JP2005129628A - Light receiving element and manufacturing method therefor - Google Patents

Light receiving element and manufacturing method therefor Download PDF

Info

Publication number
JP2005129628A
JP2005129628A JP2003361884A JP2003361884A JP2005129628A JP 2005129628 A JP2005129628 A JP 2005129628A JP 2003361884 A JP2003361884 A JP 2003361884A JP 2003361884 A JP2003361884 A JP 2003361884A JP 2005129628 A JP2005129628 A JP 2005129628A
Authority
JP
Japan
Prior art keywords
layer
receiving element
optical waveguide
light receiving
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003361884A
Other languages
Japanese (ja)
Other versions
JP4158197B2 (en
Inventor
Morio Wada
守夫 和田
Shojiro Araki
昌二郎 荒木
Machio Dobashi
万知夫 土橋
Toshimasa Umezawa
俊匡 梅沢
Masayuki Suehiro
雅幸 末広
Takahiro Kudo
貴裕 工藤
Takashi Mogi
孝史 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2003361884A priority Critical patent/JP4158197B2/en
Publication of JP2005129628A publication Critical patent/JP2005129628A/en
Application granted granted Critical
Publication of JP4158197B2 publication Critical patent/JP4158197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultra high-speed light receiving element by narrowing the width of the light receiving element in an evanescent coupling optical waveguide-type and reducing a junction capacity. <P>SOLUTION: In the evanescent coupling joint optical waveguide-type light receiving element, the width of a slab-type optical waveguide formed on the surface of a substrate is made to become narrow gradually toward an upper part. The width of a light absorption layer which is formed on the optical waveguide and to which an evanescent light is led is formed so as to be matched with a part of the narrowest optical waveguide width. An electrode is formed on the light absorption layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光通信システム、光通信用測定機器に使用される光−電気(O/E)信号変換を行う超高速受光素子の遮断周波数の改善に関する。   The present invention relates to an improvement in the cut-off frequency of an ultrahigh-speed light receiving element that performs optical-electrical (O / E) signal conversion used in an optical communication system and an optical communication measuring instrument.

近年光ファイバ−通信はチャンネル当たりの伝送速度が数Gbps(bit・per・second)〜数十GbpsのWDM(Wavelength・Division・Multiplexing)光通信技術により飛躍的に伝送容量が増大している。このような光通システムに用いられる光電変換素子として超高速受光素子が開発されてきた。   In recent years, the transmission capacity of optical fiber communication has been dramatically increased by a WDM (Wavelength / Division / Multiplexing) optical communication technology having a transmission rate per channel of several Gbps (bit per second) to several tens of Gbps. An ultrahigh-speed light receiving element has been developed as a photoelectric conversion element used in such an optical communication system.

このような、従来の受光素子に関連する先行技術文献としては次のようなものがある。
特開平04−241471号公報 L.Giraude・et al.:Electron・Lett・37,pp.973-975(2001) T.Takeuchi・et al.:Electron・36,pp.1-2(2000) 鳥飼俊敬:OPTORONICS、No.1、pp.108-112(2003)
Prior art documents related to such a conventional light receiving element include the following.
Japanese Patent Laid-Open No. 04-241471 L. Giraude et al. : Electron · Lett · 37, pp. 973-975 (2001) T. Takeuchi et al. : Electron 36, pp. 1-2 (2000) Toshitaka Torikai: OPTORONICS, No. 1, pp. 108-112 (2003)

図6(a,b,c)はInGaAsを光吸収層にもつpin構造のフォトダイオ−ドの従来例を示す図である。図に示すように光ファイバ−光通信等で用いられている半導体受光素子は、受光素子への光入射方向により表面入射型(図6a)、端面入射型(図6b,図6c)に大別される。   FIGS. 6A, 6B and 6C are diagrams showing a conventional example of a photodiode having a pin structure having InGaAs as a light absorption layer. As shown in the figure, semiconductor light-receiving elements used in optical fiber-optical communication and the like are roughly classified into a front-incident type (FIG. 6a) and an end-face incident type (FIGS. 6b and 6c) depending on the light incident direction to the light-receiving element. Is done.

図6aの表面入射型はnInP基板上にn−InPからなるバッファ2を形成し、このバッファ2上に光吸収層としてのn-InGaAs層3及びPInGaAs層4を形成し、基板1の平面に対して垂直方向から光8を入射させるものである。この場合、電極5,6は基板の表面及び裏面に形成される。 In the front-illuminated type of FIG. 6A, a buffer 2 made of n-InP is formed on an n InP substrate, and an n-InGaAs layer 3 and a P + InGaAs layer 4 as light absorption layers are formed on the buffer 2. The light 8 is incident from a direction perpendicular to one plane. In this case, the electrodes 5 and 6 are formed on the front surface and the back surface of the substrate.

図6b,図6cの端面入射型は入射光8を基板1に対して平行方向から光導波路9に入射させるものであり、入射光をエバネッセント効果により光吸収層10に吸収させて光電変換させるようにしたものである。   6b and 6c are those in which the incident light 8 is incident on the optical waveguide 9 from a direction parallel to the substrate 1, and the incident light is absorbed into the light absorption layer 10 by the evanescent effect to be photoelectrically converted. It is a thing.

このような受光素子における応答周波数特性の遮断周波数は、
1)素子抵抗Rと素子容量Cの積(いわゆるCR時定数)と、
2)光吸収層(図6a,図6bではnまたはi−InGaAs層、図6cではN−Type InGaAs層)内で光吸収により発生した正孔−電子対の光生成キャリアの光吸収層内キャリア走行時間、
で決定される。
The cutoff frequency of the response frequency characteristic in such a light receiving element is
1) Product of element resistance R and element capacitance C (so-called CR time constant),
2) Carriers in the light absorption layer of photogenerated carriers of hole-electron pairs generated by light absorption in the light absorption layer (n or i-InGaAs layer in FIGS. 6a and 6b, N-Type InGaAs layer in FIG. 6c). running time,
Determined by

そのため従来は、電極接触抵抗を低減し、素子面積を小さくして接合容量を低減することにより小さいCR積を得る工夫が行われてきた。
一方、キャリア走行時間を短くするには光吸収層10を薄くする必要があるが、図6aに示す表面入射型では光吸収層3,4が薄くなると入射光が光吸収層で吸収されずに通過する光量が増加して感度が低下する。
For this reason, in the past, attempts have been made to obtain a smaller CR product by reducing the electrode contact resistance, reducing the element area, and reducing the junction capacitance.
On the other hand, in order to shorten the carrier traveling time, it is necessary to make the light absorption layer 10 thin. However, in the surface incident type shown in FIG. 6A, when the light absorption layers 3 and 4 become thin, incident light is not absorbed by the light absorption layer. The amount of light passing therethrough increases and sensitivity decreases.

表面入射型で内部量子効率80%程度を得るには、光吸収層の厚さは2.5μm程度必要になる。このため、近年、図6bに示すような端面入射型が開発されている。
図6bでは、側面から入射した光は光導波路9内に閉じ込められて光吸収層10で吸収されていくため、光の進行方向に十分(数μm)な光吸収層の厚さを得ることができる。
In order to obtain the internal quantum efficiency of about 80% with the front-illuminated type, the thickness of the light absorption layer needs to be about 2.5 μm. Therefore, in recent years, an end face incident type as shown in FIG. 6b has been developed.
In FIG. 6b, since the light incident from the side surface is confined in the optical waveguide 9 and absorbed by the light absorption layer 10, the thickness of the light absorption layer sufficient (several μm) in the light traveling direction can be obtained. it can.

従って、光閉じ込め構造により光吸収層10の厚さは0.5〜1μmでも十分な感度が得られ、同時に、厚さ方向に走行するキャリアの走行時間を小さくすることが可能となる。
しかし、受光面近傍では光吸収で光生成キャリア濃度が最も高く、光強度が大きい場合に受光素子の入射面に損傷が発生することが知られている。
Therefore, sufficient sensitivity can be obtained even if the thickness of the light absorption layer 10 is 0.5 to 1 μm by the light confinement structure, and at the same time, the traveling time of the carrier traveling in the thickness direction can be reduced.
However, it is known that in the vicinity of the light receiving surface, the light generation carrier concentration is the highest due to light absorption, and the light incident surface of the light receiving element is damaged when the light intensity is high.

上述の入射面の損傷発生を改善するために光導波路と受光素子を集積化し、光導波路からのエバネッセント波を受光素子部の光吸収層に導き最大光強度を低減する構造が提案されている。   In order to improve the occurrence of damage on the incident surface, a structure has been proposed in which an optical waveguide and a light receiving element are integrated, and an evanescent wave from the optical waveguide is guided to the light absorption layer of the light receiving element portion to reduce the maximum light intensity.

図6cに示す従来例ではキャリア走行時間を短くするために、光導波路9上の受光素子部10aの光吸収層10(例えばi−InGaAs層)は薄く(例えば0.3〜0.6μm程度の厚さ)形成されている。   In the conventional example shown in FIG. 6c, in order to shorten the carrier traveling time, the light absorption layer 10 (for example, i-InGaAs layer) of the light receiving element portion 10a on the optical waveguide 9 is thin (for example, about 0.3 to 0.6 μm). Thickness) is formed.

このp−i−n構造の受光素子部10aのi層が薄くなると接合容量が増加する。このため再び、受光素子の応答周波数特性の遮断周波数の主な制限要素がCR積となる。そのため、受光素子部10aの接合容量を減らすように光吸収層10の接合面積を小さくする必要がある。   When the i layer of the light receiving element portion 10a having the pin structure is thinned, the junction capacitance increases. For this reason, the main limiting factor of the cutoff frequency of the response frequency characteristic of the light receiving element is the CR product again. Therefore, it is necessary to reduce the junction area of the light absorption layer 10 so as to reduce the junction capacitance of the light receiving element portion 10a.

図6c’に示すように光導波路9を伝搬する導波(入射)光は光吸収層10にエバネッセント結合で導かれて吸収されていくが、この時、例えば、波長1.5μm帯の光通信波長領域で実用的な感度を有する受光素子の量子効率約40%以上を達成するためには、受光素子部10aの導波路方向の長さは約20μm以上必要となる。
従って、受光素子部10aの接合容量を減らすには、この受光素子部10aの幅を狭くして低減することになる。
As shown in FIG. 6c ′, the guided (incident) light propagating through the optical waveguide 9 is guided to and absorbed by the light absorption layer 10 by evanescent coupling. At this time, for example, optical communication in a wavelength band of 1.5 μm In order to achieve a quantum efficiency of about 40% or more of a light receiving element having practical sensitivity in the wavelength region, the length of the light receiving element portion 10a in the waveguide direction needs to be about 20 μm or more.
Therefore, in order to reduce the junction capacitance of the light receiving element portion 10a, the width of the light receiving element portion 10a is reduced.

しかし、従来例(図6b、図6c)などでは、光導波路9の幅hと受光素子部10aの幅h’がほぼ同じに作られていた。これは、受光素子部の材料(InP、InGaAsなど)と導波路部の材料(InGaAsPなど)の形状形成にドライエッチング加工を用いて、材料系の違いによる加工形状の差異を小さくし、受光素子部と導波路部の側面がほぼ垂直に加工される方法が取られていたためである。   However, in the conventional example (FIGS. 6b and 6c), the width h of the optical waveguide 9 and the width h ′ of the light receiving element portion 10a are made substantially the same. This is because dry etching processing is used to form the shape of the light receiving element portion material (InP, InGaAs, etc.) and the waveguide portion material (InGaAsP, etc.), and the difference in processing shape due to the difference in material system is reduced. This is because a method is employed in which the side surfaces of the portion and the waveguide portion are processed substantially vertically.

したがって、受光素子部面積を小さくするための積極的な構造は提案されていなかった。また、具体的に光導波路上の受光素子部の幅を狭くして、受光素子部の接合容量を低減する構造、製造方法そのものの設計、製作は行われていなかった。
従って本発明が解決しようとする課題は、エバネッセント結合光導波路型の受光素子の受光素子部の幅を狭くして接合容量を低減し超高速受光素子を実現することにある。
Therefore, an active structure for reducing the light receiving element area has not been proposed. In addition, a structure for reducing the junction capacitance of the light receiving element portion by specifically narrowing the width of the light receiving element portion on the optical waveguide and the manufacturing method itself have not been designed or manufactured.
Therefore, the problem to be solved by the present invention is to realize an ultrahigh speed light receiving element by reducing the junction capacitance by narrowing the width of the light receiving element portion of the evanescent coupling optical waveguide type light receiving element.

このような課題を達成するために、本発明のうち請求項1記載の発明は、
エバネッセント結合光導波路型受光素子において、基板の表面に形成されるスラブ型光導波路幅を上方に向かって徐々に狭くなるように形成し、該光導波路上に形成されてエバネッセント光が導かれる光吸収層の幅を最も狭い光導波路幅の部分と一致させるように形成するとともに、この光吸収層の上に電極を形成した。光導波路の伝搬損失が少なくなる。
In order to achieve such a problem, the invention according to claim 1 of the present invention is:
In an evanescent-coupled optical waveguide type light receiving element, the slab type optical waveguide formed on the surface of the substrate is formed so that the width of the slab optical waveguide becomes gradually narrower upward, and the light absorption is formed on the optical waveguide to guide the evanescent light. The layer was formed so as to coincide with the narrowest portion of the optical waveguide width, and an electrode was formed on the light absorption layer. The propagation loss of the optical waveguide is reduced.

本発明のうち請求項2記載の発明は、請求項1記載の受光素子において、
前記光導波路はInP基板上に複数層のInGaAsPで形成するとともに、各層の屈折率を基板側から上層に向かって順次高くなるように形成し、最上層のInGaAsP層上に光吸収層及びキャップ層を形成した。効率よくエバネッセント効果が得られる。
The invention according to claim 2 of the present invention is the light receiving element according to claim 1,
The optical waveguide is formed of a plurality of layers of InGaAsP on an InP substrate, and the refractive index of each layer is formed so as to increase sequentially from the substrate side toward the upper layer. A light absorption layer and a cap layer are formed on the uppermost InGaAsP layer. Formed. Evanescent effect can be obtained efficiently.

本発明のうち請求項3記載の発明は、請求項1または2に記載の受光素子において、
前記光吸収層はInGaAs層、キャップ層はInPとした。光導波路の伝搬損失が少なくなる。
The invention according to claim 3 of the present invention is the light receiving element according to claim 1 or 2,
The light absorption layer was an InGaAs layer, and the cap layer was InP. The propagation loss of the optical waveguide is reduced.

本発明のうち請求項4記載の発明は、
1)InP基板上に屈折率の異なる複数のInGaAsP層を屈折率が順次高くなるよ
うに積層する工程、
2)最上層のInGaAsP層上にInGaAs層を形成する工程、
3)InGaAs層上にInP層を形成する工程、
4)InP層上に絶縁膜を形成する工程、
5)絶縁膜をマスクとしてInGaAsPよりInGaAsがエッチング速度の大きなエッチング液を用いてエッチングを行う工程。を含むことを特徴とする。
The invention according to claim 4 of the present invention is
1) A step of laminating a plurality of InGaAsP layers having different refractive indexes on an InP substrate so that the refractive index becomes higher.
2) forming an InGaAs layer on the uppermost InGaAsP layer;
3) forming an InP layer on the InGaAs layer;
4) forming an insulating film on the InP layer;
5) A process in which InGaAs is etched using an etchant having a higher etching rate than InGaAsP using the insulating film as a mask. It is characterized by including.

以上説明したことから明らかなように、本発明によれば次のような効果がある。
請求項1乃至4に記載の発明によれば、基板の表面に形成されるスラブ型光導波路幅を上方に向かって徐々に狭くなるように形成し、該光導波路上に形成されてエバネッセント光が導かれる光吸収層の幅を最も狭い光導波路幅の部分と一致させるように形成するとともに、この光吸収層の上に電極を形成して受光素子部の接合容量を低減する構造とし、光導波路はInP基板上に複数層のInGaAsPで形成するとともに、各層の屈折率を基板側から上層に向かって順次高くなるように形成し、その上に光吸収層及びキャップ層を形成した。この結果、効率よくエバネッセント効果が得られ、光導波路の伝搬損失を少なくした受光素子を実現することができた。
As is apparent from the above description, the present invention has the following effects.
According to the first to fourth aspects of the invention, the width of the slab type optical waveguide formed on the surface of the substrate is formed so as to be gradually narrowed upward, and the evanescent light is formed on the optical waveguide. The light absorption layer to be guided is formed so as to coincide with the narrowest portion of the optical waveguide width, and an electrode is formed on the light absorption layer to reduce the junction capacitance of the light receiving element portion. Was formed of InGaAsP with a plurality of layers on an InP substrate, and the refractive index of each layer was formed so as to increase sequentially from the substrate side toward the upper layer, and a light absorption layer and a cap layer were formed thereon. As a result, an evanescent effect was efficiently obtained, and a light receiving element with reduced propagation loss of the optical waveguide could be realized.

以下本発明を図面を用いて詳細に説明する。図1は本発明に係る受光素子の一実施例を示す断面図である。なお、平面図は図6に示す従来例と同様なので省略する。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of a light receiving element according to the present invention. The plan view is the same as the conventional example shown in FIG.

図1において、1はInPからなる半導体基板であり、この上に光導波路層9、光吸収層10、PN電極5,6が形成されている。
図2、3、4、は本発明の実施例を示す顕微鏡写真である。図1に示すように基本構造は従来例と同様にエバネッセント結合光導波路型受光素子構造である。
In FIG. 1, reference numeral 1 denotes a semiconductor substrate made of InP, on which an optical waveguide layer 9, a light absorption layer 10, and PN electrodes 5 and 6 are formed.
2, 3, and 4 are photomicrographs showing examples of the present invention. As shown in FIG. 1, the basic structure is an evanescent coupled optical waveguide type light receiving element structure as in the conventional example.

図2(a)は図1の光導波路部の断面A−A'断面を示し、InP基板1上に3層のInGaAsP層(InGaAsP(3)、InGaAsP(2)、InGaAsP(1))が順次積層され、その最上層のInGaAsP(1)をエッチング側面が斜めになるようにエッチングして、スラブ型光導波路を形成している。   2A shows a cross section AA ′ of the optical waveguide portion of FIG. 1, and three InGaAsP layers (InGaAsP (3), InGaAsP (2), InGaAsP (1)) are sequentially formed on the InP substrate 1. FIG. The slab type optical waveguide is formed by etching the top layer InGaAsP (1) so that the etching side surface is inclined.

なおInGaAsP層(3),(2),(1)は上方にいくに従って屈折率が高くなるように形成し入射した光がエバネッセント効果により順次上方に染み出すようになっている。図2(b)は、この光導波路を伝搬する光強度分布の計算結果である。   The InGaAsP layers (3), (2), and (1) are formed so that the refractive index increases as they go upward, so that incident light oozes out sequentially due to the evanescent effect. FIG. 2B shows a calculation result of the light intensity distribution propagating through the optical waveguide.

図3(a)は図1の受光素子の光導波路部10aのB−B'断面を示すものである。図1に示す光導波路9の最上層のInGaAsP(1)上に光吸収層10としてInGaAs層(厚さ〜0.5μm)、InPキャップ層(厚さ〜0.1μm)を形成している。   FIG. 3A shows a BB ′ cross section of the optical waveguide portion 10a of the light receiving element of FIG. An InGaAs layer (thickness to 0.5 μm) and an InP cap layer (thickness to 0.1 μm) are formed as the light absorption layer 10 on the uppermost InGaAsP (1) of the optical waveguide 9 shown in FIG.

このような構成によれば、光導波路部9を伝搬してきた導波路光のエバネッセント光がInGaAs光吸収層10に達して、InGaAs光吸収層10がある受光素子部10aの十分長い(〜30μm)距離を通過したとき導波路光8はほとんど全て吸収されて、光−電変換された光信号電流が得られる。
この受光素子部10aの十分長い距離を経たときの光強度(非常に弱いが)分布を計算すると図3(b)のようになり、InGaAs光吸収層10で伝搬している様子が分かる。
According to such a configuration, the evanescent light of the waveguide light propagating through the optical waveguide portion 9 reaches the InGaAs light absorption layer 10 and is sufficiently long (˜30 μm) of the light receiving element portion 10a having the InGaAs light absorption layer 10. When passing through the distance, almost all of the waveguide light 8 is absorbed, and a photoelectric signal converted from light to electricity is obtained.
When the light intensity distribution (although very weak) of the light receiving element portion 10a after a sufficiently long distance is calculated, it is as shown in FIG. 3B, and it can be seen that the light is propagated in the InGaAs light absorption layer 10.

図4は実際に実施例の構造で受光素子を製作したときの、受光素子部10aのエッチングによる光導波路9と受光素子部10aを形成後の(図1:B−B'断面)断面二次電子顕微鏡像である。図3に示す構造が実現されている。   FIG. 4 is a cross-sectional secondary view after the optical waveguide 9 and the light receiving element portion 10a are formed by etching the light receiving element portion 10a when the light receiving element is actually manufactured with the structure of the embodiment (FIG. 1: BB ′ cross section). It is an electron microscope image. The structure shown in FIG. 3 is realized.

次に、このような受光素子の製造方法について説明する。
InP基板上にMOVPE(有機金属気相エピタキシャル)法でInGaAsP材料からなる3層の光導波路を形成する。屈折率が、InGaAsP(1)>InGaAsP(2)>InGaAsP(3)となるように形成し、その上にInGaAs光吸収層10、InPキャップ層11を形成する。
Next, a method for manufacturing such a light receiving element will be described.
A three-layer optical waveguide made of InGaAsP material is formed on the InP substrate by MOVPE (metal organic vapor phase epitaxy). A refractive index is formed such that InGaAsP (1)> InGaAsP (2)> InGaAsP (3), and an InGaAs light absorption layer 10 and an InP cap layer 11 are formed thereon.

次に、InGaAsPよりInGaAsの方がエッチング速度の大きい化学エッチング液(例えばリン酸、硫酸、過酸化水素水の混合液)を用いて、SiO膜をマスクにしてエッチングすることにより、図4に示す構造の受光素子を実現することができる。受光素子部のInPキャップ層を通して光吸収層のn−InGaAs層内には深さ〜0.1μm程度Zn拡散によりp+InGaAs領域が形成されてpn接合が形成され、図1に示すようにP電極5が設けられている。 Next, by using a chemical etching solution (for example, a mixed solution of phosphoric acid, sulfuric acid, and hydrogen peroxide water) having a higher etching rate than InGaAsP and etching using the SiO 2 film as a mask, FIG. The light receiving element having the structure shown can be realized. A p + InGaAs region is formed by Zn diffusion to a depth of about 0.1 μm in the n-InGaAs layer of the light absorption layer through the InP cap layer of the light receiving element portion, and a pn junction is formed as shown in FIG. An electrode 5 is provided.

図4の実際の実施例の構造で示されるように、光導波路幅がその上に形成される受光素子のInGaAs光吸収層に向かうに従い狭くなるように形成されたエバネッセント結合光導波路型受光素子では、光導波路からのエバネッセント光を外部に漏らして減衰させることなくInGaAs光吸収層10に導くことができる。   As shown in the structure of the actual embodiment of FIG. 4, in the evanescent coupling optical waveguide type light receiving element formed so that the width of the optical waveguide becomes narrower toward the InGaAs light absorption layer of the light receiving element formed thereon, The evanescent light from the optical waveguide can be guided to the InGaAs light absorption layer 10 without leaking to the outside and being attenuated.

同時にスラブ型光導波路のエッチングされた光導波路層9の幅よりもInGaAs層内に形成されるPN接合部分の幅を狭くすることが出来るので、接合容量を小さくすることができる。エッチングする光導波路層の最上層InGaAsP(1)層の裾の幅は6〜10μm程度であり、この時InGaAs光吸収層幅は4〜8μm程度に制御できるため、接合部の幅は導波路幅に対して50〜80%程度にできる。   At the same time, since the width of the PN junction formed in the InGaAs layer can be made narrower than the width of the etched optical waveguide layer 9 of the slab type optical waveguide, the junction capacitance can be reduced. The bottom width of the uppermost InGaAsP (1) layer of the optical waveguide layer to be etched is about 6 to 10 μm. At this time, the width of the InGaAs light absorption layer can be controlled to about 4 to 8 μm. 50% to 80%.

従って、従来の垂直にエッチングする加工方法の場合に比較して、接合容量を50〜80%に減少することができる。   Accordingly, the junction capacity can be reduced to 50 to 80% compared to the case of the conventional vertical etching method.

図5は受光素子の遮断周波数とn(i)−InGaAs光吸収層厚さの関係の計算結果である。例えば光吸収層の厚さを0.3μmとし、受光素子面積(接合面積)が80μm(幅4μm×長さ20μm)と150μm2(幅7.5μm×長さ20μm)の場合、つまり約50〜80%変化すると遮断周波数は約10GHz変化することがわかる。 FIG. 5 shows the calculation result of the relationship between the cutoff frequency of the light receiving element and the thickness of the n (i) -InGaAs light absorption layer. For example, when the thickness of the light absorption layer is 0.3 μm and the light receiving element area (junction area) is 80 μm 2 (width 4 μm × length 20 μm) and 150 μm 2 (width 7.5 μm × length 20 μm), that is, about 50 It can be seen that the cut-off frequency changes by about 10 GHz when changed by ~ 80%.

なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。例えば実施例では光導波路のInGaAsP層を3層としたが2層でもよく3層以上としても良い。したがって本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形をも含むものである。   The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention. For example, in the embodiment, the InGaAsP layer of the optical waveguide is three layers, but may be two layers or three or more layers. Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

本発明に係る受光素子の一実施例を示す断面図である。It is sectional drawing which shows one Example of the light receiving element which concerns on this invention. 本発明に係る受光素子の光導波路の断面を示す顕微鏡写真である。It is a microscope picture which shows the cross section of the optical waveguide of the light receiving element which concerns on this invention. 本発明に係る受光素子の受光素子部の断面を示す顕微鏡写真である。It is a microscope picture which shows the cross section of the light receiving element part of the light receiving element which concerns on this invention. 本発明に係る受光素子の光導波路上に電極を形成した状態の断面を示す顕微鏡写真である。It is a microscope picture which shows the cross section of the state which formed the electrode on the optical waveguide of the light receiving element which concerns on this invention. 受光素子の遮断周波数とn(i)−InGaAs光吸収層厚さの関係を示す計算結果である。It is a calculation result which shows the relationship between the cutoff frequency of a light receiving element, and n (i) -InGaAs light absorption layer thickness. 従来の受光素子の一例を示す断面図である。It is sectional drawing which shows an example of the conventional light receiving element.

符号の説明Explanation of symbols

1 基板
2 n−InP(バッファ)
3 n−InGaAs層
4 PInGaAs層
5 P電極(Au−Zn)
6 N電極(Au−Sn)
7 SiN
8 入射光
9 光導波路
9a 光導波路部
10 光吸収層
10a 受光素子部
11 InP層


























1 substrate 2 n-InP (buffer)
3 n-InGaAs layer 4 P + InGaAs layer 5 P electrode (Au—Zn)
6 N electrode (Au-Sn)
7 SiN
8 Incident light 9 Optical waveguide 9a Optical waveguide portion 10 Light absorption layer 10a Light receiving element portion 11 InP layer


























Claims (4)

エバネッセント結合光導波路型受光素子において、基板の表面に形成されるスラブ型光導波路幅を上方に向かって徐々に狭くなるように形成し、該光導波路上に形成されてエバネッセント光が導かれる光吸収層の幅を最も狭い光導波路幅の部分と一致させるように形成するとともに、この光吸収層の上に電極を形成したことを特徴とする受光素子。   In an evanescent-coupled optical waveguide type light receiving element, the slab type optical waveguide formed on the surface of the substrate is formed so that the width of the slab optical waveguide becomes gradually narrower upward, and the light absorption is formed on the optical waveguide to guide the evanescent light. A light receiving element, wherein the width of the layer is formed to coincide with the narrowest portion of the optical waveguide width, and an electrode is formed on the light absorption layer. 前記光導波路はInP基板上に複数層のInGaAsPで形成するとともに、各層の屈折率を基板側から上層に向かって順次高くなるように形成し、最上層のInGaAsP層上に光吸収層及びキャップ層を形成したことを特徴とする請求項1記載の受光素子。   The optical waveguide is formed of a plurality of layers of InGaAsP on an InP substrate, and the refractive index of each layer is formed so as to increase sequentially from the substrate side toward the upper layer. A light absorption layer and a cap layer are formed on the uppermost InGaAsP layer. The light receiving element according to claim 1, wherein: 前記光吸収層はInGaAs層、キャップ層はInPとしたことを特徴とする請求項1または2に記載の受光素子。   3. The light receiving element according to claim 1, wherein the light absorption layer is an InGaAs layer and the cap layer is InP. 1)InP基板上に屈折率の異なる複数のInGaAsP層を屈折率が順次高くなるよ
うに積層する工程、
2)最上層のInGaAsP層上にInGaAs層を形成する工程、
3)InGaAs層上にInP層を形成する工程、
4)InP層上に絶縁膜を形成する工程、
5)絶縁膜をマスクとしてInGaAsPよりInGaAsがエッチング速度の大きなエッチング液を用いてエッチングを行う工程。を含むことを特徴とする受光素子の製造方法。





























1) A step of laminating a plurality of InGaAsP layers having different refractive indexes on an InP substrate so that the refractive index becomes higher.
2) forming an InGaAs layer on the uppermost InGaAsP layer;
3) forming an InP layer on the InGaAs layer;
4) forming an insulating film on the InP layer;
5) A process in which InGaAs is etched using an etchant having a higher etching rate than InGaAsP using the insulating film as a mask. The manufacturing method of the light receiving element characterized by including.





























JP2003361884A 2003-10-22 2003-10-22 Light receiving element Expired - Fee Related JP4158197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003361884A JP4158197B2 (en) 2003-10-22 2003-10-22 Light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003361884A JP4158197B2 (en) 2003-10-22 2003-10-22 Light receiving element

Publications (2)

Publication Number Publication Date
JP2005129628A true JP2005129628A (en) 2005-05-19
JP4158197B2 JP4158197B2 (en) 2008-10-01

Family

ID=34641694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361884A Expired - Fee Related JP4158197B2 (en) 2003-10-22 2003-10-22 Light receiving element

Country Status (1)

Country Link
JP (1) JP4158197B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8265443B2 (en) 2009-03-19 2012-09-11 Sumitomo Osaka Cement Co., Ltd. Optical waveguide device
JP2012199344A (en) * 2011-03-20 2012-10-18 Fujitsu Ltd Light receiving element, and optical reception module
CN103646997A (en) * 2013-12-13 2014-03-19 中国电子科技集团公司第四十四研究所 Manufacturing method of evanescent wave coupling high-speed high-power photoelectric detector
CN111863984A (en) * 2020-07-30 2020-10-30 中国科学技术大学 Photoelectric detector and manufacturing method thereof
WO2021100133A1 (en) * 2019-11-20 2021-05-27 日本電信電話株式会社 Light receiving device and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8265443B2 (en) 2009-03-19 2012-09-11 Sumitomo Osaka Cement Co., Ltd. Optical waveguide device
JP2012199344A (en) * 2011-03-20 2012-10-18 Fujitsu Ltd Light receiving element, and optical reception module
CN103646997A (en) * 2013-12-13 2014-03-19 中国电子科技集团公司第四十四研究所 Manufacturing method of evanescent wave coupling high-speed high-power photoelectric detector
WO2021100133A1 (en) * 2019-11-20 2021-05-27 日本電信電話株式会社 Light receiving device and manufacturing method therefor
JPWO2021100133A1 (en) * 2019-11-20 2021-05-27
JP7248146B2 (en) 2019-11-20 2023-03-29 日本電信電話株式会社 Light receiving device and manufacturing method thereof
CN111863984A (en) * 2020-07-30 2020-10-30 中国科学技术大学 Photoelectric detector and manufacturing method thereof
CN111863984B (en) * 2020-07-30 2022-05-13 中国科学技术大学 Photoelectric detector and manufacturing method thereof

Also Published As

Publication number Publication date
JP4158197B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
US9577136B2 (en) Semiconductor light-receiving element and method for manufacturing same
US8494315B2 (en) Photonic integrated circuit having a waveguide-grating coupler
JP4835837B2 (en) Photodiode and manufacturing method thereof
KR100244046B1 (en) Photodetection semiconductor device
CN109786497B (en) Single-row carrier photodetector
CN107532967B (en) System for testing performance of optical device and method for testing optical device
CN111244756B (en) Semiconductor laser and method for manufacturing the same
JPH0818026A (en) Semiconductor light waveguide path integration type light reception element
KR20040052272A (en) Spot size converter, Method for manufacturing the same and spot size converter intergrated photodetector
JP4318981B2 (en) Waveguide type light receiving element
CN111352186A (en) Photoelectric detector and manufacturing method thereof
JP6961621B2 (en) Optical integrated device and optical transmitter module
US20130207140A1 (en) Semiconductor Optical Element Semiconductor Optical Module and Manufacturing Method Thereof
KR100670827B1 (en) Waveguide p-i-n photodiode having graded index distribution centering on optical absorption layer
US6020620A (en) Semiconductor light-receiving device with inclined multilayer structure
JP5526611B2 (en) Semiconductor light receiving element and method for manufacturing semiconductor light receiving element
JP4158197B2 (en) Light receiving element
CN111129202B (en) Photoelectric detector
US20020088992A1 (en) High power photodiode
JP6726248B2 (en) Semiconductor light receiving element and photoelectric fusion module
JP4291085B2 (en) Waveguide type light receiving element
JP2001168371A (en) Loading type semiconductor photodetecting element and its manufacturing method
Huang et al. Waveguide-based Photodetector integrated with Semiconductor Optical Amplifier
Kang et al. Optical coupling analysis of dual-waveguide structure for monolithic integration of photonic devices
JP2004247620A (en) Semiconductor light receiver element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees