JP2005129513A - Fuel cell power generation system - Google Patents

Fuel cell power generation system Download PDF

Info

Publication number
JP2005129513A
JP2005129513A JP2004279180A JP2004279180A JP2005129513A JP 2005129513 A JP2005129513 A JP 2005129513A JP 2004279180 A JP2004279180 A JP 2004279180A JP 2004279180 A JP2004279180 A JP 2004279180A JP 2005129513 A JP2005129513 A JP 2005129513A
Authority
JP
Japan
Prior art keywords
fuel
power generation
flow path
fuel cell
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004279180A
Other languages
Japanese (ja)
Inventor
Takeshi Saito
健 斎藤
Susumu Aikawa
進 相川
Masahiro Kuroishi
正宏 黒石
Toshiya Abe
俊哉 阿部
Kosaku Fujinaga
幸作 藤永
Kentaro Suzuki
賢太郎 鈴木
Motoyasu Miyao
元泰 宮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2004279180A priority Critical patent/JP2005129513A/en
Publication of JP2005129513A publication Critical patent/JP2005129513A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal reform type fuel cell power generation system achieving a high power generation efficiency by reducing the temperature distribution produced at a power generation part of a cylindrical fuel cell assembly during power generation. <P>SOLUTION: The fuel cell power generation system comprises an assembly of cylindrical fuel cells composed of a porous supporting tube, an air electrode, a solid oxide, a fuel electrode and an inter connector; a heat insulating board disposed around the assembly of the fuel cell; and a metal casing surrounding around the board, and has a fuel flow path for feeding fuel to a fuel electrode. The flow path is composed of a main flow path directly feeding the fuel from a just beneath part of the fuel cell to the fuel electrode of the fuel cell and a bypass fuel flow path, the bypass fuel flow path is disposed between the board and the casing, and a fuel feeding port from the bypass fuel flow path to the assembly is disposed on the board. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は燃料電池発電システムに関し、さらに詳細には高温型の直接内部改質式燃料電池発電システムに関する。   The present invention relates to a fuel cell power generation system, and more particularly to a high temperature direct internal reforming fuel cell power generation system.

筒状固体酸化物形燃料電池セルは、多孔質支持管−空気極−固体酸化物−燃料極−インターコネクタで構成される。なお、空気極が多孔質支持管を兼用する場合もある。燃料電池発電システムにおいては、燃料電池セルは燃料電池容器に収納されている。燃料電池セルの外側の燃料極には燃料ガスラインから燃料ガスが供給される。燃料電池セルの内側には空気導入管が挿入されており、空気分配器を介して酸化剤ガスが供給される。
燃料ガスには、水素ガスを用いることがもっとも好適であるが、天然ガス、プロパンガスなどの炭化水素系燃料ガスを改質器などによって水素リッチガスに転換して導入されることが多い。一方酸化剤ガスとしては、酸素ガスを用いることがもっとも好適であるが、入手性の問題などから一般的には空気が用いられる。このようにして燃料極側に燃料ガスが、空気極側に酸化剤ガスが供給されると、電解質の両側において電気化学反応が起こり電力と熱と水を発生する。この反応は水の電気分解の逆反応である。
The cylindrical solid oxide fuel cell is composed of a porous support tube-air electrode-solid oxide-fuel electrode-interconnector. In some cases, the air electrode also serves as a porous support tube. In the fuel cell power generation system, the fuel cell is housed in a fuel cell container. Fuel gas is supplied from the fuel gas line to the fuel electrode outside the fuel cell. An air introduction pipe is inserted inside the fuel battery cell, and an oxidant gas is supplied through the air distributor.
Although hydrogen gas is most preferably used as the fuel gas, it is often introduced by converting a hydrocarbon-based fuel gas such as natural gas or propane gas into a hydrogen-rich gas by a reformer or the like. On the other hand, oxygen gas is most preferably used as the oxidant gas, but air is generally used because of availability problems. When the fuel gas is supplied to the fuel electrode side and the oxidant gas is supplied to the air electrode side in this way, an electrochemical reaction occurs on both sides of the electrolyte to generate electric power, heat, and water. This reaction is the reverse reaction of water electrolysis.

筒状固体酸化物形燃料電池による発電システムは、通常数十本から数百本のセルを電気的に接続し集合化して構成される。従来の内部改質式燃料電池発電システムを図4に示す。複数の筒状燃料電池セル1が接合された集合体は断熱ボード2によって囲まれ、さらにその外側を金属ケーシング3によって囲まれている。断熱が不十分な場合はこの金属ケーシング3のさらに外側も断熱ボードによって囲まれ保温される(図示しない)。各筒状燃料電池セル間の電気的接触を保つため外側からプレスする機構を持つ方が望ましい。
一方、高温型である固体酸化物形燃料電池の特徴として、その運転温度を利用して電池自身で水蒸気改質反応を起こし、都市ガスやLPG等の炭化水素から直接水素を生成させることができる点が上げられる。したがって、燃料ガスとして未改質、または部分的に改質されたガスを直接筒状燃料電池集合体に供給して発電を行うことが可能である。この方式は内部改質方式と呼ばれる。水蒸気改質反応は吸熱反応であるため、電池反応からの発熱を有効利用できる。また、電池反応で生成した水(水蒸気)も改質反応に利用することができる。図4においては、燃料ガス入口5から予熱された、未改質、または部分的に改質された燃料が供給され、上部から空気分配器と空気導入管を介して酸化剤ガスが供給される(図示しない)。
A power generation system using a cylindrical solid oxide fuel cell is usually configured by electrically connecting and collecting tens to hundreds of cells. A conventional internal reforming fuel cell power generation system is shown in FIG. The assembly in which the plurality of cylindrical fuel cells 1 are joined is surrounded by a heat insulating board 2 and further surrounded by a metal casing 3. When the heat insulation is insufficient, the outer side of the metal casing 3 is also surrounded by a heat insulation board and kept warm (not shown). It is desirable to have a mechanism for pressing from the outside in order to maintain electrical contact between the cylindrical fuel cells.
On the other hand, as a feature of a solid oxide fuel cell that is a high-temperature type, it is possible to generate hydrogen directly from hydrocarbons such as city gas and LPG by using the operating temperature to cause a steam reforming reaction in the cell itself. Points are raised. Therefore, it is possible to perform power generation by supplying unreformed or partially reformed gas as fuel gas directly to the cylindrical fuel cell assembly. This method is called an internal reforming method. Since the steam reforming reaction is an endothermic reaction, the heat generated from the battery reaction can be used effectively. Moreover, water (steam) generated by the battery reaction can also be used for the reforming reaction. In FIG. 4, the preheated, unreformed or partially reformed fuel is supplied from the fuel gas inlet 5, and the oxidant gas is supplied from above through the air distributor and the air introduction pipe. (Not shown).

実際の発電状態においては筒状燃料電池集合体の発電部分において温度分布が生じ、セル性能を十分に発揮できないという問題があった。通常、燃料電池にはその性能を最大限に発揮するのに最適な温度領域がある。例えば、ジルコニアを電解質として用いた固体酸化物燃料電池においてはその範囲は900〜950℃程度である。これより高温になると発電性能ほとんど向上せず、むしろ、セル本体や周辺材料に高温によるダメージを与える、これより低い温度では発電性能が十分発揮できない。しかしながら、セルを集合化した場合、セル全体をこの温度範囲に制御するのは困難で、前記の筒状燃料電池集合体においては燃料の流れ方向を基準に述べると、燃料ガスと酸化剤ガスの供給条件に大きく影響されるが、燃料入口と出口部では低く、途中の中央部周辺で最高温度になるという傾向が一般的である。   In an actual power generation state, there is a problem that temperature distribution occurs in the power generation portion of the cylindrical fuel cell assembly, and the cell performance cannot be fully exhibited. Normally, a fuel cell has a temperature range that is optimal for maximizing its performance. For example, in a solid oxide fuel cell using zirconia as an electrolyte, the range is about 900 to 950 ° C. When the temperature is higher than this, the power generation performance is hardly improved. Rather, the cell main body and surrounding materials are damaged by the high temperature, and the power generation performance cannot be sufficiently exhibited at a temperature lower than this. However, when the cells are assembled, it is difficult to control the entire cell within this temperature range. In the cylindrical fuel cell assembly described above, the fuel flow direction and the oxidant gas flow are described based on the fuel flow direction. Although it is greatly influenced by the supply conditions, it is generally low at the fuel inlet and outlet and tends to reach a maximum temperature around the middle.

特に内部改質方式では、水蒸気改質反応は筒状燃料電池集合体の燃料入口でかなり進行し、燃料入り口部の温度がさらに低くなってしまい、筒状燃料電池集合体の発電部分の温度分布をさらに大きくするなどの問題があった
この対策として、燃料極の厚さを燃料ガス入口側で薄く、燃料ガス出口に近づくにつれて厚くし、電極の改質性能を入口側で低く、出口側で高くする例がある(例えば、特許文献1参照)。この例は平板型燃料電池の例であるが、筒状燃料電池でも適用可能である。しかしながら、このようなセルを製造するには製造工程の複雑化をまねくという問題があった。また、セルの厚みが部分的に異なることにより、積層する場合も困難が生じるという問題もあった。
Particularly in the internal reforming method, the steam reforming reaction proceeds considerably at the fuel inlet of the cylindrical fuel cell assembly, the temperature of the fuel inlet becomes even lower, and the temperature distribution of the power generation part of the cylindrical fuel cell assembly As a countermeasure against this problem, the thickness of the fuel electrode is reduced on the fuel gas inlet side and increased as it approaches the fuel gas outlet, and the electrode reforming performance is lower on the inlet side and on the outlet side. There is an example of making it high (see, for example, Patent Document 1). Although this example is an example of a flat plate fuel cell, it is also applicable to a cylindrical fuel cell. However, manufacturing such a cell has a problem in that the manufacturing process becomes complicated. In addition, there is a problem that difficulty arises even when the cells are stacked due to partial differences in cell thickness.

また、その他の方法として、集合化したセル間に炭化水素燃料を水蒸気改質するための反応管を設ける方法がある(例えば、特許文献2参照)。この例では、反応管の管壁の厚みを調整し、高温となる部分を効果的に冷却するように工夫されている。しかしながら、このような方法では発電システムの複雑化と大型化をまねくという問題があった。
特開平6−342663号公報(第1図) 特開2003−115307号公報(第1図)
As another method, there is a method of providing a reaction tube for steam reforming hydrocarbon fuel between the assembled cells (see, for example, Patent Document 2). In this example, the thickness of the tube wall of the reaction tube is adjusted so as to effectively cool the high temperature portion. However, such a method has a problem that the power generation system becomes complicated and large.
JP-A-6-342663 (FIG. 1) JP 2003-115307 A (FIG. 1)

本発明は、上記問題を解決するためになされたものであり、本発明の課題は、燃料電池発電システムの発電状態においては、筒状燃料電池集合体の発電部分において燃料電池下部が低温になりすぎるような温度分布が生じ、セル性能が十分に発揮できないということである。内部改質方式を採用した場合この温度分布はさらに大きくなる傾向にあった。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to lower the temperature of the lower part of the fuel cell in the power generation part of the cylindrical fuel cell assembly in the power generation state of the fuel cell power generation system. This means that the temperature distribution is too high and the cell performance cannot be fully exhibited. When the internal reforming method was adopted, this temperature distribution tended to be larger.

上記課題を解決するために、本発明では多孔質支持管−空気極−固体酸化物−燃料極−インターコネクタで構成される筒状燃料電池セルの集合体と、前記筒状燃料電池セルの集合体周囲に配した断熱ボードと、前記断熱ボード周囲を囲む金属ケーシングとで構成され、前記燃料極に燃料を供給するための燃料流路を備えた燃料電池発電システムにおいて、前記流路は筒状燃料電池セルの直下部から前記筒状燃料電池セルの燃料極へ直接供給する主流路と、バイパス流路とからなり、前記バイパス燃料流路は前記断熱ボードと前記金属ケーシングの間に設けられ、前記バイパス燃料流路から筒状燃料電池集合体への燃料供給口が前記断熱ボードに設けられていることを特徴とする燃料電池発電システムを提供する。これにより、セルの下部が低温になりすぎるのを防止すると同時に、セルの中央部〜上部を冷却して温度分布を小さくすることができる。   In order to solve the above problems, in the present invention, an assembly of cylindrical fuel cells composed of a porous support tube-air electrode-solid oxide-fuel electrode-interconnector, and an assembly of the cylindrical fuel cells A fuel cell power generation system comprising a heat insulating board disposed around the body and a metal casing surrounding the heat insulating board, and having a fuel flow path for supplying fuel to the fuel electrode. A main flow path that directly supplies the fuel electrode of the cylindrical fuel battery cell from directly below the fuel battery cell, and a bypass flow path, the bypass fuel flow path is provided between the heat insulation board and the metal casing, A fuel cell power generation system is provided in which a fuel supply port from the bypass fuel flow path to a tubular fuel cell assembly is provided in the heat insulation board. As a result, the lower part of the cell can be prevented from becoming too low, and at the same time, the central part to the upper part of the cell can be cooled to reduce the temperature distribution.

本発明の好ましい態様においては、前記燃料電池発電システムにおいて、断熱ボードに設けられた供給口内の通気抵抗を、供給口以外へのガス流路の通気抵抗よりも低くする。これによりバイパス燃料流路を通過してきたガスを、より多くセルの高温部に流すことができる。 In a preferred aspect of the present invention, in the fuel cell power generation system, the ventilation resistance in the supply port provided in the heat insulation board is made lower than the ventilation resistance of the gas flow path other than the supply port. As a result, more gas that has passed through the bypass fuel flow path can be caused to flow to the high temperature portion of the cell.

本発明の好ましい態様においては、前記バイパス燃料流路の前記供給口より下流にガス封止部を備える。バイパス燃料流路を通過してきた燃料ガスを無駄なく高温部に供給できる。 In a preferred aspect of the present invention, a gas sealing portion is provided downstream of the supply port of the bypass fuel flow path. The fuel gas that has passed through the bypass fuel flow path can be supplied to the high temperature portion without waste.

本発明の好ましい態様においては、前記バイパス燃料流路の前記供給口より下流で断熱ボードと金属ケーシング間の隙間を狭めたことにより、バイパス燃料流路を通過してきた燃料ガスを無駄なく高温部に供給できる。 In a preferred aspect of the present invention, by narrowing the gap between the heat insulation board and the metal casing downstream from the supply port of the bypass fuel flow path, the fuel gas that has passed through the bypass fuel flow path is efficiently used as a high temperature part. Can supply.

本発明の好ましい態様においては、筒状燃料電池セルの集合体周囲に配した断熱ボードの外側に溝が刻まれたことにより、高温部冷却用のバイパス燃料流路を容易に形成することができる。 In a preferred embodiment of the present invention, a groove is carved on the outer side of the heat insulation board disposed around the assembly of cylindrical fuel cells, so that a bypass fuel flow path for cooling the high temperature part can be easily formed. .

本発明の好ましい態様においては、燃料の一部を燃料電池に供給するための断熱ボードに設けた供給部の位置が、セルの略中央部にあることにより、高温部を効果的に冷却することができる。略中央部とは燃料電池集合体を燃料流れ方向に4等分したときに両端をのぞいた部分であればよい。
In a preferred embodiment of the present invention, the position of the supply portion provided on the heat insulation board for supplying a part of the fuel to the fuel cell is in the substantially central portion of the cell, thereby effectively cooling the high temperature portion. Can do. The substantially central portion may be a portion except both ends when the fuel cell assembly is divided into four equal parts in the fuel flow direction.

以上の説明から明らかなように、本発明の燃料電池発電システムによれば、バイパス燃料流路を設けて筒状燃料電池の集合体の高温部に未改質燃料を含むガスを供給することにより、発電部での温度分布を減少させることができ、発電システムの効率を高めることができる。 As is clear from the above description, according to the fuel cell power generation system of the present invention, by providing the bypass fuel flow path and supplying the gas containing unreformed fuel to the high temperature portion of the assembly of cylindrical fuel cells. The temperature distribution in the power generation unit can be reduced, and the efficiency of the power generation system can be increased.

以下に図面を参照して本発明をより具体的に説明する。
図1に示すように、複数の筒状燃料電池セル1が接合された集合体は断熱ボード2によって囲まれ、さらにその外側を金属ケーシング3によって囲まれている。断熱が不十分な場合はこの金属ケーシング3のさらに外側も断熱ボードによって囲まれ保温される(図示しない)。各筒状燃料電池セル間の電気的接触を保つため外側からプレスする機構を持つ方が望ましい。下部からは、燃料ガス入口5から予熱された未改質、または部分的に改質された燃料が供給され、上部から空気分配器と空気導入管を介して酸化剤ガスが供給される(図示しない)。燃料ガスの一部は断熱ボード2と金属ケーシング3によって形成された底部と側部の隙間、燃料ガスバイパス流路6を通り、底部を通過した後は燃料電池集合体部を通る燃料と平行に移動する。そして、燃料電池集合体部の温度が最も高い位置の近傍の断熱ボードの供給口から燃料電池集合体部に入り込む。温度の高い部分の範囲が広い場合は供給口の位置を分散させても良い。このような供給口の位置は燃料電池集合体の発電部分のうち、燃料流れ方向に対し、発電部分の燃料入口を基点として1/4から3/4の間にあることが望ましい。これより図上での上部への流れはガス封止部4によって止められる。途中から燃料電池集合体部に入った燃料は高温部で水蒸気改質され、その部分を冷却することになり、全体の温度分布を小さくする。この効果は、断熱ボードに最も近いセルで最大で、内側のセルにはガスの拡散と熱移動により効果が波及する。
Hereinafter, the present invention will be described more specifically with reference to the drawings.
As shown in FIG. 1, the assembly in which a plurality of cylindrical fuel cells 1 are joined is surrounded by a heat insulating board 2, and the outside thereof is surrounded by a metal casing 3. When the heat insulation is insufficient, the outer side of the metal casing 3 is also surrounded by a heat insulation board and kept warm (not shown). It is desirable to have a mechanism for pressing from the outside in order to maintain electrical contact between the cylindrical fuel cells. From the lower part, unheated or partially reformed fuel preheated from the fuel gas inlet 5 is supplied, and oxidant gas is supplied from the upper part through an air distributor and an air introduction pipe (illustrated). do not do). A part of the fuel gas passes through the gap between the bottom and the side formed by the heat insulating board 2 and the metal casing 3 and the fuel gas bypass passage 6, and after passing through the bottom, is parallel to the fuel passing through the fuel cell assembly. Moving. Then, the fuel cell assembly part enters the fuel cell assembly part from the supply port of the heat insulation board near the position where the temperature of the fuel cell assembly part is the highest. When the range of the high temperature part is wide, the positions of the supply ports may be dispersed. The position of such a supply port is preferably between 1/4 and 3/4 with respect to the fuel flow direction in the power generation portion of the fuel cell assembly, with the fuel inlet of the power generation portion as a base point. Thus, the upward flow in the drawing is stopped by the gas sealing portion 4. The fuel that has entered the fuel cell assembly part in the middle is steam reformed in the high temperature part, and this part is cooled, thereby reducing the overall temperature distribution. This effect is greatest in the cell closest to the heat insulation board, and the effect is spread to the inner cell due to gas diffusion and heat transfer.

断熱ボード2と金属ケーシング3によって形成された底部と側部の隙間の確保のために、隙間の一部に断熱材板や金属板により形成されたスペーサを入れても良い。これらスペーサの位置や幅でバイパス燃料ガスの流量を制御することが可能である。同様に隙間の確保のために、隙間の一部や全体に金属性の波板等を入れても良い。また、これらを併用しても良い。   In order to secure a gap between the bottom and the side formed by the heat insulating board 2 and the metal casing 3, a spacer formed of a heat insulating material plate or a metal plate may be inserted in a part of the gap. It is possible to control the flow rate of the bypass fuel gas by the position and width of these spacers. Similarly, in order to secure the gap, a metallic corrugated plate or the like may be inserted in a part or the whole of the gap. These may be used in combination.

図1に示した例では燃料ガスバイパス流路から燃料電池集合体部へのガス通路は断熱ボードに開けられた穴であるが、この部分にのみガス透過性の高い断熱ボード等を設置しても良い。   In the example shown in FIG. 1, the gas passage from the fuel gas bypass passage to the fuel cell assembly is a hole formed in the heat insulation board, but a heat insulation board having high gas permeability is installed only in this portion. Also good.

図2は、バイパス燃料流路を止めるために断熱ボード2と金属ケーシング3間の隙間を狭め、金属ケーシングを直接断熱ボードに押し付けるようにした燃料電池発電システムの例である。図2においては金属ケーシング3側に段差をつける加工を行っているが、断熱ボード2側に逆の段差をつけても、または両方法を併用しても良い。
図1の例と同様に隙間の確保のために、隙間の一部に断熱材板や金属板により形成されたスペーサを入れても良い。スペーサの位置や幅でバイパス燃料ガスの流量を制御することが可能である。同様に隙間の確保のために、隙間の一部や全体に金属性の波板等を入れても良い。また、これらを併用しても良い。
または、金属ケーシングの加工により溝を形成し、断熱ボードと金属ケーシング間の一部をバイパス燃料ガスが通過するようにしても良い。
FIG. 2 shows an example of a fuel cell power generation system in which the gap between the heat insulation board 2 and the metal casing 3 is narrowed to stop the bypass fuel flow path, and the metal casing is pressed directly against the heat insulation board. In FIG. 2, the metal casing 3 side is processed to have a step, but the heat insulating board 2 side may have a reverse step, or both methods may be used in combination.
As in the example of FIG. 1, a spacer formed of a heat insulating material plate or a metal plate may be inserted in a part of the gap in order to secure the gap. The flow rate of the bypass fuel gas can be controlled by the position and width of the spacer. Similarly, in order to secure the gap, a metallic corrugated plate or the like may be inserted in a part or the whole of the gap. These may be used in combination.
Alternatively, the groove may be formed by processing the metal casing so that the bypass fuel gas passes through a part between the heat insulating board and the metal casing.

図3は、バイパス燃料流路が筒状燃料電池セルの集合体周囲に配した断熱ボード2の外側に刻まれた溝である燃料電池発電システムの例である。図において溝部分は断熱ボード2の底部から側部にかけて点線で示されている。溝の位置や深さでバイパス燃料ガスの流量を制御することが可能である。
FIG. 3 is an example of a fuel cell power generation system in which the bypass fuel flow path is a groove carved out of the heat insulation board 2 arranged around the assembly of cylindrical fuel cells. In the figure, the groove portion is indicated by a dotted line from the bottom to the side of the heat insulating board 2. The flow rate of the bypass fuel gas can be controlled by the position and depth of the groove.

本発明の燃料電池発電システムの一実施例を略示する図である。1 is a diagram schematically illustrating an embodiment of a fuel cell power generation system according to the present invention. 本発明の燃料電池発電システムの他の一実施例を略示する図である。FIG. 6 is a diagram schematically showing another embodiment of the fuel cell power generation system of the present invention. 本発明の燃料電池発電システムの他の一実施例を略示する図である。FIG. 6 is a diagram schematically showing another embodiment of the fuel cell power generation system of the present invention. 従来の燃料電池発電システムの一実施例を略示する図である。It is a figure which briefly shows one Example of the conventional fuel cell power generation system. 本発明の燃料電池発電システムの燃料供給口と付近の燃料ガス流れを略示する図である。It is a figure which shows the fuel supply port of the fuel cell power generation system of this invention, and the fuel gas flow of the vicinity schematically.

符号の説明Explanation of symbols

1 筒状燃料電池セル
2 断熱ボード
3 金属ケーシング
4 ガス封止部
5 未改質、または部分的に改質された燃料ガス入口
6 未改質、または部分的に改質された燃料ガスバイパス流路
7 燃焼排気ガス出口
8 燃料供給口
9 通気抵抗が小さい部分
10 通気抵抗が大きい部分
11 燃料ガス
12 発電部分
DESCRIPTION OF SYMBOLS 1 Tubular fuel cell 2 Heat insulation board 3 Metal casing 4 Gas sealing part 5 Unreformed or partially reformed fuel gas inlet 6 Unreformed or partially reformed fuel gas bypass flow Road 7 Combustion exhaust gas outlet 8 Fuel supply port 9 Portion with low ventilation resistance 10 Portion with high ventilation resistance 11 Fuel gas 12 Power generation portion

Claims (6)

多孔質支持管―空気極−固体酸化物−燃料極−インターコネクタで構成される筒状燃料電池セルの集合体と、前記筒状燃料電池セルの集合体周囲に配した断熱ボードと、前記断熱ボード周囲を囲む金属ケーシングとで構成され、前記燃料極に燃料を供給するための燃料流路を備えた燃料電池発電システムにおいて、
前記流路は筒状燃料電池セルの直下部から前記筒状燃料電池セルの燃料極へ直接供給する主流路と、バイパス流路とからなり、
前記バイパス燃料流路は前記断熱ボードと前記金属ケーシングの間に設けられ、前記バイパス燃料流路から筒状燃料電池集合体への燃料供給口が前記断熱ボードに設けられていることを特徴とする燃料電池発電システム。
An assembly of cylindrical fuel cells composed of a porous support tube-air electrode-solid oxide-fuel electrode-interconnector, a heat insulation board arranged around the assembly of the cylindrical fuel cells, and the heat insulation In a fuel cell power generation system comprising a metal casing that surrounds the periphery of the board, and having a fuel flow path for supplying fuel to the fuel electrode,
The flow path consists of a main flow path that directly supplies the fuel electrode of the cylindrical fuel battery cell from directly below the cylindrical fuel battery cell, and a bypass flow path,
The bypass fuel flow path is provided between the heat insulation board and the metal casing, and a fuel supply port from the bypass fuel flow path to the tubular fuel cell assembly is provided in the heat insulation board. Fuel cell power generation system.
前記燃料電池発電システムにおいて、断熱ボードに設けられた供給口内の通気抵抗が、供給口以外へのガス流路の通気抵抗よりも低いことを特徴とする請求項1に記載の燃料電池発電システム。 2. The fuel cell power generation system according to claim 1, wherein a ventilation resistance in a supply port provided in the heat insulating board is lower than a ventilation resistance of a gas flow path other than the supply port in the fuel cell power generation system. 前記供給口内の通気抵抗を相対的に低くするために、前記バイパス燃料流路の前期供給口より下流にガス封止部を備えたことを特徴とする請求項1または請求項2に記載の燃料電池発電システム。 3. The fuel according to claim 1, wherein a gas sealing portion is provided downstream of the previous-stage supply port of the bypass fuel flow path in order to make the ventilation resistance in the supply port relatively low. Battery power generation system. 前記供給口内の通気抵抗を相対的に低くするために、前記バイパス燃料流路の前記供給口より下流で断熱ボードと金属ケーシング間の隙間を狭めたことを特徴とする請求項1または請求項2に記載の燃料電池発電システム。 The gap between the heat insulation board and the metal casing is narrowed downstream of the supply port of the bypass fuel flow path in order to relatively reduce the ventilation resistance in the supply port. The fuel cell power generation system described in 1. 前記バイパス燃料流路が前記断熱ボードの外側に刻まれた溝であることを特徴とする請求項1または請求項2に記載の燃料電池発電システム。 3. The fuel cell power generation system according to claim 1, wherein the bypass fuel flow path is a groove formed on an outside of the heat insulation board. 燃料の一部を燃料電池に供給するための断熱ボードに設けた供給口の位置が、筒状燃料電池集合体の燃料流れ方向に対し、略中央部にあることを特徴とする請求項1または請求項2に記載の燃料電池発電システム。
The position of the supply port provided in the heat insulation board for supplying a part of fuel to the fuel cell is substantially in the center with respect to the fuel flow direction of the cylindrical fuel cell assembly. The fuel cell power generation system according to claim 2.
JP2004279180A 2003-09-30 2004-09-27 Fuel cell power generation system Pending JP2005129513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279180A JP2005129513A (en) 2003-09-30 2004-09-27 Fuel cell power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003342360 2003-09-30
JP2004279180A JP2005129513A (en) 2003-09-30 2004-09-27 Fuel cell power generation system

Publications (1)

Publication Number Publication Date
JP2005129513A true JP2005129513A (en) 2005-05-19

Family

ID=34655725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279180A Pending JP2005129513A (en) 2003-09-30 2004-09-27 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2005129513A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252916A (en) * 2005-03-10 2006-09-21 Toto Ltd Solid oxide type fuel cell
JP2008171745A (en) * 2007-01-15 2008-07-24 Casio Comput Co Ltd Radiation prevention film, reactor, fuel cell device, electronic equipment, heat reflection film, and heat insulated container
US7927751B2 (en) 2006-01-30 2011-04-19 Hitachi, Ltd. Fuel cell power system
JP2011528845A (en) * 2008-07-23 2011-11-24 ダイムラー・アクチェンゲゼルシャフト Humidifier for humidifying fluid in fuel cell system
KR101253849B1 (en) * 2010-12-28 2013-04-12 주식회사 포스코 Cell of fuel cell stack
JP2018137092A (en) * 2017-02-21 2018-08-30 三菱日立パワーシステムズ株式会社 Fuel cell and combined power generating system, and operational method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252916A (en) * 2005-03-10 2006-09-21 Toto Ltd Solid oxide type fuel cell
US7927751B2 (en) 2006-01-30 2011-04-19 Hitachi, Ltd. Fuel cell power system
JP2008171745A (en) * 2007-01-15 2008-07-24 Casio Comput Co Ltd Radiation prevention film, reactor, fuel cell device, electronic equipment, heat reflection film, and heat insulated container
JP2011528845A (en) * 2008-07-23 2011-11-24 ダイムラー・アクチェンゲゼルシャフト Humidifier for humidifying fluid in fuel cell system
US8968944B2 (en) 2008-07-23 2015-03-03 Daimler Ag Humidifier device for humidifying a fluid in a fuel cell system
KR101253849B1 (en) * 2010-12-28 2013-04-12 주식회사 포스코 Cell of fuel cell stack
JP2018137092A (en) * 2017-02-21 2018-08-30 三菱日立パワーシステムズ株式会社 Fuel cell and combined power generating system, and operational method thereof

Similar Documents

Publication Publication Date Title
US6811913B2 (en) Multipurpose reversible electrochemical system
US20110076573A1 (en) Solid Oxide Type Fuel Cell and Operating Method Thereof
JP5109252B2 (en) Fuel cell
JP2007128717A (en) Operation method of fuel cell
JP2006269419A (en) Solid oxide type fuel cell and operation method thereof
JP4956946B2 (en) Fuel cell
JP2011129489A (en) Fuel cell module
JP6247671B2 (en) Fuel cell module
JP2017199599A (en) High-temperature operation fuel cell and fuel cell system
JP5551495B2 (en) Fuel cell module
JP2006269332A (en) Solid oxide type fuel cell system
JP2014067669A (en) Fuel cell module
JP2006236599A (en) Water recovery method for fuel cell power generator
JP2009099267A (en) Solid oxide fuel cell module
JP2007080761A (en) Fuel cell and its starting method
JP5166723B2 (en) Power generator
JP2005129513A (en) Fuel cell power generation system
JP2005350345A (en) Reforming device and fuel cell system
JP2004362800A (en) Fuel cell
US20080160364A1 (en) Solid oxide fuel cell module
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JP2007005134A (en) Steam generator and fuel cell
JP2009245627A (en) Solid oxide fuel cell
JP2006054134A (en) Solid oxide fuel cell
JP4696495B2 (en) Fuel cell power generator