JP2005129481A - Heat resistant lithium battery - Google Patents

Heat resistant lithium battery Download PDF

Info

Publication number
JP2005129481A
JP2005129481A JP2004053327A JP2004053327A JP2005129481A JP 2005129481 A JP2005129481 A JP 2005129481A JP 2004053327 A JP2004053327 A JP 2004053327A JP 2004053327 A JP2004053327 A JP 2004053327A JP 2005129481 A JP2005129481 A JP 2005129481A
Authority
JP
Japan
Prior art keywords
battery
compound
lithium battery
boiling point
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004053327A
Other languages
Japanese (ja)
Other versions
JP4668540B2 (en
Inventor
Satoru Fukuoka
悟 福岡
Seiji Morita
誠二 森田
Nobuhiro Nishiguchi
信博 西口
Satoru Naruse
悟 成瀬
Masayuki Muraki
将之 村木
Masahiro Imanishi
雅弘 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004053327A priority Critical patent/JP4668540B2/en
Publication of JP2005129481A publication Critical patent/JP2005129481A/en
Application granted granted Critical
Publication of JP4668540B2 publication Critical patent/JP4668540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium battery capable of improving long-term reliability without damaging an electrochemical property like heat resistance or a discharging property even in a severe high temperature environment. <P>SOLUTION: The lithium battery has a positive electrode, a negative electrode, a separator interposed between the electrodes, and nonaqueous electrolyte liquid containing a nonaqueous solvent and electrolyte salt. The nonaqueous solvent contains at least one kind of compound having a boiling point of 200°C or higher, and at least one kind of compound having a boiling point of lower than 200°C out of the compounds shown by general formula (1): X-(O-C<SB>2</SB>H<SB>4</SB>)<SB>n</SB>-O-Y äin the formula, X, Y denote an alkyl group (C1 to C4) independent from each other, n is 1 to 5}. A ratio of the compound shown by general formula (1) to the sum of the total volume in the nonaqueous solvent at 23°C is not less than 95% and not more than 100%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐熱性の向上を目的とした、リチウム電池の電解質の改良に関する。   The present invention relates to an improvement in an electrolyte of a lithium battery for the purpose of improving heat resistance.

従来のリチウム電池は、約85℃までの温度環境であれば使用可能であるが、自動車の電装部品(タイヤ空気圧計、自動料金収受システムの車載器等)やFA(ファクトリーオートメーション)機器などに組み込まれた電池は、しばしば100℃〜150℃を超える過酷な温度環境に晒される。
また、生産効率を高めるために、電子機器への電池の組み込みに際して、リフローはんだ付け法が用いられるが、この方法によると短時間ではあるが、電池温度が200〜260℃にまで到達する。このためこのような過酷な温度条件の下でも電池がふくれたり、電池性能が劣化したりしない、耐熱信頼性に優れたリチウム電池が強く望まれている。
Conventional lithium batteries can be used in a temperature environment up to about 85 ° C, but they are incorporated in automobile electrical components (tire pressure gauges, on-board equipment for automatic toll collection systems, etc.) and factory automation (FA) equipment. The batteries are often exposed to harsh temperature environments exceeding 100 ° C to 150 ° C.
Further, in order to increase production efficiency, a reflow soldering method is used when a battery is incorporated in an electronic device. According to this method, the battery temperature reaches 200 to 260 ° C. for a short time. For this reason, there is a strong demand for a lithium battery with excellent heat resistance reliability that does not swell or deteriorate battery performance even under such severe temperature conditions.

ところで、リチウム二次電池の安全を高める技術としては、ジエチレングリコールジメチルエーテルやトリエチレングリコールジメチルエーテルを電解液の主溶媒とする技術が提案されている(例えば、特許文献1参照。)。   By the way, as a technique for improving the safety of the lithium secondary battery, a technique using diethylene glycol dimethyl ether or triethylene glycol dimethyl ether as a main solvent of an electrolytic solution has been proposed (for example, see Patent Document 1).

また、リチウム二次電池の放電特性を高め、さらに電池に高温耐性を付加する技術としては、高い沸点をもつブチルジグライム(ジエチレングリコールジブチルエーテル)を主溶媒とする電解液を用い、耐熱性樹脂であるポリフェニレンスルフィドからなるセパレータやガスケットを用いる技術が提案されている(例えば、特許文献2参照。)。   In addition, as a technology for improving the discharge characteristics of lithium secondary batteries and adding high temperature resistance to the batteries, an electrolytic solution containing butyl diglyme (diethylene glycol dibutyl ether) having a high boiling point as a main solvent is used. A technique using a separator or gasket made of a certain polyphenylene sulfide has been proposed (for example, see Patent Document 2).

また、非水電解質にカルボン酸やカルボン酸エステルを添加する技術が提案されている(例えば、特許文献3、4参照。)。   Moreover, the technique which adds carboxylic acid and carboxylic acid ester to a nonaqueous electrolyte is proposed (for example, refer patent document 3, 4).

特開平1−281677号公報(第1−2頁)Japanese Patent Laid-Open No. 1-281677 (page 1-2) 特開2002−298911号公報(第2−3頁)JP 2002-298911 A (page 2-3) 特開平8−321311号公報(第1−2頁)JP-A-8-321311 (page 1-2) 特開平9−147910号公報(第2−3頁)JP-A-9-147910 (page 2-3)

しかしながら、特許文献1に記載の技術を用いた電池は、耐熱性の低い(融点:約150℃)ポリプロピレン製のセパレータを用いているため、耐熱性が十分でない。このため、この電池は、上述した150℃前後の温度に対する長期安定性を必要とする分野で、あるいは最低でも200℃程度の温度に晒されるリフローはんだ付け用としては使用することができない。   However, since the battery using the technique described in Patent Document 1 uses a polypropylene separator having a low heat resistance (melting point: about 150 ° C.), the heat resistance is not sufficient. For this reason, this battery cannot be used in the field requiring long-term stability to the above-mentioned temperature of about 150 ° C. or for reflow soldering which is exposed to a temperature of about 200 ° C. at the minimum.

また、特許文献2に記載の技術を用いた電池は、耐熱性に優れるものの、高粘度のブチルジグライム(ジエチレングリコールジブチルエーテル)を主溶媒としているため、非水電解液の粘度が高い。このため、電解液のイオン伝導度が低く、放電特性が悪いという問題がある。   Moreover, although the battery using the technique of patent document 2 is excellent in heat resistance, since the high viscosity butyl diglyme (diethylene glycol dibutyl ether) is used as the main solvent, the viscosity of a non-aqueous electrolyte is high. For this reason, there exists a problem that the ionic conductivity of electrolyte solution is low and discharge characteristics are bad.

また、特許文献3に記載の技術を用いた電池は、カルボン酸エステルと、非水電解液中の溶媒・溶質及び負極中のリチウムとが反応して、負極表面に被膜が形成され、負極と非水電解液との反応が起こりにくくなるので、保存特性が向上するとされる。しかし、この電池は、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネートよりなる群から選ばれた少なくとも一種の高誘電率溶媒と、1,2−ジメトキシエタンとを体積比で3:7〜7:3の割合で混合した非水溶媒を用いているが、前記高誘電率溶媒は高温条件において負極と反応し、負極表面に抵抗の大きい被膜を形成する。この反応は、高温条件において顕著に現れるが、上記高誘電率溶媒の配合比が30体積%以上と高い割合で含んでいるので、形成される被膜量が過大となる。この被膜によって電池内部抵抗が増大するので、上述した150℃前後の温度に対する長期安定性を必要とする分野で、あるいは最低でも200℃程度の温度に晒されるリフローはんだ付け用には適さない。   Moreover, the battery using the technique described in Patent Document 3 reacts with the carboxylic acid ester, the solvent / solute in the nonaqueous electrolytic solution, and lithium in the negative electrode, and a film is formed on the negative electrode surface. Since the reaction with the non-aqueous electrolyte hardly occurs, the storage characteristics are improved. However, this battery has a volume ratio of at least one high dielectric constant solvent selected from the group consisting of ethylene carbonate, propylene carbonate, and butylene carbonate, and 1,2-dimethoxyethane in a ratio of 3: 7 to 7: 3. The high dielectric constant solvent reacts with the negative electrode under high temperature conditions to form a film with high resistance on the surface of the negative electrode. Although this reaction appears conspicuously under high temperature conditions, the amount of the coating film formed becomes excessive because the blending ratio of the high dielectric constant solvent contains a high proportion of 30% by volume or more. Since the internal resistance of the battery is increased by this coating, it is not suitable for the above-described field requiring long-term stability with respect to a temperature of about 150 ° C. or for reflow soldering which is exposed to a temperature of about 200 ° C. at the minimum.

また、特許文献4に記載の技術を用いた電池は、非水電解液に、脂肪族カルボン酸エステル及び/又は鎖状エーテルを1〜8体積%含有することにより、電解液のイオン伝導度が増加し、充放電容量が大きくなるとされる。しかし、この電池は、粘度の高いエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート及びビニレンカーボネートよりなる群から選ばれた少なくとも一種の環状炭酸エステルと、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートを体積比で約1:1で混合した非水溶媒を用いている。このため、上記特許文献3と同様の問題が発生し、上述した150℃前後の温度に対する長期安定性を必要とする分野で、あるいは最低でも200℃程度の温度に晒されるリフローはんだ付け用には適さない。   Moreover, the battery using the technique described in Patent Document 4 contains 1 to 8% by volume of an aliphatic carboxylic acid ester and / or a chain ether in the nonaqueous electrolytic solution, whereby the ionic conductivity of the electrolytic solution is increased. The charge / discharge capacity increases. However, this battery has a volume ratio of at least one cyclic carbonate selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate having high viscosity, and dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. A non-aqueous solvent mixed with 1 is used. For this reason, the same problem as in the above-mentioned Patent Document 3 occurs, and in the field requiring the long-term stability to the above-mentioned temperature of about 150 ° C. or for reflow soldering exposed to a temperature of about 200 ° C. at the minimum. Not suitable.

本発明者らは、上記を踏まえ鋭意検討した結果、耐熱性電池において、目的とする耐熱温度を超える高い沸点をもつ溶媒のみを用いるのがよいという従来の一般的な技術常識に反して、比較的沸点の低い溶媒(沸点200℃未満)である1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等と、比較的沸点の高い溶媒(沸点200℃以上)であるトリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等とを混合して用いることにより、過酷な高温環境においても、充分な安全性が確保でき、しかも放電特性を大幅に向上させることができることを見出した。   As a result of intensive studies based on the above, the present inventors have compared the conventional general technical knowledge that it is preferable to use only a solvent having a high boiling point exceeding the intended heat resistant temperature in the heat resistant battery. 1,2-dimethoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, etc., which are low-boiling solvents (boiling point below 200 ° C.), and triethylene glycol dimethyl ether, tetraethylene, which are relatively high boiling solvents (boiling point 200 ° C. or higher) It has been found that by using a mixture of glycol dimethyl ether, diethylene glycol dibutyl ether, or the like, sufficient safety can be secured even in a severe high temperature environment, and discharge characteristics can be greatly improved.

本発明は、上記知見に基づいて完成されたものであり、優れた耐熱安全性と優れた放電特性を有するリチウム電池を提供することを目的とする。   The present invention has been completed on the basis of the above knowledge, and an object thereof is to provide a lithium battery having excellent heat safety and excellent discharge characteristics.

上記課題を解決するための本発明は、正極と、負極と、前記正負極間に介在されたセパレータと、非水溶媒と電解質塩とを含む非水電解液と、を有するリチウム電池において、前記非水溶媒が、下記一般式(1)で示される化合物のうち、沸点が200℃以上の化合物の少なくとも1種と、下記一般式(1)で示される化合物のうち、沸点が200℃未満の化合物の少なくとも1種と、を含み、非水溶媒中の下記一般式(1)で示される化合物の23℃における合計体積割合が、95%以上100%以下であることを特徴とする。   The present invention for solving the above-described problems is a lithium battery having a positive electrode, a negative electrode, a separator interposed between the positive and negative electrodes, and a non-aqueous electrolyte solution containing a non-aqueous solvent and an electrolyte salt. Among the compounds represented by the following general formula (1), the nonaqueous solvent has a boiling point of less than 200 ° C. among the compounds represented by the following general formula (1) and at least one compound having a boiling point of 200 ° C. or higher. The total volume ratio at 23 ° C. of the compound represented by the following general formula (1) in the non-aqueous solvent is at least 95% and not more than 100%.

〔化1〕
X−(O−C−O−Y (1)
(式中のX、Yはそれぞれ独立して、アルキル基(炭素数1−4)で、nは1−5である。)
[Chemical formula 1]
X- (O-C 2 H 4 ) n -O-Y (1)
(X and Y in the formula are each independently an alkyl group (1 to 4 carbon atoms), and n is 1-5.)

上記構成において、前記一般式(1)で示される化合物のうち、沸点が200℃未満の化合物が1,2−ジメトキシエタンを含み、前記一般式(1)で示される化合物の23℃における合計体積に占める前記沸点が200℃未満の化合物の体積割合が、50%以上60%以下である、とすることができる。   In the above structure, among the compounds represented by the general formula (1), the compound having a boiling point of less than 200 ° C. contains 1,2-dimethoxyethane, and the total volume of the compound represented by the general formula (1) at 23 ° C. The volume ratio of the compound having a boiling point of less than 200 ° C. is 50% or more and 60% or less.

上記構成において、前記一般式(1)で示される化合物のうち、沸点が200℃未満の化合物が1,2−ジメトキシエタン以外の化合物であり、前記一般式(1)で示される化合物の23℃における合計体積に占める前記沸点が200℃未満の化合物の体積割合が、50%以上90%以下である、とすることができる。   In the above structure, among the compounds represented by the general formula (1), the compound having a boiling point of less than 200 ° C. is a compound other than 1,2-dimethoxyethane, and the compound represented by the general formula (1) is 23 ° C. The volume ratio of the compound having a boiling point of less than 200 ° C. in the total volume in may be 50% or more and 90% or less.

上記構成において、前記非水溶媒が副成分として環状炭酸エステル及び/又はラクトンを含む構成とすることができる。   The said structure WHEREIN: The said nonaqueous solvent can be set as the structure which contains cyclic carbonate and / or lactone as a subcomponent.

また、上記本発明のリチウム電池においては、前記電解質塩が、リチウムビス(トリフルオロメタンスルホニル)イミド、またはリチウムビス(ペンタフルオロエタンスルホニル)イミドである構成とすることができる。   In the lithium battery of the present invention, the electrolyte salt may be lithium bis (trifluoromethanesulfonyl) imide or lithium bis (pentafluoroethanesulfonyl) imide.

上記構成において、前記非水電解質は、前記非水溶媒100質量部に対して、カルボン酸、カルボン酸エステル(ラクトンを除く)、無水カルボン酸よりなる群から選択された1以上の化合物を、0.01〜5質量部含む構成とすることができる。   In the above configuration, the non-aqueous electrolyte contains one or more compounds selected from the group consisting of carboxylic acid, carboxylic acid ester (excluding lactone), and carboxylic anhydride with respect to 100 parts by mass of the non-aqueous solvent. It can be set as the structure containing 0.01-5 mass parts.

上記構成によると、前記一般式(1)で表される化合物(以下、エーテル系化合物と称する場合がある)のうち、沸点が200℃未満である化合物は、粘性が比較的低い。このため、これを電解液に含ませると、リチウムイオンの導電性が向上して電池の内部抵抗値が低くなり、電池特性を向上させることができる。   According to the said structure, the compound whose boiling point is less than 200 degreeC among the compounds represented by the said General formula (1) (henceforth an ether type compound) has comparatively low viscosity. For this reason, when this is included in electrolyte solution, the electroconductivity of lithium ion will improve, the internal resistance value of a battery will become low, and a battery characteristic can be improved.

しかしながら、上述した化合物は、沸点が200℃未満であるため、200〜260℃の温度に晒されるリフローはんだ付けにおいては、その一部が揮発して電池内圧を高め、電池がふくれる原因ともなる。しかし、上記構成によると、前記一般式(1)で表される化合物のうち、沸点が200℃以上の化合物が含まれている。この化合物は、粘性が高いが熱に対する安定性に優れるので、沸点が200℃未満である化合物によるリフローはんだ付け時の電池内圧上昇を緩和するように作用して、電池のふくれを小さくする。   However, since the above-mentioned compound has a boiling point of less than 200 ° C., in reflow soldering that is exposed to a temperature of 200 to 260 ° C., a part of the compound volatilizes to increase the internal pressure of the battery and cause the battery to swell. However, according to the said structure, the compound whose boiling point is 200 degreeC or more is contained among the compounds represented by the said General formula (1). Since this compound has high viscosity but is excellent in heat stability, it acts to alleviate an increase in battery internal pressure during reflow soldering by a compound having a boiling point of less than 200 ° C., thereby reducing battery blistering.

また、上述したエーテル系化合物は、従来用いられていたエチレンカーボネート、プロピレンカーボネート等の環状カーボネートよりも電極との反応性が極めて低い。この結果、優れた耐熱安全性と優れた放電特性を有するリチウム電池を実現できる。   Moreover, the ether compound mentioned above has a very low reactivity with an electrode rather than conventionally used cyclic carbonates, such as ethylene carbonate and propylene carbonate. As a result, a lithium battery having excellent heat safety and excellent discharge characteristics can be realized.

なお、本明細書中の体積混合比は全て23℃、1気圧条件下においての値である。   In addition, all the volume mixing ratios in the present specification are values under conditions of 23 ° C. and 1 atm.

ここで、前記一般式(1)を満たす化合物のうちで、最も低沸点である化合物は、nが最も小さく、かつX・Yの炭素数が最も少ない構成を有する化合物である。つまり、前記一般式(1)を満たす化合物のうちで、最も低沸点である化合物は、n=1で、X・Yともにメチル基から構成される、1,2−ジメトキシエタン(DME)である。   Here, among the compounds satisfying the general formula (1), the compound having the lowest boiling point is a compound having a configuration in which n is the smallest and the number of X · Y carbon atoms is the smallest. That is, among the compounds satisfying the general formula (1), the compound having the lowest boiling point is 1,2-dimethoxyethane (DME) in which n = 1 and X and Y are both methyl groups. .

前記一般式(1)で示される化合物のうち、沸点が200℃未満の化合物が1,2−ジメトキシエタン(DME)を含むと、前記DMEの臨界温度が258℃であり、体積混合比が60体積%より多いと、沸点が200℃以上の化合物を混合していても通常のリフローはんだ付け(200−260℃)において電池内圧が過大になり、電池のふくれが大きくなるため好ましくない。また、その体積割合が、50%未満であると、電池の内部抵抗値が高くなり、電池特性を向上させる効果が十分ではない。このため、上記範囲内に規制することが好ましい。   Among the compounds represented by the general formula (1), when a compound having a boiling point of less than 200 ° C. contains 1,2-dimethoxyethane (DME), the critical temperature of the DME is 258 ° C., and the volume mixing ratio is 60 If it is more than volume%, even if a compound having a boiling point of 200 ° C. or higher is mixed, the internal pressure of the battery becomes excessive in normal reflow soldering (200-260 ° C.), and the battery bulge becomes undesirably large. Further, when the volume ratio is less than 50%, the internal resistance value of the battery becomes high, and the effect of improving the battery characteristics is not sufficient. For this reason, it is preferable to restrict within the above range.

前記一般式(1)で示される化合物のうち、1,2−ジメトキシエタン以外の沸点が200℃未満の化合物の臨界温度は260℃よりも高く、体積混合比を1,2−ジメトキシエタンを用いる場合よりも大きくすることができる。しかし、体積混合比が90体積%より多いと、沸点が200℃以上の化合物を混合していても通常のリフローはんだ付け(200−260℃)において電池内圧が過大になり、電池のふくれが大きくなるため好ましくない。また、その体積割合が、50%未満であると、電池の内部抵抗値が高くなり、電池特性を向上させる効果が十分ではない。このため、上記範囲内に規制することが好ましい。   Among the compounds represented by the general formula (1), compounds having a boiling point of less than 200 ° C. other than 1,2-dimethoxyethane have a critical temperature higher than 260 ° C., and 1,2-dimethoxyethane is used as the volume mixing ratio. It can be larger than the case. However, if the volume mixing ratio is more than 90% by volume, even if a compound having a boiling point of 200 ° C. or higher is mixed, the internal pressure of the battery becomes excessive in normal reflow soldering (200-260 ° C.), and the swelling of the battery becomes large. Therefore, it is not preferable. Further, when the volume ratio is less than 50%, the internal resistance value of the battery becomes high, and the effect of improving the battery characteristics is not sufficient. For this reason, it is preferable to restrict within the above range.

また、副成分として環状カーボネートやラクトンを用いると、前記副成分は高温条件における安定性が高いとともに、上記式(1)で示される化合物よりも比誘電率が高く、サイクル特性を向上させるように作用する。したがって、高温環境における電池の安全性と放電特性とに優れ、且つ高いサイクル特性を有する電池を実現できる。
しかし、これらの化合物は、上述したように高温条件において負極と反応して抵抗の大きい被膜を形成するという問題があるが、非水溶媒中の体積混合比が5体積%以下であるため、この弊害を極めて小さくすることができる。
In addition, when a cyclic carbonate or lactone is used as a subsidiary component, the subsidiary component has high stability under high temperature conditions, and has a higher relative dielectric constant than the compound represented by the above formula (1), thereby improving cycle characteristics. Works. Accordingly, it is possible to realize a battery that is excellent in battery safety and discharge characteristics in a high-temperature environment and that has high cycle characteristics.
However, these compounds have a problem that, as described above, they react with the negative electrode under a high temperature condition to form a highly resistant film. However, since the volume mixing ratio in the non-aqueous solvent is 5% by volume or less, The harmful effects can be made extremely small.

また、電解質塩としてイミド系のリチウム塩を用いると、これらの化合物は電気化学的および熱的に安定性が高いので、リフロー用の高温条件に晒されることによって電解液が劣化することがない。したがって、上記構成であると、高温環境においても放電特性の劣化が一層抑制された電池を提供することができる。   In addition, when an imide-based lithium salt is used as the electrolyte salt, these compounds have high electrochemical and thermal stability, so that the electrolytic solution does not deteriorate when exposed to high temperature conditions for reflow. Therefore, with the above configuration, it is possible to provide a battery in which deterioration of discharge characteristics is further suppressed even in a high temperature environment.

また、添加剤としてカルボン酸、カルボン酸エステル、無水カルボン酸(以下、カルボン酸等と称する場合がある)を非水電解質に添加すると、この添加剤が負極と反応して導電性の高い被膜を形成する。この被膜によって、高温条件におけるエーテル系化合物と負極との反応を抑制することができる。このため、リフローによる内部抵抗の増加を抑制でき、さらに放電特性が向上する。   Moreover, when a carboxylic acid, a carboxylic acid ester, or a carboxylic anhydride (hereinafter sometimes referred to as a carboxylic acid) is added to the non-aqueous electrolyte as an additive, the additive reacts with the negative electrode to form a highly conductive film. Form. With this coating, the reaction between the ether compound and the negative electrode under high temperature conditions can be suppressed. For this reason, the increase in internal resistance due to reflow can be suppressed, and the discharge characteristics are further improved.

本発明を実施するための最良の形態を、コイン型のリチウム二次電池を例として、説明する。図1は、この電池の全体構成を示す断面図である。   The best mode for carrying out the present invention will be described by taking a coin-type lithium secondary battery as an example. FIG. 1 is a cross-sectional view showing the overall configuration of this battery.

(実施の形態)
図1に示すように、電池外装缶(正極缶)1内には、スピネル型マンガン酸リチウムを活物質とする正極2と、リチウム−アルミニウム合金を活物質とする負極3と、両極を離間するセパレータ4とから構成される電極体5が収容されている。そして、このセパレータ4には、下記一般式(1)で示される化合物のうち、沸点が200℃以上の化合物の少なくとも1種と、下記一般式(1)で示される化合物のうち、沸点が200℃未満の化合物の少なくとも1種と、を含み、下記一般式(1)で示される化合物の合計体積割合が、95%以上100%以下である非水溶媒に、リチウム塩が溶解された電解液が含浸されている。この電池は、正極缶2の開口部と電池封口缶(負極キャップ)7とが、リング形状の絶縁ガスケット6を介して、かしめ固定され封止されている。
(Embodiment)
As shown in FIG. 1, in a battery outer can (positive electrode can) 1, a positive electrode 2 using spinel type lithium manganate as an active material, a negative electrode 3 using a lithium-aluminum alloy as an active material, and an electrode are separated. An electrode body 5 composed of the separator 4 is accommodated. The separator 4 includes at least one compound having a boiling point of 200 ° C. or higher among the compounds represented by the following general formula (1) and a boiling point of 200 among the compounds represented by the following general formula (1). An electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent containing at least one compound having a temperature of less than 0 ° C. and having a total volume ratio of 95% or more and 100% or less of the compound represented by the following general formula (1) Is impregnated. In this battery, the opening of the positive electrode can 2 and the battery sealing can (negative electrode cap) 7 are caulked and sealed through a ring-shaped insulating gasket 6.

〔化2〕
X−(O−C−O−Y (1)
(式中のX、Yはそれぞれ独立して、アルキル基(炭素数1−4)で、nは1−5である。)
[Chemical formula 2]
X- (O-C 2 H 4 ) n -O-Y (1)
(X and Y in the formula are each independently an alkyl group (1 to 4 carbon atoms), and n is 1-5.)

次に、本発明に係るリチウム二次電池の製造方法を説明する。   Next, a method for manufacturing a lithium secondary battery according to the present invention will be described.

正極の作製
正極活物質としてのスピネル型マンガン酸リチウム(LiMn)と、導電剤としてのカーボンブラックと、結着剤としてのポリフッ化ビニリデンとを、質量比94:5:1で混合した。この混合物を加圧成形し、直径4mm、厚み0.5mmの円板状の正極ペレットを得た。この正極ペレットを真空乾燥(250℃で2時間)してペレット中の水分を除き、正極を作製した。
Preparation of positive electrode Spinel type lithium manganate (LiMn 2 O 4 ) as a positive electrode active material, carbon black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a mass ratio of 94: 5: 1. . This mixture was pressure-molded to obtain a disk-shaped positive electrode pellet having a diameter of 4 mm and a thickness of 0.5 mm. This positive electrode pellet was vacuum-dried (at 250 ° C. for 2 hours) to remove moisture in the pellet, and a positive electrode was produced.

負極の作製
ステンレス板とアルミニウム板とを貼り合わせ、内面がアルミニウム板になるようにしたクラッド材製の負極キャップを用いた。この負極キャップ内面のアルミニウム板の表面に直径3.5mmで厚み0.2mmの円板状の金属リチウム板を圧着して、負極を作製した。アルミニウム板表面に圧着した金属リチウム板は、電池封口後に行われる充放電により合金化反応が起こるため、この負極の活物質はリチウム−アルミニウム合金となる。
電解液の作製
1,2−ジメトキシエタン(DME)とテトラエチレングリコールジエメチルエーテル(TeGM)とを体積比50:50で混合した混合溶媒に、電解質塩としてのLiN(CFSOを1.0M(モル/リットル)の割合で溶解し、電解液を作製した。
Production of Negative Electrode A stainless steel plate and an aluminum plate were bonded together, and a negative electrode cap made of a clad material was used so that the inner surface was an aluminum plate. A disc-shaped metallic lithium plate having a diameter of 3.5 mm and a thickness of 0.2 mm was pressure-bonded to the surface of the aluminum plate on the inner surface of the negative electrode cap to produce a negative electrode. Since the metal lithium plate pressure-bonded to the surface of the aluminum plate undergoes an alloying reaction due to charge / discharge performed after the battery is sealed, the active material of the negative electrode is a lithium-aluminum alloy.
Preparation of electrolyte solution LiN (CF 3 SO 2 ) 2 as an electrolyte salt was added to a mixed solvent in which 1,2-dimethoxyethane (DME) and tetraethylene glycol dimethyl ether (TeGM) were mixed at a volume ratio of 50:50. It melt | dissolved in the ratio of 1.0M (mol / liter), and produced electrolyte solution.

電池の作製
前記負極上に、ポリフェニレンスルフィド(PPS)製の不織布からなるセパレータを載置させ、このセパレータに前記電解液を注液した。その後、セパレータ上に前記正極を載置させ、さらにその上にステンレス製の正極缶を被せた。この正極缶と前記負極キャップとを、ポリエーテルエーテルケトン製の絶縁ガスケットを介してかしめ封口し、電池径(直径)6mmで厚み1.4mmのリチウム二次電池を作製した。なお、PPSおよびポリエーテルエーテルケトンは耐熱性の高い樹脂である(融点:PPS、約280℃;ポリエーテルエーテルケトン、約340℃)。
Production of Battery A separator made of a non-woven fabric made of polyphenylene sulfide (PPS) was placed on the negative electrode, and the electrolytic solution was poured into the separator. Then, the said positive electrode was mounted on the separator, and also the stainless steel positive electrode can was covered on it. The positive electrode can and the negative electrode cap were caulked and sealed through an insulating gasket made of polyetheretherketone to produce a lithium secondary battery having a battery diameter (diameter) of 6 mm and a thickness of 1.4 mm. PPS and polyether ether ketone are resins having high heat resistance (melting point: PPS, about 280 ° C .; polyether ether ketone, about 340 ° C.).

(実施例1〜44、比較例1〜9)
下記表1〜3に示すように、非水溶媒の種類、配合比、添加剤の種類、添加量、電解質塩の種類を変化させたこと以外は、上記実施の形態と同様にして電池を作製した。
(Examples 1-44, Comparative Examples 1-9)
As shown in Tables 1 to 3 below, a battery was fabricated in the same manner as in the above embodiment except that the type of nonaqueous solvent, the mixing ratio, the type of additive, the amount added, and the type of electrolyte salt were changed. did.

Figure 2005129481
Figure 2005129481

Figure 2005129481
Figure 2005129481

Figure 2005129481
Figure 2005129481

上記表1〜3において略称して書かれている化合物名は以下の通りである。
DME:1,2−ジメトキシエタン
DGM:ジエチレングリコールジメチルエーテル
DGE:ジエチレングリコールジエチルエーテル
TGM:トリエチレングリコールジメチルエーテル
DGB:ジエチレングリコールジブチルエーテル
TeGM:テトラエチレングリコールジメチルエーテル
PC:プロピレンカーボネート
EC:エチレンカーボネート
但し、実施例33〜44の電解質塩濃度は0.75Mであり、その他は全て1.0Mである。
The compound names abbreviated in Tables 1 to 3 are as follows.
DME: 1,2-dimethoxyethane DGM: diethylene glycol dimethyl ether DGE: diethylene glycol diethyl ether TGM: triethylene glycol dimethyl ether DGB: diethylene glycol dibutyl ether TeGM: tetraethylene glycol dimethyl ether PC: propylene carbonate EC: ethylene carbonate However, in Examples 33-44 The electrolyte salt concentration is 0.75M, and all others are 1.0M.

上記で作製した電池の高温環境における長期安全性、リフロー耐性、およびリフロー後の放電特性と、非水電解液の溶媒組成、添加剤との関係を調べるため、実施例1〜44および比較例1〜9の電池を用いて以下の実験1〜4を行った。   In order to examine the relationship between the long-term safety, reflow resistance, and discharge characteristics after reflow, the solvent composition of the non-aqueous electrolyte, and additives in the high-temperature environment of the battery produced above, Examples 1-44 and Comparative Example 1 The following experiments 1 to 4 were performed using the batteries of ˜9.

〔実験1〕
比較例1〜6の電池を用い、リフロー耐性、及びリフロー後の内部抵抗と、電解液の主溶媒との関係を調べた。
[Experiment 1]
Using the batteries of Comparative Examples 1 to 6, the relationship between the reflow resistance, the internal resistance after reflow, and the main solvent of the electrolytic solution was examined.

〈耐リフロー試験〉
電池の表面温度が、150℃以上の状態が230秒、200℃以上の状態が90秒、250℃以上の状態が40秒(最大260℃)となるように設定したリフロー炉内に各電池を投入した後、各電池について、電池全高の変化を調べた。
<Reflow resistance test>
Each battery is placed in a reflow oven set so that the surface temperature of the battery is 230 seconds when the temperature is 150 ° C. or higher, 90 seconds when the temperature is 200 ° C. or higher, and 40 seconds (maximum 260 ° C.) when the temperature is 250 ° C. or higher. After charging, the change in the overall battery height was examined for each battery.

〈内部抵抗の測定〉
耐リフロー試験後の各電池の、1kHzの交流内部抵抗値を測定した。
<Measurement of internal resistance>
The 1 kHz AC internal resistance value of each battery after the reflow resistance test was measured.

実験1の結果を図2に示す。   The result of Experiment 1 is shown in FIG.

なお、各溶媒の沸点は次に示すとおりである。
1,2−ジメトキシエタン 85℃
ジエチレングリコールジメチルエーテル 162℃
ジエチレングリコールジエチルエーテル 185℃
トリエチレングリコールジメチルエーテル 216℃
ジエチレングリコールジブチルエーテル 256℃
テトラエチレングリコールジメチルエーテル 275℃
The boiling point of each solvent is as shown below.
1,2-dimethoxyethane 85 ° C
Diethylene glycol dimethyl ether 162 ° C
Diethylene glycol diethyl ether 185 ° C
Triethylene glycol dimethyl ether 216 ° C
Diethylene glycol dibutyl ether 256 ° C
Tetraethylene glycol dimethyl ether 275 ° C

図2から、主溶媒の沸点が高くなるほど、耐リフロー試験における電池のふくれが小さくなるとともに、内部抵抗値が上昇する傾向がわかった。この図に示す結果から、沸点が200℃未満の化合物の有する低い内部抵抗値と、沸点が200℃以上の化合物の有する低い電池のふくれとを兼ね備えた電池が好ましいことがわかった。   From FIG. 2, it was found that the higher the boiling point of the main solvent, the smaller the swelling of the battery in the reflow resistance test and the higher the internal resistance value. From the results shown in this figure, it was found that a battery having both a low internal resistance value possessed by a compound having a boiling point of less than 200 ° C. and a low battery bulge possessed by a compound having a boiling point of 200 ° C. or higher was preferable.

なお、図2には沸点が85℃である1,2−ジメトキシエタン(DME)を用いた比較例1のデータは記載していないが、この電池はリフローにより電池が破裂してしまい、内部抵抗値及び電池のふくれを測定することができなかった。   In FIG. 2, the data of Comparative Example 1 using 1,2-dimethoxyethane (DME) having a boiling point of 85 ° C. is not shown, but the battery bursts due to reflow, and the internal resistance The value and battery blister could not be measured.

〔実験2〕
実施例1〜17、比較例1、2、6、7の電池を用い、電解液の混合溶媒における沸点が200℃以上の化合物と、沸点が200℃未満の化合物の組成と、耐リフロー試験後の電池の電池ふくれ、内部抵抗値(IR)、放電容量、ハイレート(50μA)放電容量、及び低温(−20℃)放電容量との関係を調べた。ただし、耐リフロー試験において破裂してしまった電池には、これらの試験を行わなかった。
[Experiment 2]
Using the batteries of Examples 1 to 17 and Comparative Examples 1, 2, 6, and 7, the compound having a boiling point of 200 ° C. or higher in the mixed solvent of the electrolytic solution, the composition of the compound having a boiling point of less than 200 ° C., and after the reflow resistance test The relationship between the battery swelling, internal resistance (IR), discharge capacity, high rate (50 μA) discharge capacity, and low temperature (−20 ° C.) discharge capacity was examined. However, these tests were not performed on batteries that had burst in the reflow resistance test.

耐リフロー試験、内部抵抗値の測定は上記実験1と同様とし、放電容量、ハイレート放電容量、及び低温放電容量の測定は、下記の条件で行った。   The reflow resistance test and the internal resistance value were measured in the same manner as in Experiment 1 above, and the discharge capacity, high rate discharge capacity, and low temperature discharge capacity were measured under the following conditions.

〈放電容量の測定〉
耐リフロー試験後の各電池を、3.0Vの定電圧で30時間充電した後、500kΩの固定抵抗放電を行い、電池電圧が2.0Vになるまでの放電容量を測定した。
<Measurement of discharge capacity>
Each battery after the reflow resistance test was charged at a constant voltage of 3.0 V for 30 hours, then fixed resistance discharge of 500 kΩ was performed, and the discharge capacity until the battery voltage reached 2.0 V was measured.

〈ハイレート放電容量の測定〉
耐リフロー試験後の各電池を、3.0Vの定電圧で30時間充電した後、50μAのハイレート放電を行い、電池電圧が2.0Vになるまでの放電容量を測定した。
<Measurement of high-rate discharge capacity>
Each battery after the reflow resistance test was charged at a constant voltage of 3.0 V for 30 hours, and then high-rate discharge of 50 μA was performed, and the discharge capacity until the battery voltage reached 2.0 V was measured.

〈低温放電容量の測定〉
耐リフロー試験後の各電池を、3.0Vの定電圧で30時間充電した後、−20℃雰囲気下で500kΩの固定抵抗放電を行い、電池電圧が2.0Vになるまでの放電容量を測定した。
<Measurement of low-temperature discharge capacity>
Each battery after the reflow resistance test was charged at a constant voltage of 3.0 V for 30 hours, then a fixed resistance discharge of 500 kΩ was performed at −20 ° C., and the discharge capacity until the battery voltage reached 2.0 V was measured. did.

実験2の結果を下記表4に示す。   The results of Experiment 2 are shown in Table 4 below.

Figure 2005129481
Figure 2005129481

下記式(1)で示される化合物のうち、沸点が200℃未満の化合物(低沸点溶媒)と、下記式(1)で示される化合物のうち、沸点が200℃以上の化合物(高沸点溶媒)とを、体積混合比1:1(23℃)で混合した溶媒にLiN(CFSOを溶解した非水電解質を用いた実施例1〜9では、内部抵抗値が446Ω以下、電池のふくれが0.045mm以下、放電容量2.61mAh以上、ハイレート放電容量が1.55mAh以上、低温放電容量が0.33mAh以上と、優れた特性の電池が得られた。 Among the compounds represented by the following formula (1), a compound having a boiling point of less than 200 ° C. (low boiling solvent) and a compound having a boiling point of 200 ° C. or more among compounds represented by the following formula (1) (high boiling solvent) In Examples 1 to 9 using a non-aqueous electrolyte in which LiN (CF 3 SO 2 ) 2 was dissolved in a solvent mixed at a volume mixing ratio of 1: 1 (23 ° C.), the internal resistance value was 446Ω or less, the battery Batteries with excellent characteristics were obtained with a bulge of 0.045 mm or less, a discharge capacity of 2.61 mAh or more, a high rate discharge capacity of 1.55 mAh or more, and a low temperature discharge capacity of 0.33 mAh or more.

これに対し、低沸点溶媒のみにLiN(CFSOを溶解した非水電解質を用いた比較例1、2では、電池のふくれが0.061mmまたは破裂してしまい、また高沸点溶媒のみにLiN(CFSOを溶解した非水電解質を用いた比較例6、7ではハイレート放電容量が1.39mAh以下、低温放電容量が0.08mAh以下と電池特性が低いことがわかった。 On the other hand, in Comparative Examples 1 and 2 using a nonaqueous electrolyte in which LiN (CF 3 SO 2 ) 2 was dissolved only in a low-boiling solvent, the battery blister was 0.061 mm or burst, and the high-boiling solvent Comparative Examples 6 and 7 using a non-aqueous electrolyte in which only LiN (CF 3 SO 2 ) 2 was dissolved were found to have low battery characteristics with a high rate discharge capacity of 1.39 mAh or less and a low temperature discharge capacity of 0.08 mAh or less. It was.

〔化3〕
X−(O−C−O−Y (1)
(式中のX、Yはそれぞれ独立して、アルキル基(炭素数1−4)で、nは1−5である。)
[Chemical formula 3]
X- (O-C 2 H 4 ) n -O-Y (1)
(X and Y in the formula are each independently an alkyl group (1 to 4 carbon atoms), and n is 1-5.)

このことは、次のように考えられる。低沸点溶媒は、化学的な安定性が高く、粘性が比較的低い。このため、これを電解液に含ませると、電池の内部抵抗値が低くなり、電池特性を向上させることができる。しかしながら、上述した化合物は、沸点が200℃未満であるため、一時的に260℃の温度に晒される耐リフロー試験においては、電池内圧を高め、電池がふくれる原因ともなる。しかし、混合溶媒中に含まれている高沸点溶媒は、粘性が高いものの熱に対する安定性に優れる。このため、低沸点溶媒による耐リフロー試験時の電池内圧上昇を緩和するように作用し、電池のふくれを小さくする。このため、優れた耐熱安全性と優れた放電特性を有するリチウム電池が得られた。   This is considered as follows. Low boiling solvents have high chemical stability and relatively low viscosity. For this reason, when this is included in electrolyte solution, the internal resistance value of a battery will become low and a battery characteristic can be improved. However, since the above-described compound has a boiling point of less than 200 ° C., in the reflow resistance test that is temporarily exposed to a temperature of 260 ° C., the internal pressure of the battery is increased, which causes the battery to blow up. However, the high boiling point solvent contained in the mixed solvent is excellent in stability to heat although it has high viscosity. For this reason, it acts so as to alleviate the rise in the internal pressure of the battery during the reflow resistance test with the low boiling point solvent, thereby reducing the swelling of the battery. For this reason, the lithium battery which has the outstanding heat-resistant safety | security and the outstanding discharge characteristic was obtained.

これに対し、低沸点溶媒のみを用いた場合、高沸点溶媒の混合による耐リフロー試験時の電池内圧上昇を緩和する作用が全くないため電池が大きくふくれ、沸点が85℃と低い1,2−ジメトキシエタン(DME)を用いた比較例1では、電池破裂に至ったものと考えられる。他方、高沸点溶媒のみを用いた場合、高沸点溶媒自体の粘性が高いため、電解液中のリチウムイオンの導電性が低く、特にハイレート放電や低温放電条件で、電池特性が低くなったものと考えられる。   On the other hand, when only the low boiling point solvent is used, the battery is largely swollen because there is no action to alleviate the increase in the internal pressure of the battery during the reflow resistance test due to the mixing of the high boiling point solvent, and the boiling point is as low as 85 ° C. In Comparative Example 1 using dimethoxyethane (DME), it is considered that the battery has been ruptured. On the other hand, when only a high-boiling solvent is used, the viscosity of the high-boiling solvent itself is high, so the conductivity of lithium ions in the electrolyte is low, and battery characteristics are particularly low under high-rate discharge and low-temperature discharge conditions. Conceivable.

また、溶媒組成を同一とし、電解質塩の種類を変化させた実施例2、10〜12の結果から、イミド系の電解質塩(LiN(CFSO、LiN(CSO)を用いた実施例2、10では、低温(−20℃)放電容量が0.91mAh以上であったのに対し、パーフルオロ酸系の電解質塩(LiPF、LiBF)を用いた実施例11、12では、低温放電容量が0.03mAhと、著しく低いことがわかった。 Moreover, from the results of Examples 2 and 10-12 in which the solvent composition was the same and the type of the electrolyte salt was changed, imide electrolyte salts (LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2) were obtained. In Examples 2 and 10 using 2 ), the low-temperature (−20 ° C.) discharge capacity was 0.91 mAh or more, whereas perfluoroacid electrolyte salts (LiPF 6 , LiBF 4 ) were used. In Examples 11 and 12, it was found that the low-temperature discharge capacity was as extremely low as 0.03 mAh.

このことは、次のように考えられる。イミド系の電解質塩は熱安定性が高く、耐リフロー試験後も電解液が劣化することがない。他方、パーフルオロ酸系の電解質塩は熱安定性が低く、耐リフロー試験によって電解液が著しく劣化する。電解液の劣化は、低温時の放電容量に顕著に影響を与えるので、上記表4に示す結果になったものと考えられる。   This is considered as follows. The imide electrolyte salt has high thermal stability, and the electrolytic solution does not deteriorate even after the reflow resistance test. On the other hand, perfluoroacid-based electrolyte salts have low thermal stability, and the electrolyte solution is significantly degraded by a reflow resistance test. Since the deterioration of the electrolytic solution significantly affects the discharge capacity at low temperatures, it is considered that the results shown in Table 4 were obtained.

また、電解質塩を同一とし、低沸点溶媒として1,2−ジメトキシエタン(DME)、高沸点溶媒としてテトラエチレングリコールジメチルエーテル(TeGM)を用い、低沸点溶媒と高沸点溶媒の混合比を変化させた実施例1、13、14の結果から、DMEの体積混合比が50〜60%の範囲の電池(実施例1、13)では電池のふくれが0.050mm以下と小さく、電池特性も優れていたのに対し、DMEの体積混合比が70%である実施例14は電池のふくれが0.150mmと大きく、電池特性も大幅に劣化していることがわかった。   The electrolyte salt was the same, 1,2-dimethoxyethane (DME) was used as the low boiling solvent, tetraethylene glycol dimethyl ether (TeGM) was used as the high boiling solvent, and the mixing ratio of the low boiling solvent and the high boiling solvent was changed. From the results of Examples 1, 13, and 14, in the batteries (Examples 1 and 13) in which the volume mixing ratio of DME was in the range of 50 to 60%, the swelling of the batteries was as small as 0.050 mm or less, and the battery characteristics were excellent. On the other hand, in Example 14 in which the volume mixing ratio of DME was 70%, it was found that the swelling of the battery was as large as 0.150 mm, and the battery characteristics were greatly deteriorated.

このことは、次のように考えられる。1,2−ジメトキシエタン(DME)は臨界温度が258℃であるので、一時的に260℃の温度になる耐リフロー試験において、電池内圧を著しく上昇させる。DMEの体積混合比が60%以下であると、混合されている高沸点溶媒(実施例においてはテトラエチレングリコールジメチルエーテル)による電池内圧の上昇を緩和させる作用によって、電池のふくれが0.050mm以下に抑制された。他方、DMEの体積混合比が60%より多いと、混合されている高沸点溶媒による電池内圧の上昇を緩和させる作用が小さくなるため、電池のふくれが0.150mmと大きくなった。また、この電池のふくれによって活物質の密着性が低下して、電池特性を劣化させたものと考えられる。   This is considered as follows. Since 1,2-dimethoxyethane (DME) has a critical temperature of 258 ° C., the internal pressure of the battery is remarkably increased in a reflow resistance test that temporarily reaches a temperature of 260 ° C. When the volume mixing ratio of DME is 60% or less, the blistering of the battery is reduced to 0.050 mm or less due to the action of mitigating the increase in the internal pressure of the battery due to the mixed high boiling point solvent (tetraethylene glycol dimethyl ether in the examples). Suppressed. On the other hand, when the volume mixing ratio of DME is more than 60%, the effect of alleviating the increase in the internal pressure of the battery due to the mixed high boiling point solvent becomes small, so that the battery bulge becomes as large as 0.150 mm. In addition, it is considered that the adhesion of the active material is lowered by the swelling of the battery, and the battery characteristics are deteriorated.

また、電解質塩を同一とし、低沸点溶媒として1,2−ジメトキシエタン(DME)以外の溶媒を含み、高沸点溶媒としてテトラエチレングリコールジメチルエーテル(TeGM)を用い、低沸点溶媒と高沸点溶媒の混合比のみを変化させた実施例2〜5、15〜17の結果から、低沸点溶媒の体積混合比が50〜90%の範囲の電池(実施例2〜5、16、17)では低温特性が0.33mAh以上と優れた結果が得られたのに対し、低沸点溶媒の体積混合比が30%である実施例15は低温特性が0.11mAhと大幅に低いことがわかった。   Also, the electrolyte salt is the same, the solvent other than 1,2-dimethoxyethane (DME) is used as the low boiling solvent, tetraethylene glycol dimethyl ether (TeGM) is used as the high boiling solvent, and the low boiling solvent and the high boiling solvent are mixed. From the results of Examples 2 to 5 and 15 to 17 in which only the ratio was changed, the batteries having low volume boiling point solvent mixing ratios in the range of 50 to 90% (Examples 2 to 5, 16, and 17) exhibited low temperature characteristics. While excellent results of 0.33 mAh or more were obtained, Example 15 in which the volume mixing ratio of the low boiling point solvent was 30% was found to have a low low temperature characteristic of 0.11 mAh.

このことは、次のように考えられる。低沸点溶媒中に沸点及び臨界温度が1,2−ジメトキシエタン(DME)よりも高い化合物を含んでいるため、一時的に260℃の温度になる耐リフロー試験における、電池内圧の上昇の程度がDMEのみを低沸点溶媒として用いた場合よりも小さい。このため、低沸点溶媒の体積混合比が90%であっても、混合されている高沸点溶媒(実施例においてはテトラエチレングリコールジメチルエーテル)による電池内圧の上昇を緩和させる作用によって、電池のふくれが0.036mm以下に抑制された。他方、低沸点溶媒の体積混合比が50%より少ないと、混合されている高沸点溶媒が過剰であるため電解液の粘性が高くなり、特に低温条件下での放電容量が低下したものと考えられる。   This is considered as follows. Since the low boiling point solvent contains a compound having a boiling point and a critical temperature higher than 1,2-dimethoxyethane (DME), the degree of increase in the internal pressure of the battery in the reflow resistance test that temporarily reaches a temperature of 260 ° C. It is smaller than when only DME is used as the low boiling point solvent. For this reason, even if the volume mixing ratio of the low boiling point solvent is 90%, the swelling of the battery is prevented by the action of mitigating the increase in the internal pressure of the battery due to the mixed high boiling point solvent (tetraethylene glycol dimethyl ether in the embodiment). It was suppressed to 0.036 mm or less. On the other hand, if the volume mixing ratio of the low-boiling solvent is less than 50%, it is considered that the viscosity of the electrolytic solution is increased because the mixed high-boiling solvent is excessive, and the discharge capacity is lowered particularly under low temperature conditions. It is done.

〔実験3〕
実施例2、18〜21、比較例8、9の電池を用い、電解液の混合溶媒における沸点が200℃以上の化合物と、沸点が200℃未満の化合物の組成と、耐リフロー試験後の電池の電池ふくれ、内部抵抗値、放電容量、ハイレート放電容量、低温放電容量、及びサイクル特性との関係を調べた。
[Experiment 3]
Using the batteries of Examples 2, 18 to 21, and Comparative Examples 8 and 9, the compound having a boiling point of 200 ° C. or higher in the mixed solvent of the electrolytic solution, the composition of the compound having a boiling point of less than 200 ° C., and the battery after the reflow resistance test The relationship between battery blistering, internal resistance, discharge capacity, high rate discharge capacity, low temperature discharge capacity, and cycle characteristics was investigated.

耐リフロー試験、内部抵抗値、放電容量、ハイレート放電容量、及び低温放電容量の測定は上記実験1または2と同様とし、サイクル特性の測定は、下記の条件で行った。   The reflow resistance test, internal resistance value, discharge capacity, high-rate discharge capacity, and low-temperature discharge capacity were measured in the same manner as in Experiment 1 or 2, and the cycle characteristics were measured under the following conditions.

〈サイクル特性の測定〉
耐リフロー試験後の各電池を、3.0Vの定電圧で30時間充電、500kΩの固定抵抗で電池電圧が2.0Vになるまでの放電し、放電容量が1サイクル目の放電容量の50%となるまでのサイクル回数を測定した。
<Measurement of cycle characteristics>
Each battery after the reflow resistance test is charged for 30 hours at a constant voltage of 3.0 V, discharged until the battery voltage reaches 2.0 V with a fixed resistance of 500 kΩ, and the discharge capacity is 50% of the discharge capacity of the first cycle. The number of cycles to be measured was measured.

実験3の結果を下記表5に示す。   The results of Experiment 3 are shown in Table 5 below.

Figure 2005129481
Figure 2005129481

表5から、副成分(環状カーボネート)の添加量が増加するほど、サイクル特性が良好になるとともに、内部抵抗の増大、ハイレート放電容量及び低温放電容量が低下する傾向がわかった。ここで、副成分の添加量が5体積%以下であると、内部抵抗の増大、ハイレート放電容量及び低温放電容量が低下を最小限にとどめ、且つサイクル特性の良好な電池が得られ、副成分の添加量が5体積%より多いと、内部抵抗が1733Ω以上、ハイレート放電容量が0.11mAh以下及び低温放電容量が0.05mAh以下と大幅に電池特性が劣化していることがわかった。   From Table 5, it was found that as the additive amount of the secondary component (cyclic carbonate) increases, the cycle characteristics become better and the internal resistance increases, the high-rate discharge capacity, and the low-temperature discharge capacity tend to decrease. Here, when the additive amount of the subcomponent is 5% by volume or less, an increase in internal resistance, a high rate discharge capacity and a low temperature discharge capacity are minimized, and a battery having good cycle characteristics is obtained. It was found that when the amount of addition was more than 5% by volume, the battery characteristics were greatly deteriorated such that the internal resistance was 1733Ω or more, the high-rate discharge capacity was 0.11 mAh or less, and the low-temperature discharge capacity was 0.05 mAh or less.

このことは、次のように考えられる。副成分として用いた環状カーボネートは、高温安定性が高いとともに、主溶媒であるエーテル化合物よりも比誘電率が高く、サイクル特性を向上させるように作用する。しかしながら、環状カーボネートは負極との反応性が高く、抵抗の大きい被膜を負極表面に形成する。このため、内部抵抗値が増大するので、電池特性が低下してしまう。環状カーボネートの添加量が5体積%以下であると、内部抵抗の増大、ハイレート放電容量及び低温放電容量の低下を最小限にとどめ、且つサイクル特性の良好な電池が得られるため、好ましい。   This is considered as follows. The cyclic carbonate used as an auxiliary component has high temperature stability and a higher relative dielectric constant than the ether compound as the main solvent, and acts to improve cycle characteristics. However, cyclic carbonate is highly reactive with the negative electrode and forms a highly resistive coating on the negative electrode surface. For this reason, since an internal resistance value increases, a battery characteristic will fall. When the amount of cyclic carbonate added is 5% by volume or less, it is preferable because an increase in internal resistance, a decrease in high-rate discharge capacity and a low-temperature discharge capacity can be minimized, and a battery having good cycle characteristics can be obtained.

〔実験4〕
実施例2、18、22〜32の電池を用い、添加剤の種類、添加量と、耐リフロー試験後の電池の電池ふくれ、内部抵抗値、放電容量、ハイレート放電容量、低温放電容量、及びサイクル特性との関係を調べた。耐リフロー試験、内部抵抗値、放電容量、ハイレート放電容量、及び低温放電容量の測定は上記実験1または2と同様である。
[Experiment 4]
Using the batteries of Examples 2, 18, 22 to 32, the type and amount of additives, battery blistering after reflow resistance test, internal resistance, discharge capacity, high rate discharge capacity, low temperature discharge capacity, and cycle The relationship with characteristics was investigated. The measurement of the reflow resistance test, internal resistance value, discharge capacity, high rate discharge capacity, and low temperature discharge capacity is the same as in Experiment 1 or 2 above.

Figure 2005129481
Figure 2005129481

上記表6から、ギ酸エチルの添加量が増加するほど、内部抵抗が減少するとともに、電池のふくれが大きくなる傾向がわかった(実施例22〜26)。ここで、添加剤の添加量が5質量%以下であると、電池のふくれの増大を最小限にとどめ、且つ内部抵抗の低い良好な電池が得られ、添加剤の添加量が5質量%より多いと、ハイレート放電容量が0.75mAh以下及び低温放電容量が0.65mAh以下と大幅に電池特性が劣化していることがわかった。   From Table 6 above, it was found that as the amount of ethyl formate increased, the internal resistance decreased and the swelling of the battery increased (Examples 22 to 26). Here, when the additive amount is 5% by mass or less, an increase in battery swelling is minimized, and a good battery with low internal resistance is obtained. The additive amount is less than 5% by mass. When the amount was large, it was found that the battery characteristics were greatly deteriorated such that the high rate discharge capacity was 0.75 mAh or less and the low temperature discharge capacity was 0.65 mAh or less.

このことは、次のように考えられる。添加剤として用いたカルボン酸、カルボン酸エステル、無水カルボン酸(カルボン酸類)は、負極の表面に導電性の高い被膜を形成して、主溶媒であるエーテル類やプロピレンカーボネートと負極との反応を抑制することができるので、内部抵抗を小さくするように作用する。しかしながら、カルボン酸類は、リフローによって正極に含まれるマンガン化合物と反応、分解してガスを発生させるので、電池内部圧力が高まり、電池をふくれさせる。カルボン酸類の添加量が0.01〜5質量%であると、電池のふくれを最小限にとどめ、且つ内部抵抗の低い電池が得られる。   This is considered as follows. Carboxylic acid, carboxylic acid ester, and carboxylic anhydrides (carboxylic acids) used as additives form a highly conductive film on the surface of the negative electrode, and react with ethers or propylene carbonate, which are main solvents, with the negative electrode. Since it can be suppressed, it acts to reduce the internal resistance. However, since carboxylic acids react with the manganese compound contained in the positive electrode by reflow and decompose to generate gas, the internal pressure of the battery increases and the battery is swollen. When the amount of carboxylic acid added is 0.01 to 5% by mass, a battery with minimal internal swelling and low internal resistance can be obtained.

〔実験5〕
実施例33〜44の電池を用い、添加剤と、リフロー前パルス放電特性、耐リフロー試験後の電池の内部抵抗値、パルス放電特性との関係を調べた。耐リフロー試験、内部抵抗値の測定は上記実験1と同様である。
[Experiment 5]
Using the batteries of Examples 33 to 44, the relationship between the additive, the pulse discharge characteristics before reflow, the internal resistance value of the battery after the reflow resistance test, and the pulse discharge characteristics was examined. The reflow resistance test and the measurement of the internal resistance value are the same as in Experiment 1 above.

〈パルス放電試験〉
3.6kΩの固定抵抗に0.29秒パルス放電を行い、そのときの最も低い電圧を、パルス放電電圧とした。
<Pulse discharge test>
Pulse discharge was performed on a 3.6 kΩ fixed resistor for 0.29 seconds, and the lowest voltage at that time was defined as the pulse discharge voltage.

Figure 2005129481
Figure 2005129481

表7から、添加剤(カルボン酸類)を添加した実施例34〜44では、リフロー後のパルス放電電圧が1.63〜2.05(V)、内部抵抗が283〜415(Ω)と、添加剤を添加していない実施例33の1.44(V)、920(Ω)よりもはるかに優れていたことがわかった。   From Table 7, in Examples 34 to 44 to which an additive (carboxylic acid) was added, the pulse discharge voltage after reflow was 1.63 to 2.05 (V), and the internal resistance was 283 to 415 (Ω). It was found to be far superior to 1.44 (V) and 920 (Ω) of Example 33 in which no agent was added.

このことは、次のように考えられる。添加剤として用いたカルボン酸エステルは、負極の表面に導電性の高い被膜を形成して、主溶媒であるエーテル類や、プロピレンカーボネートと負極との反応を抑制することができるので、内部抵抗を小さくするように作用する。この内部抵抗の減少によってパルス放電特性が向上したものと考えられる。   This is considered as follows. The carboxylic acid ester used as an additive can form a highly conductive film on the surface of the negative electrode and suppress the reaction between ethers, which are main solvents, and propylene carbonate, and the negative electrode. It works to make it smaller. It is considered that the pulse discharge characteristics are improved by the reduction of the internal resistance.

また、添加剤であるギ酸n−ブチルの添加量を変化させた実施例39、43、44の比較から、リフロー後のパルス放電電圧は、添加量が0.01〜5質量%の範囲内では、1.98〜2.05Vと大きな差がないことがわかった。したがって、添加剤の添加量が0.01〜5質量%の範囲内であれば、リフロー後のパルス放電電圧が十分に向上する。   Moreover, from the comparison of Examples 39, 43, and 44 in which the amount of n-butyl formate as an additive was changed, the pulse discharge voltage after reflowing was within the range of 0.01 to 5% by mass. It was found that there was no significant difference from 1.98 to 2.05V. Therefore, if the additive amount is in the range of 0.01 to 5% by mass, the pulse discharge voltage after reflow is sufficiently improved.

上記実験4及び実験5から、理由は定かではないが、低沸点溶媒の配合比率が高いときにカルボン酸類の添加による電池特性向上効果が顕著に発揮されることがわかる。   From Experiment 4 and Experiment 5, the reason is not clear, but it can be seen that the effect of improving battery characteristics by adding carboxylic acids is remarkably exhibited when the blending ratio of the low boiling point solvent is high.

〔その他の事項〕
(1)カルボン酸類としては、ギ酸、酢酸、プロピオン酸、シュウ酸、マイレン酸、安息香酸、フタル酸、メタフタル酸、テレフタル酸等のカルボン酸、ギ酸メチル、ギ酸エチル、ギ酸n−プロピル、ギ酸イソプロピル、ギ酸n−ブチル、ギ酸イソブチル、ギ酸アミル、ギ酸イソアミル、酢酸メチル、酢酸エチル、プロピオン酸メチル等のカルボン酸エステル(ラクトンを除く)、無水酢酸、無水フタル酸等の無水カルボン酸を用いても同様の効果が得られる。
[Other matters]
(1) Carboxylic acids such as formic acid, acetic acid, propionic acid, oxalic acid, maleic acid, benzoic acid, phthalic acid, metaphthalic acid, terephthalic acid, methyl formate, ethyl formate, n-propyl formate, isopropyl formate Carboxylic acid esters (excluding lactone) such as n-butyl formate, isobutyl formate, amyl formate, isoamyl formate, methyl acetate, ethyl acetate and methyl propionate, and carboxylic anhydrides such as acetic anhydride and phthalic anhydride Similar effects can be obtained.

ただし、電解液に添加するカルボン酸類の添加量が多いと、リフロー等の高温条件に晒すと、カルボン酸類と正極に含まれるマンガン化合物とが反応してガスが発生し、電池をふくれさせる可能性がある。このため、前記カルボン酸類の添加量は、電解液100質量部に対して0.01〜5質量部であることが好ましい。
また、カルボン酸類の効果を十分に得るためには、低沸点溶媒の配合比率が50%以上であることが好ましく、60%以上であることがさらに好ましく、70%以上であることがさらに好ましい。
However, if the amount of carboxylic acids added to the electrolyte is large, exposure to high-temperature conditions such as reflow may cause the carboxylic acids to react with the manganese compound contained in the positive electrode, generating gas and causing the battery to swell. There is. For this reason, it is preferable that the addition amount of the said carboxylic acids is 0.01-5 mass parts with respect to 100 mass parts of electrolyte solution.
In order to sufficiently obtain the effects of carboxylic acids, the blending ratio of the low boiling point solvent is preferably 50% or more, more preferably 60% or more, and further preferably 70% or more.

(2)また、上記実施例では副成分としてエチレンカーボネート、プロピレンカーボネートを用いたが、ブチレンカーボネート、ビニレンカーボネート等の他の環状カーボネートや、γ−ブチロラクトン等のラクトン類を用いることもできる。また、これらの混合物を添加してもよい。   (2) Although ethylene carbonate and propylene carbonate are used as accessory components in the above examples, other cyclic carbonates such as butylene carbonate and vinylene carbonate, and lactones such as γ-butyrolactone may be used. Moreover, you may add these mixtures.

(3)また、本発明はリチウム電池であれば適用可能であるため、その適応対象は、上記実施例に記されるリチウム二次電池に限らず、リチウム一次電池においても同様の優れた効果が得られる。   (3) Moreover, since this invention is applicable if it is a lithium battery, the application object is not limited to the lithium secondary battery described in the above embodiment, and the same excellent effect is also obtained in the lithium primary battery. can get.

(4)また、本発明をリチウム二次電池に適応する場合は、正極活物質として、安価でかつ熱安定性が高い点において、スピネル型マンガン酸リチウム(LiMn)を用いることが好ましい。しかしながら、リチウム含有コバルト酸化物(LiCoO)やリチウム含有ニッケル酸化物(LiNiO)、リチウム含有鉄酸化物(LiFeO)等の他のリチウム含有遷移金属酸化物を用いてもよく、これらの混合物であってもよい。また、結晶格子中に他の金属元素を有するリチウム含有遷移金属酸化物であってもよい。
また、負極活物質としては、リチウム金属、リチウム合金、リチウムと合金化する金属等を用いることが好ましい。
(4) When the present invention is applied to a lithium secondary battery, it is preferable to use spinel type lithium manganate (LiMn 2 O 4 ) as the positive electrode active material because it is inexpensive and has high thermal stability. . However, other lithium-containing transition metal oxides such as lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), and lithium-containing iron oxide (LiFeO 2 ) may be used, and a mixture thereof. It may be. Moreover, the lithium containing transition metal oxide which has another metal element in a crystal lattice may be sufficient.
As the negative electrode active material, it is preferable to use lithium metal, a lithium alloy, a metal alloyed with lithium, or the like.

(5)また、負極にリチウム金属やリチウム合金を用いた場合は、正極活物質として、リチウムを含まず、リチウムイオンを吸蔵放出する二酸化マンガン、五酸化二ニオブ等の金属酸化物を、単独で、または酸化ホウ素を含有させて用いることができる。   (5) In addition, when lithium metal or lithium alloy is used for the negative electrode, as the positive electrode active material, a metal oxide such as manganese dioxide or niobium pentoxide that does not contain lithium and absorbs and releases lithium ions can be used alone. Or boron oxide can be used.

(6)また、本発明をリチウム一次電池に適応する場合は、正極活物質として、二酸化マンガン、フッ化黒鉛、二硫化鉄、硫化鉄等を用いることができるが、熱安定性の点から二酸化マンガンの使用が好ましい。
また、負極活物質としては、リチウム金属、リチウム合金等を用いることが好ましい。
(6) When the present invention is applied to a lithium primary battery, manganese dioxide, graphite fluoride, iron disulfide, iron sulfide, etc. can be used as the positive electrode active material. The use of manganese is preferred.
Moreover, as a negative electrode active material, it is preferable to use lithium metal, a lithium alloy, or the like.

(7)また、電解質塩としては、熱安定性の面からイミド系のリチウム塩を用いることが好ましいが、これ以外のリチウム塩を少量含んでいてもよい。   (7) As the electrolyte salt, it is preferable to use an imide-based lithium salt from the viewpoint of thermal stability, but a small amount of other lithium salt may be included.

(8)また、本発明電池は150℃近くの過酷な高温環境における長期使用にも対応するため、セパレータの材質としては、その耐熱温度(融点・分解温度)が、150℃を超えて高いことが好ましく、リフローはんだの溶解温度(185℃)を超えて高いことがより好ましく、リフロー時の最低温度(200℃)を超えて高いことがさらに好ましく、リフロー時の最高温度(260℃)を超えて高いことが最も好ましい。   (8) In addition, since the battery of the present invention can be used for a long time in a severe high temperature environment near 150 ° C., the material of the separator has a high heat resistance temperature (melting point / decomposition temperature) exceeding 150 ° C. Is preferable, higher than the melting temperature of reflow solder (185 ° C), more preferably higher than the minimum temperature during reflow (200 ° C), more preferably higher than the maximum temperature during reflow (260 ° C) Most preferably, it is high.

前記材質を有するセパレータ材料としては、上記ポリフェニレンスルフィド、ポリエーテルエーテルケトン以外にも、ポリエーテルケトン、ポリブチレンテレフタレート、セルロース等の耐熱性樹脂、または、樹脂素材にガラス繊維等のフィラーを添加してさらに耐熱温度を向上させた樹脂等があげられる。   In addition to the polyphenylene sulfide and the polyether ether ketone, the separator material having the above-described material may be a heat-resistant resin such as polyether ketone, polybutylene terephthalate, or cellulose, or a filler such as glass fiber added to the resin material. Furthermore, the resin etc. which improved the heat-resistant temperature are mention | raise | lifted.

(9)また、上記実施例では、電池外装缶の開口部を封止するためにガスケットを用いたカシメ封止方法を用いたが、この代わりに、レーザー照射による封止方法、耐熱性樹脂からなる封止部材を熱溶着する方法等を用いてもよい。   (9) In the above embodiment, a caulking sealing method using a gasket is used to seal the opening of the battery outer can, but instead of a sealing method by laser irradiation, a heat resistant resin is used. A method of thermally welding a sealing member to be formed may be used.

ガスケットや耐熱性樹脂を用いて電池を封止する場合は、電池の耐熱信頼性(漏液等の防止)の点から、その材質が上記セパレータの材質における耐熱温度条件と同じ条件を満たすことが望ましい。   When sealing a battery with a gasket or heat-resistant resin, the material must satisfy the same heat-resistant temperature condition as the separator material from the viewpoint of heat-resistant reliability (prevention of leakage etc.) of the battery. desirable.

以上説明したように、本発明によると、100℃〜150℃程度の高温環境下で長期にわたって安全に使用でき、しかもこのような高温環境下においても放電性能の劣化の少ないリチウム電池を実現することができる。このような本発明電池は、耐熱安全性、放電特性に優れるので、その実装に際して100秒程度の極短時間ではあるが200℃〜260℃程度の高温となるリフローはんだ付け法を適用することができ、この場合においてもリフロー熱によって電池が大きくふくれたり、電池性能が劣化したりすることがない。   As described above, according to the present invention, a lithium battery that can be used safely over a long period of time in a high temperature environment of about 100 ° C. to 150 ° C. and that has little deterioration in discharge performance even under such a high temperature environment is realized. Can do. Such a battery of the present invention is excellent in heat-resistant safety and discharge characteristics. Therefore, it is possible to apply a reflow soldering method in which a high temperature of about 200 ° C. to 260 ° C. is applied in a very short time of about 100 seconds for mounting. Even in this case, the reflow heat does not cause the battery to swell greatly or deteriorate the battery performance.

本発明に係るコイン型リチウム二次電池を模式的に示す断面図である。It is sectional drawing which shows typically the coin-type lithium secondary battery which concerns on this invention. エーテル系化合物の沸点と、電池のふくれ及び内部抵抗値との相関を表すグラフである。It is a graph showing the correlation with the boiling point of an ether type compound, the swelling of a battery, and an internal resistance value.

符号の説明Explanation of symbols

1 電池外装缶(正極缶)
2 正極
3 負極
4 セパレータ
5 電極体
6 絶縁ガスケット
7 電池封口缶(負極キャップ)
1 Battery outer can (positive electrode can)
2 Positive electrode 3 Negative electrode 4 Separator 5 Electrode body 6 Insulating gasket 7 Battery sealing can (negative electrode cap)

Claims (6)

正極と、負極と、前記正負極間に介在されたセパレータと、非水溶媒と電解質塩とを含む非水電解液と、を有するリチウム電池において、
前記非水溶媒が、下記一般式(1)で示される化合物のうち、沸点が200℃以上の化合物の少なくとも1種と、
下記一般式(1)で示される化合物のうち、沸点が200℃未満の化合物の少なくとも1種と、を含み、
非水溶媒中の下記一般式(1)で示される化合物の23℃における合計体積割合が、95%以上100%以下である、
ことを特徴とするリチウム電池。
X−(O−C−O−Y (1)
(式中のX、Yはそれぞれ独立して、アルキル基(炭素数1−4)で、nは1−5である。)
In a lithium battery having a positive electrode, a negative electrode, a separator interposed between the positive and negative electrodes, and a nonaqueous electrolytic solution containing a nonaqueous solvent and an electrolyte salt,
Among the compounds represented by the following general formula (1), the non-aqueous solvent is at least one compound having a boiling point of 200 ° C. or higher,
Including at least one compound having a boiling point of less than 200 ° C. among the compounds represented by the following general formula (1),
The total volume ratio at 23 ° C. of the compound represented by the following general formula (1) in the non-aqueous solvent is 95% or more and 100% or less.
The lithium battery characterized by the above-mentioned.
X- (O-C 2 H 4 ) n -O-Y (1)
(X and Y in the formula are each independently an alkyl group (1 to 4 carbon atoms), and n is 1-5.)
請求項1に記載のリチウム電池において、
前記一般式(1)で示される化合物のうち、沸点が200℃未満の化合物が1,2−ジメトキシエタンを含み、前記一般式(1)で示される化合物の23℃における合計体積に占める前記沸点が200℃未満の化合物の体積割合が、50%以上60%以下である、
ことを特徴とするリチウム電池。
The lithium battery according to claim 1,
Among the compounds represented by the general formula (1), a compound having a boiling point of less than 200 ° C. includes 1,2-dimethoxyethane, and the boiling point occupies the total volume at 23 ° C. of the compound represented by the general formula (1). Is a volume fraction of a compound having a temperature of less than 200 ° C. of 50% or more and 60% or less,
The lithium battery characterized by the above-mentioned.
請求項1に記載のリチウム電池において、
前記一般式(1)で示される化合物のうち、沸点が200℃未満の化合物が1,2−ジメトキシエタン以外の化合物であり、前記一般式(1)で示される化合物の23℃における合計体積に占める前記沸点が200℃未満の化合物の体積割合が、50%以上90%以下である、
ことを特徴とするリチウム電池。
The lithium battery according to claim 1,
Among the compounds represented by the general formula (1), the compound having a boiling point of less than 200 ° C. is a compound other than 1,2-dimethoxyethane, and the total volume of the compound represented by the general formula (1) at 23 ° C. The volume fraction of the compound having a boiling point of less than 200 ° C. is 50% or more and 90% or less,
The lithium battery characterized by the above-mentioned.
請求項1、2または3に記載のリチウム電池において、
前記非水溶媒が、副成分として、23℃において5体積%以下の環状炭酸エステル及び/又はラクトンを含む、
ことを特徴とする記載のリチウム電池。
The lithium battery according to claim 1, 2 or 3,
The non-aqueous solvent contains 5% by volume or less of a cyclic carbonate and / or lactone at 23 ° C. as an accessory component.
A lithium battery as described above.
請求項1、2、3または4に記載のリチウム電池において、
前記電解質塩が、リチウムビス(トリフルオロメタンスルホニル)イミド、またはリチウムビス(ペンタフルオロエタンスルホニル)イミドである、
ことを特徴とする記載のリチウム電池。
The lithium battery according to claim 1, 2, 3 or 4,
The electrolyte salt is lithium bis (trifluoromethanesulfonyl) imide or lithium bis (pentafluoroethanesulfonyl) imide.
A lithium battery as described above.
請求項1、2、3、4または5に記載のリチウム電池において、
前記非水電解質は、前記非水溶媒100質量部に対して、カルボン酸、カルボン酸エステル(ラクトンを除く)、無水カルボン酸よりなる群から選択された1以上の化合物を、0.01〜5質量部含む、
ことを特徴とするリチウム電池。
The lithium battery according to claim 1, 2, 3, 4 or 5,
The nonaqueous electrolyte contains 0.01 to 5 of one or more compounds selected from the group consisting of carboxylic acid, carboxylic acid ester (excluding lactone), and carboxylic anhydride with respect to 100 parts by mass of the nonaqueous solvent. Including mass parts,
The lithium battery characterized by the above-mentioned.
JP2004053327A 2003-02-28 2004-02-27 Heat-resistant lithium battery Expired - Fee Related JP4668540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053327A JP4668540B2 (en) 2003-02-28 2004-02-27 Heat-resistant lithium battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003054475 2003-02-28
JP2003340864 2003-09-30
JP2004053327A JP4668540B2 (en) 2003-02-28 2004-02-27 Heat-resistant lithium battery

Publications (2)

Publication Number Publication Date
JP2005129481A true JP2005129481A (en) 2005-05-19
JP4668540B2 JP4668540B2 (en) 2011-04-13

Family

ID=34657674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053327A Expired - Fee Related JP4668540B2 (en) 2003-02-28 2004-02-27 Heat-resistant lithium battery

Country Status (1)

Country Link
JP (1) JP4668540B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115023A1 (en) * 2005-04-19 2006-11-02 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution, electrochemical energy storage device using same, and nonaqueous electrolyte secondary battery
JP2008016252A (en) * 2006-07-04 2008-01-24 Sony Corp Nonaqueous electrolyte composition and nonaqueous electrolyte battery
JP2010073489A (en) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd Electrolyte excellent in thermal stability and secondary battery prepared using the same
KR20110026380A (en) * 2009-09-07 2011-03-15 세이코 인스트루 가부시키가이샤 Electrolyte solution for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2011526057A (en) * 2008-06-25 2011-09-29 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ Non-aqueous electrolyte for high voltage lithium battery
JP2014032969A (en) * 2013-10-18 2014-02-20 Seiko Instruments Inc Electrolytic solution for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2015533020A (en) * 2012-11-23 2015-11-16 エルジー・ケム・リミテッド ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
WO2017057359A1 (en) * 2015-09-29 2017-04-06 株式会社村田製作所 Nonaqueous electrolyte secondary battery, electricity storage device, method for manufacturing same, and electricity storage circuit
JPWO2019150902A1 (en) * 2018-01-31 2021-01-28 パナソニックIpマネジメント株式会社 Manufacturing method of non-aqueous electrolyte secondary battery, electrolyte and non-aqueous electrolyte secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281677A (en) * 1988-05-09 1989-11-13 Fuji Elelctrochem Co Ltd Battery of nonaqueous electrolyte
JPH05198315A (en) * 1991-08-13 1993-08-06 Eveready Battery Co Inc Nonaqueous electrolyte
JPH08321311A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2000173627A (en) * 1998-12-04 2000-06-23 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2001273926A (en) * 2000-03-28 2001-10-05 Matsushita Electric Ind Co Ltd Organic electrolytic solution battery
JP2002298911A (en) * 2001-03-29 2002-10-11 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2003017120A (en) * 2001-04-25 2003-01-17 Sanyo Electric Co Ltd Lithium secondary cell for mounting on board
JP2005071683A (en) * 2003-08-21 2005-03-17 Matsushita Electric Ind Co Ltd Secondary battery with terminal for surface mounting

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281677A (en) * 1988-05-09 1989-11-13 Fuji Elelctrochem Co Ltd Battery of nonaqueous electrolyte
JPH05198315A (en) * 1991-08-13 1993-08-06 Eveready Battery Co Inc Nonaqueous electrolyte
JPH08321311A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2000173627A (en) * 1998-12-04 2000-06-23 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2001273926A (en) * 2000-03-28 2001-10-05 Matsushita Electric Ind Co Ltd Organic electrolytic solution battery
JP2002298911A (en) * 2001-03-29 2002-10-11 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2003017120A (en) * 2001-04-25 2003-01-17 Sanyo Electric Co Ltd Lithium secondary cell for mounting on board
JP2005071683A (en) * 2003-08-21 2005-03-17 Matsushita Electric Ind Co Ltd Secondary battery with terminal for surface mounting

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006115023A1 (en) * 2005-04-19 2008-12-18 松下電器産業株式会社 Non-aqueous electrolyte, electrochemical energy storage device using the same, and non-aqueous electrolyte secondary battery
WO2006115023A1 (en) * 2005-04-19 2006-11-02 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution, electrochemical energy storage device using same, and nonaqueous electrolyte secondary battery
JP2008016252A (en) * 2006-07-04 2008-01-24 Sony Corp Nonaqueous electrolyte composition and nonaqueous electrolyte battery
JP2011526057A (en) * 2008-06-25 2011-09-29 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ Non-aqueous electrolyte for high voltage lithium battery
JP2010073489A (en) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd Electrolyte excellent in thermal stability and secondary battery prepared using the same
JP2011060444A (en) * 2009-09-07 2011-03-24 Seiko Instruments Inc Electrolyte for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
KR20110026380A (en) * 2009-09-07 2011-03-15 세이코 인스트루 가부시키가이샤 Electrolyte solution for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
KR101657715B1 (en) * 2009-09-07 2016-09-19 세이코 인스트루 가부시키가이샤 Electrolyte solution for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2015533020A (en) * 2012-11-23 2015-11-16 エルジー・ケム・リミテッド ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
JP2014032969A (en) * 2013-10-18 2014-02-20 Seiko Instruments Inc Electrolytic solution for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
WO2017057359A1 (en) * 2015-09-29 2017-04-06 株式会社村田製作所 Nonaqueous electrolyte secondary battery, electricity storage device, method for manufacturing same, and electricity storage circuit
JPWO2019150902A1 (en) * 2018-01-31 2021-01-28 パナソニックIpマネジメント株式会社 Manufacturing method of non-aqueous electrolyte secondary battery, electrolyte and non-aqueous electrolyte secondary battery
JP7270230B2 (en) 2018-01-31 2023-05-10 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4668540B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4780833B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
US8338030B2 (en) Non-aqueous electrolyte secondary battery
JP2007179883A (en) Nonaqueous electrolyte secondary battery
JPWO2020054863A1 (en) Non-aqueous electrolyte and non-aqueous secondary battery
JP4392726B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2012023034A (en) Nonaqueous electrolyte, and nonaqueous electrolyte battery
JP4968615B2 (en) Secondary battery electrolyte and secondary battery
JP6036697B2 (en) Non-aqueous secondary battery
EP1289044A1 (en) Nonaqueous electrolyte secondary battery
JP4668540B2 (en) Heat-resistant lithium battery
JP5724116B2 (en) Non-aqueous electrolyte for lithium secondary batteries with excellent high-temperature storage characteristics
KR101043847B1 (en) Heat-Resistant Lithium Battery
JP2005317266A (en) Method of manufacturing nonaqueous electrolyte battery
JP2003249263A (en) Lithium secondary battery for substrate mounting
JP4671613B2 (en) Heat resistant non-aqueous electrolyte battery
JP2003007331A (en) Nonaqueous electrolyte secondary battery
JP4326201B2 (en) Heat-resistant lithium battery
JP4145407B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP7445873B2 (en) Non-aqueous electrolyte secondary batteries and non-aqueous electrolytes
JP5410441B2 (en) Lithium secondary battery containing additives for improving high temperature characteristics
JP2008016316A (en) Nonaqueous electrolyte secondary battery
JP2001357838A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2021190314A (en) Nonaqueous secondary battery
JP2002343354A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4668540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees