JP2005132959A - Siloxane gel and method for producing the same - Google Patents
Siloxane gel and method for producing the same Download PDFInfo
- Publication number
- JP2005132959A JP2005132959A JP2003370433A JP2003370433A JP2005132959A JP 2005132959 A JP2005132959 A JP 2005132959A JP 2003370433 A JP2003370433 A JP 2003370433A JP 2003370433 A JP2003370433 A JP 2003370433A JP 2005132959 A JP2005132959 A JP 2005132959A
- Authority
- JP
- Japan
- Prior art keywords
- siloxane compound
- acid
- earth metal
- alkaline earth
- gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、シロキサン化合物用ゲル化剤、シロキサン化合物(A)のゲル、およびその製造方法に関する。さらに詳しくは、ケイ素原子を少なくとも2以上含有するシロキサン化合物に樹脂酸類のアルカリ土類金属塩を有効成分とする溶液を添加して得られるゲル化剤およびその製造方法に関する。 The present invention relates to a gelling agent for a siloxane compound, a gel of a siloxane compound (A), and a method for producing the same. More specifically, the present invention relates to a gelling agent obtained by adding a solution containing an alkaline earth metal salt of a resin acid as an active ingredient to a siloxane compound containing at least two silicon atoms and a method for producing the same.
シロキサン化合物は優れた耐熱性、耐寒性、耐候性、撥水性、電気特性などの特長を有するため、種々の用途、すなわち化粧品、医薬部外品、絶縁材料、潤滑剤、インキなどの粘度調節剤など非常に広い分野で用いられており、特にオクタメチルシクロテトラシロキサンやデカメチルシクロペンタシロキサンなどの環状シロキサンはべたつきのない、なめらかな感触を付与し、気体透過性、撥水性に優れ、他の混合成分とともに均一の皮膜を形成できるため、化粧料用成分として使われている材料である。 Siloxane compounds have excellent heat resistance, cold resistance, weather resistance, water repellency, electrical characteristics, etc., so they can be used in various applications such as cosmetics, quasi drugs, insulating materials, lubricants, inks, and other viscosity modifiers. In particular, cyclic siloxanes such as octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane give a smooth and non-sticky feel, and have excellent gas permeability and water repellency. It is a material used as a cosmetic ingredient because it can form a uniform film with mixed ingredients.
しかし、シロキサン化合物、特にオクタメチルシクロテトラシロキサンやデカメチルシクロペンタシロキサンなどはそれ自体では粘度が低く流動性に富み、化粧料用の配合成分として多量に用いることができないという欠点がある。このためシロキサン化合物の粘度を高め、流動性を少なくさせることは、特に化粧料として有効であるため、シロキサン化合物をゲル化させる方法が求められている。 However, siloxane compounds, particularly octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane, have a drawback that they themselves have low viscosity and high fluidity, and cannot be used in large quantities as cosmetic ingredients. For this reason, increasing the viscosity of the siloxane compound and reducing the fluidity is particularly effective as a cosmetic, so a method for gelling the siloxane compound is required.
そこで、環状シロキサンをゲル化させる方法としてデキストリンの部分脂肪酸エステルとイヌリンおよび/または加水分解イヌリンの部分脂肪酸エステルの2種の化合物を用いてゲル化ざせる方法が提案されている(特許文献1および特許文献2)が、当該方法では二種類の化合物が必須であり、デキストリンの部分脂肪酸エステルならびに、イヌリン及び/または加水分解イヌリンの部分脂肪酸エステルのエステル化率を微妙に調整する必要があるうえ、当該化合物の合成も煩雑であり、さらには、これら二種の化合物をある一定の比で使用しなければゲル化できないものであった。 Therefore, as a method for gelling cyclic siloxane, there has been proposed a method for gelling using two types of compounds, partial fatty acid ester of dextrin and inulin and / or partial fatty acid ester of hydrolyzed inulin (Patent Document 1 and Patent Document 2) requires two kinds of compounds in the method, and it is necessary to finely adjust the esterification rate of the partial fatty acid ester of dextrin and the partial fatty acid ester of inulin and / or hydrolyzed inulin, The synthesis of the compound is complicated, and furthermore, it cannot be gelled unless these two kinds of compounds are used in a certain ratio.
また、当該方法では、環状シロキサンゲル化合物、またはそれらを含む化粧料組成物に添加し、一旦加熱して溶解させ、その後冷却してゲル化させる必要があり、操作が煩雑でその用途が非常に制限されている。さらに、生成したゲルを再び加熱すると、ゲル強度が低下したり、ゲルが溶解するという致命的な欠点がある。 In addition, in this method, it is necessary to add to the cyclic siloxane gel compound or a cosmetic composition containing them, once to dissolve by heating, and then to cool and gel, and the operation is complicated and its application is very Limited. Furthermore, when the produced gel is heated again, there is a fatal defect that the gel strength is lowered or the gel is dissolved.
なお、本発明者は、先に有機ゲル化剤について提案をしているが、当該ゲル化剤をシロキサン化合物に適用することについては検討がされていなかった。(特許文献3) In addition, although this inventor has proposed about the organic gelling agent previously, it has not examined about applying the said gelling agent to a siloxane compound. (Patent Document 3)
本発明は、低添加量でシロキサン化合物をゲル化させることができるシロキサン化合物用ゲル化剤を提供し、かつ加温、冷却することなく、室温でゲル化対象物に添加するだけで容易にゲル化できるシロキサン化合物のゲルの製造方法を提供し、さらには加熱してもゲル強度が低下したり、溶解することのない新規なシロキサン化合物のゲルを提供することを目的とする。 The present invention provides a gelling agent for a siloxane compound that can gel a siloxane compound with a low addition amount, and can be easily gelled only by adding to a gelation object at room temperature without heating and cooling. It is an object of the present invention to provide a method for producing a gel of a siloxane compound that can be converted into a gel, and to provide a novel gel of a siloxane compound that does not decrease in gel strength or dissolve even when heated.
かかる目的を達成するために、本発明者は鋭意検討した結果、樹脂酸類のアルカリ土類金属塩を用いることにより当該目的を達成しうることを見出した。 In order to achieve such an object, the present inventor has intensively studied and found that the object can be achieved by using an alkaline earth metal salt of a resin acid.
すなわち、本発明は、樹脂酸のアルカリ土類金属塩を含有することを特徴とするシロキサン化合物用ゲル化剤;ケイ素原子を少なくとも2以上含有するシロキサン化合物(A)を、当該シロキサン化合物用ゲル化剤でゲル化させることにより得られるゲル;ケイ素原子を少なくとも2以上含有するシロキサン化合物(A)に当該シロキサン化合物用ゲル化剤を添加することを特徴とするゲルの製造方法に関する。 That is, the present invention relates to a gelling agent for a siloxane compound characterized by containing an alkaline earth metal salt of a resin acid; a siloxane compound (A) containing at least two silicon atoms is gelled for the siloxane compound. A gel obtained by gelling with an agent; a method for producing a gel comprising adding a gelling agent for a siloxane compound to a siloxane compound (A) containing at least two silicon atoms.
本発明のシロキサン化合物用ゲル化剤によれば、少量の添加により、シロキサン化合物をゲル化させることができる。また、当該ゲル化剤を用いて得られたシロキサン化合物のゲルは、従来のシロキサン化合物のゲルと異なり加熱しても強度が低下したり、溶解することが無いという、新規有用なゲルである。本発明のゲルの作用効果を活かして、化粧品、医薬部外品、医薬品、農薬、香料などの徐放剤、絶縁材料、潤滑剤、インキ、塗料などの粘度調節剤など非常に広い分野で用いることができる。特にオクタメチルシクロテトラシロキサンやデカメチルシクロペンタシロキサンなどの環状シロキサン化合物のゲルはべたつきのない、なめらかな感触を付与し、気体透過性、撥水性に優れ、他の混合成分とともに均一の皮膜を形成できるため、化粧料用に好適である。 According to the gelling agent for siloxane compounds of the present invention, the siloxane compound can be gelled by adding a small amount. Moreover, the gel of the siloxane compound obtained by using the said gelling agent is a novel useful gel which does not fall in intensity | strength or melt | dissolve even if it heats unlike the gel of the conventional siloxane compound. Utilizing the effects of the gel of the present invention, it is used in a very wide range of fields such as sustained release agents such as cosmetics, quasi drugs, pharmaceuticals, agricultural chemicals, and fragrances, viscosity modifiers such as insulating materials, lubricants, inks, and paints. be able to. In particular, cyclic siloxane compound gels such as octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane provide a smooth, non-sticky feel, excellent gas permeability and water repellency, and form a uniform film with other mixed components. Therefore, it is suitable for cosmetics.
本発明のシロキサン化合物用ゲル化剤は、有効成分として樹脂酸類のアルカリ土類金属塩を含有するものである。当該樹脂酸類のアルカリ土類金属塩は、通常二つの樹脂酸残基とアルカリ土類金属から構成される化合物であり、樹脂酸類とアルカリ土類金属化合物とを反応させることにより得られる。 The gelling agent for siloxane compounds of the present invention contains an alkaline earth metal salt of a resin acid as an active ingredient. The alkaline earth metal salt of the resin acid is usually a compound composed of two resin acid residues and an alkaline earth metal, and is obtained by reacting a resin acid with an alkaline earth metal compound.
樹脂酸類としては、特に制限されず公知のものを使用することができる。具体的には、例えば、アビエチン酸、レボピマル酸、ネオアビエチン酸、パラストリン酸、ピマル酸、イソピマル酸、サンダラコピマル酸、デヒドロアビエチン酸、ジヒドロアビエチン酸類、テトラヒドロアビエチン酸類をあげることができる。また、前記樹脂酸の混合物であるガムロジン、ウッドロジン、トール油ロジン等のロジン類の他、ロジン類を不均化して得られる不均化ロジン、ロジン類を水素化して得られる水素化ロジン、ロジン類を脱水素化して得られる脱水素化ロジンなども用いることができるが、アビエチン酸、レボピマル酸、ネオアビエチン酸、パラストリン酸、ピマル酸、イソピマル酸、サンダラコピマル酸、デヒドロアビエチン酸、ジヒドロアビエチン酸およびテトラヒドロアビエチン酸からなる群より選ばれる少なくとも1種挙げられる。 The resin acids are not particularly limited, and known acids can be used. Specific examples include abietic acid, levopimaric acid, neoabietic acid, parastrinic acid, pimaric acid, isopimaric acid, sandaracopimalic acid, dehydroabietic acid, dihydroabietic acid, and tetrahydroabietic acid. In addition to rosins such as gum rosin, wood rosin, tall oil rosin and the like, which are a mixture of the resin acids, disproportionated rosin obtained by disproportionating rosins, hydrogenated rosin obtained by hydrogenating rosins, rosin Although dehydrogenated rosin obtained by dehydrogenation of acetylene can also be used, abietic acid, levopimaric acid, neoabietic acid, parastrinic acid, pimaric acid, isopimaric acid, sandaracopimaric acid, dehydroabietic acid, dihydroabietic acid And at least one selected from the group consisting of acids and tetrahydroabietic acid.
アルカリ土類金属化合物としては、樹脂酸類と反応して塩を形成するアルカリ土類金属化合物であれば特に制限されず、公知のものを使用することができる。具体的には、カルシウム化合物、ストロンチウム化合物、バリウム化合物、マグネシウム化合物などが挙げられる。これらのうちでは、コスト、安全性等の面からカルシウム化合物を用いたものが好ましい。なお、これらアルカリ土類金属化合物のうちでは、樹脂酸類との反応性の点から、アルカリ土類金属の酸化物またはアルカリ土類金属の水酸化物を用いることが好ましい。これらの具体例としては、水酸化マグネシウム、酸化マグネシウム、水酸化カルシウム、酸化カルシウム、水酸化ストロンチウム、酸化ストロンチウム、水酸化バリウム、酸化バリウムなどを用いることが好ましく、酸化カルシウム、水酸化カルシウムを用いることが特に好ましい。 The alkaline earth metal compound is not particularly limited as long as it is an alkaline earth metal compound that reacts with resin acids to form a salt, and a known one can be used. Specific examples include calcium compounds, strontium compounds, barium compounds, magnesium compounds, and the like. Among these, those using a calcium compound are preferable from the viewpoints of cost, safety, and the like. Among these alkaline earth metal compounds, it is preferable to use an alkaline earth metal oxide or an alkaline earth metal hydroxide from the viewpoint of reactivity with resin acids. As these specific examples, it is preferable to use magnesium hydroxide, magnesium oxide, calcium hydroxide, calcium oxide, strontium hydroxide, strontium oxide, barium hydroxide, barium oxide, etc., and use calcium oxide and calcium hydroxide. Is particularly preferred.
本発明に用いられる樹脂酸類のアルカリ土類金属塩の合成方法としては、例えば、樹脂酸類を適当な溶媒中で反応させる方法が挙げられる。溶媒としては、樹脂酸類およびアルカリ土類金属化合物と反応せず、樹脂酸類を溶解するものであれば、特に制限されず、公知のものを用いることができる。具体的には、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、2−メトキシエタノールなどのアルコール類、アセトン、2−ブタノン等のケトン類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドンなどのアミド類、ジメチルスルホキシド、スルホランなどの含イオウ溶媒、ニトロメタン、ニトロプロパン等の含窒素溶媒、ジエチルエーテル、メチルt−ブチルエーテル、ジt−ブチルエーテル、ジメトキシエタノール、ジメトキシエチレングリコール、テトラヒドロフラン、ジオキサンなどのエーテル結合を少なくとも一つ有するエーテル系溶媒などが挙げられる。これらのうち、エーテル系溶媒を反応溶媒に用いた場合には、反応後の樹脂酸類のアルカリ土類金属塩はこれらの溶媒に溶解した状態で得られ、このものはそのままゲル化剤として使用できるため、これらエーテル系溶媒を使うことが好ましい。尚、溶媒中に少量の水を存在させることにより、樹脂酸類とアルカリ土類金属化合物の反応速度を速くすることができるため特に好ましい。 Examples of the method for synthesizing the alkaline earth metal salt of the resin acid used in the present invention include a method of reacting the resin acid in an appropriate solvent. The solvent is not particularly limited as long as it does not react with the resin acid and the alkaline earth metal compound and dissolves the resin acid, and a known solvent can be used. Specifically, for example, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, 2-methoxyethanol, acetone, 2-butanone, etc. Ketones, amides such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, sulfur-containing solvents such as dimethyl sulfoxide and sulfolane, nitrogen-containing solvents such as nitromethane and nitropropane, diethyl ether, methyl t-butyl ether, di-t- Examples thereof include ether solvents having at least one ether bond such as butyl ether, dimethoxyethanol, dimethoxyethylene glycol, tetrahydrofuran, and dioxane. Among these, when an ether solvent is used as the reaction solvent, the alkaline earth metal salt of the resin acid after the reaction is obtained in a state dissolved in these solvents, and this can be used as a gelling agent as it is. Therefore, it is preferable to use these ether solvents. The presence of a small amount of water in the solvent is particularly preferable because the reaction rate between the resin acid and the alkaline earth metal compound can be increased.
樹脂酸類とアルカリ土類金属化合物とを反応させる際の樹脂酸類とアルカリ土類金属化合物のモル比は、特に制限されないが、一般的にエーテル系溶媒を用いた場合には、樹脂酸1モルに対し、アルカリ土類金属化合物を0.2モル以上使用することが好ましい。樹脂酸類1モルに対し、アルカリ土類金属化合物が0.2モル未満となる場合には、未反応の樹脂酸類が多く残存してしまいゲル化性能を十分に発揮できない場合もある。また、樹脂酸類1モルに対し、アルカリ土類金属化合物を、0.5モルを超えて使用する場合には、未反応のアルカリ土類金属化合物が残存するが、ゲル化性能には問題はない。必要であれば、ろ過や遠心分離により未反応のアルカリ土類金属化合物を除去できる。また、エーテル系溶媒以外の溶媒を用いる場合には、通常、樹脂酸1モルに対し、アルカリ土類金属化合物を0.2モル以上使用することが好ましい。なお、樹脂酸類1モルに対し、アルカリ土類金属化合物を0.5モルを超えて使用する場合には、未反応のアルカリ土類金属化合物が残存するが、ゲル化性能には問題はない。 The molar ratio of the resin acid to the alkaline earth metal compound when the resin acid and the alkaline earth metal compound are reacted is not particularly limited. Generally, when an ether solvent is used, 1 mole of the resin acid is used. On the other hand, it is preferable to use 0.2 mol or more of alkaline earth metal compound. When the amount of the alkaline earth metal compound is less than 0.2 mol with respect to 1 mol of the resin acids, a large amount of unreacted resin acids may remain and the gelling performance may not be sufficiently exhibited. In addition, when the alkaline earth metal compound is used in an amount exceeding 0.5 mol with respect to 1 mol of the resin acid, an unreacted alkaline earth metal compound remains, but there is no problem in gelling performance. . If necessary, unreacted alkaline earth metal compound can be removed by filtration or centrifugation. In addition, when a solvent other than the ether solvent is used, it is usually preferable to use 0.2 mol or more of the alkaline earth metal compound with respect to 1 mol of the resin acid. In addition, when the alkaline earth metal compound is used in an amount exceeding 0.5 mol with respect to 1 mol of the resin acid, an unreacted alkaline earth metal compound remains, but there is no problem in gelling performance.
反応温度は、特に制限されないが、通常、特殊な装置を要することのない室温から反応に用いる溶媒の沸点の範囲が好適である。 The reaction temperature is not particularly limited, but usually the range of room temperature without requiring a special apparatus to the boiling point of the solvent used for the reaction is suitable.
反応時間は、反応温度により異なるが、通常5分から24時間程度である。5分に満たない場合には反応が十分に進行しない場合があり、24時間以上反応を行なっても特に有利な点はない。 The reaction time varies depending on the reaction temperature, but is usually about 5 minutes to 24 hours. If it is less than 5 minutes, the reaction may not proceed sufficiently, and there is no particular advantage even if the reaction is carried out for 24 hours or longer.
エーテル系溶媒以外の溶媒を用いた場合には、通常、反応終了後、樹脂酸類のアルカリ土類金属塩は反応溶媒中に粉末となって分散しており、ろ過あるいは遠心分離により反応溶媒と分離でき、必要に応じて、樹脂酸類のアルカリ土類金属塩を溶解しない溶媒で洗浄できる。得られた樹脂酸類のアルカリ土類金属塩は、例えば、ジエチルエーテル、メチルt−ブチルエーテル、ジt−ブチルエーテル、ジメトキシエタノール、ジメトキシエチレングリコール、テトラヒドロフラン、ジオキサンなどのエーテル結合を含む溶媒や樹脂酸類のアルカリ土類金属塩を溶解する溶媒に溶解して本発明に使用できる。 When a solvent other than an ether solvent is used, the alkaline earth metal salt of the resin acid is usually dispersed as a powder in the reaction solvent after completion of the reaction, and separated from the reaction solvent by filtration or centrifugation. If necessary, it can be washed with a solvent that does not dissolve the alkaline earth metal salt of the resin acid. The alkaline earth metal salt of the obtained resin acid is, for example, a solvent containing an ether bond such as diethyl ether, methyl t-butyl ether, di-t-butyl ether, dimethoxyethanol, dimethoxyethylene glycol, tetrahydrofuran, dioxane, or an alkali of a resin acid. It can be used in the present invention after being dissolved in a solvent that dissolves the earth metal salt.
なお、前記の方法で樹脂酸類のアルカリ土類金属塩の合成が困難な場合、一般的に複分解法と呼ばれる方法も採用できる。複分解法とは樹脂酸類を一旦、アルカリ金属水酸化物と反応させ樹脂酸類のアルカリ金属塩とした後、アルカリ土類金属化合物と反応させる方法である。 If it is difficult to synthesize an alkaline earth metal salt of a resin acid by the above method, a method generally called a metathesis method can also be adopted. The metathesis method is a method in which a resin acid is once reacted with an alkali metal hydroxide to obtain an alkali metal salt of the resin acid and then reacted with an alkaline earth metal compound.
複分解法では、樹脂酸類のアルカリ金属塩を反応させるアルカリ土類金属化合物としては、通常、水溶性の有機アルカリ土類金属塩類、無機アルカリ土類金属塩類を用いれば良い。具体的にはアルカリ土類金属の酢酸塩、硫酸塩、硝酸塩、塩化物およびこれらの水和物などが挙げられる。 In the metathesis method, water-soluble organic alkaline earth metal salts and inorganic alkaline earth metal salts are usually used as the alkaline earth metal compound with which the alkali metal salt of the resin acid is reacted. Specific examples include alkaline earth metal acetates, sulfates, nitrates, chlorides and hydrates thereof.
複分解法による場合には、反応終了後、生成物は反応溶媒である水に分散した状態で存在するため、ろ過あるいは遠心分離により容易に水と分離できる。また、生成物の水による洗浄も可能である。 In the case of the metathesis method, after completion of the reaction, the product exists in a dispersed state in water as a reaction solvent, and therefore can be easily separated from water by filtration or centrifugation. It is also possible to wash the product with water.
複分解法により得られた樹脂酸類のアルカリ土類金属塩は前記エーテル系溶媒や樹脂酸類のアルカリ土類金属塩を溶解する溶媒に溶解して本発明に使用できる。 The alkaline earth metal salt of a resin acid obtained by the metathesis method can be used in the present invention after being dissolved in the ether solvent or a solvent capable of dissolving the alkaline earth metal salt of a resin acid.
本発明のゲルの製造に用いられるケイ素原子を少なくとも2以上含有するシロキサン化合物(A)(以下、(A)成分という。)は、ケイ素原子を少なくとも2以上含有するものであれば特に制限されず、公知のものを使用することができる。当該(A)成分の具体例としては、例えば、環状シロキサン化合物、鎖状シロキサン化合物などが挙げられる。環状シロキサン化合物としては、環状構造を有するシロキサンであれば特に制限されないが、一般式(1): The siloxane compound (A) containing at least two silicon atoms (hereinafter referred to as component (A)) used for producing the gel of the present invention is not particularly limited as long as it contains at least two silicon atoms. Well-known ones can be used. Specific examples of the component (A) include cyclic siloxane compounds and chain siloxane compounds. Although it will not restrict | limit especially if it is a siloxane which has a cyclic structure as a cyclic siloxane compound, General formula (1):
(式中、R1は炭素数1〜4の低級アルキル基であって、同一であっても異なっていても良い置換基であり、nは3〜10の整数を表す。)で表される環状シロキサン化合物を用いることが好ましい。環状シロキサン化合物の具体例としては、例えば、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、ペンタデカメチルシクロヘプタシロキサン、ヘキサデカメチルシクロオクタシロキサン、ヘキサエチルシクロトリシロキサン、オクタエチルシクロテトラシロキサン、デカエチルシクロペンタシロキサン、などが挙げられる。これらの中では、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサンが化粧料用途としては好ましい。
また、鎖状シロキサン化合物としては、特に制限されず、公知のものを使用することができるが具体的には、一般式(2):
(Wherein R 1 is a lower alkyl group having 1 to 4 carbon atoms, which may be the same or different, and n represents an integer of 3 to 10). It is preferable to use a cyclic siloxane compound. Specific examples of the cyclic siloxane compound include, for example, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, pentadecamethylcycloheptasiloxane, hexadecamethylcyclooctasiloxane, hexa Examples include ethylcyclotrisiloxane, octaethylcyclotetrasiloxane, decaethylcyclopentasiloxane, and the like. Among these, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, and decamethylcyclopentasiloxane are preferable for cosmetic use.
Further, the chain siloxane compound is not particularly limited, and a known one can be used. Specifically, the general formula (2):
(式中、R2は炭素数1〜4の低級アルキル基であり、同一であっても異なっていても良い置換基であり、mは0〜8の整数を表す)で挙げられるものを用いることが好ましい。具体的には、例えば、ヘキサメチルジシロキサン、オクタメチルトリシロキサン、デカメチルテトラシロキサン、ドデカメチルペンタシロキサン、テトラデカメチルヘキサシロキサン、ヘキサメチルヘプタシロキサン、オクタデカメチルオクタシロキサン、ヘキサエチルジシロキサン、オクタエチルトリシロキサン、デカエチルテトラシロキサン、ドデカエチルペンタシロキサンなどをあげることができる。なお、これらシロキサン化合物は、分岐構造を有するものであっても良い。 (Wherein R 2 is a lower alkyl group having 1 to 4 carbon atoms, which may be the same or different, and m represents an integer of 0 to 8). It is preferable. Specifically, for example, hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, dodecamethylpentasiloxane, tetradecamethylhexasiloxane, hexamethylheptasiloxane, octadecamethyloctasiloxane, hexaethyldisiloxane, octadeca Examples thereof include ethyltrisiloxane, decaethyltetrasiloxane, dodecaethylpentasiloxane and the like. These siloxane compounds may have a branched structure.
本発明のシロキサンゲルは前記シロキサン化合物用ゲル化剤を(A)成分に添加することにより得られる。なお、本発明のゲル化剤を添加する場合には、当該ゲル化剤を溶解する溶媒に溶解して使用することで速やかにゲル化を進行させることができる。当該ゲル化剤を溶解する溶媒としては、例えば、ゲル化剤を調整する際に用いられたエーテル系溶剤などが挙げられるが、これらに限定されるものではない。 The siloxane gel of the present invention can be obtained by adding the siloxane compound gelling agent to the component (A). In addition, when adding the gelatinizer of this invention, gelatinization can be advanced rapidly by melt | dissolving and using the said gelatinizer in the solvent which melt | dissolves. Examples of the solvent that dissolves the gelling agent include, but are not limited to, ether solvents used when adjusting the gelling agent.
シロキサン化合物用ゲル化剤を溶媒に溶解して用いる場合には、シロキサン化合物用ゲル化剤中に含まれる樹脂酸類のアルカリ土類金属塩の含有量を、溶媒に対し2重量%以上含有するように調整することが好ましく、できるだけ高濃度とするのが好ましい。2重量%に満たない場合には、ゲル化能力を十分に発揮できない場合がある。通常は、10重量%以上とすることが特に好ましい。 When the siloxane compound gelling agent is used by dissolving in a solvent, the content of the alkaline earth metal salt of the resin acid contained in the siloxane compound gelling agent should be 2% by weight or more based on the solvent. It is preferable that the concentration be as high as possible. If it is less than 2% by weight, the gelation ability may not be fully exhibited. Usually, it is particularly preferably 10% by weight or more.
当該溶媒に溶解させたシロキサン化合物用ゲル化剤の使用量は、通常、シロキサン化合物の種類および樹脂酸のアルカリ土類金属塩の種類に応じて適宜に決定される。通常はシロキサン化合物に対してアルカリ土類金属塩の含有量が0.05〜30重量%程度、好ましくは0.1〜10重量%となるようにする。 The amount of the siloxane compound gelling agent dissolved in the solvent is usually appropriately determined according to the type of the siloxane compound and the type of the alkaline earth metal salt of the resin acid. Usually, the content of the alkaline earth metal salt is about 0.05 to 30% by weight, preferably 0.1 to 10% by weight, based on the siloxane compound.
このようにして得られたシロキサン化合物のゲルにはアルカリ土類金属塩溶液とするために用いた溶剤が含まれている。場合によってはその溶剤を除去することもできる。溶剤除去法としては、例えば、常圧あるいは減圧下で蒸発させる方法が挙げられる。例えばアルカリ土類金属塩溶液の用いる溶剤にテトラヒドロフランを用いた場合、常圧あるいは減圧下で容易に除去できる。 The gel of the siloxane compound thus obtained contains a solvent used for preparing an alkaline earth metal salt solution. In some cases, the solvent can be removed. Examples of the solvent removal method include a method of evaporating under normal pressure or reduced pressure. For example, when tetrahydrofuran is used as the solvent used in the alkaline earth metal salt solution, it can be easily removed under normal pressure or reduced pressure.
以下に実施例をあげて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples.
実施例1
デヒドロアビエチン酸3.00g(10mmol)をテトラヒドロフラン14.5g、水0.5gよりなる混合溶媒に溶解し、これに水酸化カルシウム0.37g(5mmol)を加え室温で攪拌し反応させた。反応後不溶物をろ過しデヒドロアビエチン酸カルシウム塩の溶液を得た。このものの一部をとり105℃、2時間乾燥しその乾燥減量から固形分を求め、乾燥した固形物のIRスペクトルを測定した。
固形分:17.2重量%
IR:1521cm−1、1415cm−1
得られたデヒドロアビエチン酸カルシウム塩にさらにテトラヒドロフランを加え15重量%溶液とした。
表1に示したシロキサン化合物10gを試験管に取り、室温で攪拌しながら、表1に示した重量のテトラヒドロフランの15重量%溶液をゲル形成の有無を観察した。結果を表1に示す。
Example 1
3.00 g (10 mmol) of dehydroabietic acid was dissolved in a mixed solvent consisting of 14.5 g of tetrahydrofuran and 0.5 g of water, 0.37 g (5 mmol) of calcium hydroxide was added thereto, and the mixture was stirred and reacted at room temperature. After the reaction, insolubles were filtered to obtain a solution of calcium dehydroabietic acid. A portion of this was taken and dried at 105 ° C. for 2 hours, the solid content was determined from the loss on drying, and the IR spectrum of the dried solid was measured.
Solid content: 17.2% by weight
IR: 1521 cm −1 , 1415 cm −1
Tetrahydrofuran was further added to the obtained calcium salt of dehydroabietic acid to make a 15 wt% solution.
10 g of the siloxane compound shown in Table 1 was placed in a test tube, and while stirring at room temperature, the presence or absence of gel formation of a 15 wt% solution of tetrahydrofuran having the weight shown in Table 1 was observed. The results are shown in Table 1.
実施例2
実施例1のデヒドロアビエチン酸3.00g(10mモル)に代えて不均化ロジン(商品名:ロンヂスR、荒川化学工業(株)製、酸価158)3.54gを用いたほかは同様な操作を行い不均化ロジンカルシウム塩の溶液を得た。
固形分:19.3重量%
IR:1525cm−1、1418cm−1
得られた溶液にさらにテトラヒドロフランを加え15重量%とした。
ゲル化対象物10gを試験管に取り、室温で攪拌しながら、表2に示した重量のテトラヒドロフランの15重量%溶液を加えゲル形成の有無を観察した。結果を表2に示す。
Example 2
The same procedure except that 3.54 g of disproportionated rosin (trade name: Longis R, manufactured by Arakawa Chemical Industries, Ltd., acid value 158) was used instead of 3.00 g (10 mmol) of dehydroabietic acid in Example 1. Operation was performed to obtain a solution of disproportionated rosin calcium salt.
Solid content: 19.3% by weight
IR: 1525 cm −1 , 1418 cm −1
Tetrahydrofuran was further added to the obtained solution to make 15% by weight.
10 g of the object to be gelled was placed in a test tube, and while stirring at room temperature, a 15 wt% solution of tetrahydrofuran having the weight shown in Table 2 was added, and the presence or absence of gel formation was observed. The results are shown in Table 2.
実施例3
実施例1のデヒドロアビエチン酸3.00g(10mモル)に代えてトール油ロジン(商品名:TOR35−240、アリゾナケミカル社製、酸価171)3.27gを用いたほかは同様な操作を行いトール油ロジンカルシウム塩の溶液を得た。
固形分:18.6重量%
IR:1524cm−1、1417cm−1
得られた溶液にさらにテトラヒドロフラン溶液を加え15重量%とした。
ゲル化対象物10gを試験管に取り、室温で攪拌しながら、表3に示した重量のテトラヒドロフランの15重量%溶液を加えゲル形成の有無を観察した。結果を表3に示す。
Example 3
The same operation was performed except that 3.27 g of tall oil rosin (trade name: TOR35-240, manufactured by Arizona Chemical Co., acid value 171) was used instead of 3.00 g (10 mmol) of dehydroabietic acid of Example 1. A solution of tall oil rosin calcium salt was obtained.
Solid content: 18.6% by weight
IR: 1524 cm −1 , 1417 cm −1
A tetrahydrofuran solution was further added to the obtained solution to make 15% by weight.
10 g of the object to be gelled was placed in a test tube, and while stirring at room temperature, a 15 wt% solution of tetrahydrofuran having the weight shown in Table 3 was added, and the presence or absence of gel formation was observed. The results are shown in Table 3.
実施例4
実施例1の水酸化カルシウム0.37g(5mモル)に代えて水酸化ストロンチウム・8水和物1.33g(5mモル)用いたほかは同様な操作を行いデヒドロアビエチン酸ストロンチウム塩の溶液を得た。
固形分:17.6重量%
IR:1525cm−1、1405cm−1
得られた溶液にさらにテトラヒドロフラン溶液を加え15重量%とした。
ゲル化対象物10gを試験管に取り、室温で攪拌しながら、表4に示した重量のテトラヒドロフランの15重量%溶液を加えゲル形成の有無を観察した。結果を表4に示す。
Example 4
A solution of strontium dehydroabietic acid salt was obtained in the same manner as in Example 1 except that 1.33 g (5 mmol) of strontium hydroxide octahydrate was used instead of 0.37 g (5 mmol) of calcium hydroxide. It was.
Solid content: 17.6% by weight
IR: 1525 cm −1 , 1405 cm −1
A tetrahydrofuran solution was further added to the obtained solution to make 15% by weight.
10 g of the gelation target was placed in a test tube, and while stirring at room temperature, a 15 wt% solution of tetrahydrofuran having the weight shown in Table 4 was added, and the presence or absence of gel formation was observed. The results are shown in Table 4.
実施例5
イソプロパノール(88重量%)、水(12重量%)からなる混合物(以下、88%IPAと略す)200gに水酸化カルシウム3.7g(0.05モル)を加え攪拌し分散させた後、精製不均化ロジン(商品名:KR−614、荒川化学工業(株)製、酸価173)33gを88%IPA 200gに溶解した溶液を還流下で30分かけて滴下した。さらに還流下で4時間攪拌し冷却後、ろ過し、88%IPA100gにて洗浄した。得られたろ過物を取り出し、80℃で4時間減圧乾燥し、28.8gの白色粉末を得た。
融点:300℃まで溶融せず
IR:1521cm−1、1414cm−1
このものをテトラヒドロフランに溶解し15重量%溶液を調製した。
ゲル化対象物10gを試験管に取り、室温で攪拌しながら、表5に示した重量のテトラヒドロフラン溶液の15重量%溶液を加えゲル形成の有無を観察した。結果を表5に示す。
Example 5
After adding 3.7 g (0.05 mol) of calcium hydroxide to 200 g of a mixture of isopropanol (88 wt%) and water (12 wt%) (hereinafter abbreviated as 88% IPA) and stirring and dispersing, A solution prepared by dissolving 33 g of averaged rosin (trade name: KR-614, manufactured by Arakawa Chemical Industries, Ltd., acid value 173) in 200 g of 88% IPA was added dropwise over 30 minutes under reflux. The mixture was further stirred for 4 hours under reflux, cooled, filtered, and washed with 100 g of 88% IPA. The obtained filtrate was taken out and dried under reduced pressure at 80 ° C. for 4 hours to obtain 28.8 g of white powder.
Melting point: not melted to 300 ° C. IR: 1521 cm −1 , 1414 cm −1
This was dissolved in tetrahydrofuran to prepare a 15% by weight solution.
10 g of the object to be gelled was placed in a test tube, and while stirring at room temperature, a 15% by weight solution of a tetrahydrofuran solution having the weight shown in Table 5 was added and the presence or absence of gel formation was observed. The results are shown in Table 5.
実施例6
実施例6の水酸化カルシウムに代えて水酸化バリウム・8水和物を13.3g(0.05モル)に変えた以外は同様の操作を行い25.1gの白色粉末を得た。
融点:300℃まで溶融せず
IR:1536cm−1、1396cm−1
このものにテトラヒドロフランを加え15重量%分散液を調製した。
ゲル化対象物10gを試験管に取り、室温で攪拌しながら、表6に示した重量のテトラヒドロフラン溶液の15重量%分散液を加えゲル形成の有無を観察した。結果を表6に示す。
Example 6
The same operation was carried out except that barium hydroxide octahydrate was changed to 13.3 g (0.05 mol) instead of calcium hydroxide in Example 6 to obtain 25.1 g of white powder.
Melting point: not melted to 300 ° C. IR: 1536 cm −1 , 1396 cm −1
Tetrahydrofuran was added to this to prepare a 15 wt% dispersion.
10 g of the gelation target was placed in a test tube, and while stirring at room temperature, a 15 wt% dispersion of a tetrahydrofuran solution having the weight shown in Table 6 was added, and the presence or absence of gel formation was observed. The results are shown in Table 6.
Claims (8)
で表される環状シロキサン化合物および/または一般式(2):
で表されるシロキサン化合物である請求項5記載のゲル。 A siloxane compound (A) containing at least two silicon atoms is represented by the general formula (1):
A cyclic siloxane compound represented by the general formula (2):
The gel according to claim 5, which is a siloxane compound represented by the formula:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003370433A JP2005132959A (en) | 2003-10-30 | 2003-10-30 | Siloxane gel and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003370433A JP2005132959A (en) | 2003-10-30 | 2003-10-30 | Siloxane gel and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005132959A true JP2005132959A (en) | 2005-05-26 |
Family
ID=34647447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003370433A Withdrawn JP2005132959A (en) | 2003-10-30 | 2003-10-30 | Siloxane gel and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005132959A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112920426A (en) * | 2021-01-26 | 2021-06-08 | 华侨大学 | Rosinyl calcium salt supermolecule hydrogel, and preparation method and application thereof |
-
2003
- 2003-10-30 JP JP2003370433A patent/JP2005132959A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112920426A (en) * | 2021-01-26 | 2021-06-08 | 华侨大学 | Rosinyl calcium salt supermolecule hydrogel, and preparation method and application thereof |
CN112920426B (en) * | 2021-01-26 | 2023-08-29 | 华侨大学 | Rosin-based calcium salt supermolecule hydrogel, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK2903964T3 (en) | 14-HYDROXYEICOSANOIC ACID-BASED FATTY ACID AMID AS AN ORGANOGELATING AGENT | |
JP2021519844A (en) | Transient polymer formulations, articles thereof, and methods of making and using them. | |
CN114015051B (en) | Preparation method and application of DOPO-POSS flame retardant | |
WO1987005915A1 (en) | Process for removing impurities from polyphenylene sulfide resin | |
JPWO2009078268A1 (en) | Gelling agent containing fluoroalkyl group derivative | |
JP2005132959A (en) | Siloxane gel and method for producing the same | |
JP7473068B2 (en) | Crosslinked product of modified polyaspartic acid or its salt, and thickening composition | |
JP4197116B2 (en) | Rheology modifier | |
JP6832134B2 (en) | Graphite oxide derivative | |
JP4038763B2 (en) | Gelling agent for organic solvents or oils and fats | |
RU1826989C (en) | Stabilized composition | |
JP4081652B2 (en) | Method for producing resin acid complex | |
JPS6042242B2 (en) | Process for producing highly substituted carboxymethyl cellulose ether alkali salt | |
JP2767285B2 (en) | Transparent gel fragrance composition | |
CA2483862A1 (en) | Process for the preparation of the amorphous form of atorvastatin calcium salt | |
JP2015218127A (en) | Method for producing polyhydroxylated fullerene | |
CN102639549A (en) | Process for the synthesis of silylferrocene compounds | |
JP2017535577A (en) | Method for producing powdered lauroyl peroxide | |
JP2020073653A (en) | Cobalt soap, method for manufacturing the same, and rubber belt manufactured using the cobalt soap | |
CA2250321A1 (en) | A process for the production of alkaline earth metal salts of aliphatic beta-keto compounds | |
JP4038764B2 (en) | Method for gelling organic solvents or oils and fats | |
TWI414541B (en) | Gelling agent composition, organic solvent and / or grease, organic solvent and / or grease, and organic solvent and / or grease | |
JP5097900B2 (en) | Method for producing active ester of organic acid or derivative thereof | |
JP5476563B2 (en) | Organogel and method for producing organogel | |
JP4556381B2 (en) | Process for producing aliphatic monocarboxylic acid tin salt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061025 |
|
A761 | Written withdrawal of application |
Effective date: 20070808 Free format text: JAPANESE INTERMEDIATE CODE: A761 |