Furthermore, since sufficient premixing is performed by the pre-injected Js fuel and the premixed combustion is promoted, the premixed combustion region in the main injection period is relatively reduced to lead to diffusion combustion, so that NOx is also reduced. PM is also reduced, ie, the PM-NOx trade-off is improved.

上述のところにおいて、メイン噴射Jmに先立つ排気行程で予備噴射Jsのみを行なっていたが、場合により、予備噴射Js後でメイン噴射Jmの直前にパイロット噴射Jp(図3の2点鎖線参照)を行なってNOx低減を図ってもよく,メイン噴射Jmの直後の所定クランク角位置で後噴射Ja(図3の2点鎖線参照)を行なってもよく、これらによってNOxやスモーク(PM)の発生量をより減少させるようにしてもよい。   In the above description, only the preliminary injection Js is performed in the exhaust stroke prior to the main injection Jm. However, in some cases, the pilot injection Jp (see the two-dot chain line in FIG. 3) is performed after the preliminary injection Js and immediately before the main injection Jm. NOx reduction may be performed, and post-injection Ja (see the two-dot chain line in FIG. 3) may be performed at a predetermined crank angle position immediately after main injection Jm, and the amount of NOx and smoke (PM) generated by these May be further reduced.

上述のところにおいて、運転域メイン噴射時期tmと予備噴射時期tsをエンジンの運転域etに応じて設定するものとしたが、これに加え、運転域etに応じてメイン噴射時期tmを遅角設定し、これと予備噴射時期tsを排気行程後期で吸気弁開位置前tintopに設定することとを組み合せることによって、更なるNOx低減が可能である。   In the above description, the operation region main injection timing tm and the preliminary injection timing ts are set according to the engine operation region et. In addition, the main injection timing tm is set to be retarded according to the operation region et. Further, by combining this with the preliminary injection timing ts being set to tintop before the intake valve opening position in the late stage of the exhaust stroke, further NOx reduction can be achieved.

上述のところにおいて、排気路EX側には不図示の排気ガス浄化装置を備えるとしたが、この排気ガス浄化装置を選択還元型NOx触媒としてもよい。その上で、予備噴射Jsを排気行程後期で行なうにあたり、予備噴射時期tsと予備噴射期間Tsを調整することで、特に、一部未燃HCの排出を生じさせ、この未燃HCを選択還元型NOx触媒の還元剤として利用するようにし、フィルタのNOxを還元処理することもできる。   In the above description, an exhaust gas purification device (not shown) is provided on the exhaust path EX side. However, this exhaust gas purification device may be a selective reduction type NOx catalyst. In addition, when performing the preliminary injection Js in the later stage of the exhaust stroke, by adjusting the preliminary injection timing ts and the preliminary injection period Ts, in particular, some unburned HC is discharged, and this unburned HC is selectively reduced. It can be used as a reducing agent for the type NOx catalyst, and the NOx of the filter can be reduced.

上述のところにおいて、ディーゼルエンジンは予混合圧縮着火方式のディーゼルエンジンで燃料噴射弁は複数の噴口を有するものとして説明したが、単一噴口の燃料噴射弁を用いるディーゼルエンジンにも同様に適用できる。   In the above description, the diesel engine is a premixed compression ignition type diesel engine and the fuel injection valve has a plurality of injection holes. However, the present invention can be similarly applied to a diesel engine using a single injection fuel injection valve.

本発明の一実施形態としてのディーゼルエンジンの全体概略構成図である。1 is an overall schematic configuration diagram of a diesel engine as an embodiment of the present invention. 図1のディーゼルエンジンの燃料供給制御手段の機能ブロック図である。It is a functional block diagram of the fuel supply control means of the diesel engine of FIG. 図1のディーゼルエンジンの燃料噴射装置の予備噴射および主噴射の作動特性線図である。FIG. 2 is an operational characteristic diagram of preliminary injection and main injection of the fuel injection device for the diesel engine of FIG. 1. 図1のディーゼルエンジンの燃料噴射装置の予備噴射域での作動特性線図である。FIG. 2 is an operational characteristic diagram in a preliminary injection region of the fuel injection device of the diesel engine of FIG. 1. ディーゼルエンジンの主噴射に先立つ予備噴射を、噴射時期を可変した場合におけるNOx排出量の特性図である。FIG. 6 is a characteristic diagram of NOx emission when preliminary injection prior to main injection of a diesel engine is performed and the injection timing is varied. ディーゼルエンジンの主噴射に先立つ予備噴射を、噴射時期を可変した場合におけるスモーク排出量の特性図である。It is a characteristic figure of the amount of smoke discharged when the preliminary injection prior to the main injection of the diesel engine is varied at the injection timing. 図1のディーゼルエンジンのECUが行なう燃料供給制御ルーチンのフローチャート化特性説明線図である。FIG. 2 is a flowchart characteristic explanatory diagram of a fuel supply control routine performed by an ECU of the diesel engine of FIG. 1. 従来のディーゼルエンジンのECUが行なう予備噴射域、パイロット噴射および主噴射Jmの作動特性線図である。It is an operation characteristic diagram of the preliminary injection area, pilot injection, and main injection Jm which ECU of a conventional diesel engine performs.

符号の説明Explanation of symbols

1 ディーゼルエンジン
7 燃焼室
22 キャビティー
221 キャビティー内壁
27 ECU(コントローラ)
tintop 吸気弁開位置前
Jm 主噴射
Js 予備噴射
M 燃料噴射装置
1 Diesel Engine 7 Combustion Chamber 22 Cavity 221 Cavity Inner Wall 27 ECU (Controller)
tintop Before intake valve open position Jm Main injection Js Pre-injection M Fuel injection device

Claims (2)

燃焼室に高圧燃料を圧縮上死点の近傍において主噴射すると共にこの主噴射に先立ち予備噴射を行なう燃料噴射装置と、運転状態に応じて上記噴射装置を制御するコントローラと、を備えたディーゼルエンジンにおいて、
上記コントローラは上記予備噴射を排気行程後期で吸気弁開前に行なうように噴射制御することを特徴とするディーゼルエンジン。
A diesel engine comprising: a fuel injection device that mainly injects high-pressure fuel into the combustion chamber in the vicinity of compression top dead center and performs preliminary injection prior to the main injection; and a controller that controls the injection device in accordance with operating conditions. In
The diesel engine according to claim 1, wherein the controller performs injection control so that the preliminary injection is performed at a later stage of the exhaust stroke and before the intake valve is opened.
ピストン頂部のキャビティーに高圧燃料を圧縮上死点の近傍において主噴射すると共にこの主噴射に先立ち予備噴射を行なう燃料噴射装置と、運転状態に応じて上記噴射装置を制御するコントローラと、を備えたディーゼルエンジンにおいて、
上記コントローラは上記予備噴射を排気行程後期で吸気弁開前で上記キャビティー内壁に燃料が全て到達する時期に行なうよう噴射制御することを特徴とするディーゼルエンジン。
A fuel injection device that mainly injects high-pressure fuel into the cavity at the top of the piston in the vicinity of the compression top dead center and performs preliminary injection prior to the main injection; and a controller that controls the injection device in accordance with operating conditions. In a diesel engine
The diesel engine according to claim 1, wherein the controller performs the injection control so that the preliminary injection is performed at a time when the fuel reaches the inner wall of the cavity before the intake valve is opened at a later stage of the exhaust stroke.
JP2003367819A 2003-10-28 2003-10-28 Diesel engine Pending JP2005133576A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003367819A JP2005133576A (en) 2003-10-28 2003-10-28 Diesel engine
CNB2004100868203A CN100451320C (en) 2003-10-28 2004-10-28 Diesel oil engine
DE102004052415A DE102004052415A1 (en) 2003-10-28 2004-10-28 diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367819A JP2005133576A (en) 2003-10-28 2003-10-28 Diesel engine

Publications (1)

Publication Number Publication Date
JP2005133576A true JP2005133576A (en) 2005-05-26

Family

ID=34645712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367819A Pending JP2005133576A (en) 2003-10-28 2003-10-28 Diesel engine

Country Status (3)

Country Link
JP (1) JP2005133576A (en)
CN (1) CN100451320C (en)
DE (1) DE102004052415A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506255A (en) * 2005-08-25 2009-02-12 ゼネラル・エレクトリック・カンパニイ System and method for operating a turbocharged engine
WO2009150977A1 (en) * 2008-06-09 2009-12-17 トヨタ自動車株式会社 Fuel injection controller of internal combustion engine
JP4998632B1 (en) * 2011-03-18 2012-08-15 株式会社豊田自動織機 Combustion control device
US20130166177A1 (en) * 2010-09-10 2013-06-27 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
RU2756704C1 (en) * 2020-07-31 2021-10-04 Чунцин Чаньгань Аутомобайл Ко., Лтд Fuel injection method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006001368B4 (en) * 2006-01-11 2018-12-13 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
EP1903204A1 (en) * 2006-09-12 2008-03-26 Siemens Aktiengesellschaft Method for reducing pollutant emissions and consumption of an engine
JP2015145641A (en) * 2014-02-03 2015-08-13 トヨタ自動車株式会社 Internal combustion engine fuel injection control device
CN111852680B (en) * 2020-07-31 2022-03-11 重庆长安汽车股份有限公司 Oil injection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141124A (en) * 1996-11-07 1998-05-26 Hino Motors Ltd Diesel engine
JPH1136944A (en) * 1997-07-17 1999-02-09 Mazda Motor Corp Control device for engine
JP2001207889A (en) * 2000-01-26 2001-08-03 Nissan Motor Co Ltd Combustion control device of internal combustion engine
JP2001234799A (en) * 2000-02-25 2001-08-31 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2003239796A (en) * 2002-02-19 2003-08-27 Nissan Motor Co Ltd Internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3885273B2 (en) * 1997-03-07 2007-02-21 いすゞ自動車株式会社 Diesel engine exhaust gas purification system
EP0952321B1 (en) * 1998-04-15 2004-08-25 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US6269791B1 (en) * 1998-07-22 2001-08-07 Toyota Jidosha Kabushiki Kaisha Control system for an internal combustion engine
DE60010176T2 (en) * 1999-05-12 2004-08-26 Nissan Motor Co., Ltd., Yokohama Self-ignited internal combustion engine
US6425367B1 (en) * 1999-09-17 2002-07-30 Nissan Motor Co., Ltd. Compression self-ignition gasoline internal combustion engine
ITTO20010786A1 (en) * 2001-08-03 2003-02-03 Fiat Ricerche SELF-PRIMING METHOD OF THE REGENERATION OF A PARTICULATE FILTER FOR A DIRECT INJECTION DIESEL ENGINE PROVIDED WITH AN INI PLANT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141124A (en) * 1996-11-07 1998-05-26 Hino Motors Ltd Diesel engine
JPH1136944A (en) * 1997-07-17 1999-02-09 Mazda Motor Corp Control device for engine
JP2001207889A (en) * 2000-01-26 2001-08-03 Nissan Motor Co Ltd Combustion control device of internal combustion engine
JP2001234799A (en) * 2000-02-25 2001-08-31 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2003239796A (en) * 2002-02-19 2003-08-27 Nissan Motor Co Ltd Internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506255A (en) * 2005-08-25 2009-02-12 ゼネラル・エレクトリック・カンパニイ System and method for operating a turbocharged engine
WO2009150977A1 (en) * 2008-06-09 2009-12-17 トヨタ自動車株式会社 Fuel injection controller of internal combustion engine
US8181626B2 (en) 2008-06-09 2012-05-22 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus for internal combustion engine
US20130166177A1 (en) * 2010-09-10 2013-06-27 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
JP4998632B1 (en) * 2011-03-18 2012-08-15 株式会社豊田自動織機 Combustion control device
WO2012128047A1 (en) * 2011-03-18 2012-09-27 株式会社豊田自動織機 Combustion control device
RU2756704C1 (en) * 2020-07-31 2021-10-04 Чунцин Чаньгань Аутомобайл Ко., Лтд Fuel injection method

Also Published As

Publication number Publication date
CN100451320C (en) 2009-01-14
CN1611758A (en) 2005-05-04
DE102004052415A1 (en) 2005-07-28

Similar Documents

Publication Publication Date Title
US7769525B2 (en) Apparatus and method for controlling a homogeneous charge compression-ignited internal-combustion engine
JP5327267B2 (en) Diesel engine with turbocharger for on-vehicle use and control method for diesel engine
JP5482715B2 (en) Diesel engine and control method of diesel engine
JP4019484B2 (en) Compression ignition internal combustion engine
US10138825B2 (en) Control system for internal combustion engine, internal combustion engine and method of controlling internal combustion engine
US8949002B2 (en) System and method for injecting fuel
EP1559896A2 (en) Direct fuel injection/spark ignition engine control device
JP2017186984A (en) Control device of internal combustion engine
EP2994629B1 (en) Method of estimating duration of auto-ignition phase in a spark-assisted compression ignition operation
JP6508186B2 (en) Control device for internal combustion engine
KR101029142B1 (en) Method and apparatus for controlling ignition timing in a compression-ignition engine operating in an auto-ignition mode
US8387586B2 (en) Fuel injection control apparatus of internal combustion engine
JP2008025445A (en) Control device for internal combustion engine
JP2009041540A (en) Control device of gasoline engine
JP2005133576A (en) Diesel engine
JP5126421B2 (en) Combustion control device for internal combustion engine
JPWO2012105038A1 (en) Fuel injection control device for internal combustion engine
JP2021088983A (en) Control device for compression self-ignition engine
US11168640B2 (en) Fuel injection control device
JP5257520B2 (en) Control device for internal combustion engine
JP2000192836A (en) Controller for diesel engine
JP3613666B2 (en) Combustion method for compression ignition internal combustion engine
JP2004346854A (en) Controller of compression ignition operation of internal combustion engine
JP5170317B2 (en) Fuel injection control device for internal combustion engine
EP1176300A2 (en) System, method and computer program for controlling fuel injection in a diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216