JP2005132789A - Method for producing 1,2,3,4-butanetetracarboxylic acid - Google Patents

Method for producing 1,2,3,4-butanetetracarboxylic acid Download PDF

Info

Publication number
JP2005132789A
JP2005132789A JP2003372260A JP2003372260A JP2005132789A JP 2005132789 A JP2005132789 A JP 2005132789A JP 2003372260 A JP2003372260 A JP 2003372260A JP 2003372260 A JP2003372260 A JP 2003372260A JP 2005132789 A JP2005132789 A JP 2005132789A
Authority
JP
Japan
Prior art keywords
acid
reaction
btc
hydrogen peroxide
mother liquor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003372260A
Other languages
Japanese (ja)
Other versions
JP4321216B2 (en
Inventor
Toshihiro Mizutani
水谷利洋
Tsuratake Fujitani
藤谷貫剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP2003372260A priority Critical patent/JP4321216B2/en
Publication of JP2005132789A publication Critical patent/JP2005132789A/en
Application granted granted Critical
Publication of JP4321216B2 publication Critical patent/JP4321216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for industrially advantageously producing 1,2,3,4-butanetetracarboxylic acid. <P>SOLUTION: In the method for obtaining 1,2,3,4-butanetetracarboxylic acid by oxidizing 1,2,3,6-tetrahydrophthalic anhydride and/or its carboxylic acid with hydrogen peroxide in the presence of at least one kind of catalyst selected from a group consisting of tungstic acid, molybdic acid and a heteropolyacid containing tungstic acid or molybdic acid in an aqueous solvent, the resultant reaction solution is cooled and the deposited 1,2,3,4-butanetetracarboxylic acid is separated and then, the resultant reaction mother liquor is treated with a sulfonic acid type cation exchange resin and the resultant treated liquid is reused for the reaction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、1,2,4,5−テトラヒドロ無水フタル酸(以下、「THPA」と略記する。)及び/又はその有水酸を過酸化水素により酸化して1,2,3,4−ブタンテトラカルボン酸(以下、「BTC」と略記する。)を製造する方法に関する。さらに詳しくは、該製造で得られた反応母液を、繰り返し該製造に再使用してBTCを製造する方法に関する。 In the present invention, 1,2,4,5-tetrahydrophthalic anhydride (hereinafter abbreviated as “THPA”) and / or its hydrous acid is oxidized with hydrogen peroxide to produce 1,2,3,4- The present invention relates to a method for producing butanetetracarboxylic acid (hereinafter abbreviated as “BTC”). More specifically, the present invention relates to a method for producing BTC by repeatedly reusing the reaction mother liquor obtained in the production for the production.

タングステン酸、モリブデン酸及びこれらのヘテロポリ酸触媒の存在下、過酸化水素を酸化剤として、THPAを酸化してBTCを製造する方法は、従来の硝酸酸化法と比較して、有害ガス及び有害副生物の発生が無く、かつ比較的高収率で目的物が得られるため、工業的に極めて有利な反応方法である(特許文献1)。   In the presence of tungstic acid, molybdic acid, and these heteropolyacid catalysts, the method of producing BTC by oxidizing THPA using hydrogen peroxide as an oxidizing agent is more harmful than the conventional nitric acid oxidation method. Since there is no generation of organisms and the target product can be obtained in a relatively high yield, it is an industrially extremely advantageous reaction method (Patent Document 1).

これらの触媒は比較的高価であり、経済性の面から回収して再使用するのが望ましい。上記特許文献1の明細書中には、反応終了後に反応液を冷却し析出した目的物のカルボン酸を分離回収した後の反応母液中には、失活していない触媒の大部分が残存しており、再度反応に供することが有利であることを開示しているが、その方法については何ら具体的に記載されていない。   These catalysts are relatively expensive, and are desirably recovered and reused from the economical aspect. In the specification of the above-mentioned Patent Document 1, most of the catalyst that has not been deactivated remains in the reaction mother liquor after the reaction solution is cooled and separated after the reaction solution is separated and recovered. However, it is disclosed that it is advantageous to be subjected to the reaction again, but the method is not specifically described at all.

また、タングステン酸、リンタングステン酸若しくはそれらの塩を含む反応液又はBTCを分離した後の反応母液を、弱塩基性陰イオン交換樹脂と接触させて、該触媒のみを選択吸着させ、回収、再使用する方法が提案されている(特許文献2)。   Further, a reaction solution containing tungstic acid, phosphotungstic acid or a salt thereof, or a reaction mother liquor after separation of BTC is brought into contact with a weakly basic anion exchange resin to selectively adsorb only the catalyst, and is recovered, recycled. A method to be used has been proposed (Patent Document 2).

しかしながら、この方法においては、1)触媒のみの回収・再使用であること、2)再使用回数が限られること、3)煩雑な操作が必要であること等の問題点を有しており、工業的製造方法としては必ずしも有利な方法とは言えないのが現状である。   However, this method has problems such as 1) recovery and reuse of the catalyst only, 2) limited number of reuses, and 3) complicated operation required. At present, it is not necessarily an advantageous method for industrial production.

日本国特許第1682524号Japanese Patent No. 1682524 日本国特許第3243627号Japanese Patent No. 3243627

本発明は、上記問題点を解消し、BTCの生成率を低下させることなく触媒及びBTCを含有する反応母液を繰り返し該製造に再使用できる工業的に有利な1,2,3,4,−ブタンテトラカルボン酸の製造方法を提供することを目的とする。   The present invention eliminates the above-mentioned problems, and industrially advantageous 1,2,3,4,-, which allows a reaction mother liquor containing a catalyst and BTC to be repeatedly reused in the production without lowering the production rate of BTC. It aims at providing the manufacturing method of butanetetracarboxylic acid.

本発明者らは、上記の問題点を解決するため鋭意検討した。前記特許文献1には、触媒及び未析出のBTCが含まれている反応母液を反応に再使用することが工業的に有利であることが記載されている。しかし、本発明者の研究によると、確かに繰り返し使用はできるものの、その繰り返し回数に反比例して徐々にBTCの生成率は低下していき、必ずしも工業的に有利な方法として満足できるものではないことが判明した。   The present inventors diligently studied to solve the above problems. Patent Document 1 describes that it is industrially advantageous to reuse a reaction mother liquor containing a catalyst and undeposited BTC for the reaction. However, according to the research of the present inventor, although it can be used repeatedly, the production rate of BTC gradually decreases in inverse proportion to the number of repetitions, which is not always satisfactory as an industrially advantageous method. It has been found.

本発明者らは更に検討を重ねた結果、BTCの製造に使用した触媒及びBTCを含有する反応母液をスルホン酸型陽イオン交換樹脂で処理して得られた処理液を該製造に再使用することにより、BTCを工業的に有利に製造できることを見いだし、係る知見に基づいて本発明を完成するに至った。   As a result of further investigations, the present inventors have reused the treatment liquid obtained by treating the reaction mother liquor containing the catalyst and BTC used in the production of BTC with a sulfonic acid type cation exchange resin. As a result, it was found that BTC can be produced industrially advantageously, and the present invention has been completed based on such knowledge.

即ち、本発明は、以下の1,2,3,4−ブタンテトラカルボン酸の製造方法を提供するものである。   That is, the present invention provides the following method for producing 1,2,3,4-butanetetracarboxylic acid.

項1 1,2,4,5−テトラヒドロ無水フタル酸及び/又はその有水酸を、水性溶媒中、タングステン酸、モリブデン酸及びタングステン酸若しくはモリブデン酸を含有するヘテロポリ酸からなる群より選ばれる少なくとも1種の触媒存在下で過酸化水素により酸化し、1,2,3,4−ブタンテトラカルボン酸を製造する方法において、得られた反応液を冷却して析出した1,2,3,4−ブタンテトラカルボン酸を分離し、次いで得られた反応母液をスルホン酸型陽イオン交換樹脂で処理し、得られた処理液を該製造に再使用することを特徴とする1,2,3,4−ブタンテトラカルボン酸の製造方法。   Item 1 At least selected from the group consisting of 1,2,4,5-tetrahydrophthalic anhydride and / or its hydrous acid, in an aqueous solvent, consisting of tungstic acid, molybdic acid and heteropolyacid containing tungstic acid or molybdic acid In the process for producing 1,2,3,4-butanetetracarboxylic acid by oxidation with hydrogen peroxide in the presence of one kind of catalyst, the resulting reaction solution was cooled and precipitated 1,2,3,4 -Separating butanetetracarboxylic acid, then treating the resulting reaction mother liquor with a sulfonic acid type cation exchange resin, and reusing the obtained treating liquid for the production A method for producing 4-butanetetracarboxylic acid.

項2 スルホン酸型イオン交換樹脂100容積部に対して、1,2,3,4−ブタンテトラカルボン酸を分離して得られた反応母液を10〜500容積部/hの条件で処理することを特徴とする上記項1に記載の1,2,3,4−ブタンテトラカルボン酸の製造方法。   Item 2: Treating the reaction mother liquor obtained by separating 1,2,3,4-butanetetracarboxylic acid under the condition of 10 to 500 parts by volume / h with respect to 100 parts by volume of the sulfonic acid type ion exchange resin. Item 2. The method for producing 1,2,3,4-butanetetracarboxylic acid according to Item 1 above.

項3 触媒が、タングステン酸又は12−タングストリン酸である上記項1又は項2に記載の1,2,3,4−ブタンテトラカルボン酸の製造方法。   Item 3. The method for producing 1,2,3,4-butanetetracarboxylic acid according to Item 1 or 2, wherein the catalyst is tungstic acid or 12-tungstophosphoric acid.

項4 反応液中の過酸化水素の濃度が0.4〜1.5mol/kgとなるように、過酸化水素を連続的に供給して行うことを特徴とする上記項1〜3のいずれかに記載の1,2,3,4−ブタンテトラカルボン酸の製造方法。   Item 4 The method according to any one of Items 1 to 3, wherein hydrogen peroxide is continuously supplied so that the concentration of hydrogen peroxide in the reaction solution is 0.4 to 1.5 mol / kg. A process for producing 1,2,3,4-butanetetracarboxylic acid as described in 1. above.

項5 還流条件下で反応を行うことを特徴とする上記項1〜4のいずれかに記載の1,2,3,4−ブタンテトラカルボン酸の製造方法。   Item 5. The process for producing 1,2,3,4-butanetetracarboxylic acid according to any one of Items 1 to 4, wherein the reaction is carried out under reflux conditions.

本発明によれば、反応後冷却晶析してBTCを分離して得られた反応母液をスルホン酸型イオン交換樹脂で処理し、得られた処理液を繰り返し再使用することにより、BTCの生成率を低下させることなく、また過酸化水素の使用量を増大させることなく、工業的に有利にBTCを製造することができる。   According to the present invention, the reaction mother liquor obtained by cooling and crystallizing after the reaction and separating the BTC is treated with a sulfonic acid type ion exchange resin, and the obtained treatment liquid is repeatedly reused to produce BTC. BTC can be produced industrially advantageously without decreasing the rate and without increasing the amount of hydrogen peroxide used.

本発明に係るBTCの製造は、1,2,4,5−テトラヒドロ無水フタル酸及び/又はその有水酸を、触媒存在下で過酸化水素により酸化する方法であれば、従来公知の方法により行うことができる。例えば、THPAを水性溶媒中、タングステン酸、モリブデン酸、及びタングステン酸又はモリブデン酸を含有するヘテロポリ酸からなる群より選ばれる少なくとも1種の触媒存在下で過酸化水素により酸化することにより行われる。   The production of BTC according to the present invention can be carried out by a conventionally known method as long as it is a method of oxidizing 1,2,4,5-tetrahydrophthalic anhydride and / or its hydrous acid with hydrogen peroxide in the presence of a catalyst. It can be carried out. For example, THPA is oxidized by oxidizing hydrogen peroxide in an aqueous solvent in the presence of at least one catalyst selected from the group consisting of tungstic acid, molybdic acid, and a heteropolyacid containing tungstic acid or molybdic acid.

本発明に係る触媒としては、タングステン酸、モリブデン酸又はタングステン若しくはモリブデン酸を含有するヘテロポリ酸が使用できる。ヘテロポリ酸は、2種以上の酸素酸からなる縮合酸でり、ポリ酸原子としては、タングステン及びモリブデンであり、ヘテロ原子としては、P、As、Si、Ti、Co、Fe、B、V、Be、I、Ni、Gaが使用でき、これらは混合配位であっても良い。尚、上記触媒の中でも、合成の容易さ、入手の容易さ、反応性の観点から、タングステン酸及びタングステン酸をポリ酸として含有するヘテロポリ酸が好ましく、より好ましくはタングステン酸及び12−タングストリン酸が推奨される。   As the catalyst according to the present invention, tungstic acid, molybdic acid, or heteropolyacid containing tungsten or molybdic acid can be used. The heteropolyacid is a condensed acid composed of two or more oxygen acids, and the polyacid atoms are tungsten and molybdenum, and the heteroatoms are P, As, Si, Ti, Co, Fe, B, V, Be, I, Ni, and Ga can be used, and these may be mixed coordination. Among the above catalysts, heteropolyacids containing tungstic acid and tungstic acid as polyacids are preferred, more preferably tungstic acid and 12-tungstophosphoric acid, from the viewpoint of ease of synthesis, availability, and reactivity. Is recommended.

触媒として用いるタングステン酸、モリブデン酸又はタングステン酸若しくはモリブデン酸を含有するヘテロポリ酸は、水和物であってもよく、反応系内で上記の触媒を生成し得る化合物の形態であってもよい。   The tungstic acid, molybdic acid or heteropolyacid containing tungstic acid or molybdic acid used as a catalyst may be a hydrate or a compound capable of generating the above catalyst in the reaction system.

このような化合物としては、タングステン酸、モリブデン酸のカリウム、ナトリウム等のアルカリ金属塩、コバルト、ニッケル、マンガン、銅などの重金属塩、アンモニウム塩などの塩類などが挙げられ、更に、酸化物、塩化物、硫化物であってもよい。このような塩、塩化物、硫化物を使用する場合は、リン酸、塩酸、硫酸などの鉱酸を加え、pH4以下の酸性条件下で反応を行うことが好ましい。   Examples of such compounds include alkali metal salts such as tungstic acid, potassium molybdate and sodium, heavy metal salts such as cobalt, nickel, manganese and copper, and salts such as ammonium salts. Or sulfide. When such a salt, chloride, or sulfide is used, it is preferable to add a mineral acid such as phosphoric acid, hydrochloric acid, or sulfuric acid and perform the reaction under acidic conditions of pH 4 or less.

又、ヘテロポリ酸のアルカリ金属塩、アンモニウム塩、モノアルキルアンモニウム塩、ジアルキルアンモニウム塩、トリアルキルアンモニウム塩、テトラアルキルアンモニウム塩、アルキルピリジウム塩なども使用できる。   In addition, alkali metal salts, ammonium salts, monoalkyl ammonium salts, dialkyl ammonium salts, trialkyl ammonium salts, tetraalkyl ammonium salts, alkyl pyridium salts, and the like of heteropolyacids can also be used.

これらの触媒の使用量は、触媒活性が発揮される濃度であれば特に限定されないが、反応液中の遊離酸(タングステン酸、モリブデン酸又はタングステン酸若しくはモリブデン酸を含有するヘテロポリ酸)濃度が1〜50g/kgの範囲が好ましく、より好ましくは3〜10g/kgの範囲が好ましい。濃度が、1g/kg未満であると工業的な反応速度が得られにくく、一方、50g/kgを超える場合、添加量に見合う反応速度の向上効果は得られにくく、触媒コストの観点から不利である。   The amount of these catalysts used is not particularly limited as long as the catalyst activity is exerted, but the concentration of free acid (tungstic acid, molybdic acid, or heteropolyacid containing tungstic acid or molybdic acid) in the reaction solution is 1. The range of ˜50 g / kg is preferable, and the range of 3 to 10 g / kg is more preferable. If the concentration is less than 1 g / kg, it is difficult to obtain an industrial reaction rate. On the other hand, if it exceeds 50 g / kg, it is difficult to obtain an effect of improving the reaction rate commensurate with the amount added, which is disadvantageous from the viewpoint of catalyst cost. is there.

本発明に係るBTCの製造において、THPA及びその有水酸(以下、「基質」と略記する。)のいずれも使用することができ、有水酸は該製造において無水酸の加水分解により生成した有水酸であってもよい。反応時の基質濃度は特に制限が無く、反応温度において溶解している限り広い範囲から選択することができる。しかし反応終了後、反応液を冷却してBTCを結晶化させて分離させる方法において、結晶の析出量及びその品質の観点から、反応終了時のBTCの濃度が15〜35重量%、好ましくは25〜30重量%となるような基質濃度で行うことが好ましい。   In the production of BTC according to the present invention, both THPA and its hydrous acid (hereinafter abbreviated as “substrate”) can be used, and hydrous acid was produced by hydrolysis of acid anhydride in the production. Hydrous acid may be sufficient. The substrate concentration in the reaction is not particularly limited, and can be selected from a wide range as long as it is dissolved at the reaction temperature. However, after completion of the reaction, in the method of cooling the reaction solution to crystallize and separate BTC, the concentration of BTC at the end of the reaction is 15 to 35% by weight, preferably 25 from the viewpoint of the amount of precipitated crystals and the quality thereof. It is preferable to carry out at a substrate concentration of ˜30% by weight.

水性溶媒としては水が好ましく用いられる。本発明の効果を阻害しない範囲で水と混和可能な有機溶媒、例えばメタノール、エタノール等の炭素数1〜4のアルコール、酢酸等の炭素数1〜4のカルボン酸、ジオキサン、テトラヒドロフラン、N,N−ジメチルホルムアミド等と水の混合溶媒を用いることができる。   Water is preferably used as the aqueous solvent. Organic solvents that are miscible with water within a range that does not impair the effects of the present invention, such as alcohols having 1 to 4 carbon atoms such as methanol and ethanol, carboxylic acids having 1 to 4 carbon atoms such as acetic acid, dioxane, tetrahydrofuran, N, N -A mixed solvent of dimethylformamide or the like and water can be used.

本発明に係る過酸化水素は、過酸化水素水として該製造に供することができる。過酸化水素水の濃度は、工業的に入手可能なものであれば特に制限がなく、具体的には、3〜70重量%、好ましくは30〜60重量%の過酸化水素水が推奨される。価格及び反応性の観点から特に60重量%の過酸化水素水が好ましい。過酸化水素の化学量論量は、基質に対して4モルであるが、実際にはその10〜50モル%過剰、即ち4.4〜6.0モル使用するのが好ましい。反応液中の過酸化水素濃度は、0.1〜8モル/kgが好ましく、より好ましくは0.4〜1.5モル/kgが推奨される。過酸化水素の濃度が0.1モル/kg未満では十分な反応速度が得られず、一方、8モル/kgを超える濃度で行うと、過反応、副反応又は過酸化水素の分解等により過酸化水素の消費量が増加する傾向が見られ好ましくない。反応液中の過酸化水素濃度をこの範囲内に保つために、過酸化水素を連続的又は間欠的に反応系に供給することが好ましい。   The hydrogen peroxide according to the present invention can be used for the production as a hydrogen peroxide solution. The concentration of the hydrogen peroxide solution is not particularly limited as long as it is industrially available. Specifically, 3 to 70% by weight, preferably 30 to 60% by weight of hydrogen peroxide solution is recommended. . In view of price and reactivity, 60% by weight of hydrogen peroxide is particularly preferable. The stoichiometric amount of hydrogen peroxide is 4 mol with respect to the substrate, but in actuality, it is preferable to use 10 to 50 mol% excess, that is, 4.4 to 6.0 mol. The hydrogen peroxide concentration in the reaction solution is preferably 0.1 to 8 mol / kg, more preferably 0.4 to 1.5 mol / kg. When the concentration of hydrogen peroxide is less than 0.1 mol / kg, a sufficient reaction rate cannot be obtained. On the other hand, when the concentration exceeds 8 mol / kg, excessive reaction, side reaction, decomposition of hydrogen peroxide, etc. A tendency to increase the consumption of hydrogen oxide is not preferable. In order to keep the hydrogen peroxide concentration in the reaction solution within this range, it is preferable to supply hydrogen peroxide continuously or intermittently to the reaction system.

反応は、通常、反応速度の観点から80〜110℃の範囲で行われるが、還流条件下において行うと、反応温度の管理が不要になる上に、蒸発した水を適宜、系外に抜き出すことにより、反応液中の触媒濃度、基質濃度、過酸化水素濃度を一定に保ちやすく、好ましい方法として推奨される。   The reaction is usually carried out in the range of 80 to 110 ° C. from the viewpoint of the reaction rate. When the reaction is carried out under reflux conditions, the reaction temperature is not required to be controlled, and the evaporated water is appropriately extracted out of the system. Therefore, it is easy to keep the catalyst concentration, substrate concentration, and hydrogen peroxide concentration in the reaction solution constant, which is recommended as a preferable method.

反応時間は、基質、触媒及び過酸化水素の濃度、反応温度等によって適宜異なるが、通常1〜24時間程度である。   The reaction time varies depending on the concentration of the substrate, catalyst and hydrogen peroxide, reaction temperature, etc., but is usually about 1 to 24 hours.

本発明に係る反応母液は、上記の方法により得られた反応液を冷却して析出したBTCを分離することにより得ることができる。その方法については特に制限がなく、例えば、BTCの濃度、徐冷速度、晶析時間、冷却温度、使用する装置等を適宜選択して行うことができる。通常、冷却温度が低いほど析出量が増加するが、温度が低くなるにつれて固液分離性の悪い結晶が多く析出する傾向が見られる。これらの観点から、反応液は、0℃〜40℃、より好ましくは5℃〜25℃まで冷却した後、BTCを分離することが推奨される。   The reaction mother liquor according to the present invention can be obtained by cooling the reaction solution obtained by the above method and separating the deposited BTC. The method is not particularly limited, and for example, the BTC concentration, the slow cooling rate, the crystallization time, the cooling temperature, the apparatus to be used, etc. can be selected as appropriate. Usually, the amount of precipitation increases as the cooling temperature decreases, but as the temperature decreases, more crystals with poor solid-liquid separation tend to precipitate. From these viewpoints, it is recommended that the reaction solution is cooled to 0 ° C. to 40 ° C., more preferably 5 ° C. to 25 ° C., and then BTC is separated.

析出したBTCと反応母液との分離は、例えば濾過、遠心分離等の慣用の方法により行なうことができる。分離したBTCは精製水等の溶媒で洗浄するか、或いは再結晶により精製することができる。また、精製に用いた溶媒は反応母液とともに回収して発明に係るスルホン酸型イオン交換樹脂で処理することができる。   Separation of the precipitated BTC and the reaction mother liquor can be performed by a conventional method such as filtration or centrifugation. The separated BTC can be washed with a solvent such as purified water or purified by recrystallization. The solvent used for purification can be recovered together with the reaction mother liquor and treated with the sulfonic acid type ion exchange resin according to the invention.

かくして得られた反応母液は、そのまま本スルホン酸型陽イオン交換樹脂で処理することができる。本発明において、反応母液を該処理する頻度は、反応に供する度毎に行うことが好ましいが、該処理をすることなく、少なくとも1回以上該反応に再使用した後に処理してもよい。   The reaction mother liquor thus obtained can be directly treated with the sulfonic acid type cation exchange resin. In the present invention, the reaction mother liquor is preferably treated every time it is subjected to the reaction. However, the reaction mother liquor may be treated after being reused in the reaction at least once without performing the treatment.

反応母液中のBTCの濃度については特に制限はないが、通常は30重量%以下の範囲で処理するのが好ましい。30重量%を超える反応母液は、配管、ポンプ、貯蔵槽又は処理槽等でBTCを析出する虞があり好ましくない。BTCの濃度が高い場合には精製水などで希釈して処理することが好ましい。   Although there is no restriction | limiting in particular about the density | concentration of BTC in reaction mother liquid, Usually, it is preferable to process in the range of 30 weight% or less. A reaction mother liquor exceeding 30% by weight is not preferable because BTC may be precipitated in a pipe, a pump, a storage tank, a processing tank, or the like. When the concentration of BTC is high, it is preferable to dilute with purified water.

本発明に係るスルホン酸型陽イオン交換樹脂としては、官能基としてスルホン酸基を含有する市販の陽イオン交換樹脂が広く使用でき、例えば、三菱化学社製のダイヤイオン(R)のSK、PK又はUBKシリーズ、オルガノ社(Rhom & Haas)製のアンバーライト(R)IR120B Na、IR124 Na、200CT Na又は200CPなどが挙げられる。市販の陽イオン交換樹脂は、スルホン酸Na塩形で販売されていることが多く、この場合はNaイオンを水素イオンに置換して本発明に係るスルホン酸陽イオン交換樹脂とすることができる。Naイオンから水素イオンへの交換は従来公知の方法が広く使用でき、例えば、カラムに充填したNaイオン形の陽イオン交換樹脂に対して、2〜6倍容積の1〜2Nの塩酸を1〜2時間で通液することにより容易に得られる。さらにイオン交換樹脂と同容積の精製水を0.1〜1時間で通液することにより、塩素イオンも含まない水素イオン形のスルホン酸系陽イオン交換樹脂とすることができる。   As the sulfonic acid type cation exchange resin according to the present invention, commercially available cation exchange resins containing a sulfonic acid group as a functional group can be widely used. For example, SK (PK) of Diaion (R) manufactured by Mitsubishi Chemical Corporation Alternatively, UBK series, Amberlite (R) IR120B Na, IR124 Na, 200CT Na, or 200CP manufactured by Organ & Co. (Rom & Haas) can be used. Commercially available cation exchange resins are often sold in the sulfonic acid Na salt form, and in this case, Na ions can be substituted with hydrogen ions to obtain the sulfonic acid cation exchange resin according to the present invention. Conventionally known methods can be widely used for the exchange from Na ions to hydrogen ions. For example, 2 to 6 times the volume of 1 to 2 N hydrochloric acid is added to 1 to 2 volumes of Na ion type cation exchange resin packed in a column. It can be easily obtained by passing the solution in 2 hours. Further, by passing purified water having the same volume as the ion exchange resin in 0.1 to 1 hour, a hydrogen ion type sulfonic acid cation exchange resin containing no chlorine ions can be obtained.

反応母液をスルホン酸型陽イオン交換樹脂で処理する方法は、特に限定されず、例えば、反応母液と該イオン交換樹脂を所定の時間、混合撹拌した後に該イオン交換樹脂を濾別するバッチ方式、該イオン交換樹脂を充填した塔に反応母液を通液するカラム方法等が挙げられるが、単位時間当たりの処理速度が早い、処理操作が容易、設備が簡略等の点から、カラム方式が推奨される。   The method for treating the reaction mother liquor with the sulfonic acid type cation exchange resin is not particularly limited. For example, a batch method in which the reaction mother liquor and the ion exchange resin are mixed and stirred for a predetermined time, and then the ion exchange resin is separated by filtration. Examples include a column method in which the reaction mother liquor is passed through a column packed with the ion-exchange resin, but the column method is recommended because of its high processing speed per unit time, easy processing operation, simple equipment, etc. The

該イオン交換樹脂の使用量としては、当該イオン交換樹脂の見掛密度、交換容量、架橋密度、粒径、反応母液中のBTC濃度、触媒濃度、処理形式又は装置の形状などによって異なるが、例えば、カラム方式で充填塔に通液して処理する場合には、反応母液100容積部に対して1〜500容積部、好ましくは5〜200容積部のスルホン酸型陽イオン交換樹脂を使用するのが好ましい。当該イオン交換樹脂の量が1容積部以下だと、十分な処理能力が得られにくい傾向がみられ、或いは処理を繰り返した際の能力低下が著しい傾向がみられる。一方、500容積部を超えて使用しても顕著な処理効果の向上は認められず、該イオン交換樹脂の再生若しくは交換時の作業負担が大きくなり好ましくない。   The amount of the ion exchange resin used varies depending on the apparent density, exchange capacity, crosslinking density, particle size, BTC concentration in the reaction mother liquor, catalyst concentration, treatment type, or the shape of the apparatus. In the case of processing by passing through a packed tower in a column system, 1 to 500 parts by volume, preferably 5 to 200 parts by volume of a sulfonic acid type cation exchange resin is used with respect to 100 parts by volume of the reaction mother liquor. Is preferred. When the amount of the ion exchange resin is 1 part by volume or less, there is a tendency that a sufficient processing capacity cannot be obtained, or there is a remarkable tendency that the capacity decreases when the processing is repeated. On the other hand, even if it is used in excess of 500 parts by volume, no significant improvement in the treatment effect is recognized, and the work load during the regeneration or replacement of the ion exchange resin increases, which is not preferable.

カラム方式で処理をする場合、反応母液の処理速度は、当該イオン交換樹脂100容積部に対して10〜1000容積部/hが好ましく、より好ましくは50〜500容積部/hが推奨される。この範囲において、生産性と処理効果が十分に得られる。
ましくない。
When processing by the column system, the processing rate of the reaction mother liquor is preferably 10 to 1000 parts by volume / h, more preferably 50 to 500 parts by volume / h, with respect to 100 parts by volume of the ion exchange resin. In this range, sufficient productivity and processing effect can be obtained.
It ’s not good.

処理温度は、反応母液からBTCが析出しない温度より高く、当該イオン交換樹脂の耐熱温度以下であれば特に制限はないが、10〜80℃が好ましく、より好ましくは20〜60℃が推奨される。   The treatment temperature is not particularly limited as long as it is higher than the temperature at which BTC does not precipitate from the reaction mother liquor and is not higher than the heat resistant temperature of the ion exchange resin, but is preferably 10 to 80 ° C, more preferably 20 to 60 ° C. .

本発明に係るスルホン酸型陽イオン交換樹脂は、繰り返し当該処理に供することができる。繰り返し使用により、所望の効果が得られにくくなった場合は、該スルホン酸型イオン交換樹脂の調製に用いた方法と同一の操作を行うことにより、再度処理効果が得られることがある。   The sulfonic acid type cation exchange resin according to the present invention can be repeatedly subjected to the treatment. When it becomes difficult to obtain a desired effect by repeated use, a treatment effect may be obtained again by performing the same operation as the method used for the preparation of the sulfonic acid type ion exchange resin.

反応母液中に含有される過酸化水素の濃度が高いと、該イオン交換樹脂の酸化劣化で発生した微粉末により流路が閉塞して、反応母液の通液速度が低下したり、送液圧力が増大する傾向が見られる。また、塔内で過酸化水素の分解ガスが発生すると、反応母液と該イオン交換樹脂と接触面積の低下により、所望の効果が得られにくくなる傾向がある。そのため、該処理に用いる反応母液中の過酸化水素濃度は低い方が好ましい。推奨される過酸化水素の濃度は、少なくとも反応時より低濃度の8モル/kg以下、より好ましくは1.5モル/kg以下、特に好ましくは0.4モル/kg以下が推奨される。   If the concentration of hydrogen peroxide contained in the reaction mother liquor is high, the flow path is blocked by fine powder generated by oxidative degradation of the ion exchange resin, the reaction mother liquor flow rate decreases, or the liquid feeding pressure There is a tendency to increase. Further, when hydrogen peroxide decomposition gas is generated in the tower, there is a tendency that a desired effect is hardly obtained due to a decrease in contact area between the reaction mother liquor and the ion exchange resin. Therefore, it is preferable that the hydrogen peroxide concentration in the reaction mother liquor used for the treatment is low. The recommended hydrogen peroxide concentration is at least 8 mol / kg or less, more preferably 1.5 mol / kg or less, particularly preferably 0.4 mol / kg or less, which is at least a lower concentration than during the reaction.

かくして得られた該処理液は活性な触媒及び未析出のBTCを含有しており、該製造の反応母液、即ち、触媒及びBTCを含有した反応溶媒としてそのまま、或いは必要に応じて触媒、精製水を加えた後、再使用することができる。再使用する場合の該製造は上記記載の方法により行われ、この繰り返しにより、触媒コストの低減及びBTCの収率が向上する。   The treatment liquid thus obtained contains an active catalyst and unprecipitated BTC. The reaction mother liquor of the production, that is, the reaction solvent containing the catalyst and BTC is used as it is, or as necessary, a catalyst, purified water. Can be reused. In the case of reuse, the production is carried out by the above-described method, and this repetition improves the catalyst cost and the yield of BTC.

以下、実施例を掲げて本発明を詳しく説明する。尚、本発明はこれら実施例により何らその範囲を制限されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. The scope of the present invention is not limited by these examples.

過酸化水素濃度
JIS K1463に準拠して測定した。
Hydrogen peroxide concentration was measured according to JIS K1463.

BTC生成率
アジピン酸を内部標準とする液体クロマトグラフィー(HPLC)により測定した。
BTC production rate Measured by liquid chromatography (HPLC) using adipic acid as an internal standard.

スルホン酸型イオン交換樹脂の調製例1
陽イオン交換樹脂(三菱化学社製、商品名「ダイヤイオン(R) PK216」、官能基:スルホン酸のNaイオン形)100mlをガラスカラムに充填した。2N−塩酸1000mlを100ml/hの速度で通液しNaイオンが溶出していないことを炎光分析により確認した。つづいて、蒸留水1000mlを100ml/hの速度で通液し、スルホン酸型陽イオン交換樹脂Aを調製した。
Preparation example 1 of sulfonic acid type ion exchange resin
A glass column was packed with 100 ml of a cation exchange resin (trade name “Diaion® PK216”, manufactured by Mitsubishi Chemical Corporation, functional group: Na ion form of sulfonic acid). By passing 1000 ml of 2N hydrochloric acid at a rate of 100 ml / h, it was confirmed by flame analysis that Na ions were not eluted. Subsequently, 1000 ml of distilled water was passed at a rate of 100 ml / h to prepare a sulfonic acid type cation exchange resin A.

スルホン酸型イオン交換樹脂の調製例2
陽イオン交換樹脂としてオルガノ社の商品名「アンバーライト(R) 200CT Na」100mlを使用した他は、スルホン酸型イオン交換樹脂の調製例1と同様にしてスルホン酸型陽イオン交換樹脂Bを調製した。
Preparation example 2 of sulfonic acid type ion exchange resin
A sulfonic acid type cation exchange resin B was prepared in the same manner as in Preparation Example 1 of a sulfonic acid type ion exchange resin, except that 100 ml of the trade name “Amberlite (R) 200CT Na” of Organo Corporation was used as the cation exchange resin. did.

撹拌機、温度計及び冷却器付き2Lのガラス製フラスコ中に、1,2,4,5−テトラヒドロ無水フタル酸(以下、「THPA」と略記する。)152g(1.0モル)と12−タングストリン酸・30水和物4.5gを精製水500gを入れ、加熱溶解した。常圧、還流下で60%過酸化水素水255g(4.5モル)を8時間かけて滴下すると共に、反応液量が概ね一定量に保たれるように蒸発水を適宜系外に留去しながら反応を行ったところ、反応液中のTHPAに対するBTCの生成率は88.2モル%であった。なお、反応中の反応液の過酸化水素濃度は、0.4〜0.8モル/kgの範囲であった。得られた反応液を10℃まで冷却し析出したBTCの結晶を濾別し、精製水で洗浄してBTC湿結晶185g(含水量22重量%)と、濾液としてBTC(12重量%)及び触媒を含有する反応母液520g(470ml)を得た。室温下、この反応母液をスルホン酸型イオン交換樹脂Aに5時間かけて通液して(スルホン酸型陽イオン交換樹脂100mlに対する処理速度100ml/h)、処理液480gを得た。該処理液にTHPA76g(0.5モル)を加熱溶解し、還流下で60%過酸化水素130g(2.3モル)を7時間かけて連続的に滴下した。この間、反応液量が概ね一定量に保たれるように蒸発水を適宜系外に留去し、滴下終了1時間後に反応液をHPLCで分析したところ、THPAに対する新たなBTCの生成率は90.6モル%であった。なお、反応中、反応液の過酸化水素の濃度は、0.4〜0.8モル/kgの範囲であった。   In a 2 L glass flask equipped with a stirrer, thermometer and cooler, 152 g (1.0 mol) of 1,2,4,5-tetrahydrophthalic anhydride (hereinafter abbreviated as “THPA”) and 12− 500 g of purified water was added to 4.5 g of tungstophosphoric acid 30 hydrate and dissolved by heating. Under normal pressure and reflux, 255 g (4.5 mol) of 60% aqueous hydrogen peroxide was added dropwise over 8 hours, and the evaporated water was appropriately distilled out of the system so that the amount of the reaction solution was maintained at a constant level. Then, the reaction was carried out, and the BTC production rate relative to THPA in the reaction solution was 88.2 mol%. The hydrogen peroxide concentration in the reaction solution during the reaction was in the range of 0.4 to 0.8 mol / kg. The obtained reaction solution was cooled to 10 ° C., and the precipitated BTC crystals were separated by filtration, washed with purified water, 185 g of BTC wet crystals (water content 22 wt%), BTC (12 wt%) and catalyst as the filtrate. Reaction mother liquor containing 520 g (470 ml) was obtained. This reaction mother liquor was passed through the sulfonic acid type ion exchange resin A for 5 hours at room temperature (treatment rate of 100 ml / h with respect to 100 ml of the sulfonic acid type cation exchange resin) to obtain 480 g of a treatment liquid. In this treatment solution, 76 g (0.5 mol) of THPA was dissolved by heating, and 130 g (2.3 mol) of 60% hydrogen peroxide was continuously added dropwise over 7 hours under reflux. During this time, evaporated water was appropriately distilled out of the system so that the amount of the reaction solution was maintained at a substantially constant amount, and the reaction solution was analyzed by HPLC 1 hour after the completion of the dropwise addition. As a result, the production rate of new BTC with respect to THPA was 90 It was 6 mol%. During the reaction, the concentration of hydrogen peroxide in the reaction solution was in the range of 0.4 to 0.8 mol / kg.

実施例1で得られた反応液を10℃まで冷却して析出したBTCの結晶を濾別し、精製水で洗浄してBTC湿結晶160g(含水量24重量%)と、濾液としてBTC(9重量%)及び触媒を含有する反応母液480g(460ml)を得た。この反応母液を室温下で、スルホン酸型イオン交換樹脂Bに1時間かけて通液して(処理速度460ml/h)、処理液470gを得た。該処理液にTHPA76g(0.5モル)を加熱溶解し、常圧、還流下で60%過酸化水素130g(2.3モル)を7時間かけて連続的に滴下した。この間、反応液量が概ね一定量に保たれるように蒸発水を適宜系外に留去し、滴下終了1時間後に反応液をHPLC分析したところ、THPAに対するBTCの生成率は90.2モル%であった。なお、反応中、反応液の過酸化水素の濃度は、0.4〜0.8モル/kgの範囲であった。   The reaction solution obtained in Example 1 was cooled to 10 ° C., and the precipitated BTC crystals were filtered off, washed with purified water, and 160 g of BTC wet crystals (water content: 24% by weight), and BTC (9 %) And a reaction mother liquor containing 480 g (460 ml). The reaction mother liquor was passed through the sulfonic acid type ion exchange resin B at room temperature over 1 hour (processing speed: 460 ml / h) to obtain 470 g of processing liquid. In the treatment solution, 76 g (0.5 mol) of THPA was dissolved by heating, and 130 g (2.3 mol) of 60% hydrogen peroxide was continuously added dropwise over 7 hours under normal pressure and reflux. During this time, evaporated water was appropriately distilled out of the system so that the amount of the reaction solution was maintained at a substantially constant amount, and the reaction solution was subjected to HPLC analysis 1 hour after the completion of the dropwise addition. %Met. During the reaction, the concentration of hydrogen peroxide in the reaction solution was in the range of 0.4 to 0.8 mol / kg.

実施例1と同様の方法で反応及びBTCの分離を行い、BTC(12重量%)及び触媒を含有する反応母液490g(445ml)を得た。40℃に加温した該反応母液をスルホン酸型イオン交換樹脂Aに2.5時間かけて通液して(処理速度200ml/h)、処理液480gを得た。該処理液にTHPA76g(0.50モル)を加熱溶解し還流下で、60%過酸化水素を130g(2.3モル)を、2時間毎に4回に分けて添加した。この間、130gの蒸発水を適宜系外に留去し、最後の添加から2時間後に反応液をHPLC分析したところ、THPAに対するBTCの生成率は88.7モル%であった。なお、反応中、反応液の過酸化水素濃度は、0.4〜1.2モル/kgの範囲であった。   Reaction and BTC separation were performed in the same manner as in Example 1 to obtain 490 g (445 ml) of a reaction mother liquor containing BTC (12% by weight) and a catalyst. The reaction mother liquor heated to 40 ° C. was passed through the sulfonic acid type ion exchange resin A over 2.5 hours (processing speed 200 ml / h) to obtain 480 g of processing liquid. To the treatment solution, 76 g (0.50 mol) of THPA was dissolved by heating, and 130 g (2.3 mol) of 60% hydrogen peroxide was added in portions in 2 portions every 2 hours. During this time, 130 g of evaporated water was appropriately distilled out of the system, and the reaction mixture was analyzed by HPLC 2 hours after the last addition. As a result, the production rate of BTC relative to THPA was 88.7 mol%. During the reaction, the hydrogen peroxide concentration in the reaction solution was in the range of 0.4 to 1.2 mol / kg.

実施例3で得られた反応液を10℃まで冷却して析出したBTCの結晶を濾別し、精製水で洗浄してBTC湿結晶145g(含水量24重量%)と、濾液としてBTC(11重量%)及び触媒を含有する反応母液450g(410ml)を得た。この反応母液をスルホン酸型イオン交換樹脂Bに2時間かけて通液して(処理速度225ml/h)、処理液450gを得た。該処理液にTHPA76g(0.5モル)を加熱溶解し、90℃で60%過酸化水素130g(2.3モル)を8時間かけて連続的に滴下しながら反応を行った。滴下終了1時間後、反応液をHPLC分析したところ、THPAに対するBTCの生成率は89.8モル%であった。なお、反応中、反応液の過酸化水素の濃度は、0.3〜0.8モル/kgの範囲であった。   The reaction solution obtained in Example 3 was cooled to 10 ° C., and the precipitated BTC crystals were filtered off, washed with purified water, and 145 g of BTC wet crystals (water content: 24% by weight), and BTC (11 %) And a reaction mother liquor containing 450 g (410 ml). This reaction mother liquor was passed through the sulfonic acid type ion exchange resin B over 2 hours (processing speed: 225 ml / h) to obtain 450 g of processing liquid. In this treatment solution, 76 g (0.5 mol) of THPA was dissolved by heating, and the reaction was performed at 90 ° C. while continuously dropping 130 g (2.3 mol) of 60% hydrogen peroxide over 8 hours. One hour after completion of the dropwise addition, the reaction solution was analyzed by HPLC. As a result, the production rate of BTC relative to THPA was 89.8 mol%. During the reaction, the concentration of hydrogen peroxide in the reaction solution was in the range of 0.3 to 0.8 mol / kg.

触媒としてタングステン酸2.0gを使用した以外は、実施例1と同様の方法で反応及びBTCの分離を行い、BTC(12重量%)及び触媒を含有する反応母液500g(455ml)を得た。この反応母液をスルホン酸型イオン交換樹脂Aに2時間かけて通液して(処理速度250ml/h)、処理液480gを得た。該処理液にTHPA76g(0.5モル)を加熱溶解し、還流下で60%過酸化水素130g(2.3モル)を8時間かけて連続的に滴下した。この間、反応液量が概ね一定量に保たれるように蒸発水を適宜系外に留去し、滴下終了1時間後、反応液をHPLC分析したところ、THPAに対するBTCの生成率は90.2モル%であった。なお、反応中、反応液の過酸化水素の濃度は、0.4〜0.8モル/kgの範囲であった。   Except for using 2.0 g of tungstic acid as a catalyst, the reaction and BTC were separated in the same manner as in Example 1 to obtain 500 g (455 ml) of a reaction mother liquor containing BTC (12 wt%) and the catalyst. This reaction mother liquor was passed through the sulfonic acid type ion exchange resin A over 2 hours (processing speed 250 ml / h) to obtain 480 g of processing liquid. In this treatment solution, 76 g (0.5 mol) of THPA was dissolved by heating, and 130 g (2.3 mol) of 60% hydrogen peroxide was continuously added dropwise over 8 hours under reflux. During this time, evaporated water was appropriately distilled out of the system so that the amount of the reaction solution was maintained at a substantially constant amount. One hour after the completion of the dropwise addition, the reaction solution was analyzed by HPLC. As a result, the BTC production rate relative to THPA was 90.2. Mol%. During the reaction, the concentration of hydrogen peroxide in the reaction solution was in the range of 0.4 to 0.8 mol / kg.

実施例1と同様の方法で、BTCの反応及び分離を行い、反応母液480g(435ml)を得た。該反応母液に、THPA76g(0.5モル)を加熱溶解し、還流下で60%過酸化水素160g(2.8モル)を7時間かけて連続的に滴下した以外は、実施例1と同様の方法により、BTCの分離と反応母液を得た。さらに、この反応母液をそのまま、再使用してBTCの製造を繰り返し3回行ない、合計5回反応を繰り返した反応母液460gを得た。BTC(10重量%)及び触媒を含有する該反応母液を、室温下でスルホン酸型陽イオン交換樹脂に5時間かけて通液して(処理速度90ml/h)、処理液450gを得た。該処理液にTHPAg(0.5モル)を加熱溶解し、還流下で60%過酸化水素130g(2.3モル)を7時間かけて連続的に滴下した。この間、反応液量が概ね一定量に保たれるように蒸発水を適宜系外に留去し、滴下終了1時間後、反応液をHPLC分析したところ、THPAに対するBTCの生成率は91.7モル%であった。なお、反応中、反応液の過酸化水素の濃度は、0.4〜0.8モル/kgの範囲であった。   BTC was reacted and separated in the same manner as in Example 1 to obtain 480 g (435 ml) of a reaction mother liquor. In the same manner as Example 1 except that 76 g (0.5 mol) of THPA was dissolved by heating in the reaction mother liquor, and 160 g (2.8 mol) of 60% hydrogen peroxide was continuously added dropwise over 7 hours under reflux. By this method, BTC separation and reaction mother liquor were obtained. Further, this reaction mother liquor was reused as it was, and BTC production was repeated 3 times, to obtain 460 g of reaction mother liquor in which the reaction was repeated a total of 5 times. The reaction mother liquor containing BTC (10% by weight) and a catalyst was passed through a sulfonic acid type cation exchange resin at room temperature over 5 hours (treatment speed 90 ml / h) to obtain 450 g of a treatment liquid. THPAg (0.5 mol) was heated and dissolved in the treatment solution, and 130 g (2.3 mol) of 60% hydrogen peroxide was continuously added dropwise over 7 hours under reflux. During this time, evaporated water was appropriately distilled out of the system so that the amount of the reaction solution was maintained at a substantially constant amount. One hour after completion of the dropwise addition, the reaction solution was analyzed by HPLC. As a result, the production rate of BTC relative to THPA was 91.7. Mol%. During the reaction, the concentration of hydrogen peroxide in the reaction solution was in the range of 0.4 to 0.8 mol / kg.

比較例1
撹拌機、温度計及び冷却器付きガラス製フラスコ中に、1,2,4,5−テトラヒドロ無水フタル酸(以下、「THPA」と略記する。)152g(1.0モル)と12−タングストリン酸・30水和物4.5gを精製水500gを入れ、加熱溶解した。還流下で60%過酸化水素水255g(4.5モル)を8時間かけて滴下すると共に、反応液量が概ね一定量に保たれるように蒸発水を適宜系外に留去しながら反応を行ったところ、反応液中のTHPAに対するBTCの生成率は88.2モル%であった。なお、反応中の反応液の過酸化物価から求めた過酸化水素濃度は、0.4〜0.8モル/kgの範囲であった。得られた反応液を10℃まで冷却し析出したBTCの結晶を濾別し、精製水で洗浄してBTC湿結晶160g(含水量24重量%)と、濾液としてBTC(12重量%)及び触媒を含有する反応母液500gを得た。この反応母液にTHPA76g(0.5モル)を加熱溶解し、還流下で60%過酸化水素130g(2.3モル)を7時間かけて連続的に滴下した。この間、反応液量が概ね一定量に保たれるように蒸発水を適宜系外に留去し、滴下終了1時間後、反応液をHPLC分析したところ、THPAに対するBTCの生成率は70.7モル%であった。なお、反応中、反応液の過酸化水素の濃度は、0.4〜0.8モル/kgの範囲であった。
Comparative Example 1
In a glass flask equipped with a stirrer, thermometer and condenser, 152 g (1.0 mol) of 1,2,4,5-tetrahydrophthalic anhydride (hereinafter abbreviated as “THPA”) and 12-tungstorin 4.5 g of acid / 30 hydrate was added to 500 g of purified water and dissolved by heating. While refluxing, 255 g (4.5 mol) of 60% aqueous hydrogen peroxide was added dropwise over 8 hours, and the reaction was carried out while appropriately distilling the evaporated water out of the system so that the amount of the reaction solution was maintained at a substantially constant level. As a result, the production rate of BTC relative to THPA in the reaction solution was 88.2 mol%. In addition, the hydrogen peroxide concentration calculated | required from the peroxide value of the reaction liquid in reaction was the range of 0.4-0.8 mol / kg. The obtained reaction solution was cooled to 10 ° C., and the precipitated BTC crystals were separated by filtration, washed with purified water, and 160 g of BTC wet crystals (water content: 24% by weight), and BTC (12% by weight) and catalyst as the filtrate. A reaction mother liquor containing 500 g was obtained. In this reaction mother liquor, 76 g (0.5 mol) of THPA was dissolved by heating, and 130 g (2.3 mol) of 60% hydrogen peroxide was continuously added dropwise over 7 hours under reflux. During this time, evaporated water was appropriately distilled out of the system so that the amount of the reaction solution was maintained at a substantially constant amount. One hour after the completion of the dropwise addition, the reaction solution was analyzed by HPLC. As a result, the BTC production rate relative to THPA was 70.7. Mol%. During the reaction, the concentration of hydrogen peroxide in the reaction solution was in the range of 0.4 to 0.8 mol / kg.

比較例2
実施例6と同様の方法により、合計5回反応を繰り返した反応母液を得た。該反応母液を何ら処理しなかった以外は、実施例6と同様の条件で反応を行った後、反応液をHPLC分析したところ、THPAに対するBTCの生成率は、58.2%であった。
Comparative Example 2
In the same manner as in Example 6, a reaction mother liquor in which the reaction was repeated a total of 5 times was obtained. Except that the reaction mother liquor was not treated at all, the reaction was carried out under the same conditions as in Example 6, and then the reaction mixture was analyzed by HPLC. As a result, the production rate of BTC relative to THPA was 58.2%.

本発明に従い、BTCの製造に使用した触媒及びBTCを含有する反応母液をスルホン酸型陽イオン交換樹脂で処理し、得られた処理液を反応に再使用することにより、BTCの生成率を低下させることなく工業的に有利に1,2,3,4−ブタンテトラカルボン酸を得ることができる。

特許出願人 新日本理化株式会社
In accordance with the present invention, the catalyst used for the production of BTC and the reaction mother liquor containing BTC are treated with a sulfonic acid type cation exchange resin, and the resulting treatment liquid is reused in the reaction, thereby reducing the production rate of BTC. In this manner, 1,2,3,4-butanetetracarboxylic acid can be obtained industrially advantageously.

Patent applicant New Nippon Rika Co., Ltd.

Claims (5)

1,2,4,5−テトラヒドロ無水フタル酸及び/又はその有水酸を、水性溶媒中、タングステン酸、モリブデン酸、及びタングステン酸又はモリブデン酸を含有するヘテロポリ酸からなる群より選ばれる少なくとも1種の触媒存在下で過酸化水素により酸化し、1,2,3,4−ブタンテトラカルボン酸を製造する方法において、得られた反応液を冷却して析出した1,2,3,4−ブタンテトラカルボン酸を分離し、次いで得られた反応母液をスルホン酸型陽イオン交換樹脂で処理し、得られた処理液を該製造に再使用することを特徴とする1,2,3,4−ブタンテトラカルボン酸の製造方法。   1,2,4,5-tetrahydrophthalic anhydride and / or its hydrous acid is at least one selected from the group consisting of tungstic acid, molybdic acid, and heteropolyacid containing tungstic acid or molybdic acid in an aqueous solvent. In the method of producing 1,2,3,4-butanetetracarboxylic acid by oxidation with hydrogen peroxide in the presence of a seed catalyst, the resulting reaction solution was cooled and precipitated 1,2,3,4- 1,2,3,4 characterized by separating butanetetracarboxylic acid, treating the resulting reaction mother liquor with a sulfonic acid type cation exchange resin, and reusing the resulting treated solution for the production -Method for producing butanetetracarboxylic acid. スルホン酸型イオン交換樹脂100容積部に対して、1,2,3,4−ブタンテトラカルボン酸を分離して得られた反応母液を10〜1000容積部/hの条件で処理することを特徴とする請求項1に記載の1,2,3,4−ブタンテトラカルボン酸の製造方法。   The reaction mother liquor obtained by separating 1,2,3,4-butanetetracarboxylic acid with respect to 100 parts by volume of the sulfonic acid type ion exchange resin is treated under conditions of 10 to 1000 parts by volume / h. The method for producing 1,2,3,4-butanetetracarboxylic acid according to claim 1. 触媒が、タングステン酸又は12−タングストリン酸である請求項1又は2に記載の1,2,3,4−ブタンテトラカルボン酸の製造方法。   The method for producing 1,2,3,4-butanetetracarboxylic acid according to claim 1 or 2, wherein the catalyst is tungstic acid or 12-tungstophosphoric acid. 反応液中の過酸化水素の濃度が0.4〜1.5mol/kgとなるように、過酸化水素を連続的又は間欠的に供給して行うことを特徴とする請求項1〜3のいずれかに記載の1,2,3,4−ブタンテトラカルボン酸の製造方法。   The hydrogen peroxide is supplied continuously or intermittently so that the concentration of hydrogen peroxide in the reaction solution is 0.4 to 1.5 mol / kg. A process for producing 1,2,3,4-butanetetracarboxylic acid according to claim 1. 還流条件下で反応を行うことを特徴とする請求項1〜4のいずれかに記載の1,2,3,4−ブタンテトラカルボン酸の製造方法。
The method for producing 1,2,3,4-butanetetracarboxylic acid according to any one of claims 1 to 4, wherein the reaction is carried out under reflux conditions.
JP2003372260A 2003-10-31 2003-10-31 A method for producing 1,2,3,4-butanetetracarboxylic acid. Expired - Fee Related JP4321216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372260A JP4321216B2 (en) 2003-10-31 2003-10-31 A method for producing 1,2,3,4-butanetetracarboxylic acid.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372260A JP4321216B2 (en) 2003-10-31 2003-10-31 A method for producing 1,2,3,4-butanetetracarboxylic acid.

Publications (2)

Publication Number Publication Date
JP2005132789A true JP2005132789A (en) 2005-05-26
JP4321216B2 JP4321216B2 (en) 2009-08-26

Family

ID=34648692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372260A Expired - Fee Related JP4321216B2 (en) 2003-10-31 2003-10-31 A method for producing 1,2,3,4-butanetetracarboxylic acid.

Country Status (1)

Country Link
JP (1) JP4321216B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627550A (en) * 2011-07-12 2012-08-08 西南化工研究设计院 Preparation methods of butanetetracarboxylic acid and butanetetracarboxyl dianhydride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627550A (en) * 2011-07-12 2012-08-08 西南化工研究设计院 Preparation methods of butanetetracarboxylic acid and butanetetracarboxyl dianhydride

Also Published As

Publication number Publication date
JP4321216B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JPH08325197A (en) Production of terephthalic acid
JP4841129B2 (en) Production method of penum crystals
SK8997A3 (en) Process for the preparation of 5-amino-2,4,6-triiodine-1,3- -benzenedicarboxylic acid
JP4321216B2 (en) A method for producing 1,2,3,4-butanetetracarboxylic acid.
JPH01308245A (en) Production of benoic acid and salt thereof
JPH07118201A (en) Purification of 2,6-naphthalene dicarboxylic acid
JPH06157008A (en) Method for recovering iodine from waste liquor containing iodine and/or inorganic iodine compound
JPS5865241A (en) Carbonylation of secondary benzylhalide
JP2897372B2 (en) Production method of high quality tetrabromobisphenol A
JPS6176447A (en) Hydration of nitrile compound
JP3520967B2 (en) Method for producing polyester and sorbic acid
JP2541882B2 (en) Method for producing anthranilic acids
JP4520612B2 (en) Method for producing 3,3&#39;-diallyl-4,4&#39;-dihydroxydiphenylsulfone
JP2804877B2 (en) Production method of aminocarboxylate
JP7405991B2 (en) Method for producing uridine 5&#39;-diphosphate (UDP), its salt or its hydrate
CN112939793B (en) Method for recycling active ingredients in mother liquor in industrial production process of ephedrine and pseudoephedrine
JPS58134061A (en) Production of glycine metal complex
JP3243627B2 (en) Method for producing 1,2,3,4-butanetetracarboxylic acid
GB2077723A (en) Process for the production of acrylamide
JP2874276B2 (en) Method for producing high quality tetrabromobisphenol A
JP2811851B2 (en) Method for producing tetrabromobisphenol A
JPH054923B2 (en)
JP3932609B2 (en) Method for producing L-ribose
JP3927835B2 (en) Process for producing iodinated aromatic compound diacetate
JPS58120507A (en) Continuous manufacture of hydrazine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Ref document number: 4321216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees