JP2005132702A - Method and apparatus for producing activated carbon - Google Patents

Method and apparatus for producing activated carbon Download PDF

Info

Publication number
JP2005132702A
JP2005132702A JP2003372870A JP2003372870A JP2005132702A JP 2005132702 A JP2005132702 A JP 2005132702A JP 2003372870 A JP2003372870 A JP 2003372870A JP 2003372870 A JP2003372870 A JP 2003372870A JP 2005132702 A JP2005132702 A JP 2005132702A
Authority
JP
Japan
Prior art keywords
activated carbon
alkali metal
carbon
cleaning
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003372870A
Other languages
Japanese (ja)
Other versions
JP4392223B2 (en
Inventor
Kunio Miyazawa
邦夫 宮澤
Toshiharu Nonaka
俊晴 野中
Kenichi Uehara
健一 上原
Katsuhiro Nagayama
勝博 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2003372870A priority Critical patent/JP4392223B2/en
Publication of JP2005132702A publication Critical patent/JP2005132702A/en
Application granted granted Critical
Publication of JP4392223B2 publication Critical patent/JP4392223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that although the activated carbon obtained by using, as a raw material, mesophase-based soft carbon and alkali-activating the raw material and having a high specific surface area is suitable as an electric double layer capacitor, the capacitor capacitance is decreased significantly over time when the activated carbon is used as the electric double layer capacitor for a long time. <P>SOLUTION: The method for producing the activated carbon comprises activating a raw material with alkali metal compounds 12, then deactivating the alkali metal compounds 12, removing the deactivated alkali metal compounds 12 to obtain activated carbon 15, and subjecting the obtained activated carbon 15 to heat treatment 6 and washing 7. In the heat treatment 6, the temperature rising rate is 0.1-100°C/min, the maximum temperature is 500-1,000°C, and the time for holding the maximum temperature is ≤10 h. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、活性炭の製造方法および製造装置に関し、とりわけ電気二重層キャパシタの電極材料として好適に使用される活性炭に関する。   The present invention relates to a method and an apparatus for producing activated carbon, and more particularly to activated carbon suitably used as an electrode material for an electric double layer capacitor.

アルカリ金属化合物類を用いて賦活する活性炭の製造装置として、原料供給部、トンネル炉、冷却ゾーン、注水室、ガス置換室、及び排出部を連接した装置がある(例えば、特許文献1参照。)。   As an apparatus for producing activated carbon activated using alkali metal compounds, there is an apparatus in which a raw material supply unit, a tunnel furnace, a cooling zone, a water injection chamber, a gas replacement chamber, and a discharge unit are connected (for example, see Patent Document 1). .

また、炭素材料を400〜500℃まで昇温し一定時間保持し、次いで600〜900℃で賦活する製造方法、及び、原料供給部、混練低温熱処理炉、高温熱処理炉、及びアルカリ不活性化ゾーンからなる製造装置がある(例えば、特許文献2参照。)。   In addition, a carbon material is heated to 400 to 500 ° C., held for a certain period of time, and then activated at 600 to 900 ° C., and a raw material supply unit, a kneading low temperature heat treatment furnace, a high temperature heat treatment furnace, and an alkali deactivation zone (For example, refer to Patent Document 2).

これらの技術は、基本的には炭素材料とアルカリ金属化合物類(水酸化カリウム、水酸化ナトリウム、水酸化リチウムなど)の原料を投入する原料供給部、炭素材料を多孔質化する賦活反応部、高温の賦活反応温度から反応生成物を冷却するための冷却ゾーン(冷却部)、賦活反応により副生する活性アルカリ金属類の不活性化ゾーン(アルカリ金属類不活性化部)、および注水室(注水槽)から構成され、高比表面積の活性炭を製造する技術である。   These technologies basically consist of a raw material supply unit that inputs raw materials of a carbon material and alkali metal compounds (potassium hydroxide, sodium hydroxide, lithium hydroxide, etc.), an activation reaction unit that makes the carbon material porous, A cooling zone (cooling part) for cooling the reaction product from a high activation reaction temperature, an inactivation zone (alkali metal inactivation part) of active alkali metals by-produced by the activation reaction, and a water injection chamber ( This is a technology for producing activated carbon having a high specific surface area.

上記技術により製造した高比表面積を有する活性炭(アルカリ賦活炭)は、電気二重層キャパシタ用として用いると、初期のキャパシタ容量は優れている。しかしながら、長時間使用したときにキャパシタ容量の低下が大きいという経時劣化の間題があった。   Activated carbon (alkali activated charcoal) having a high specific surface area produced by the above technique is excellent in initial capacitor capacity when used for an electric double layer capacitor. However, there has been a problem of deterioration over time that the capacitance of the capacitor is greatly reduced when used for a long time.

とりわけメソフェーズ系のソフトカーボンといわれる炭素材料を原料とするときには、アルカリ賦活でなければ電気二重層キャパシタ用として適切な、比表面積の大きい活性炭を製造することができない。しかし、このアルカリ賦活した活性炭では、上記性能劣化が大きいという問題があった。
特開平5−306109号公報(第2−6頁、図1) 特開2001−163612号公報(第2−6頁、図1)
In particular, when a carbon material called mesophase-based soft carbon is used as a raw material, activated carbon having a large specific surface area suitable for an electric double layer capacitor cannot be produced unless activated by alkali. However, this alkali activated activated carbon has a problem that the performance deterioration is large.
JP-A-5-306109 (page 2-6, FIG. 1) Japanese Patent Laid-Open No. 2001-163612 (page 2-6, FIG. 1)

活性炭、特に、炭素材料としてメソフェーズ系のソフトカーボンを原料としたときに得られる活性炭を用いた電気二重層キャパシタは、初期のキャパシタ容量は優れているものの、長時間使用しているときにキャパシタ容量の低下が大きい、いわゆる経時劣化の間題があった。   Electric double layer capacitors using activated carbon, especially activated carbon obtained when mesophase soft carbon is used as the carbon material, have excellent initial capacitor capacity, but capacitor capacity when used for a long time There is a problem of so-called deterioration over time, in which the decrease in the resistance is large.

本発明は、かかる実情に鑑みてなされたもので、経時変化の少ない、高耐久性の電気二重層キャパシタ用活性炭を製造する方法及びその製造装置を提供することを目的とするものである。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method and a manufacturing apparatus for manufacturing a highly durable activated carbon for electric double layer capacitors with little change with time.

活性炭、本発明者らは、上記課題を解決するために鋭意検討を重ね、アルカリ賦活により生成した活性炭からアルカリ金属類から成る副生物を取り除く従来の通常の活性炭製造工程の後に、さらに、熱処理を施し洗浄することにより、経時劣化の少ない、高耐久性の活性炭を製造することができるという知見を得、本発明を完成するに至った。   Activated carbon, the inventors of the present invention have made extensive studies to solve the above problems, and after the conventional normal activated carbon production process of removing by-products composed of alkali metals from activated carbon generated by alkali activation, further heat treatment is performed. By applying and washing, the inventors have obtained the knowledge that a highly durable activated carbon with little deterioration with time can be produced, and the present invention has been completed.

すなわち、本発明は、炭素材料をアルカリ金属化合物類を用いて賦活したのち、生成したアルカリ金属類を不活性化し、不活性化されたアルカリ金属類を除去し、さらに熱処理及び洗浄を施すことを特徴とする活性炭の製造方法を提供する。炭素材料は活性炭の前駆物質で種々のものを用いることができるが、本発明では特に、アルカリ賦活により良質の活性炭となる材料が対象となる。本発明はアルカリ処理された活性炭の電気二重層キャパシタ用として経時劣化の少ない活性炭を得る技術である。   That is, the present invention is to activate a carbon material using alkali metal compounds, inactivate the generated alkali metals, remove the deactivated alkali metals, and further perform heat treatment and washing. Provided is a method for producing activated carbon. As the carbon material, various activated carbon precursors can be used. In the present invention, particularly, a material that becomes high-quality activated carbon by alkali activation is targeted. The present invention is a technique for obtaining activated carbon with little deterioration over time for an electric double layer capacitor of activated carbon subjected to alkali treatment.

前記熱処理は昇温速度0.1〜100℃/min、最高温度500〜1000℃、最高温度保持時間10時間以下とすると好適である。   The heat treatment is preferably performed at a heating rate of 0.1 to 100 ° C./min, a maximum temperature of 500 to 1000 ° C., and a maximum temperature holding time of 10 hours or less.

また、加えて、熱処理及び洗浄を複数回繰り返し行うことにより、さらに高い効果を期待することができる。   In addition, a higher effect can be expected by repeatedly performing heat treatment and cleaning a plurality of times.

上記本発明方法を好適に実施することができる本発明の装置は、処理すべき活性炭を装入し雰囲気ガス中で加熱する加熱装置と、加熱された活性炭を洗浄液で洗浄する洗浄装置と、ポンプと、洗浄された活性炭と洗浄後の洗浄液を分離する分離装置とからなることを特徴とする活性炭の製造装置である。   The apparatus of the present invention capable of suitably carrying out the above-described method of the present invention includes a heating apparatus for charging activated carbon to be treated and heating it in atmospheric gas, a cleaning apparatus for cleaning the heated activated carbon with a cleaning liquid, and a pump And a separator for separating the washed activated carbon and the washing liquid after washing.

本発明によれば、高容量で、経時劣化が少なく、耐久性の高い電気二重層キャパシタ用活性炭を製造することが可能となった。   ADVANTAGE OF THE INVENTION According to this invention, it became possible to manufacture the activated carbon for electric double layer capacitors with high capacity | capacitance, little deterioration with time, and high durability.

以下図面を参照して本発明の実施の形態を説明する。図1は本発明の活性炭の製造方法の一例を示すフローチャートである。本発明はアルカリ賦活によって製造された活性炭の特性を改善する技術である。ただし、本発明は、図1に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing an example of a method for producing activated carbon according to the present invention. The present invention is a technique for improving the characteristics of activated carbon produced by alkali activation. However, the present invention is not limited to FIG.

以下、図面にしたがって説明する。炭素材料11は、原料供給部1でアルカリ金属化合物類12と混合される。   Hereinafter, it demonstrates according to drawing. The carbon material 11 is mixed with the alkali metal compounds 12 in the raw material supply unit 1.

本発明において原料に使用される炭素材料11としては、ヤシガラ、石炭などの炭素化物、石油および石炭のピッチから調製されるメソフェーズ系などの炭素化物、石油および石炭のコークス、フェノール樹脂炭素化物、カーボンブラック、フラーレンブラック、炭素繊維、カーボンナノチューブなどが挙げられる。これらは、単独、あるいは複数の混合物として用いることができる。また、アルカリ賦活反応の前に、予備焼成したものも用いることができる。特にメソフェーズ系の炭素化物を原料とすると良質の活性炭が得られるためこれに適用することが好適である。   As the carbon material 11 used as a raw material in the present invention, carbonized products such as coconut shells and coal, carbonized products such as mesophases prepared from petroleum and coal pitch, petroleum and coal coke, phenol resin carbonized products, carbon Examples thereof include black, fullerene black, carbon fiber, and carbon nanotube. These can be used alone or as a mixture. Moreover, what was pre-baked before the alkali activation reaction can also be used. In particular, when a mesophase-based carbonized material is used as a raw material, it is preferable to apply it to a high-quality activated carbon.

炭素材料11の形状については、粒状、繊維状など、何れの形状でも用いることができる。粒状の場合の粒径は、大きいと均一な賦活が行えないため、500μm以下、とくに好ましくは100〜10μm程度である。繊維状の場合も同様に、短径が500μm以下、とくに100〜10μm程度が好適であり、アスペクト比は1以上10以下が望ましい。   About the shape of the carbon material 11, any shape, such as a granular form and a fibrous form, can be used. When the particle size is large, uniform activation cannot be performed. Therefore, the particle size is 500 μm or less, particularly preferably about 100 to 10 μm. Similarly, in the case of a fibrous form, the minor axis is preferably 500 μm or less, particularly about 100 to 10 μm, and the aspect ratio is preferably 1 or more and 10 or less.

アルカリ金属化合物類12は、アルカリ金属の水酸化物であることが好ましく、具体的には水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化ルビジウムなどを用いることができ、単独、混合物の何れでも使用できる。固体で使用するときの粒径は通常市販されているペレットでも構わないが、固体の炭素材料との混合を良好にするという観点から、細かい方が望ましく、粒径500μm以下が好適である。また、溶液状でも使用することができ、例えば水溶液にして混合してもよい。   The alkali metal compounds 12 are preferably alkali metal hydroxides. Specifically, lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, rubidium hydroxide and the like can be used alone. Any of the mixtures can be used. The particle size when used as a solid may be a commercially available pellet, but from the viewpoint of improving the mixing with a solid carbon material, a finer particle size is desirable, and a particle size of 500 μm or less is suitable. It can also be used in the form of a solution, for example, it may be mixed in an aqueous solution.

混合するアルカリ金属化合物類12の量は、多いほど混合状態がよくなるが、好ましくは炭素材料11の1質量部に対して1〜5質量部、好ましくは1〜3質量部、とくに好ましくは2質量部である。炭素材料に対して1質量部未満では、混合状態が悪くなり、さらに多孔質化に必要なアルカリ金属化合物類12が不足して充分な賦活を行うことができない。5質量部を越えると賦活反応に寄与しない割合が多くなるため好ましくない。   As the amount of the alkali metal compounds 12 to be mixed increases, the mixed state is improved, but preferably 1 to 5 parts by weight, preferably 1 to 3 parts by weight, particularly preferably 2 parts by weight with respect to 1 part by weight of the carbon material 11. Part. If the amount is less than 1 part by mass with respect to the carbon material, the mixed state is deteriorated, and the alkali metal compounds 12 necessary for making the porous material are insufficient, so that sufficient activation cannot be performed. If it exceeds 5 parts by mass, the proportion not contributing to the activation reaction increases, which is not preferable.

アルカリ金属化合物類12と混合された炭素材料11は、賦活反応部2内で不活性ガス13の雰囲気中において、高温で賦活される。雰囲気は、不活性であればよく、不活性ガス13としてはヘリウム、アルゴンなども用いることができるが、経済的であるという点で窒素を用いれば充分である。   The carbon material 11 mixed with the alkali metal compounds 12 is activated at a high temperature in the atmosphere of the inert gas 13 in the activation reaction part 2. The atmosphere may be inert, and helium, argon, or the like can be used as the inert gas 13, but nitrogen is sufficient in that it is economical.

賦活反応部2における昇温速度は、炭素材料11とアルカリ金属化合物類12との混合物の発泡を避けるため、100℃/min以下が好ましく、昇温速度が小さすぎると生産効率が悪くなるので1℃/min以上とすることが好ましい。さらに好ましくは10〜30℃/minである。   The temperature increase rate in the activation reaction part 2 is preferably 100 ° C./min or less in order to avoid foaming of the mixture of the carbon material 11 and the alkali metal compounds 12, and if the temperature increase rate is too small, the production efficiency is deteriorated. It is preferable to set it as ° C / min or more. More preferably, it is 10-30 degrees C / min.

賦活反応部2の最高温度は、低過ぎると賦活反応が充分進行しないため600℃以上が好ましく、900℃を超えても顕著な反応進行が認められないので、600〜900℃とすることが好ましい。また、前記最高温度での保持時間は、特段必要ないが、5時間程度以下保持すると、温度分布が均一となり、均一な品質の活性炭が得られるので、好ましい。さらに好ましい保持時間は1時間〜3時間である。   The maximum temperature of the activation reaction part 2 is preferably 600 ° C. or higher because the activation reaction does not proceed sufficiently if it is too low, and it is preferably 600 to 900 ° C. since no significant reaction progress is observed even when it exceeds 900 ° C. . The holding time at the maximum temperature is not particularly required, but holding for about 5 hours or less is preferable because the temperature distribution becomes uniform and activated carbon with uniform quality can be obtained. A more preferable holding time is 1 hour to 3 hours.

賦活反応部2に用いる加熱装置である炉の形式については、バッチ式ロータリーキルン炉の他、連続式ロータリーキルン炉、プッシャータイプのトンネル炉、ローラーハースタイプのトンネル炉など種々のものを利用することができる。   Regarding the type of furnace that is a heating device used in the activation reaction unit 2, various types such as a continuous rotary kiln furnace, a pusher type tunnel furnace, a roller hearth type tunnel furnace can be used in addition to a batch type rotary kiln furnace. .

賦活反応を終えた炭素材料は、アルカリ金属化合物類と共に冷却部3で冷却される。冷却部3の雰囲気は、上述の不活性雰囲気が好ましく、降温速度に制限はない。通常、装置外部からの自然空冷、強制空冷などで冷却される。   The carbon material that has finished the activation reaction is cooled in the cooling unit 3 together with the alkali metal compounds. The atmosphere of the cooling unit 3 is preferably the above-described inert atmosphere, and there is no restriction on the temperature lowering rate. Usually, it is cooled by natural air cooling or forced air cooling from the outside of the apparatus.

冷却後、この賦活反応で生成する活性なアルカリ金属類、例えばリチウム、ナトリウム、カリウム、セジウム、ルビジウムなどは、アルカリ金属類不活性化部4で不活性化される。この際、水蒸気、炭酸ガス、あるいはこれらの混合物などの反応性ガス14をアルカリ金属類不活性化部4に流通させる。例えば、賦活反応のアルカリ金属化合物類として水酸化カリウムを用いた場合、金属カリウムが生成しているので、水蒸気を流すと水酸化カリウムに変換され、また炭酸ガスを流すと炭酸カリウムに変換されて安定な化合物となり不活性化される。さらに、アルカリ金属類の不活性化を行った炭素材料(活性炭)とアルカリ金属類化合物の混合物について、完全な不活性化を期する意味で、注水してもよいし、あるいは逆に混合物を水中に投入してもよい。   After cooling, active alkali metals generated by this activation reaction, for example, lithium, sodium, potassium, cedium, rubidium, and the like are inactivated by the alkali metals inactivating section 4. At this time, a reactive gas 14 such as water vapor, carbon dioxide gas, or a mixture thereof is circulated through the alkali metal deactivation section 4. For example, when potassium hydroxide is used as the alkali metal compound for the activation reaction, metal potassium is generated, so that it is converted to potassium hydroxide when flowing water vapor, and converted to potassium carbonate when flowing carbon dioxide gas. It becomes a stable compound and is inactivated. Furthermore, the mixture of the carbon material (activated carbon) and the alkali metal compound in which the alkali metal has been deactivated may be poured in the sense of complete deactivation, or conversely, the mixture may be submerged in water. It may be thrown into.

アルカリ金属類除去部5では、炭素材料(活性炭)から不活性化されたアルカリ金属類が除去され、賦活された炭素材料(活性炭)が得られる。このアルカリ金属類除去には、一例を示すと水による洗浄が有効であるが、他の手段でも構わない。すなわち、上述の水酸化カリウム、あるいは炭酸カリウムは、水溶性であるため、水洗浄により容易に除去できる。アルカリ金属類の除去に用いる水は、上水の他、濾過水などを用いることができるが、ごく僅か含まれている不純物が活性炭表面に吸着して、品質低下を招くので、イオン交換水又は蒸留水を利用するのが好ましい。また、洗浄は洗浄水のpHが5.8〜8.5となるまで洗浄することが好ましく、さらに好適なのはpHが7となるまで洗浄することである。洗浄温度は、常温でもよいが、80℃前後に加温すると洗浄時間が短くなる。   In the alkali metal removal unit 5, the deactivated alkali metal is removed from the carbon material (activated carbon), and an activated carbon material (activated carbon) is obtained. For example, cleaning with water is effective for removing the alkali metals, but other means may be used. That is, since the above-mentioned potassium hydroxide or potassium carbonate is water-soluble, it can be easily removed by washing with water. The water used for removing the alkali metals can be filtered water or the like in addition to clean water. However, since impurities contained in a very small amount are adsorbed on the activated carbon surface, resulting in a decrease in quality. It is preferable to use distilled water. Further, the washing is preferably carried out until the pH of the washing water becomes 5.8 to 8.5, and more preferably, the washing water is washed until the pH becomes 7. The washing temperature may be room temperature, but if it is heated to around 80 ° C., the washing time is shortened.

なお、バッチ式の装置で活性炭を製造する場合、例えばバッチ式ロータリーキルン炉を用いるときは、炭素材料とアルカリ金属化合物類の装入さえ行えば、その後の混合、賦活、冷却、アルカリ金属類不活性化(失活)を昇温・降温操作と雰囲気ガス切換え操作のみで行うことができる。すなわち、原料供給部1、賦活反応部2、冷却部3、アルカリ金属類不活性化部4を同じ装置で行うことができ、特段別個に設ける必要はない。   In addition, when producing activated carbon with a batch type apparatus, for example, when using a batch type rotary kiln furnace, as long as the carbon material and alkali metal compounds are charged, the subsequent mixing, activation, cooling, alkali metal inertness (Deactivation) can be performed only by temperature raising / lowering operation and atmosphere gas switching operation. That is, the raw material supply unit 1, the activation reaction unit 2, the cooling unit 3, and the alkali metal deactivation unit 4 can be performed by the same apparatus and do not need to be provided separately.

以上の工程は、アルカリ賦活によって製造された従来の活性炭15の製造工程である。本発明は、前述の処理により得られた従来の活性炭15を、熱処理部6で熱処理する。熱処理部6内の雰囲気は、活性炭が燃えることのないように不活性ガス雰囲気、例えば、窒素、ヘリウム、アルゴンなどとするか、又は、水素、メタンなどの還元性ガス雰囲気とする。還元性ガス雰囲気でも充分な効果が得られる。また、これらの混合ガス雰囲気も利用することができる。   The above process is a manufacturing process of the conventional activated carbon 15 manufactured by alkali activation. In the present invention, the conventional activated carbon 15 obtained by the above-described treatment is heat-treated in the heat treatment section 6. The atmosphere in the heat treatment section 6 is an inert gas atmosphere such as nitrogen, helium, argon, or a reducing gas atmosphere such as hydrogen or methane so that the activated carbon does not burn. A sufficient effect can be obtained even in a reducing gas atmosphere. These mixed gas atmospheres can also be used.

熱処理部6に用いる炉は、バッチ式、連続式など、方式は問わなく、ロータリーキルン炉、トンネル炉、固定層炉、流動層炉などの何れも利用できる。   The furnace used for the heat treatment section 6 may be any of a rotary kiln furnace, a tunnel furnace, a fixed bed furnace, a fluidized bed furnace, etc.

熱処理部6における昇温速度は、とくに限定されるものではないが、0.1〜100℃/minとすることが好ましい。昇温速度が0.1℃/minより遅いとエネルギーコストが過大となり、また100℃/minより速いと電気ヒーターなどの加熱装置を大きくする必要があり、設備コストが高くなる。さらに好ましくは1〜20℃/minとする。とくに好ましくは3〜10℃/minである。   Although the temperature increase rate in the heat processing part 6 is not specifically limited, It is preferable to set it as 0.1-100 degrees C / min. If the rate of temperature increase is slower than 0.1 ° C./min, the energy cost becomes excessive, and if it is faster than 100 ° C./min, it is necessary to enlarge the heating device such as an electric heater, which increases the equipment cost. More preferably, it is set to 1 to 20 ° C./min. Particularly preferred is 3 to 10 ° C./min.

熱処理の最高温度に関しては、500℃以上あれば問題ないが、1000℃を超えると活性炭を構成している炭素の焼締まり(収縮)が顕著になり、細孔が潰れて比表面積が低下するので、500〜1000℃が好適である。前記最高温度に到達後の保持に関しては、なくてもよいが、活性炭温度の均一化を図るという意味で10時間以下保持するのが好ましい。10時間を越えるとエネルギー損失が大となるからである。   As for the maximum temperature of the heat treatment, there is no problem as long as it is 500 ° C. or higher. 500 to 1000 ° C. is preferred. The holding after reaching the maximum temperature may be omitted, but it is preferably held for 10 hours or less in order to make the activated carbon temperature uniform. This is because if the time exceeds 10 hours, the energy loss increases.

熱処理した活性炭は、そのままでは電気二重層キャパシタとしたときの経時劣化を抑えることができないため、洗浄部7における洗浄を行う。用いる洗浄液は、アルカリ金属類除去のときと同様、上水、濾過水、イオン交換水、蒸留水などを利用することができる。その後、濾過、あるいは遠心分離などによる洗浄液の除去、及び乾燥を行う。この工程は常圧乾燥、真空乾燥など、特段方式は問わない。ただし、常圧乾燥で、高温、あるいは長時間乾燥する場合は、酸化(燃焼)損失を回避するため、不活性雰囲気、または還元性雰囲気で行うことが好ましい。   Since the heat-treated activated carbon cannot suppress deterioration with time when it is used as an electric double layer capacitor as it is, cleaning in the cleaning unit 7 is performed. As the cleaning liquid to be used, clean water, filtered water, ion exchange water, distilled water and the like can be used as in the case of removing alkali metals. Thereafter, the cleaning liquid is removed by filtration or centrifugation and dried. This process is not particularly limited, such as atmospheric drying or vacuum drying. However, when drying at normal pressure and at a high temperature or for a long time, it is preferably performed in an inert atmosphere or a reducing atmosphere in order to avoid oxidation (combustion) loss.

また、この熱処理及び洗浄を複数回繰り返すことにより、電気二重層キャパシタとして使用した時の経時劣化を改善する効果はさらに増大するので好ましい。   Moreover, it is preferable to repeat this heat treatment and cleaning a plurality of times, since the effect of improving deterioration with time when used as an electric double layer capacitor is further increased.

図3は本発明の一実施例の装置20を示す模式図である。この装置20は活性炭を加熱する加熱装置21、加熱された活性炭を洗浄する洗浄装置22、洗浄装置22から活性炭を含むスラリーを抜出して送るポンプ23、及び洗浄された活性炭と洗浄後の洗浄液(排水)を分離する分離装置24を連設している。   FIG. 3 is a schematic diagram showing an apparatus 20 according to an embodiment of the present invention. This device 20 includes a heating device 21 that heats activated carbon, a cleaning device 22 that cleans the heated activated carbon, a pump 23 that extracts and sends the slurry containing activated carbon from the cleaning device 22, and the cleaned activated carbon and the cleaning liquid after washing (drainage). ) Are separated from each other.

加熱装置21は、処理すべき活性炭31を装入するホッパや雰囲気ガス32を送入するガス吹込口を備えた加熱装置である。加熱装置21は連続炉であってもバッチ炉であってもよく、また炉の形式、形状は問わない。図示省略した温度測定装置、温度調整装置、流量制御装置等を備えている。加熱装置21には、また排ガス33を排出するガス排出口や熱処理された活性炭を排出し洗浄装置22へ送出する送出路を備えている。   The heating device 21 is a heating device provided with a hopper for charging the activated carbon 31 to be processed and a gas blowing port for feeding the atmospheric gas 32. The heating device 21 may be a continuous furnace or a batch furnace, and the type and shape of the furnace are not limited. A temperature measuring device, a temperature adjusting device, a flow rate control device, etc., not shown, are provided. The heating device 21 is also provided with a gas discharge port for discharging the exhaust gas 33 and a delivery path for discharging the heat-treated activated carbon and sending it to the cleaning device 22.

洗浄装置22は加熱された活性炭を洗浄するもので、洗浄液34が供給され槽内で活性炭を洗浄液に浸した状態で洗浄する。槽の大きさ、形式は問わない。自転する容器でもよく、撹拌装置を備えたものでもよく、バッチ式でも連続式でもよい。   The cleaning device 22 cleans the heated activated carbon. The cleaning liquid 34 is supplied, and cleaning is performed in a state where the activated carbon is immersed in the cleaning liquid in the tank. The size and type of the tank are not limited. The container may be a self-rotating container, may be equipped with a stirring device, and may be a batch type or a continuous type.

ポンプ23は洗浄装置22中の活性炭を含むスラリーを分離装置24に送る。分離装置24は洗浄後の洗浄液(排水)35と洗浄された活性炭36とを分離する。分離装置24の形式、構造は問わない。遠心分離機または他の固液分離装置を用いることができる。   The pump 23 sends the slurry containing activated carbon in the cleaning device 22 to the separation device 24. The separation device 24 separates the washed cleaning liquid (drainage) 35 and the washed activated carbon 36. The type and structure of the separation device 24 are not limited. A centrifuge or other solid-liquid separation device can be used.

メソフェーズ系ピッチ24kgを粒径30μm以下に粉砕して、炭素材料を得た。これに粒径が500μm以下となるように粒度調整した水酸化カリウム48kgを加えて、混合した。混合物を窒素を流通させたマッフル炉に装入し、10℃/minの昇温速度で、700℃まで昇温して、1時間保持し炭素材料を賦活した。この後、自然放冷し、150℃となったところで、水蒸気を供給して、アルカリ金属類の不活性化処理を行った。得られた活性炭と不活性化したアルカリ金属類の混合物にイオン交換水を加えスラリー状態として75〜85℃に保持して洗浄し、生成したアルカリ金属類を除去した。アルカリ金属類の除去は、イオン交換水を用いて5回行い、中性(pH=7)であることを確認した。その後、濾過により活性炭を回収した。   A carbon material was obtained by grinding 24 kg of mesophase pitch to a particle size of 30 μm or less. To this, 48 kg of potassium hydroxide whose particle size was adjusted so as to be 500 μm or less was added and mixed. The mixture was charged into a muffle furnace in which nitrogen was circulated, heated to 700 ° C. at a heating rate of 10 ° C./min, held for 1 hour, and the carbon material was activated. Then, it stood to cool naturally, and when it became 150 degreeC, water vapor | steam was supplied and the inactivation process of alkali metals was performed. Ion exchanged water was added to the obtained mixture of activated carbon and inactivated alkali metals to form a slurry state and washed at 75 to 85 ° C. to remove the produced alkali metals. Removal of alkali metals was performed 5 times using ion-exchanged water, and it was confirmed to be neutral (pH = 7). Thereafter, the activated carbon was recovered by filtration.

得られた活性炭を、図3に示す装置を用いてさらに処理した。マッフル炉(加熱装置21)に装入して、窒素気流下、10℃/minで、700℃まで昇温し、1時間保持して熱処理した。自然放冷で常温まで降温後、活性炭を洗浄装置22に送りイオン交換水により洗浄し、ポンプ23で分離装置24に送り洗浄液と活性炭を濾過により分離した。得られた活性炭を乾燥した。   The obtained activated carbon was further processed using the apparatus shown in FIG. The muffle furnace (heating device 21) was charged, heated to 700 ° C. at a rate of 10 ° C./min under a nitrogen stream, and heat-treated for 1 hour. After cooling to room temperature by natural cooling, the activated carbon was sent to the washing device 22 and washed with ion exchange water, and the pump 23 was sent to the separation device 24 to separate the washing solution and activated carbon by filtration. The obtained activated carbon was dried.

上記実施例1の活性炭の一部について、上記図3に示す装置を用いる熱処理及び洗浄を再度行い、濾過により洗浄液と活性炭を分離し、得られた活性炭を乾燥した。   About a part of activated carbon of the said Example 1, the heat processing and washing | cleaning which used the apparatus shown in the said FIG. 3 were performed again, the washing | cleaning liquid and activated carbon were isolate | separated by filtration, and the obtained activated carbon was dried.

比較例1Comparative Example 1

図3に示す装置を用いる熱処理及び洗浄を省いた以外は、実施例1と同一の操作を行って得た活性炭を比較例1とした。   The activated carbon obtained by performing the same operation as in Example 1 except that the heat treatment and cleaning using the apparatus shown in FIG.

[キャパシタの作製とその評価]
実施例1、2及び比較例1で得られた各活性炭を用いて、以下のようにして電気二重層キャパシタを作製してその性能評価を行った。先ず、電極は次のように作製した。活性炭80質量部にカーボンブラック10質量部、PTFE(ポリテトラフルオロエチレン)10質量部を加え、乾式混合した後、アルミメッシュを集電体として室温で直径13mmの円盤状に加圧(50MPa)成形し分極性電極材料とした。
[Production and evaluation of capacitors]
Using each activated carbon obtained in Examples 1 and 2 and Comparative Example 1, an electric double layer capacitor was produced as follows and its performance was evaluated. First, the electrode was produced as follows. 10 parts by mass of carbon black and 10 parts by mass of PTFE (polytetrafluoroethylene) are added to 80 parts by mass of activated carbon, and after dry mixing, the aluminum mesh is used as a current collector and pressed into a disk with a diameter of 13 mm at room temperature (50 MPa). A polarizable electrode material was obtained.

これを減圧下(0.13kPa:1Torr)、160℃で6時間乾燥を行った。次いで露点温度−60℃、高純度アルゴンを流通させているグローブボックス内において、上記のように作製した一組の分極性電極材料の間に多孔質ポリプロピレン(孔径0.20μm)を挟み込み、宝泉株式会社製の2極式セルに組み込み、電解液を満たしてセルを作製した。ここで、電解液はプロピレンカーボネート(PC)に1Mの濃度でテトラエチルアンモニウムテトラフルオロボレート((C254NBF4)を溶解したものを使用した。 This was dried at 160 ° C. for 6 hours under reduced pressure (0.13 kPa: 1 Torr). Next, in a glove box in which high-purity argon is circulated at a dew point temperature of −60 ° C., porous polypropylene (pore diameter 0.20 μm) is sandwiched between a pair of polarizable electrode materials produced as described above, The cell was manufactured by incorporating it into a bipolar cell manufactured by Co., Ltd. and filling the electrolyte. Here, an electrolytic solution in which tetraethylammonium tetrafluoroborate ((C 2 H 5 ) 4 NBF 4 ) was dissolved in propylene carbonate (PC) at a concentration of 1M was used.

充放電の測定は、北斗電工株式会社製の充放電試験装置(HJ1001SM8)を使用し、電流密度0.5mA/cm2の定電流充電を行い、電位が2.4Vに達した後、定電圧充電に移行し、2時間充電を行った。その後、電流密度0.5mA/cm2の定電流放電を行い、終止電圧を0Vとした。これを3サイクル実施して、その3サイクル目の放電曲線から求めた静電容量を『劣化処理前容量』とした。 The charge / discharge measurement is performed by using a charge / discharge test apparatus (HJ1001SM8) manufactured by Hokuto Denko Corporation, performing a constant current charge with a current density of 0.5 mA / cm 2 , and after reaching a potential of 2.4 V, a constant voltage It shifted to charge and charged for 2 hours. Thereafter, constant current discharge with a current density of 0.5 mA / cm 2 was performed, and the final voltage was set to 0V. This was carried out for 3 cycles, and the capacitance obtained from the discharge curve of the third cycle was defined as “capacity before deterioration treatment”.

このセルを60℃の恒温槽に移し、1時間放置後、電流密度0.5mA/cm2で2.4Vとした。2.4Vに達した後、2.4Vを維持するように電流を印加しながら60℃の恒温槽に1000時間保持し『劣化処理』を施し、電流密度0.5mA/cm2の定電流放電を行い終止電圧を0Vとした。 The cell was transferred to a constant temperature bath at 60 ° C., left for 1 hour, and then 2.4 V at a current density of 0.5 mA / cm 2 . After reaching 2.4V, applying a current to maintain 2.4V, holding in a constant temperature bath at 60 ° C. for 1000 hours to perform “deterioration treatment”, constant current discharge with a current density of 0.5 mA / cm 2 The final voltage was set to 0V.

劣化処理したセルを恒温槽から取り出し、室温に1時間放置後、電流密度0.5mA/cm2で充放電を行い、この放電曲線から求めた静電容量を『劣化処理後容量』とした。 The cell subjected to deterioration treatment was taken out from the thermostatic chamber, left at room temperature for 1 hour, charged and discharged at a current density of 0.5 mA / cm 2 , and the capacitance obtained from this discharge curve was defined as “capacity after deterioration treatment”.

静電容量は次のようにして計算した。放電曲線(放電電圧−放電時間)から放電エネルギー(放電電圧×電流)の時間積分として合計放電エネルギー(W・s)を求め、
静電容量(F)=2×合計放電エネルギー(W・s)/(放電開始電圧(V))2
の関係式を用いて静電容量を算出した。この静電容量を分極性電極材料の炭素材重量(正極+負極、単位:g)で除し、単位重量当たりの静電容量とした。
The capacitance was calculated as follows. The total discharge energy (W · s) is obtained as a time integral of discharge energy (discharge voltage × current) from the discharge curve (discharge voltage−discharge time),
Capacitance (F) = 2 × total discharge energy (W · s) / (discharge start voltage (V)) 2
The capacitance was calculated using the relational expression. This capacitance was divided by the carbon material weight of the polarizable electrode material (positive electrode + negative electrode, unit: g) to obtain a capacitance per unit weight.

容量劣化は劣化処理前静電容量に対する劣化処理後静電容量の割合で示すこととし、
劣化処理後容量(F/g)/劣化処理前容量(F/g)×100
の関係式を用いて容量低下率を求めた。結果を図2に示した。1000時間経過後の容量低下率は比較例では68%であったのに対し、実施例1では86%、実施例2では93%に向上している。
Capacity degradation is indicated by the ratio of the capacitance after degradation processing to the capacitance before degradation processing,
Capacity after degradation processing (F / g) / capacity before degradation processing (F / g) × 100
The capacity reduction rate was obtained using the relational expression. The results are shown in FIG. The rate of decrease in capacity after 1000 hours was 68% in the comparative example, but improved to 86% in Example 1 and 93% in Example 2.

本発明の炭素微粒子製造方法を示すフローチャートである。It is a flowchart which shows the carbon fine particle manufacturing method of this invention. 本発明の効果を示すグラフである。It is a graph which shows the effect of the present invention. 実施例の装置の一例を示す図である。It is a figure which shows an example of the apparatus of an Example.

符号の説明Explanation of symbols

1 原料供給部
2 賦活反応部
3 冷却部
4 アルカリ金属類不活性化部
5 アルカリ金属類除去部
6 熱処理部
7 洗浄部
11 炭素材料
12 アルカリ金属化合物類
13 不活性ガス
14 反応性ガス
15 従来の活性炭
16 本発明の活性炭
20 実施例装置
21 加熱装置
22 洗浄装置
23 ポンプ
24 分離装置
31 処理すべき活性炭
32 雰囲気ガス
33 廃ガス
34 洗浄液
35 洗浄後の洗浄液(排水)
36 洗浄された活性炭
DESCRIPTION OF SYMBOLS 1 Raw material supply part 2 Activation reaction part 3 Cooling part 4 Alkali metal inactivation part 5 Alkali metal removal part 6 Heat processing part 7 Cleaning part 11 Carbon material 12 Alkali metal compounds 13 Inactive gas 14 Reactive gas 15 Conventional Activated carbon 16 Activated carbon of the present invention 20 Example device 21 Heating device 22 Cleaning device 23 Pump 24 Separation device 31 Activated carbon to be treated 32 Atmospheric gas 33 Waste gas 34 Cleaning solution 35 Cleaning solution after washing (drainage)
36 Activated activated carbon

Claims (4)

アルカリ金属化合物類を用いて炭素材料を賦活したのち、生成したアルカリ金属類を不活性化し、不活性化されたアルカリ金属化合物類を除去し、さらに熱処理及び洗浄を施すことを特徴とする活性炭の製造方法。   After activating the carbon material using alkali metal compounds, the generated alkali metals are deactivated, the deactivated alkali metal compounds are removed, and further, heat treatment and washing are performed. Production method. 前記熱処理は昇温速度0.1〜100℃/min、最高温度500〜1000℃、最高温度保持時間10時間以下であることを特徴とする請求項1記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1, wherein the heat treatment is performed at a temperature rising rate of 0.1 to 100 ° C / min, a maximum temperature of 500 to 1000 ° C, and a maximum temperature holding time of 10 hours or less. 前記熱処理及び洗浄を複数回繰り返し行うことを特徴とする請求項1又は2記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1 or 2, wherein the heat treatment and washing are repeated a plurality of times. 処理すべき活性炭を装入し雰囲気ガス中で加熱する加熱装置と、加熱された活性炭を洗浄液で洗浄する洗浄装置と、ポンプと、洗浄された活性炭と洗浄後の洗浄液を分離する分離装置とからなることを特徴とする活性炭の製造装置。   From a heating device for charging activated carbon to be treated and heating in an atmospheric gas, a cleaning device for cleaning the heated activated carbon with a cleaning liquid, a pump, and a separation device for separating the cleaned activated carbon and the cleaning liquid after cleaning An activated carbon production apparatus characterized by comprising:
JP2003372870A 2003-10-31 2003-10-31 Activated carbon manufacturing method and manufacturing apparatus thereof Expired - Fee Related JP4392223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372870A JP4392223B2 (en) 2003-10-31 2003-10-31 Activated carbon manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372870A JP4392223B2 (en) 2003-10-31 2003-10-31 Activated carbon manufacturing method and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2005132702A true JP2005132702A (en) 2005-05-26
JP4392223B2 JP4392223B2 (en) 2009-12-24

Family

ID=34649123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372870A Expired - Fee Related JP4392223B2 (en) 2003-10-31 2003-10-31 Activated carbon manufacturing method and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP4392223B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015870A (en) * 2005-07-05 2007-01-25 Nippon Oil Corp Activated carbon manufacturing apparatus
JP2007182358A (en) * 2006-01-10 2007-07-19 Jfe Chemical Corp Method for producing activated carbon
JP2009067615A (en) * 2007-09-11 2009-04-02 Kansai Coke & Chem Co Ltd Method for manufacturing alkali activated carbon and grinding apparatus
JP2012507470A (en) * 2008-11-04 2012-03-29 コーニング インコーポレイテッド Method for producing porous activated carbon
KR101137719B1 (en) 2010-12-07 2012-04-24 한국세라믹기술원 Manufacturing method of active carbon electrode for supercapacitor
KR101429975B1 (en) * 2007-12-21 2014-08-18 재단법인 포항산업과학연구원 Method for heat treatment of activated carbons for electrodes
WO2015125594A1 (en) * 2014-02-19 2015-08-27 住友電気工業株式会社 Capacitor and method for charging and discharging same
WO2016021737A1 (en) * 2014-08-08 2016-02-11 株式会社クレハ Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, and carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
JP2017076767A (en) * 2015-10-15 2017-04-20 ジーエス エナジー コーポレーション Active carbon for electric double-layer capacitor electrode and manufacturing method of the same
JP2017147338A (en) * 2016-02-17 2017-08-24 株式会社キャタラー Carbon material for capacitor and capacitor
KR20170119429A (en) * 2016-04-19 2017-10-27 비나텍주식회사 A apparatus for activating carbon
US10297398B2 (en) 2014-04-28 2019-05-21 Kuraray Co., Ltd. Porous carbon material for electrode of energy storage device and method for manufacturing said material
US10411261B2 (en) 2014-08-08 2019-09-10 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anodes
US10424790B2 (en) 2014-08-08 2019-09-24 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015870A (en) * 2005-07-05 2007-01-25 Nippon Oil Corp Activated carbon manufacturing apparatus
JP2007182358A (en) * 2006-01-10 2007-07-19 Jfe Chemical Corp Method for producing activated carbon
JP2009067615A (en) * 2007-09-11 2009-04-02 Kansai Coke & Chem Co Ltd Method for manufacturing alkali activated carbon and grinding apparatus
JP4628408B2 (en) * 2007-09-11 2011-02-09 関西熱化学株式会社 Method for producing alkali-activated charcoal and pulverizing apparatus
KR101429975B1 (en) * 2007-12-21 2014-08-18 재단법인 포항산업과학연구원 Method for heat treatment of activated carbons for electrodes
JP2012507470A (en) * 2008-11-04 2012-03-29 コーニング インコーポレイテッド Method for producing porous activated carbon
KR101137719B1 (en) 2010-12-07 2012-04-24 한국세라믹기술원 Manufacturing method of active carbon electrode for supercapacitor
WO2015125594A1 (en) * 2014-02-19 2015-08-27 住友電気工業株式会社 Capacitor and method for charging and discharging same
US10297398B2 (en) 2014-04-28 2019-05-21 Kuraray Co., Ltd. Porous carbon material for electrode of energy storage device and method for manufacturing said material
WO2016021737A1 (en) * 2014-08-08 2016-02-11 株式会社クレハ Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, and carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
JPWO2016021737A1 (en) * 2014-08-08 2017-05-25 株式会社クレハ Method for producing carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery and carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery
US10411261B2 (en) 2014-08-08 2019-09-10 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anodes
US10424790B2 (en) 2014-08-08 2019-09-24 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode
US10797319B2 (en) 2014-08-08 2020-10-06 Kureha Corporation Production method for carbonaceous material for non-aqueous electrolyte secondary battery anode, and carbonaceous material for non-aqueous electrolyte secondary battery anode
JP2017076767A (en) * 2015-10-15 2017-04-20 ジーエス エナジー コーポレーション Active carbon for electric double-layer capacitor electrode and manufacturing method of the same
JP2017147338A (en) * 2016-02-17 2017-08-24 株式会社キャタラー Carbon material for capacitor and capacitor
KR20170119429A (en) * 2016-04-19 2017-10-27 비나텍주식회사 A apparatus for activating carbon
KR101866967B1 (en) 2016-04-19 2018-06-14 비나텍(주) A apparatus for activating carbon

Also Published As

Publication number Publication date
JP4392223B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4392223B2 (en) Activated carbon manufacturing method and manufacturing apparatus thereof
JP7236391B2 (en) Method for producing activated carbon
JP5271851B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP5210504B2 (en) Activated carbon purification method and activated carbon purification apparatus
CN102460620B (en) Carbon material for electric double layer capacitor electrode and method for producing same
JP5027849B2 (en) Method for producing activated carbon, and electric double layer capacitor using activated carbon obtained by the method
JP5676074B2 (en) Method for reforming activated carbon
JP2015526381A (en) Chemical activation of carbon with microwave energy support
JP2014072497A (en) Active carbon for capacitor electrode material, process of manufacturing the same, electrode for capacitor, and capacitor
KR20150100636A (en) Electrode material for secondary batteries, method for producing same, and secondary battery
JP2013023405A (en) Activated carbon and method for producing the same
US20180212229A1 (en) High specific surface area hard carbon-based electrode active material through carbonization process control and electrode active material by thereof
CN113353929B (en) Biomass carbon material and preparation method thereof
JP6371787B2 (en) Activated carbon, method for producing the same, and electric double layer capacitor using the activated carbon
JP2006219305A (en) Method and apparatus for producing porous carbon material
JP2015151324A (en) Activated carbon and method for producing the same
JP5563239B2 (en) Method for producing porous carbon material
JP2004014762A (en) Carbon material for electric double layered capacitor and its manufacturing method
CN108101030A (en) A kind of preparation method of three-dimensional porous grapheme material
JP2010215474A (en) Producing method of active carbon and electrical double layer capacitor using active carbon obtained by the method
JP4615868B2 (en) Method for producing porous carbon for electric double layer capacitor, porous carbon for electric double layer capacitor obtained by the production method, and electric double layer capacitor using porous carbon for electric double layer capacitor
CN112479207B (en) Method for recycling active carbon, electric double layer capacitor comprising active carbon obtained by recycling method and preparation method of electric double layer capacitor
JP4892838B2 (en) Carbonized product production method and carbonized product obtained by the method
JP3619504B2 (en) Method for producing activated carbon
JP3986938B2 (en) Manufacturing method of carbonized material used for manufacturing activated carbon for electrode of electric double layer capacitor and organic material for carbonized material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees