JP2005131471A - Co modification catalyst and its production method - Google Patents

Co modification catalyst and its production method Download PDF

Info

Publication number
JP2005131471A
JP2005131471A JP2003368053A JP2003368053A JP2005131471A JP 2005131471 A JP2005131471 A JP 2005131471A JP 2003368053 A JP2003368053 A JP 2003368053A JP 2003368053 A JP2003368053 A JP 2003368053A JP 2005131471 A JP2005131471 A JP 2005131471A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
anatase
conversion
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003368053A
Other languages
Japanese (ja)
Other versions
JP4455862B2 (en
Inventor
Masanori Shiroyabu
昌則 城薮
Masami Takeuchi
正己 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2003368053A priority Critical patent/JP4455862B2/en
Publication of JP2005131471A publication Critical patent/JP2005131471A/en
Application granted granted Critical
Publication of JP4455862B2 publication Critical patent/JP4455862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CO modification catalyst showing superior CO modification capacity even with a low H<SB>2</SB>O/CO ratio and a low metal carrying amount, and its production method. <P>SOLUTION: This CO modification catalyst formed with Pt and Re carried on a titania carrier of an anatase type contains 0.1 mass% or less of halogen, and has 0.5-15 g/L of carried Pt and Re per unit volume of the titania carrier. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、CO変成触媒およびその製造方法に関するものである。   The present invention relates to a CO shift catalyst and a method for producing the same.

燃料電池は、燃料の持つ化学エネルギーを直接電気エネルギーに変えるエネルギー変換装置である。燃料電池は、同様のエネルギー変換を行う火力発電に比べて、熱力学的な制約が低く高効率でエネルギーが得られることや、環境に対する負荷が小さいことから、実用化に向けた研究開発が盛んに行われている。   A fuel cell is an energy conversion device that converts chemical energy of fuel directly into electrical energy. Compared to thermal power generation that performs similar energy conversion, fuel cells are less thermodynamically constrained and can obtain energy with high efficiency, and have less environmental impact. Has been done.

燃料電池は電解質の種類によって、固体高分子型(PEFC)、リン酸型(PAFC)、溶融炭酸塩型(MCFC)、固体電解質型(SOFC)、アルカリ型(AFC)等に分類される。これらの中でも、固体高分子型(PEFC)の燃料電池は、電解質の散逸がないこと、常温での起動が可能であること、小型化が可能であることなどから、家庭用電源や自動車用電源など様々な用途への適用が期待されている。   Fuel cells are classified into solid polymer type (PEFC), phosphoric acid type (PAFC), molten carbonate type (MCFC), solid electrolyte type (SOFC), alkaline type (AFC), etc., depending on the type of electrolyte. Among these, the polymer electrolyte (PEFC) fuel cell has no electrolyte dissipation, can be started at room temperature, and can be downsized. Application to various uses is expected.

上記固体高分子型燃料電池の燃料源としては、天然ガス、ナフサなどの炭化水素やメタノールなどのアルコールを水蒸気改質して得られる水素富化ガスが用いられている。しかしながらこの水素富化ガスには、副生物の一つとして一酸化炭素(CO)が含まれており、COは、上記固体高分子型燃料電池の電極として用いられるPtを被毒し、発電能力を低下させる原因となる。したがって、COは、燃料電池に供給される前に、水性ガス転化反応(CO+H2O→CO2+H2)によって選択的に変成除去し、水素富化ガス中のCO含有率が1%以下となるように低減されている。 As a fuel source of the polymer electrolyte fuel cell, a hydrogen-enriched gas obtained by steam reforming a hydrocarbon such as natural gas or naphtha or an alcohol such as methanol is used. However, this hydrogen-enriched gas contains carbon monoxide (CO) as one of by-products, and CO poisons Pt used as an electrode of the polymer electrolyte fuel cell and generates power. It will cause the decrease. Therefore, before being supplied to the fuel cell, CO is selectively transformed and removed by a water gas conversion reaction (CO + H 2 O → CO 2 + H 2 ), and the CO content in the hydrogen-enriched gas is 1% or less. It has been reduced to be.

これまで、上記水性ガス転化反応には、Cu−Zn系触媒が用いられてきた。しかしながら、Cu−Zn系の触媒は耐酸化性が低く、起動停止が頻繁に行われる家庭用や車載用等小型の燃料電池に使用する場合には、活性が劣化し易いため、メンテナンスを頻繁にしなければならないといった問題があった。   Until now, Cu—Zn-based catalysts have been used for the water gas conversion reaction. However, Cu-Zn-based catalysts have low oxidation resistance, and when used for small fuel cells such as home use and in-vehicle use that are frequently started and stopped, the activity tends to deteriorate, so maintenance is frequently performed. There was a problem of having to.

また、上記Cu−Zn系触媒以外にも、たとえば、Ptあるいは、PtおよびReなどを種々の金属酸化物に担持した触媒(特許文献2)や、ジルコニア担体にPtあるいは、PtおよびReを担持させた触媒(特許文献1、非特許文献1,2,4)、ルチル型のチタニア担体にPtおよびReを担持させた触媒(非特許文献3,4)が提案されている。
特許第3215680号明細書 国際公開WO01/003828パンフレット 五十嵐哲ら、Pt−Re/ZrO2触媒上での低温水性ガスシフト反応、第86回触媒討論会 討論会A予稿集、触媒学会発行、2000、404頁 五十嵐哲ら、低温水性ガスシフト反応のためのPt−Re/ZrO2触媒のキャラクタリゼーション、第88回触媒討論会 討論会A予稿集、触媒学会発行、2001、233頁 五十嵐哲ら、低温水性ガスシフト反応のためのPt−Re/TiO2触媒の構造と機能、第90回触媒討論会 討論会B予稿集、触媒学会発行、2002、413−415頁 五十嵐哲ら、低温水性ガスシフト反応のための担持Pt系触媒のキャラクタリゼーション、第92回触媒討論会 討論会A予稿集、触媒学会発行、2003、175頁
In addition to the Cu—Zn-based catalyst, for example, Pt or a catalyst in which Pt and Re are supported on various metal oxides (Patent Document 2), Pt or Pt and Re are supported on a zirconia support. Catalysts (Patent Document 1, Non-Patent Documents 1, 2, and 4) and catalysts in which Pt and Re are supported on a rutile type titania carrier have been proposed (Non-Patent Documents 3 and 4).
Japanese Patent No. 3215680 International Publication WO01 / 003828 Pamphlet Igarashi Tetsu et al., Low-Temperature Water Gas Shift Reaction over Pt-Re / ZrO2 Catalysts, 86th Catalysis Conference Discussion Session A Preliminary Proceedings, Catalysis Society of Japan, 2000, 404 Satoshi Igarashi et al., Characterization of Pt-Re / ZrO2 catalyst for low-temperature water gas shift reaction, 88th Catalysis Conference, Proceedings of Conference A, Catalysis Society of Japan, 2001, 233 pages Satoshi Igarashi et al., Structure and function of Pt-Re / TiO2 catalyst for low-temperature water gas shift reaction, 90th Catalysis Conference, Conference B Preliminary Proceedings, Catalytic Society, 2002, pp. 413-415 Satoshi Igarashi et al., Characterization of Supported Pt-based Catalysts for Low-Temperature Water Gas Shift Reaction, The 92nd Catalysis Conference Discussion Session A Preliminary Proceedings, Catalysis Society of Japan, 2003, 175 pages

しかしながら、上述の特許あるいは非特許文献に開示されている触媒は、いずれもPtやReなどの金属を採用するものであり、これらは高価であり、また資源的にも制限があるため、使用量を低減する必要がある。また、反応温度が高くなると、CO2からCOへの逆シフト反応やH2とCOやCO2によるメタネーションが起こる。これらの問題を低減するためには、より高い選択酸化性を持つ触媒の開発が期待されている。 However, all of the catalysts disclosed in the above-mentioned patents or non-patent documents employ metals such as Pt and Re, and these are expensive and have limited resources. Need to be reduced. Further, the reaction temperature is high, due to the reverse shift reaction, H 2 and CO and CO 2 from the CO 2 to the CO methanation occurs. In order to reduce these problems, development of a catalyst having higher selective oxidation property is expected.

本発明は上記のような事情に着目してなされたものであって、その目的は、低金属担持量であっても高効率でCOを変成し得るCO変成触媒およびその製造方法を提供することにある。   The present invention has been made paying attention to the above-described circumstances, and an object thereof is to provide a CO conversion catalyst capable of converting CO with high efficiency even with a low metal loading and a method for producing the same. It is in.

また、本発明は、低温、低H2O/CO(モル比)で優れたCO変成能を示すCO変成触媒の提供も目的とするものである。 Another object of the present invention is to provide a CO conversion catalyst that exhibits excellent CO conversion ability at low temperature and low H 2 O / CO (molar ratio).

本発明のCO変成触媒とは、アナターゼ型のチタニア担体に、Pt(白金)およびRe(レニウム)を担持させてなるところに要旨を有する。   The CO conversion catalyst of the present invention is summarized in that Pt (platinum) and Re (rhenium) are supported on an anatase-type titania support.

アナターゼ型のチタニア担体に、PtおよびReを担持させたCO変成触媒は、高効率でCO変成反応を行うことができ、また、従来使用されていたCu−Zn系触媒に比べて耐酸化性に優れるものである。   A CO conversion catalyst in which Pt and Re are supported on an anatase-type titania support can perform a CO conversion reaction with high efficiency, and is more resistant to oxidation than a conventionally used Cu-Zn-based catalyst. It is excellent.

上記CO変成触媒中のハロゲン含有量は0.1質量%以下であるのが好ましい。   The halogen content in the CO conversion catalyst is preferably 0.1% by mass or less.

また、上記アナターゼ型のチタニア担体単位体積あたりのPtおよびReの担持量は、それぞれ0.5〜15g/Lであるのが好ましい。   The supported amounts of Pt and Re per unit volume of the anatase-type titania carrier are preferably 0.5 to 15 g / L, respectively.

本発明のCO変成触媒の製造方法は、白金塩およびレニウム塩を含む水溶液をアナターゼ型チタニア担体に含浸させ、加熱することにより、PtおよびReを該担体に担持させるところに要旨が存在する。   The gist of the method for producing a CO conversion catalyst of the present invention is that Pt and Re are supported on the support by impregnating an aqueous solution containing a platinum salt and a rhenium salt into an anatase-type titania support and heating.

前記アナターゼ型チタニア担体としては、500℃〜800℃で焼成されたものを用いることが推奨される。   As the anatase-type titania carrier, it is recommended to use a carrier baked at 500 ° C to 800 ° C.

本発明のCO変成触媒は、耐酸化性に優れ、また金属(Pt,Re)の担持量が少なくても高いCO変成能を示すので、従来のCO変成触媒に比べて金属の使用量を低減でき、コスト的にも有利である。   The CO conversion catalyst of the present invention is excellent in oxidation resistance and exhibits high CO conversion ability even with a small amount of supported metal (Pt, Re), so that the amount of metal used is reduced compared to conventional CO conversion catalysts. This is advantageous in terms of cost.

また、本発明のCO変成触媒は、高い空間速度(GHSV)であっても十分にCO変成反応を進行させることができるので、燃料電池用の燃料ガス改質システムの更なる小型化が期待できる。   In addition, since the CO shift catalyst of the present invention can sufficiently advance the CO shift reaction even at a high space velocity (GHSV), further miniaturization of the fuel gas reforming system for the fuel cell can be expected. .

本発明のCO変成触媒は、アナターゼ型のチタニア担体に、PtおよびReを担持させてなるところに最大の特徴を有するものである。   The CO conversion catalyst of the present invention has the greatest feature in that Pt and Re are supported on an anatase type titania support.

一般に、チタニアの結晶構造としては、アナターゼ型(a),ルチル型(b),ブルッカイト型(c)の3種が知られており、これらはそれぞれ図1に示されるような構造を有している。図1からも明らかなように、これらは異なる結晶構造を有しており、もちろんそれぞれの特性も異なっている。   In general, three kinds of crystal structures of titania, anatase type (a), rutile type (b), and brookite type (c), are known, each having a structure as shown in FIG. Yes. As is clear from FIG. 1, they have different crystal structures and, of course, their properties are also different.

本発明では、上述のようなチタニアの中でも、特にアナターゼ型のチタニアを担体として用いる。ルチル型のチタニアもCO変成触媒として一定の効果を発揮するが、CO変成触媒の担体としてアナターゼ型のチタニアを採用した場合には、ルチル型のチタニアに比べて高効率でCOを変成させることができる。尚、本発明の担体は、アナターゼ型のチタニアのみからなるものが好ましい態様であるが、本発明の効果を損なわない程度であれば、ルチル型やブルッカイト型などの結晶構造が担体の一部に存在していてもよい。   In the present invention, among the above-mentioned titania, anatase titania is used as a carrier. Rutile-type titania also exhibits a certain effect as a CO conversion catalyst. However, when anatase-type titania is used as a carrier for a CO conversion catalyst, CO can be converted with higher efficiency than rutile-type titania. it can. The carrier of the present invention is preferably composed of only anatase type titania. However, as long as the effect of the present invention is not impaired, a crystal structure such as a rutile type or a brookite type is part of the carrier. May be present.

本発明のCO変成触媒に使用するアナターゼ型チタニア担体は、BET比表面積が10〜200m2/gであるのが好ましい。 The anatase-type titania carrier used for the CO conversion catalyst of the present invention preferably has a BET specific surface area of 10 to 200 m 2 / g.

本発明のCO変成触媒は、上記アナターゼ型チタニアに必須成分としてPtおよびReを担持させてなるものである。Pt−Re触媒は、Ptを単独で使用した場合に比べて高活性であり、高寿命である。このようにPt−Re触媒が高効率でCO変成反応を行うことができるのは、Reを併用することにより、触媒担体上におけるPtの高分散状態が安定に維持されるためであると考えられる。   The CO conversion catalyst of the present invention is obtained by supporting Pt and Re as essential components in the anatase-type titania. The Pt-Re catalyst has a higher activity and a longer life than when Pt is used alone. The reason why the Pt-Re catalyst can carry out the CO shift reaction with high efficiency in this way is considered to be because the highly dispersed state of Pt on the catalyst support is stably maintained by using Re together. .

上記Ptは高価であり、資源的にも制限があるので、担持量はできるだけ低減することが好ましい。好ましくは、アナターゼ型チタニア担体の単位体積あたりのPt担持量が15g/L以下、より好ましくは10g/L以下、さらに好ましくは5g/L以下であり、0.5g/L以上であるのが好ましく、より好ましくは1.0g/L以上、さらに好ましくは1.5g/L以上である。Pt担持量が上記範囲を超えると、コストが上昇し、一方上記範囲に満たない場合には、CO変成効果が得られ難くなる傾向があるからである。   Since Pt is expensive and has limited resources, it is preferable to reduce the loading amount as much as possible. Preferably, the amount of Pt supported per unit volume of the anatase type titania carrier is 15 g / L or less, more preferably 10 g / L or less, further preferably 5 g / L or less, and preferably 0.5 g / L or more. More preferably, it is 1.0 g / L or more, and still more preferably 1.5 g / L or more. If the amount of Pt supported exceeds the above range, the cost increases. On the other hand, if the amount is less than the above range, it is difficult to obtain the CO shift effect.

なお、上記Ptの担持量をアナターゼ型チタニア担体100質量部あたりの量で表すと、Ptは1.5質量部以下であるのが好ましく,より好ましくは1.0質量部以下,さらに好ましくは0.5質量部以下であり、0.05質量部以上であるのが好ましく,より好ましくは0.1質量部以上,さらに好ましくは0.15質量部以上である。   When the amount of Pt supported is expressed as an amount per 100 parts by mass of the anatase-type titania carrier, Pt is preferably 1.5 parts by mass or less, more preferably 1.0 parts by mass or less, and still more preferably 0. 0.5 parts by mass or less, preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and still more preferably 0.15 parts by mass or more.

上記Reのアナターゼ型チタニア担体の単位体積あたりの担持量は15g/L以下であるのが好ましく、より好ましくは10g/L以下、さらに好ましくは5g/L以下であり、0.5g/L以上であるのが好ましく、より好ましくは1.0g/L以上、さらに好ましくは1.5g/L以上である。ReもPt同様高価であるため、担持量が上記範囲を超えるとコストが上昇し、一方上記範囲に満たない場合にはRe添加による効果が得られ難くなる傾向にあるからである。   The amount of Re supported anatase titania carrier per unit volume is preferably 15 g / L or less, more preferably 10 g / L or less, still more preferably 5 g / L or less, and 0.5 g / L or more. It is preferable that it is 1.0 g / L or more, more preferably 1.5 g / L or more. Since Re is also expensive like Pt, the cost increases when the supported amount exceeds the above range, whereas if it is less than the above range, the effect of adding Re tends to be difficult to obtain.

上記Reのアナターゼ型チタニア担体100質量部あたりの担持量は0.05質量部以上であるのが好ましく、より好ましくは0.1質量部以上,さらに好ましくは0.15質量部以上であり、1.5質量部以下であるのが好ましく,より好ましくは1.0質量部以下,さらに好ましくは0.5質量部以下とするのが推奨される。   The amount of Re supported per 100 parts by mass of the anatase-type titania carrier is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, further preferably 0.15 parts by mass or more. It is recommended that the amount be 0.5 parts by mass or less, more preferably 1.0 parts by mass or less, and still more preferably 0.5 parts by mass or less.

本発明のCO変成触媒に含有される上記PtおよびReの合計量は、担体100質量部に対して0.1質量部以上、2.0質量部以下であるのが好ましい。より好ましくは0.2質量部以上、さらに好ましくは0.3質量部以上、より好ましくは1.5質量部以下、さらに好ましくは1質量部以下である。上述のように、Pt,Reはいずれも高価であるため、上記範囲を超えて使用するのはコストを上昇させるため好ましくない。一方上記範囲に満たない場合には、CO変成効率が低下する場合があるからである。なお、上記Ptに対するReの比率は限定されないが、Pt:Reが1:1(質量比)であるのが好ましい。   The total amount of Pt and Re contained in the CO conversion catalyst of the present invention is preferably 0.1 parts by mass or more and 2.0 parts by mass or less with respect to 100 parts by mass of the support. More preferably, it is 0.2 parts by mass or more, more preferably 0.3 parts by mass or more, more preferably 1.5 parts by mass or less, and further preferably 1 part by mass or less. As described above, since both Pt and Re are expensive, it is not preferable to use the Pt and Re beyond the above range because the cost is increased. On the other hand, when it is less than the above range, the CO conversion efficiency may decrease. The ratio of Re to Pt is not limited, but Pt: Re is preferably 1: 1 (mass ratio).

さらに、本発明のCO変成触媒には、上記のPt,Re以外にも、Ru,Rh,Pd,Irなど、他の金属を担持させてもよい。これら他の金属は、Ptの触媒作用を促進し、安定化させる効果があるからである。尚、これら他の金属を使用する場合には、担体に対する担持量を0.05質量%以上、0.5質量%以下とするのが好ましい。   Furthermore, in addition to the above-mentioned Pt and Re, other metals such as Ru, Rh, Pd and Ir may be supported on the CO conversion catalyst of the present invention. This is because these other metals have an effect of promoting and stabilizing the catalytic action of Pt. In addition, when using these other metals, it is preferable that the loading amount with respect to a support | carrier is 0.05 mass% or more and 0.5 mass% or less.

上記担持金属は、担体表面に存在していてもよく、担体全体に均一に分布していてもよい。   The supported metal may be present on the surface of the carrier or may be uniformly distributed throughout the carrier.

本発明のCO変成触媒は、上述のPt,Reなどを担持させた担体中におけるハロゲン含有量が0.1質量%以下に抑制されたものであるのが好ましい。触媒中のハロゲンは、周辺機器や配管系の金属部材を腐食させる場合があり、また、CO変成率を低下させたり、副生成物の生成を増加させるおそれがある。したがって、担体中に含まれるハロゲン量(特にCl)は、できる限り低減しておくことが推奨される。より好ましくは、0.05質量%以下であり、さらに好ましくは0.01質量%以下である。もちろん0%であるのが最も好ましい。   The CO conversion catalyst of the present invention is preferably one in which the halogen content in the carrier carrying the above-described Pt, Re, etc. is suppressed to 0.1% by mass or less. The halogen in the catalyst may corrode peripheral devices and piping metal members, and may reduce the CO conversion rate and increase the production of by-products. Therefore, it is recommended to reduce the amount of halogen (particularly Cl) contained in the support as much as possible. More preferably, it is 0.05 mass% or less, More preferably, it is 0.01 mass% or less. Of course, 0% is most preferable.

尚、CO変成触媒中のハロゲン含有量は、高温燃焼イオンクロマトグラフ法や、蛍光X線元素分析装置、ICP発光分析装置等を用いる分析法により定量することができる。また、担体中のハロゲン量を低減するための洗浄処理(後述する)に用いた洗浄液に含まれるハロゲン量をイオンクロマトグラフィーにより分析してもよい。   The halogen content in the CO shift catalyst can be quantified by an analysis method using a high temperature combustion ion chromatography method, a fluorescent X-ray elemental analyzer, an ICP emission analyzer, or the like. Further, the amount of halogen contained in the cleaning solution used for the cleaning treatment (described later) for reducing the amount of halogen in the carrier may be analyzed by ion chromatography.

本発明のCO変成触媒の形状は、特に限定されず、粒状,円柱状,球状,ペレット状,ハニカム状など種々の形態の採用が可能である。また、CO変成触媒の大きさは、後述する反応器への充填性等に応じて適宜決定すればよいが、粒径が1〜5mm程度であるのが好ましく、より好ましくは2〜4mmである。   The shape of the CO conversion catalyst of the present invention is not particularly limited, and various forms such as a granular shape, a cylindrical shape, a spherical shape, a pellet shape, and a honeycomb shape can be adopted. Further, the size of the CO conversion catalyst may be appropriately determined according to the filling properties of the reactor, which will be described later, but the particle size is preferably about 1 to 5 mm, more preferably 2 to 4 mm. .

次に、本発明のCO変成触媒を製造する方法について説明する。   Next, a method for producing the CO conversion catalyst of the present invention will be described.

本発明のCO変成触媒の製法としては特に限定されるものではないが、例えば、アナターゼ型チタニア担体を製造し、該担体にPtおよびReを担持させる方法が挙げられる。前記アナターゼ型チタニア担体の製造方法としては、アナターゼ型の結晶構造が保たれるものであれば特に限定されず、市販のアナターゼ型チタニア粉末を焼成する方法、Tiを含む塩あるいは化合物の水溶液や、Tiを含む鉱物から、チタニア粉末を調製し、これを乾燥・焼成する方法が採用できる。Tiを含む塩や化合物の水溶液からチタニア粉末を調製する方法としては、例えば、加水分解による析出法、中和による沈殿法、熱加水分解法などがある。   The method for producing the CO conversion catalyst of the present invention is not particularly limited, and examples thereof include a method of producing an anatase-type titania carrier and supporting Pt and Re on the carrier. The method for producing the anatase-type titania carrier is not particularly limited as long as the anatase-type crystal structure is maintained, a method of firing a commercially available anatase-type titania powder, a Ti-containing salt or an aqueous solution of a compound, A method of preparing titania powder from a mineral containing Ti, and drying and firing it can be employed. Examples of a method for preparing titania powder from an aqueous solution of a salt or compound containing Ti include a precipitation method by hydrolysis, a precipitation method by neutralization, and a thermal hydrolysis method.

前記Tiを含む塩や化合物としては、Ti(O-iPr)4などのチタンアルコキシド、TiCl4,Ti(SO42,TiOSO4などのチタンを含む塩などが挙げられる。これらの原料は、上述の製法に応じて好ましいものを適宜選択して用いればよい。 Examples of the salts and compounds containing Ti include titanium alkoxides such as Ti (O—iPr) 4 , and salts containing titanium such as TiCl 4 , Ti (SO 4 ) 2 , and TiOSO 4 . These raw materials may be appropriately selected and used according to the above-described production method.

Tiを含む鉱物(イルメナイトやルチル鉱など)を原料としてアナターゼ型のチタニア粉末を調製する方法としては、硫酸法や塩素法が挙げられる。例えば硫酸法を採用する場合には、次のようにしてアナターゼ型チタニア粉末を調製することができる。まず、イルメナイト(チタン鉱物)を細かく粉砕、乾燥し、濃硫酸に溶解させ、イルメナイト鉱中に含まれる鉄分を硫酸鉄 (FeSO4)として分離する。次いで、得られた溶液を加水分解して、チタンをメタチタン酸(TiO(OH)2)として沈殿させる。その後、得られたメタチタン酸を高温のロータリーキルンなどで焙焼すればアナターゼ型のチタニア粉末が得られる。 Examples of a method for preparing anatase-type titania powder using a Ti-containing mineral (ilmenite, rutile ore, etc.) as raw materials include a sulfuric acid method and a chlorine method. For example, when the sulfuric acid method is employed, anatase-type titania powder can be prepared as follows. First, ilmenite (titanium mineral) is finely pulverized, dried, dissolved in concentrated sulfuric acid, and iron contained in the ilmenite ore is separated as iron sulfate (FeSO 4 ). The resulting solution is then hydrolyzed to precipitate titanium as metatitanic acid (TiO (OH) 2 ). Thereafter, the obtained metatitanic acid is roasted in a high-temperature rotary kiln or the like to obtain anatase-type titania powder.

得られたアナターゼ型チタニア粉末を適当な形状・サイズに成型した後、焼成を行う。成型法としては、従来公知の成型法がいずれも使用可能であり、例えば、アナターゼ型チタニア粉末に水を噴霧して造粒成型する方法、押し出し成型や圧縮成型などの方法が挙げられる。また、成型の際にはバインダーなどを使用しても良い。バインダーは、特に限定されず、担体調製時に通常用いられるものであれば、有機物、無機物のいずれも使用可能であり、例えば、ステアリン酸、オレイン酸などの有機バインダー、ベントナイトなどの無機バインダーを挙げることができる。   The obtained anatase-type titania powder is molded into an appropriate shape and size and then fired. As the molding method, any conventionally known molding method can be used. Examples thereof include a method of spraying water on anatase-type titania powder and granulating and molding, a method such as extrusion molding and compression molding. Moreover, you may use a binder etc. in the case of shaping | molding. The binder is not particularly limited, and any organic or inorganic substance can be used as long as it is usually used at the time of preparing the carrier. Examples thereof include organic binders such as stearic acid and oleic acid, and inorganic binders such as bentonite. Can do.

上記焼成処理は空気気流中、500℃以上、800℃以下で行うのが好ましい。より好ましくは600℃以上、700℃以下である。焼成温度が上記下限に満たない場合には、担体としての機械的強度が得られ難いからである。一方、上限を超える場合には、チタニアの結晶構造が、アナターゼ型からルチル型に転移し易くなる傾向がある。また、高温での焼成は粒子の表面積を減少させる傾向にあるため、上記Pt,Reを担体上に高分散させて反応効率を向上させる観点からは、上記範囲内で焼成処理を行うのが好ましい。   The firing treatment is preferably performed at 500 ° C. or higher and 800 ° C. or lower in an air stream. More preferably, it is 600 degreeC or more and 700 degrees C or less. This is because when the firing temperature is less than the lower limit, it is difficult to obtain mechanical strength as a carrier. On the other hand, when the upper limit is exceeded, the crystal structure of titania tends to easily transition from the anatase type to the rutile type. In addition, since firing at a high temperature tends to reduce the surface area of the particles, it is preferable to perform the firing treatment within the above range from the viewpoint of improving the reaction efficiency by highly dispersing the Pt and Re on the support. .

上述のようにして調製したアナターゼ型チタニア担体に、PtおよびReを担持させる。上記PtおよびReのアナターゼ型チタニア担体への担持は、含浸法、共沈法、競争吸着法、イオン交換法など従来公知の方法を採用することができる。例えば、含浸法によってPtおよびReを担持させる場合には、Ptを含む塩の水溶液を担体に含浸させた後、Reを含む塩の水溶液を含浸させる方法;Reを含む塩の水溶液を担体に含浸させた後、Ptを含む塩の水溶液を含浸させる方法;Ptを含む塩およびReを含む塩の水溶液を担体に含浸させる方法、あるいは、PtまたはReを含む塩の水溶液を担体に噴霧して担持させる方法などが採用できるが、これらの方法の中でも、Reを含む塩の水溶液を担体に含浸させた後に、Ptを含む塩の水溶液を含浸させる方法が好ましい。なお、担体の内部にまで活性成分(PtおよびRe)を含浸させるためには、予め細孔内を脱気しておくことや、競争吸着法を採用することも有効である。   Pt and Re are supported on the anatase-type titania carrier prepared as described above. Conventionally known methods such as an impregnation method, a coprecipitation method, a competitive adsorption method, and an ion exchange method can be employed for supporting Pt and Re on an anatase type titania carrier. For example, when Pt and Re are supported by an impregnation method, a method in which an aqueous solution of a salt containing Pt is impregnated in a carrier and then an aqueous solution of a salt containing Re is impregnated; an aqueous solution of a salt containing Re is impregnated in the carrier And then impregnating with an aqueous solution of a salt containing Pt; a method of impregnating a carrier with an aqueous solution of a salt containing Pt and a salt containing Re, or an aqueous solution of a salt containing Pt or Re by spraying on the carrier Among these methods, a method of impregnating a carrier with an aqueous salt solution containing Re and then impregnating an aqueous solution of salt containing Pt is preferable. In order to impregnate the active ingredients (Pt and Re) even inside the carrier, it is effective to degas the pores in advance or to employ a competitive adsorption method.

本発明のCO変成触媒の製造には、Ptを含む錯塩を使用することが好ましい。上記錯塩の中でも、ハロゲンを含まないアンミン錯塩、ニトロ錯塩、ニトロアンミン錯塩、エチレンジアミン錯塩などが特に好ましく、具体的には、ジニトロジアンミン白金(II)、ヘキサアンミン白金(IV)水酸塩、テトラアンミン白金(II)水酸塩などが挙げられる。   In the production of the CO conversion catalyst of the present invention, it is preferable to use a complex salt containing Pt. Among the above complex salts, halogen-free ammine complex salts, nitro complex salts, nitroammine complex salts, ethylenediamine complex salts, and the like are particularly preferable. Specific examples include dinitrodiammine platinum (II), hexaammine platinum (IV) hydrochloride, and tetraammine platinum. (II) Hydrochloride etc. are mentioned.

なお、Ptを含む塩としてハロゲンを含むものを使用する場合には、アナターゼ型チタニア担体にPt成分を含浸させた後、該担体中に含まれるハロゲン量を低減させるのが好ましい。担体中のハロゲンは、上記担体を乾燥させた後、水や適当な水洗液で洗浄処理を行うことにより、あるいは250〜600℃の温度で加熱処理を行うことにより、低減することができる。しかしながら、これらの処理によっても担体中のハロゲンを完全に取り除くのは困難であるため、ハロゲンを含まない出発原料を採用することが望ましい。   When a salt containing halogen is used as the salt containing Pt, it is preferable to impregnate the anatase-type titania carrier with the Pt component and then reduce the amount of halogen contained in the carrier. Halogen in the carrier can be reduced by drying the carrier and then washing with water or a suitable washing solution, or by heating at a temperature of 250 to 600 ° C. However, since it is difficult to completely remove the halogen in the support even by these treatments, it is desirable to employ a starting material that does not contain a halogen.

本発明のCO変成触媒に担持させるReを含む塩としては、ハロゲンを含有しない化合物を採用するのが好ましい。このようなReを含む塩としては、例えば、過レニウム(VII)酸アンモニウム、酸化レニウム(VII)などが挙げられる。   As the salt containing Re to be supported on the CO conversion catalyst of the present invention, it is preferable to employ a halogen-free compound. Examples of such a salt containing Re include ammonium perrhenate (VII) and rhenium oxide (VII).

本発明のCO変成触媒は、上述の白金塩およびレニウム塩を含む水溶液をアナターゼ型チタニア担体に含浸させ、加熱することによりPtおよびReを該担体に担持させて得られたものであるのが好ましい。すなわち、上記Pt,Reを含浸させたアナターゼ型チタニア担体を乾燥させた後、塩の熱分解、還元処理(活性化)などを行うことも好ましい態様である。上記熱処理は、300℃〜600℃で、10〜60分間行うのが好ましい。また、本発明のCO変成触媒は使用前に、水素気流下、300℃〜600℃で10〜60分間程度還元処理を行うのがよい。このような処理を行うことで、担体中の残存塩類などの不純物が分解還元除去されるため、より高効率でCOを転化し得る触媒とすることができるからである。   The CO conversion catalyst of the present invention is preferably obtained by impregnating an aqueous solution containing the above-described platinum salt and rhenium salt into an anatase-type titania carrier and heating it so that Pt and Re are supported on the carrier. . That is, it is also a preferred embodiment that after the anatase-type titania carrier impregnated with Pt and Re is dried, the salt is thermally decomposed, reduced (activated), and the like. The heat treatment is preferably performed at 300 to 600 ° C. for 10 to 60 minutes. Further, the CO conversion catalyst of the present invention is preferably subjected to a reduction treatment at 300 ° C. to 600 ° C. for about 10 to 60 minutes in a hydrogen stream before use. This is because by performing such a treatment, impurities such as residual salts in the carrier are decomposed and reduced and removed, so that a catalyst capable of converting CO with higher efficiency can be obtained.

本発明のCO変成触媒は、下記式(1)で示す反応(水性ガス転化反応)によって、CO2とH2に変換する際に使用されるものであることが好ましい。
(式1)
CO + H2O → CO2 + H2 (1)
The CO conversion catalyst of the present invention is preferably used when converted into CO 2 and H 2 by a reaction (water gas conversion reaction) represented by the following formula (1).
(Formula 1)
CO + H 2 O → CO 2 + H 2 (1)

したがって、本発明のCO変成触媒はCOを含有するガスであれば種々のガスに適用可能であるが、特に、燃料電池に供給される改質ガスに好適に適用できる。   Therefore, the CO conversion catalyst of the present invention can be applied to various gases as long as it contains CO, but is particularly suitable for the reformed gas supplied to the fuel cell.

上記燃料電池に供給される改質ガスは、主に天然ガスやメタノールなどを水蒸気と反応させて得られるものであり、該改質ガス中には、主成分であるH2と共にCOおよびCO2が含まれている。例えば改質ガスの原料に都市ガス(天然ガス、CH4:88モル%、C26:6モル%、C38:3モル%、C410:3モル%)を用いた場合には、改質ガス中には約10モル%のCOが存在している。本発明の触媒を使用すれば、改質ガス中のH2量を減じることなく、高効率でCO含有量を低下させることができる。尚、都市ガスを原料に用いる場合には、該都市ガスに付臭剤として含まれる硫黄分を予め除去しておくのが好ましい。 The reformed gas supplied to the fuel cell is obtained mainly by reacting natural gas, methanol or the like with water vapor, and in the reformed gas, CO and CO 2 together with H 2 as the main component. It is included. For example, city gas (natural gas, CH 4 : 88 mol%, C 2 H 6 : 6 mol%, C 3 H 8 : 3 mol%, C 4 H 10 : 3 mol%) was used as the raw material for the reformed gas. In some cases, about 10 mole percent CO is present in the reformed gas. If the catalyst of the present invention is used, the CO content can be reduced with high efficiency without reducing the amount of H 2 in the reformed gas. In addition, when using city gas for a raw material, it is preferable to remove beforehand the sulfur content contained as an odorant in this city gas.

燃料電池に供給される改質ガスは、通常、上記(1)の反応の後に、さらにCO量を低減させるためのCO選択酸化工程へと送られる。この工程では、CO変成反応により得られるガス中に存在するCOの1〜3倍量のO2が供給されるため、COの酸化と共に、H2も酸化されてしまう。しかしながら、本発明のCO変成触媒は高いCO変成率を有するため、上記生成ガス中のCO含有量を低減し、CO選択酸化工程において消費されるH2量を低減できるため、水素生成効率を向上させることができる。 The reformed gas supplied to the fuel cell is usually sent to the CO selective oxidation step for further reducing the CO amount after the reaction (1). In this step, since 1 to 3 times the amount of O 2 present in the gas obtained by the CO shift reaction is supplied, H 2 is also oxidized along with the oxidation of CO. However, since the CO conversion catalyst of the present invention has a high CO conversion rate, the CO content in the product gas can be reduced, and the amount of H 2 consumed in the CO selective oxidation process can be reduced, thereby improving the hydrogen generation efficiency. Can be made.

尚、本発明のCO変成触媒は、上記天然ガスなどを原料とした場合のみならず、石炭やコークス炉ガスを原料とした改質ガス中のCOを低減するのにも好適に用いることができる。   Note that the CO conversion catalyst of the present invention can be suitably used not only for the case where the above natural gas or the like is used as a raw material, but also for reducing CO in reformed gas using coal or coke oven gas as a raw material. .

上記変成反応を行う反応装置としては、常圧固定床流通式反応器、流動床反応器などが使用可能である。これらの反応器への触媒の充填量は、特に限定されず、反応装置のサイズや処理対象である改質ガスの供給量などに応じて適宜決定すればよい。   As a reaction apparatus for carrying out the above-mentioned shift reaction, an atmospheric pressure fixed bed flow type reactor, a fluidized bed reactor or the like can be used. The amount of catalyst charged into these reactors is not particularly limited, and may be determined as appropriate according to the size of the reactor, the amount of reformed gas to be treated, and the like.

反応管へ改質ガス(CO含有ガス)を導入する際の空間速度(GHSV)は、500h-1以上、10000h-1以下(乾燥ガス基準、以下同じ)とするのが好ましい。空間速度が上記範囲を超えるとCO転化率が低下する傾向にあり、一方上記範囲に満たない場合は実用的でない。 The space velocity (GHSV) when introducing the reformed gas (CO-containing gas) into the reaction tube is preferably 500 h −1 or more and 10000 h −1 or less (dry gas standard, the same applies hereinafter). If the space velocity exceeds the above range, the CO conversion rate tends to decrease. On the other hand, if the space velocity is below the above range, it is not practical.

CO変成反応時、CO含有ガス中に含まれるCOに対するH2Oの比、H2O/CO(モル比)はできるだけ低くするのが好ましく、具体的には6以下であり,より好ましくは4以下、2以上であり,より好ましくは2.5以上である。上記H2Oは水蒸気の状態でCO含有ガスと混合させる。従って、特に、水素発生装置が一体化された固体高分子型燃料電池に用いる場合、該固体高分子型燃料電池の作動温度は低温であるため、電池本体部分(セル部)で発生する熱を利用し難く、H2O/COが上述の範囲を超える場合には、CO含有ガス変成用の水蒸気発生装置を設ける必要があり、装置のコンパクト化や燃料電池としての発電効率を低下させる原因となる。一方、上記範囲に満たない場合には、H2O量が少ないためCO変成反応が進行せず、COの除去が不十分となる傾向があるからである。 During the CO shift reaction, the ratio of H 2 O to CO contained in the CO-containing gas, H 2 O / CO (molar ratio) is preferably as low as possible, specifically 6 or less, more preferably 4 Hereinafter, it is 2 or more, more preferably 2.5 or more. The H 2 O is mixed with a CO-containing gas in the state of water vapor. Therefore, particularly when used in a polymer electrolyte fuel cell in which a hydrogen generator is integrated, since the operating temperature of the polymer electrolyte fuel cell is low, the heat generated in the battery body (cell part) is generated. When it is difficult to use and H 2 O / CO exceeds the above-mentioned range, it is necessary to provide a steam generator for CO-containing gas modification, which causes the downsizing of the apparatus and the power generation efficiency as a fuel cell. Become. On the other hand, when the amount is less than the above range, the CO shift reaction does not proceed because the amount of H 2 O is small, and the removal of CO tends to be insufficient.

水性ガス転化反応は発熱反応であるため、温度上昇にしたがって逆反応が起こり易くなり、処理量が低減する傾向がある。したがって、反応温度(触媒層温度)はできるだけ低温で行うのが好ましい。具体的には100℃以上であるのが好ましく、より好ましくは150℃以上であり、500℃以下であるのが好ましく、より好ましくは300℃以下である。   Since the water gas conversion reaction is an exothermic reaction, the reverse reaction tends to occur as the temperature rises, and the processing amount tends to decrease. Therefore, the reaction temperature (catalyst layer temperature) is preferably as low as possible. Specifically, the temperature is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, preferably 500 ° C. or lower, more preferably 300 ° C. or lower.

上述の過程により得られるガスは、CO含有率が十分に低減されているため、固体高分子型燃料電池以外の水素を燃料とする他の燃料電池にも好適に使用できる。   Since the gas obtained by the above-described process has a sufficiently reduced CO content, it can be suitably used for other fuel cells using hydrogen as a fuel other than solid polymer fuel cells.

本発明のCO変成触媒は、耐酸化性に優れ、低H2O/CO比での反応が可能であるため、車載用や家庭用など小型の燃料電池システムに備えられる水素発生器に好適に用いることができる。また、低い金属担持量であっても高いCO変成率を示すため、コスト的にも有利なものである。 The CO conversion catalyst of the present invention is excellent in oxidation resistance and capable of reaction at a low H 2 O / CO ratio, and is therefore suitable for a hydrogen generator provided in a small fuel cell system such as in-vehicle or home use. Can be used. In addition, since a high CO conversion rate is exhibited even with a low metal loading, it is advantageous in terms of cost.

本発明のCO変成触媒を適用する燃料電池システムは、特に限定されるものではなく、例えば、燃料電池本体と、炭化水素系燃料をH2に改質する改質装置を構成要素に含むものであればよい。 The fuel cell system to which the CO conversion catalyst of the present invention is applied is not particularly limited. For example, the fuel cell system includes a fuel cell body and a reformer that reforms a hydrocarbon-based fuel into H 2. I just need it.

前記燃料電池本体は、H2を原料として化学反応により電気エネルギーを取り出すものである。前記燃料電池本体は、H2を原料として使用するものであればよいが、特に、イオン交換膜(固体高分子電解質)を電解質とし、電極としてカーボンにPt系貴金属触媒を担持したガス拡散電極を用い、該電極を上記イオン交換膜の両面に備えた固体高分子型の燃料電池(PEFC)であるのが好ましい。 The fuel cell body takes out electric energy by chemical reaction using H 2 as a raw material. The fuel cell body may be any material that uses H 2 as a raw material, and in particular, a gas diffusion electrode in which an ion exchange membrane (solid polymer electrolyte) is used as an electrolyte and a Pt-based noble metal catalyst is supported on carbon as an electrode. It is preferable to use a polymer electrolyte fuel cell (PEFC) provided with the electrodes on both surfaces of the ion exchange membrane.

上記改質装置は、水蒸気改質反応によって天然ガスなどの化石燃料を水蒸気と反応させることで水素リッチな改質ガスへと改質する水蒸気改質反応を行う改質部と、該水蒸気改質反応で得られた改質ガス中に含まれるCO量をCO変成反応によって低減させるCO変成部と、さらにCO濃度を低減させるCO選択酸化部を構成要素に有している。本発明のCO変成触媒は、上記CO変成部に備えられるものである。   The reformer includes a reforming unit that performs a steam reforming reaction that reforms fossil fuel such as natural gas with steam by a steam reforming reaction to reform the hydrogen-rich reformed gas, and the steam reforming The constituent elements include a CO conversion part that reduces the amount of CO contained in the reformed gas obtained by the reaction by a CO conversion reaction, and a CO selective oxidation part that further reduces the CO concentration. The CO shift catalyst of the present invention is provided in the CO shift section.

本発明のCO変成触媒を適用する燃料電池システムは、上述のような改質装置を備えた構成であるため、十分にCO含有量を低減させた後に、燃料電池本体に供給することができる。また、上記CO変成部に備えられた本発明のCO変成触媒は、低温、且つ、低H2O/CO比において高効率で水性ガス転化反応を進行させることができるため、後の工程であるCO選択酸化反応における負荷を低減させることができる。また、燃料電池システムとしてのエネルギー効率も高く、さらに燃料電池システム自体の小型化を図ることも可能であり、特に家庭用や車搭載用の燃料電池システムとして好適である。 Since the fuel cell system to which the CO conversion catalyst of the present invention is applied has the above-described reformer, it can be supplied to the fuel cell main body after sufficiently reducing the CO content. In addition, the CO conversion catalyst of the present invention provided in the CO conversion section is a later step because the water gas conversion reaction can proceed with high efficiency at a low temperature and a low H 2 O / CO ratio. The load in the CO selective oxidation reaction can be reduced. In addition, the energy efficiency of the fuel cell system is high, and the fuel cell system itself can be downsized, and is particularly suitable as a fuel cell system for home use or on-vehicle use.

以下、実験例によって本発明をさらに詳述するが、下記実験例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施することはすべて本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to experimental examples. However, the following experimental examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the present invention are included in the technical scope of the present invention. It is.

[CO変成除去性能の評価]
触媒1mlを常圧固定床流通式反応器の反応管に充填し、200ml/minのN2で希釈した20ml/minのH2気流中で、触媒層温度が450℃になるまで2.5時間かけて昇温し、同温度で30分間保持して、予め還元処理した。ついで、触媒層を所定温度に調整した後、CO含有ガス(導入ガス)中のCOに対する水蒸気の割合H2O/CO(モル比)が3となるように水蒸気を混合したCO含有ガスを空間速度(GHSV)3000h-1で反応管に供給し、CO変成反応を行った。触媒層の温度が略一定となった状態で、反応管出口から排出される生成ガスの組成を、熱伝導度検出器付きのガスクロマトグラフィー(島津製作所社製)で分析し、CO変成率を求めた。なお、このとき用いたCO含有ガス組成は、H2:78モル%,CO:10モル%,CO2:12モル%である。
(式2)
[Evaluation of CO conversion removal performance]
1 ml of catalyst is filled into a reaction tube of an atmospheric pressure fixed bed flow reactor and diluted with 200 ml / min of N 2 in a 20 ml / min H 2 stream for 2.5 hours until the catalyst layer temperature reaches 450 ° C. Then, the temperature was raised and held at the same temperature for 30 minutes, and the reduction treatment was performed beforehand. Next, after the catalyst layer is adjusted to a predetermined temperature, the CO-containing gas mixed with water vapor so that the ratio H 2 O / CO (molar ratio) of water vapor to CO in the CO-containing gas (introduced gas) becomes 3 in space. The CO conversion reaction was carried out by supplying the reaction tube at a rate (GHSV) of 3000 h −1 . The composition of the product gas discharged from the reaction tube outlet with the temperature of the catalyst layer kept substantially constant is analyzed by gas chromatography with a thermal conductivity detector (manufactured by Shimadzu Corporation), and the CO conversion rate is calculated. Asked. Note that the CO-containing gas composition used at this time, H 2: 78 mol%, CO: 10 mol%, CO 2: is 12 mol%.
(Formula 2)

なお、式中、[CO]0は原料ガス中のCOモル濃度を示し、[CO]は生成ガス中のCOモル濃度を示す。[CO2]0および[CO2]も同様である。 In the formula, [CO] 0 represents the CO molar concentration in the raw material gas, and [CO] represents the CO molar concentration in the product gas. The same applies to [CO 2 ] 0 and [CO 2 ].

[CO変成触媒中のCl含有量の測定]
高温燃焼イオンクロマトグラフ法(イオンクロマトグラフ、Dionex社製)により、CO変成触媒中に含有されるCl量の測定を行った。
[Measurement of Cl content in CO conversion catalyst]
The amount of Cl contained in the CO shift catalyst was measured by a high-temperature combustion ion chromatograph method (ion chromatograph, manufactured by Dionex).

[アナターゼ型チタニア担体の調製]
アナターゼ型チタニア粉末(第一稀元素化学工業社製、試作品)をミキサーで攪拌しながら蒸留水を噴霧して造粒成型し(担体粒子径2〜3mm)、50℃で乾燥させた。得られた粒状物を焼成炉で、400ml/minの空気気流中、焼成温度が600℃になるまで1.5時間かけて昇温し、同温度で1時間保持する焼成処理を行い、アナターゼ型チタニア担体(充填密度999g/L)を得た。
[Preparation of anatase-type titania carrier]
Anatase type titania powder (manufactured by Daiichi Rare Element Chemical Co., Ltd., prototype) was granulated by spraying with distilled water while stirring with a mixer (carrier particle diameter: 2 to 3 mm) and dried at 50 ° C. The obtained granular material was heated in a baking furnace in an air stream of 400 ml / min over 1.5 hours until the baking temperature reached 600 ° C., and subjected to a baking treatment for 1 hour at the same temperature, anatase type A titania carrier (packing density 999 g / L) was obtained.

触媒1
得られたアナターゼ型チタニア担体(充填密度999g/L)に、該担体1Lに対するReの担持量が3.44gとなるように、過レニウム(VII)酸アンモニウム水溶液を含浸させ、約60℃で10時間以上乾燥させた。この乾燥物を焼成炉で、400ml/minの空気気流中、焼成温度が430℃になるまで、1.5時間かけて昇温し、同温度で30分間保持する焼成処理を行った。その後、温度が60℃以下になるまで放冷した後、400ml/minのN2で希釈した20ml/minのH2気流中で、還元温度が450℃になるまで2.5時間かけて昇温し、同温度で30分間保持して還元処理を行った。
Catalyst 1
The obtained anatase-type titania carrier (packing density 999 g / L) was impregnated with an aqueous solution of ammonium perrhenate (VII) so that the amount of Re supported on 1 L of the carrier was 3.44 g. Dry for more than an hour. The dried material was heated in a baking furnace in a 400 ml / min air stream until the baking temperature reached 430 ° C. over 1.5 hours, and a baking process was performed for 30 minutes at the same temperature. Thereafter, the mixture is allowed to cool to 60 ° C. or less, and then heated in a 20 ml / min H 2 stream diluted with 400 ml / min N 2 over 2.5 hours until the reduction temperature reaches 450 ° C. Then, the reduction treatment was performed by holding at the same temperature for 30 minutes.

ついで、アナターゼ型チタニア担体1Lに対するPtの担持量が3.44gとなるように、テトラアンミン白金(II)水酸塩溶液を含浸させ、上記Reの場合と同様にして乾燥、焼成および還元処理を行い、CO変成触媒を得た。このときの担体の調製条件、PtおよびReの担持量などを表1に示す。なお、この触媒1に含まれるCl含有量を高温燃焼イオンクロマトグラフ法により測定したが、触媒1からClは検出されなかった。   Next, the tetraammineplatinum (II) hydrochloride solution is impregnated so that the amount of Pt supported on 1 L of anatase-type titania carrier is 3.44 g, and drying, firing and reduction treatment are performed in the same manner as in the case of Re. A CO shift catalyst was obtained. Table 1 shows the carrier preparation conditions and the amounts of Pt and Re supported. In addition, although Cl content contained in this catalyst 1 was measured by the high temperature combustion ion chromatography method, Cl was not detected from the catalyst 1.

触媒2
アナターゼ型チタニア担体1Lに対するReおよびPtの担持量を0.86gとしたこと以外は、上記触媒1と同様の方法で触媒を調製した。このときの担体の調製条件、PtおよびReの担持量などを表1に示す。
Catalyst 2
A catalyst was prepared in the same manner as the catalyst 1 except that the amount of Re and Pt supported on 1 L of anatase type titania support was 0.86 g. Table 1 shows the carrier preparation conditions and the amounts of Pt and Re supported.

触媒3
アナターゼ型チタニア担体1Lに対するReおよびPtの担持量を1.72gとしたこと以外は上記触媒1と同様の方法で触媒を調製した。このときの担体の調製条件、PtおよびReの担持量などを表1に示す。
Catalyst 3
A catalyst was prepared in the same manner as Catalyst 1 except that the amount of Re and Pt supported on 1 L of anatase-type titania carrier was 1.72 g. Table 1 shows the carrier preparation conditions and the amounts of Pt and Re supported.

触媒4
アナターゼ型チタニア担体1Lに対するReおよびPtの担持量を6.87gとしたこと以外は上記触媒1と同様の方法で触媒を調製した。このときの担体の調製条件、PtおよびReの担持量などを表1に示す。
Catalyst 4
A catalyst was prepared in the same manner as Catalyst 1 except that the amount of Re and Pt supported on 1 L of anatase-type titania carrier was 6.87 g. Table 1 shows the carrier preparation conditions and the amounts of Pt and Re supported.

触媒5
アナターゼ型チタニアの焼成温度を500℃とした以外は、上記触媒1と同様にして、触媒5を調製した。このときの担体の調製条件、PtおよびReの担持量などを表1に示す。
Catalyst 5
A catalyst 5 was prepared in the same manner as the catalyst 1 except that the calcination temperature of anatase titania was 500 ° C. Table 1 shows the carrier preparation conditions and the amounts of Pt and Re supported.

触媒6
アナターゼ型チタニアの焼成温度を700℃とした以外は、上記触媒1と同様にして、触媒6を調製した。このときの担体の調製条件、PtおよびReの担持量などを表1に示す。
Catalyst 6
A catalyst 6 was prepared in the same manner as the catalyst 1 except that the calcination temperature of anatase titania was set to 700 ° C. Table 1 shows the carrier preparation conditions and the amounts of Pt and Re supported.

触媒7
アナターゼ型チタニアの焼成温度を800℃とした以外は、上記触媒1と同様にして、触媒7を調製した。このときの担体の調製条件、PtおよびReの担持量などを表1に示す。
Catalyst 7
A catalyst 7 was prepared in the same manner as the catalyst 1 except that the calcination temperature of anatase titania was 800 ° C. Table 1 shows the carrier preparation conditions and the amounts of Pt and Re supported.

触媒8
チタニア担体の焼成温度を900℃として、ルチル型チタニア担体を調製したこと以外は、上記触媒1と同様にして、PtおよびReを担持させた触媒8を調製した。なお、ルチル型チタニア担体(充填密度:1843g/L)1Lに対するReおよびPtの担持量は3.44gであった。担体の調製条件、PtおよびReの担持量などを表1に示す。
Catalyst 8
A catalyst 8 carrying Pt and Re was prepared in the same manner as the catalyst 1 except that the rutile type titania support was prepared by setting the firing temperature of the titania support to 900 ° C. The supported amount of Re and Pt with respect to 1 L of rutile-type titania carrier (packing density: 1843 g / L) was 3.44 g. Table 1 shows the carrier preparation conditions, the supported amounts of Pt and Re, and the like.

触媒9
担持金属としてReを用いなかったこと以外は、上記触媒1と同様にして、Ptのみを担持させた触媒9を調製した。このときの担体調製条件、およびPtの担持量などを表1に示す。
Catalyst 9
A catalyst 9 supporting only Pt was prepared in the same manner as the catalyst 1 except that Re was not used as the supporting metal. Table 1 shows the carrier preparation conditions and the amount of Pt supported.

触媒10
Ptの出発原料として、ヘキサクロロ白金(IV)酸(6水和物)を用いた以外は上記触媒1と同様にして触媒10を調製した。アナターゼ型チタニア担体1Lに対するReおよびPtの担持量は3.44gであった。担体の調製条件、PtおよびReの担持量などを表1に示す。なお、この触媒10のCl含有量は0.14質量%であった。
Catalyst 10
Catalyst 10 was prepared in the same manner as Catalyst 1 except that hexachloroplatinic (IV) acid (hexahydrate) was used as a starting material for Pt. The amount of Re and Pt supported on 1 L of anatase-type titania carrier was 3.44 g. Table 1 shows the carrier preparation conditions, the supported amounts of Pt and Re, and the like. The Cl content of the catalyst 10 was 0.14% by mass.

触媒11
ルチル型チタニア粉末(触媒学会参照触媒、JRC−TIO−3)を手動式圧縮成型機で、約40MPaの圧力で60秒間圧縮し、得られた固形物を粉砕して(粒径0.5〜1mm)、ルチル型チタニアからなる担体(充填密度1281g/L)を調製した。
Catalyst 11
The rutile type titania powder (catalyst society reference catalyst, JRC-TIO-3) is compressed with a manual compression molding machine at a pressure of about 40 MPa for 60 seconds, and the resulting solid is pulverized (particle size 0.5 to 1 mm) and a carrier composed of rutile-type titania (packing density 1281 g / L) was prepared.

得られたルチル型チタニア担体1Lに対するPt、Reそれぞれの担持量が3.44gとなるように、上記触媒1と同様にしてPtおよびReを担持させた触媒を調製した。担体の調製条件、PtおよびReの担持量などを表1に示す。   A catalyst carrying Pt and Re was prepared in the same manner as Catalyst 1 so that the amount of Pt and Re supported on 1 L of the obtained rutile-type titania carrier was 3.44 g. Table 1 shows the carrier preparation conditions, the supported amounts of Pt and Re, and the like.

触媒12
ZrO2粉末(第一稀元素化学工業社製)をミキサーで攪拌しながら蒸留水を噴霧して造粒成型し(担体粒子径2〜3mm)、50℃で乾燥させた。得られた粒状物を焼成炉で、400ml/minの空気気流中、焼成温度が700℃になるまで1.5時間かけて昇温し、同温度で1時間保持する焼成処理を行いZrO2からなる担体(充填密度1029g/L)を調製した。
Catalyst 12
ZrO 2 powder (Daiichi Rare Element Chemical Co., Ltd.) was granulated by spraying with distilled water while stirring with a mixer (carrier particle diameter: 2 to 3 mm), and dried at 50 ° C. In granules obtained fired furnace, air stream of 400 ml / min, the firing temperature is raised over a period of 1.5 hours to a 700 ° C., from ZrO 2 baked by keeping at the same temperature for 1 hour The resulting carrier (packing density 1029 g / L) was prepared.

得られたZrO2担体に、Ptの出発原料として、ヘキサクロロ白金(IV)酸(6水和物)を用いたこと以外は上記触媒1と同様の方法でPtおよびReを担持させ、触媒12を調製した。ZrO2担体1Lに対するPtおよびReの担持量はそれぞれ3.44gであった。担体の調製条件、PtおよびReの担持量などを表1に示す。 The obtained ZrO 2 support was loaded with Pt and Re in the same manner as in the above catalyst 1 except that hexachloroplatinic (IV) acid (hexahydrate) was used as a starting material for Pt. Prepared. The amount of Pt and Re supported on 1 L of ZrO 2 carrier was 3.44 g, respectively. Table 1 shows the carrier preparation conditions, the supported amounts of Pt and Re, and the like.

触媒13
CeO2の顆粒(キシダ化学社製)を担体として用い、担体の焼成処理を行わなかったこと、および、Ptの出発原料として、ヘキサクロロ白金(IV)酸(6水和物)を用いたこと以外は上記触媒1と同様にして、触媒13を調製した。担体(充填密度2151g/L)1Lに対するPtおよびReの担持量はそれぞれ3.44gであった。この触媒に用いた担体の調製条件、PtおよびReの担持量などを表1に示す。
Catalyst 13
Other than using CeO 2 granules (manufactured by Kishida Chemical Co., Ltd.) as a carrier, not firing the carrier, and using hexachloroplatinum (IV) acid (hexahydrate) as a starting material for Pt Prepared Catalyst 13 in the same manner as Catalyst 1 above. The amount of Pt and Re supported on 1 L of the carrier (packing density 2151 g / L) was 3.44 g, respectively. Table 1 shows the conditions for preparing the carrier used in this catalyst, the supported amounts of Pt and Re, and the like.

触媒14
Al23(住友化学工業社製)を担体として用い、担体の焼成処理を行わなかったこと、および、Ptの出発原料として、ヘキサクロロ白金(IV)酸(6水和物)を用いたこと以外は、上記触媒1と同様にして触媒14を調製した。この触媒の担体(充填密度540g/L)1Lに対するPtおよびReの担持量は3.44gであった。この触媒に用いた担体の調製条件、PtおよびReの担持量などを表1に示す。
Catalyst 14
Al 2 O 3 (manufactured by Sumitomo Chemical Co., Ltd.) was used as a carrier, the carrier was not calcined, and hexachloroplatinum (IV) acid (hexahydrate) was used as a starting material for Pt. Except for the above, the catalyst 14 was prepared in the same manner as the catalyst 1 described above. The amount of Pt and Re supported on 1 L of the catalyst support (packing density 540 g / L) was 3.44 g. Table 1 shows the conditions for preparing the carrier used in this catalyst, the supported amounts of Pt and Re, and the like.

[実験例1 結晶構造または担体種によるCO変成率の比較]
触媒1,5〜8,11〜14を用いて、CO変成除去性能の評価試験を行った。尚、このとき用いたCO含有ガスの組成は、H2:78モル%,CO:10モル%,CO2:12モル%であった。結果を表2及び図3に示す。また、触媒1,5〜8,11について粉末X線回折装置(理学電気社製)を用いて測定を行った。図2にX線回折スペクトルを示す。
[Experimental Example 1 Comparison of CO conversion rate by crystal structure or carrier type]
Using the catalysts 1, 5 to 8 and 11 to 14, an evaluation test of CO conversion removal performance was performed. The composition of the CO-containing gas used at this time, H 2: 78 mol%, CO: 10 mol%, CO 2: was 12 mol%. The results are shown in Table 2 and FIG. Further, the catalysts 1, 5 to 8 and 11 were measured using a powder X-ray diffractometer (manufactured by Rigaku Corporation). FIG. 2 shows an X-ray diffraction spectrum.

図2より、500℃、600℃および700℃で担体の焼成を行った触媒5、触媒1および触媒6の担体はアナターゼ型チタニアの結晶構造を有していることが確認できる。これに対して、900℃で焼成を行った触媒8には、ルチル型のチタニアを担体に用いた触媒11と同様のピークが確認でき、担体の焼成処理によって結晶構造がアナターゼ型からルチル型へと転移したことがわかる。また、800℃で焼成を行った触媒7は、アナターゼ型とルチル型の結晶構造が混在した状態であることが確認できる(CO変成率:62.5%、触媒層温度:239℃)。   From FIG. 2, it can be confirmed that the carriers of Catalyst 5, Catalyst 1 and Catalyst 6 that were calcined at 500 ° C., 600 ° C., and 700 ° C. have a crystal structure of anatase titania. On the other hand, in the catalyst 8 calcined at 900 ° C., the same peak as that of the catalyst 11 using rutile titania as the carrier can be confirmed, and the crystal structure is changed from anatase type to rutile type by the calcining treatment of the carrier. It can be seen that it has changed. Moreover, it can confirm that the catalyst 7 which baked at 800 degreeC is the state in which the crystal structure of the anatase type and the rutile type was mixed (CO conversion rate: 62.5%, catalyst layer temperature: 239 degreeC).

図3より、担体がアナターゼ型の結晶構造を保持している場合には、焼成温度に関係なく同程度のCO変成率を有していることがわかる。これに対して、焼成温度の上昇によって、担体の一部にルチル型チタニアを含む構造となった触媒7や、担体の結晶構造がルチル型チタニアに転移した触媒8のCO変成率から、担体中にルチル型構造が増加するのに従って、CO変成率が低下することがわかる。   FIG. 3 shows that when the carrier has an anatase type crystal structure, it has the same CO conversion rate regardless of the firing temperature. On the other hand, from the CO conversion rate of the catalyst 7 having a structure containing rutile-type titania as part of the support and the catalyst 8 in which the crystal structure of the support is transferred to the rutile-type titania due to an increase in the firing temperature, It can be seen that as the rutile structure increases, the CO conversion rate decreases.

また、表2より、Zr,Ce,Alの酸化物を担体とした触媒12〜14に比べて、アナターゼ型チタニアを担体とした触媒1,5,6は高いCO変成率を示していることがわかる(例えば触媒1,CO変成率91.8%)。   Further, from Table 2, it can be seen that catalysts 1, 5 and 6 using anatase-type titania as a support show higher CO conversion rates than catalysts 12 to 14 using an oxide of Zr, Ce and Al as a support. It can be seen (for example, catalyst 1, CO conversion rate 91.8%).

[実験例2 Re併用による効果の比較]
上記触媒1および触媒9を用いて、CO変成除去性能評価試験を行った。触媒層温度を変化させて、反応が安定した状態で生成ガスの分析を行い、CO変成率を求めた。結果を図4に示す。
[Experimental example 2 Comparison of effects with Re]
Using the catalyst 1 and the catalyst 9, a CO conversion removal performance evaluation test was performed. The product gas was analyzed while changing the catalyst layer temperature and the reaction was stable, and the CO conversion rate was determined. The results are shown in FIG.

図4より、Ptを単独で担持させた触媒9に比べて、Ptと共にReを担持させた触媒1は高いCO変成能を示している。また、触媒1ではCO変成反応は低温領域から高効率で進行していることがわかる。   As shown in FIG. 4, the catalyst 1 carrying Re together with Pt shows higher CO conversion ability than the catalyst 9 carrying Pt alone. It can also be seen that in the catalyst 1, the CO shift reaction proceeds with high efficiency from the low temperature region.

[実験例3 Clの有無による効果の比較]
上記触媒1と触媒10を用いて、CO変成除去性能の評価試験を行った。種々の触媒層温度で、反応が安定した状態で生成ガスの分析をし、CO変成率を求めた。結果を図5に示す。なお、高温燃焼イオンクロマトグラフ法により測定した、触媒1,10中のCl含有量は、触媒1:未検出、触媒10:0.14質量%であった。
[Experimental example 3 Comparison of effects with and without Cl]
Using the catalyst 1 and the catalyst 10, an evaluation test of CO conversion removal performance was performed. The generated gas was analyzed in a state where the reaction was stable at various catalyst layer temperatures, and the CO conversion rate was determined. The results are shown in FIG. In addition, Cl content in the catalysts 1 and 10 measured by the high temperature combustion ion chromatography method was catalyst 1: not detected and catalyst 10: 0.14% by mass.

図5より、Pt前駆体としてテトラアンミン白金(II)水酸塩を使用した触媒1(Cl含有量:未検出)は、Clを含むヘキサクロロ白金(IV)酸(6水和物)を使用した触媒10(Cl含有量:0.14質量%)に比べて高いCO変成率を示していることが確認できる。また、本発明の要件を満たすCO変成触媒は、低い触媒層温度(200〜250℃)であっても高効率でCOを変成し得ることが分かる。   From FIG. 5, catalyst 1 using tetraammineplatinum (II) hydrochloride as a Pt precursor (Cl content: undetected) is a catalyst using hexachloroplatinic (IV) acid (hexahydrate) containing Cl. It can be confirmed that the CO conversion rate is higher than 10 (Cl content: 0.14% by mass). Moreover, it turns out that the CO conversion catalyst satisfying the requirements of the present invention can convert CO with high efficiency even at a low catalyst layer temperature (200 to 250 ° C.).

[実験例4 金属担持量の違いによる効果の比較]
上記触媒1〜4を用いてCO変成除去性能の評価試験を行い、Pt,Reの担持量によるCO変成率を比較した。
[Experimental example 4 Comparison of effects due to difference in metal loading]
An evaluation test of CO conversion removal performance was performed using the above catalysts 1 to 4, and the CO conversion rate depending on the amount of Pt and Re supported was compared.

上記CO変成除去性能試験は、常圧固定床流通式反応器の反応管に充填したCO変成触媒を、450ml/minのN2で希釈した50ml/minのH2気流中で、触媒層温度が450℃となるまで2.5時間かけて昇温し、同温度で30分間保持して、予め還元処理を施した後、以下の条件にしたがって行った。結果を図6に示す。 In the CO conversion removal performance test, the CO conversion catalyst packed in the reaction tube of the atmospheric pressure fixed bed flow type reactor was diluted with 450 ml / min of N 2 in a 50 ml / min H 2 stream, and the catalyst layer temperature was The temperature was raised to 450 ° C. over 2.5 hours, held at the same temperature for 30 minutes, subjected to reduction treatment in advance, and then performed according to the following conditions. The results are shown in FIG.

<反応条件>
触媒量 :10ml
2O/CO(モル比):3
GHSV :1000h-1
CO含有ガス組成 H2:78モル%,CO:10モル%,CO2:12モル%
図6より、触媒1〜4を用いた場合には、いずれも触媒層温度が低いうちから高いCO変成率を示していることが分かる。また、金属担持量の増加にしたがって、CO変成率が向上することが分かる。
<Reaction conditions>
Catalyst amount: 10ml
H 2 O / CO (molar ratio): 3
GHSV: 1000h -1
CO-containing gas composition H 2: 78 mol%, CO: 10 mol%, CO 2: 12 mol%
From FIG. 6, it can be seen that when the catalysts 1 to 4 are used, all show a high CO conversion rate from a low catalyst layer temperature. It can also be seen that the CO conversion rate improves as the metal loading increases.

[実験例5 GHSVによるCO変成率の比較]
触媒1を用いて、以下の条件に従ってCO変成除去性能評価を行った。結果を図7に示す。尚、図7には触媒1のCO変成率と共に上記実験例4(触媒1、GHSV:1000h-1)の結果を併せて示す。
[Experimental Example 5 Comparison of CO conversion rate by GHSV]
Using the catalyst 1, the CO conversion removal performance was evaluated according to the following conditions. The results are shown in FIG. FIG. 7 also shows the results of Experimental Example 4 (Catalyst 1, GHSV: 1000 h −1 ) together with the CO conversion rate of the catalyst 1.

<反応条件>
触媒量:10ml
2O/CO(モル比):3
GHSV :500h-1
CO含有ガス組成 H2:78モル%,CO:10モル%,CO2:12モル%
図7より、本発明の触媒は、実際の燃料電池システムの作動条件に近い、GHSV500h-1および1000h-1(実験例4,触媒1)において、極めて高い活性を示していることがわかる。特に、GHSV500h-1の条件下では、触媒層温度が160℃であっても、高い効率でCOを変成し得ることが確認できる。
<Reaction conditions>
Catalyst amount: 10ml
H 2 O / CO (molar ratio): 3
GHSV: 500 h -1
CO-containing gas composition H 2: 78 mol%, CO: 10 mol%, CO 2: 12 mol%
From FIG. 7, it can be seen that the catalyst of the present invention exhibits extremely high activity in GHSV 500h −1 and 1000 h −1 (Experimental Example 4, Catalyst 1), which are close to the actual operating conditions of the fuel cell system. In particular, it can be confirmed that under the condition of GHSV 500h −1 , CO can be transformed with high efficiency even when the catalyst layer temperature is 160 ° C.

[実験例6 耐久性試験]
触媒1を用いて、以下の方法でCO変成除去効率の経時変化を調べ、本発明の触媒の耐久性を評価した。
[Experimental example 6 durability test]
Using the catalyst 1, the change over time in the CO conversion removal efficiency was examined by the following method, and the durability of the catalyst of the present invention was evaluated.

触媒1:3mlを常圧固定床流通式反応器の反応管に充填し、450ml/minのN2で希釈した50ml/minのH2気流中で、触媒層温度が450℃になるまで2.5時間かけて昇温し、同温度で30分間保持して還元処理を行った。ついで、H2O/CO(モル比)が3となるように水蒸気を混合したCO含有ガス(組成 H2:78モル%,CO:10モル%,CO2:12モル%)をGHSV1000h-1で反応管に供給し、触媒層温度を約200℃に保持した状態で100時間に亘ってCO変成反応を行った。一定時間毎に、触媒層出口から排出される生成ガスをガスクロマトグラフィーで分析してCO変成率の経時変化を調べ、触媒の耐久性を評価した。結果を図8に示す。 1. 3 ml of catalyst was filled in a reaction tube of a normal pressure fixed bed flow type reactor and diluted with 450 ml / min of N 2 in a 50 ml / min H 2 stream until the catalyst layer temperature reached 450 ° C. The temperature was raised over 5 hours, and the reduction treatment was performed by maintaining the temperature for 30 minutes. Subsequently, a CO-containing gas (composition H 2 : 78 mol%, CO: 10 mol%, CO 2 : 12 mol%) mixed with water vapor so that the H 2 O / CO (molar ratio) is 3 is converted into GHSV1000h −1. Then, the CO shift reaction was carried out for 100 hours while maintaining the catalyst layer temperature at about 200 ° C. At regular intervals, the product gas discharged from the catalyst layer outlet was analyzed by gas chromatography to examine the change over time in the CO conversion rate, and the durability of the catalyst was evaluated. The results are shown in FIG.

図8より、本試験時間内においてはCO変成率の低下は認められず、本発明の触媒が耐久性にも優れることが分かる。   FIG. 8 shows that the CO conversion rate is not lowered within the test time, and the catalyst of the present invention is excellent in durability.

尚、上記いずれの実験例においても、本発明の要件を満たすCO変成触媒を使用した場合には、生成ガス中にCO変成反応時の副反応生成物であるCH4の発生は認められず、CO変成反応の反応選択率はいずれも100%であった。 In any of the above experimental examples, when a CO shift catalyst satisfying the requirements of the present invention is used, generation of CH 4 which is a side reaction product during the CO shift reaction is not recognized in the product gas. The reaction selectivity of the CO shift reaction was 100%.

チタニアの結晶構造を示す図である。It is a figure which shows the crystal structure of titania. 触媒1,5〜8,11のチタニア担体の結晶構造を示すX線回折スペクトルである。2 is an X-ray diffraction spectrum showing a crystal structure of a titania carrier of catalysts 1, 5 to 8, 11; 実験例1の結果を示すグラフである。6 is a graph showing the results of Experimental Example 1. 実験例2の結果を示すグラフである。10 is a graph showing the results of Experimental Example 2. 実験例3の結果を示すグラフである。10 is a graph showing the results of Experimental Example 3. 実験例4の結果を示すグラフである。10 is a graph showing the results of Experimental Example 4. 実験例5の結果を示すグラフである。10 is a graph showing the results of Experimental Example 5. 実験例6の結果を示すグラフである。10 is a graph showing the results of Experimental Example 6.

Claims (6)

アナターゼ型のチタニア担体に、PtおよびReを担持させてなることを特徴とするCO変成触媒。   A CO conversion catalyst comprising Pt and Re supported on an anatase type titania support. 前記CO変成触媒中のハロゲン含有量が0.1質量%以下である請求項1に記載のCO変成触媒。   The CO conversion catalyst according to claim 1, wherein the halogen content in the CO conversion catalyst is 0.1 mass% or less. 前記アナターゼ型のチタニア担体単位体積あたりのPt担持量が0.5〜15g/Lである請求項1または2に記載のCO変成触媒。   The CO conversion catalyst according to claim 1 or 2, wherein the amount of Pt supported per unit volume of the anatase-type titania support is 0.5 to 15 g / L. 前記アナターゼ型のチタニア担体単位体積あたりのRe担持量が0.5〜15g/Lである請求項1〜3のいずれかに記載のCO変成触媒。   The CO conversion catalyst according to any one of claims 1 to 3, wherein the amount of Re supported per unit volume of the anatase-type titania support is 0.5 to 15 g / L. 請求項1〜4のいずれかに記載のCO変成触媒を製造する方法であって、
白金塩およびレニウム塩を含む水溶液をアナターゼ型チタニア担体に含浸させ、加熱することによりPtおよびReを該担体に担持させることを特徴とするCO変成触媒の製造方法。
A method for producing the CO shift catalyst according to any one of claims 1 to 4,
A method for producing a CO conversion catalyst, comprising impregnating an aqueous solution containing a platinum salt and a rhenium salt on an anatase-type titania support and supporting Pt and Re on the support by heating.
前記アナターゼ型チタニア担体として、アナターゼ型チタニアが500℃〜800℃で焼成されたものを用いるものである請求項5に記載のCO変成触媒の製造方法。   6. The method for producing a CO conversion catalyst according to claim 5, wherein the anatase-type titania support is obtained by calcining anatase-type titania at 500 ° C. to 800 ° C.
JP2003368053A 2003-10-28 2003-10-28 CO conversion catalyst and method for producing the same Expired - Fee Related JP4455862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368053A JP4455862B2 (en) 2003-10-28 2003-10-28 CO conversion catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368053A JP4455862B2 (en) 2003-10-28 2003-10-28 CO conversion catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005131471A true JP2005131471A (en) 2005-05-26
JP4455862B2 JP4455862B2 (en) 2010-04-21

Family

ID=34645876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368053A Expired - Fee Related JP4455862B2 (en) 2003-10-28 2003-10-28 CO conversion catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4455862B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785061B2 (en) 2008-06-24 2014-07-22 Mitsubishi Heavy Industries, Ltd. CO conversion catalyst for use in fuel cell in DSS operation, method for producing the same, and fuel cell system
WO2016039385A1 (en) * 2014-09-09 2016-03-17 国立大学法人静岡大学 Organic-hydride dehydrogenation catalyst and method for producing same
KR20170125509A (en) * 2016-05-04 2017-11-15 현대자동차주식회사 Catalyst for anode, reversal tolerant anode for fuel cell and membrane electrode assembly comprising the same
KR20220169122A (en) * 2021-06-18 2022-12-27 주식회사 엠앤이테크 Catalyst with high moisture resistance for removing carbon monoxides at room temperature

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785061B2 (en) 2008-06-24 2014-07-22 Mitsubishi Heavy Industries, Ltd. CO conversion catalyst for use in fuel cell in DSS operation, method for producing the same, and fuel cell system
WO2016039385A1 (en) * 2014-09-09 2016-03-17 国立大学法人静岡大学 Organic-hydride dehydrogenation catalyst and method for producing same
KR20170125509A (en) * 2016-05-04 2017-11-15 현대자동차주식회사 Catalyst for anode, reversal tolerant anode for fuel cell and membrane electrode assembly comprising the same
KR20220169122A (en) * 2021-06-18 2022-12-27 주식회사 엠앤이테크 Catalyst with high moisture resistance for removing carbon monoxides at room temperature
KR102555874B1 (en) 2021-06-18 2023-07-17 주식회사 엠앤이테크 Catalyst with high moisture resistance for removing carbon monoxides at room temperature

Also Published As

Publication number Publication date
JP4455862B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP4662955B2 (en) Method for producing composite oxide support, method for producing low temperature shift reaction catalyst, method for removing carbon monoxide, fuel processing apparatus and fuel cell system
EP1866083B1 (en) Nickel on Ceria/Zirconia catalyst
JP5691098B2 (en) Selective methanation catalyst for carbon monoxide, process for producing the same, and apparatus using the same
TWI600468B (en) Preparation of copper oxide-cerium oxide-supported nano-gold catalysts and its application in removal of carbon monoxide in hydrogen stream
JP2004525047A (en) Non-ignitable water-gas conversion catalyst
EP2155383A2 (en) Catalyst for hydrogen production by autothermal reforming, method of making same and use thereof
JP2004522672A (en) Suppression of methanation activity by water gas conversion catalyst
US11795055B1 (en) Systems and methods for processing ammonia
JP4607715B2 (en) Catalyst and method for producing catalyst
JP2007000703A (en) Reforming catalyst, method of manufacturing reforming catalyst and fuel cell system
JP4455862B2 (en) CO conversion catalyst and method for producing the same
JP2005066516A (en) Catalyst for reforming dimethyl ether and synthesizing method therefor
US20060111457A1 (en) Process for the production of a hydrogen-rich reformate gas by methanol autothermal reforming reaction
JP5105709B2 (en) Water gas shift reaction catalyst
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP3574469B2 (en) Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
JP4665044B2 (en) Fuel reforming catalyst, reformer, and fuel cell system
JP2005034682A (en) Co modification catalyst and its production method
JP2005044651A (en) Method of manufacturing hydrogen rich gas
JP2002273227A (en) Shift catalyst and its manufacturing method
JP2010058043A (en) Method for manufacturing steam reforming catalyst and hydrogen
JPH11165070A (en) Selective oxidation catalyst for co in gaseous hydrogen its production and removing method of co in gaseous hydrogen
JP4759221B2 (en) CO removal catalyst body, method for producing CO removal catalyst body, hydrogen purification apparatus, and fuel cell system
JP4569408B2 (en) Water gas shift reaction catalyst and method for removing carbon monoxide gas from hydrogen gas using the same
JP2007244963A (en) Methanol reforming catalyst, its manufacturing method, methanol reforming method and methanol reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4455862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees