JP2005128354A - Model manufacturing method of organ - Google Patents

Model manufacturing method of organ Download PDF

Info

Publication number
JP2005128354A
JP2005128354A JP2003365272A JP2003365272A JP2005128354A JP 2005128354 A JP2005128354 A JP 2005128354A JP 2003365272 A JP2003365272 A JP 2003365272A JP 2003365272 A JP2003365272 A JP 2003365272A JP 2005128354 A JP2005128354 A JP 2005128354A
Authority
JP
Japan
Prior art keywords
dimensional
organ
model
hospital
modeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003365272A
Other languages
Japanese (ja)
Inventor
Kiyoshi Fujii
清 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003365272A priority Critical patent/JP2005128354A/en
Publication of JP2005128354A publication Critical patent/JP2005128354A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a solid model of an interal organ at a low cost by a three-dimensional solid molding device, based on a three-dimensional image of the internal organ imaged by an existing three-dimensional diagnostic apparatus in a hospital. <P>SOLUTION: The three-dimensional solid model 5 of the internal organ is manufactured by the three-dimensional solid molding device by transferring three-dimensional image data of the internal organ imaged by an ultrasonic probe 1 and an ultrasonograph 2 installed in the hospital to the three-dimensional solid molding device 4 of a three-dimensional solid molding trader via an interface having a DICOM 3, based on the three-dimensional image data transferred by the DICOM 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、臓器の模型製造方法に関し、特に臓器の立体模型を製造する方法に関する。   The present invention relates to a method for manufacturing an organ model, and more particularly to a method for manufacturing a three-dimensional model of an organ.

従来、外科医などが臓器の手術を開始する前に手術方法を検討する場合、超音波、CT、MRIなどにより得られた臓器の2次元や3次元の画像データに基づいてその画像をモニタに表示したり、プリントアウトし、そのモニタに表示された画像やプリントアウトされた画像を見て臓器の形態や位置を把握する方法がとられていた。従来の3次元超音波診断装置としては、例えば下記の特許文献1、2などに開示されたものがある。   Conventionally, when a surgeon examines a surgical method before starting an operation on an organ, the image is displayed on a monitor based on two-dimensional or three-dimensional image data of the organ obtained by ultrasound, CT, MRI or the like. Or a printout, and a method of grasping the form and position of an organ by looking at an image displayed on the monitor or a printed image is taken. Examples of conventional three-dimensional ultrasonic diagnostic apparatuses include those disclosed in Patent Documents 1 and 2 below.

また、人体模型を作成する従来の手法としては、下記の特許文献3に開示されているものがある。また、光硬化性樹脂をレーザ光により硬化させて樹脂性の立体物を作成する従来の手法としては、下記の特許文献4、5などに開示されているものがある。
特開平5−137728号公報、(要約書) 特開平6−142104号公報、(要約書) 特開2001−5377号公報、(要約書) 特開平5−96631号公報、(要約書) 特開平5−96632号公報、(要約書)
Further, as a conventional method for creating a human body model, there is one disclosed in Patent Document 3 below. Moreover, as a conventional method of creating a resinous three-dimensional object by curing a photocurable resin with a laser beam, there are those disclosed in Patent Documents 4 and 5 below.
JP-A-5-137728, (abstract) JP-A-6-142104, (abstract) JP 2001-5377, (abstract) JP-A-5-96631 (Abstract) JP 5-96632 A (abstract)

しかしながら、超音波、CT、MRIなどの3次元診断装置により撮像された3次元画像に基づいてモニタに表示された画像やプリントアウトされた画像は2次元であるので、臓器の正確な形態や位置を把握することができないという問題点がある。また、モニタ上に3次元画像を表示して手術方法を確認する場合においても、執刀に利用するメスなどの器具を臓器のどの位置から操作すれば血管などを避けて安全に手術を行えるかの確認には不充分である。   However, since an image displayed on a monitor based on a three-dimensional image captured by a three-dimensional diagnostic apparatus such as ultrasound, CT, or MRI or a printed image is two-dimensional, the accurate form and position of the organ There is a problem that cannot be grasped. In addition, even when displaying a three-dimensional image on a monitor and confirming the surgical method, from which position of the organ the instrument such as a scalpel used for the operation can be operated safely while avoiding blood vessels Insufficient for confirmation.

ここで、特許文献4、5などに示される3次元立体造形装置を各病院に配置し、既存の3次元診断装置により撮像された臓器の3次元画像に基づいて3次元立体造形装置により臓器の立体模型を作成する方法が考えられる。しかしながら、この方法では、各病院が3次元立体造形装置を購入などして配置する必要があり、また、3次元立体造形装置が高価なことから、その普及を図ることは困難である。そこで、病院に既存の3次元診断装置により撮像された臓器の3次元画像に基づいて3次元立体造形装置により安価に臓器の立体模型を作成するビジネスモデルが望まれる。   Here, the 3D 3D modeling apparatus shown in Patent Documents 4 and 5 is arranged in each hospital, and the 3D 3D modeling apparatus uses the 3D 3D modeling apparatus based on the 3D image of the organ imaged by the existing 3D diagnostic apparatus. A method of creating a three-dimensional model is conceivable. However, in this method, it is necessary for each hospital to purchase and arrange a three-dimensional three-dimensional modeling apparatus, and since the three-dimensional three-dimensional modeling apparatus is expensive, it is difficult to promote its use. Therefore, a business model for creating a three-dimensional model of an organ at low cost by a three-dimensional three-dimensional modeling apparatus is desired based on a three-dimensional image of the organ imaged by an existing three-dimensional diagnostic apparatus in a hospital.

本発明は上記従来例の問題点に鑑み、病院に既存の3次元診断装置により撮像された臓器の3次元画像に基づいて3次元立体造形装置により安価に臓器の立体模型を作成することができ、ひいては臓器の手術前にその正確な形態や位置を把握することができる臓器の模型製造方法を提供することを目的とする。   In view of the problems of the above-described conventional example, the present invention can create a three-dimensional model of an organ at low cost by a three-dimensional three-dimensional modeling apparatus based on a three-dimensional image of the organ imaged by an existing three-dimensional diagnostic apparatus in a hospital. Another object of the present invention is to provide a method for manufacturing an organ model that can grasp the exact shape and position of an organ before surgery.

本発明は上記目的を達成するために、病院に設置された3次元診断装置により撮像された臓器の3次元画像データを伝送媒体を介して3次元立体造形業者の3次元立体造形装置に転送し、
前記伝送媒体を介して転送された3次元画像データに基づいて前記3次元立体造形装置により臓器の立体模型を作成するようにしている。
この構成により、病院に3次元立体造形装置を設置することなく、病院に設置された3次元診断装置により撮像された臓器の3次元画像に基づいて3次元立体造形装置により臓器の立体模型を作成することができるので、安価に臓器の立体模型を作成することができ、また、病院側も臓器の正確な形態や位置を把握することができる。
In order to achieve the above object, the present invention transfers 3D image data of an organ imaged by a 3D diagnostic apparatus installed in a hospital to a 3D 3D modeling apparatus of a 3D 3D modeling company via a transmission medium. ,
Based on the three-dimensional image data transferred via the transmission medium, a three-dimensional model of the organ is created by the three-dimensional three-dimensional modeling apparatus.
With this configuration, a 3D model of an organ is created by a 3D 3D modeling device based on a 3D image of the organ imaged by a 3D diagnostic device installed in the hospital without installing a 3D 3D modeling device in the hospital. Therefore, it is possible to create a three-dimensional model of an organ at a low cost, and the hospital can also grasp the exact shape and position of the organ.

また、本発明は、前記3次元画像データの形式がDICOMであり、前記伝送媒体が少なくともLAN、データを格納するストレージメディア、電話回線、光ファイバのいずれかを用いることを特徴とする。
この構成により、3次元超音波診断装置により撮像された臓器の3次元画像を病院側から3次元立体造形業者に簡単に転送することができる。
Further, the present invention is characterized in that the format of the three-dimensional image data is DICOM, and the transmission medium uses at least one of a LAN, a storage medium for storing data, a telephone line, and an optical fiber.
With this configuration, it is possible to easily transfer a three-dimensional image of an organ imaged by the three-dimensional ultrasonic diagnostic apparatus from the hospital side to a three-dimensional stereolithography company.

また、本発明は、前記3次元診断装置が3次元超音波診断装置、CT、MRIのいずれかであることを特徴とする。
この構成により、病院に3次元立体造形装置を設置することなく、病院に設置された3次元超音波診断装置、CT、MRIにより撮像された臓器の3次元画像に基づいて3次元立体造形装置により臓器の立体模型を作成することができるので、安価に臓器の立体模型を作成することができ、また、病院側も臓器の正確な形態や位置を把握することができる。また、3次元立体模型を形成する手段としてはNCマシンや、粉末積層造形装置や紙積層造形装置や光造形装置などのラピッドプロタイピング(RPT)を用いることで、短期間で安価に模型を作成することができる。
Further, the present invention is characterized in that the three-dimensional diagnostic apparatus is any one of a three-dimensional ultrasonic diagnostic apparatus, CT, and MRI.
With this configuration, without installing a 3D 3D modeling apparatus in a hospital, a 3D 3D imaging apparatus based on a 3D ultrasonic diagnostic apparatus installed in a hospital, a 3D image of an organ imaged by CT or MRI. Since a three-dimensional model of an organ can be created, a three-dimensional model of an organ can be created at a low cost, and the hospital can also grasp the exact form and position of the organ. In addition, as a means to form a three-dimensional solid model, NC models, rapid prototyping (RPT) such as powder additive manufacturing equipment, paper additive manufacturing equipment, and optical modeling equipment can be used to create models inexpensively in a short period of time. can do.

本発明によれば、病院に3次元立体造形装置を設置することなく、安価に臓器の立体模型を作成することができ、また、病院側も臓器の正確な形態や位置を把握することができるという効果がある。また、人体臓器以外の模型作成用途としては、胎児の3次元画像データを用いることによって、出産前の胎児の立体模型を作成することができる。胎児模型を用いることにより、先天的な奇形(染色体異常)などの形体異常を早期に発見できると同時に、母親への医学的説明を確実かつ容易にすることが可能である。
また、3次元立体造形装置としては、NCマシンなどを用いてもよいが、複雑で微細な臓器模型を形成する場合には、光造形法を用いることが好ましい。
According to the present invention, it is possible to create a three-dimensional model of an organ at low cost without installing a three-dimensional three-dimensional modeling apparatus in a hospital, and the hospital can also grasp the exact form and position of an organ. There is an effect. Moreover, as a model creation use other than a human body organ, a three-dimensional image data of a fetus can be used to create a three-dimensional model of a fetus before giving birth. By using a fetal model, it is possible to detect form abnormalities such as congenital malformations (chromosomal abnormalities) at an early stage, and at the same time, it is possible to make medical explanation to a mother reliable and easy.
An NC machine or the like may be used as the three-dimensional three-dimensional modeling apparatus. However, when forming a complex and fine organ model, it is preferable to use an optical modeling method.

以下、図面を参照して本発明の実施の形態について説明する。図1は本発明に係る臓器の模型製造方法の一実施の形態を説明するためのブロック図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram for explaining an embodiment of an organ model manufacturing method according to the present invention.

超音波診断装置2(及び超音波プローブ1)は病院に配置され、超音波プローブ1は超音波を3次元で被検体に送信して被検体で反射された超音波を受信し、その超音波信号を超音波診断装置2に出力する。超音波診断装置2は超音波プローブ1からの超音波信号を画像処理して3次元断層画像を生成して、それをモニタ上に表示したり、記録媒体に記録する。3次元立体造形装置4は3次元立体造形業者に配置され、立体部品を示す3次元画像を所定方向であるZ方向に複数のXY平面画像に分割し、各XY平面画像に基づいて光硬化性樹脂などのラピッドプロタイピング(RPT)を用いて、所定の材料をZ方向に成長させて立体部品の模型を製造する。RPTとしては粉末積層造形や紙積層造形なども利用可能であるが、血管などの微細構造の把握が執刀前の検討には重要である場合には、通常の加工方法では実現できない場合が多く、光造形法を用いることが好ましい。   The ultrasonic diagnostic apparatus 2 (and the ultrasonic probe 1) is disposed in a hospital, and the ultrasonic probe 1 transmits ultrasonic waves to the subject in three dimensions, receives the ultrasonic waves reflected by the subject, and receives the ultrasonic waves. The signal is output to the ultrasonic diagnostic apparatus 2. The ultrasonic diagnostic apparatus 2 performs image processing on the ultrasonic signal from the ultrasonic probe 1 to generate a three-dimensional tomographic image, and displays it on a monitor or records it on a recording medium. The three-dimensional three-dimensional modeling apparatus 4 is arranged at a three-dimensional three-dimensional modeling manufacturer, divides a three-dimensional image showing a three-dimensional part into a plurality of XY plane images in a predetermined Z direction, and is photocurable based on each XY plane image. Using rapid protyping (RPT) such as resin, a predetermined material is grown in the Z direction to produce a model of a three-dimensional part. As RPT, powder additive manufacturing and paper additive manufacturing can be used. However, when grasping the fine structure of blood vessels is important for pre-study examination, it is often impossible to achieve with normal processing methods. It is preferable to use an optical modeling method.

そこで、超音波プローブ1と超音波診断装置2により撮像された臓器の3次元画像は、医用デジタル画像を伝送するための通信プロトコルであるDICOM(Digital Imaging and COmmunication in Medicine)3を有するインターフェイスを介して3次元立体造形装置4に送信され、3次元立体造形装置4により臓器の3次元立体模型5を製造することができる。また、このデータ伝送はLAN、MOやCD−Rなどのストレージメディア、電話回線、光ファイバなどを用いて行うことにより、短時間で遠方の3次元模型製造業者に伝送することが可能である。   Therefore, a three-dimensional image of an organ imaged by the ultrasonic probe 1 and the ultrasonic diagnostic apparatus 2 is transmitted via an interface having DICOM (Digital Imaging and Communication in Medicine) 3 which is a communication protocol for transmitting a medical digital image. Can be transmitted to the three-dimensional three-dimensional modeling apparatus 4, and the three-dimensional three-dimensional modeling apparatus 4 can manufacture the three-dimensional three-dimensional model 5 of the organ. This data transmission can be performed in a short time to a remote 3D model manufacturer by using a storage medium such as LAN, MO, CD-R, telephone line, optical fiber or the like.

このようなシステムによれば、3次元立体造形装置4を各病院に配置することなく、病院に既存の超音波プローブ1と、超音波診断装置2により撮像された臓器の3次元画像のデータを3次元立体造形装置4のある3次元立体造形業者などの所定機関に送信し、これに基づいて3次元立体造形装置4により安価に臓器の3次元立体模型5を作成することができる。また、病院側も臓器の正確な形態や位置を把握した手術執刀事前検討6を行うことができる。
なお、画像データを病院から3次元立体造形業者に伝送する手段としては、上記のDICOMのみならず、他の通信手段でもよく、また、DVDなどの記録媒体を介して伝送するようにしてもよい。さらに、3次元診断装置として、CTやMRIなども利用することができ、また、3次元立体造形装置4としてNCマシンなども利用することができる。
According to such a system, the three-dimensional three-dimensional image forming apparatus 4 is not arranged in each hospital, and the three-dimensional image data of the organ imaged by the ultrasonic probe 1 and the ultrasonic diagnostic apparatus 2 existing in the hospital are obtained. It can be transmitted to a predetermined organization such as a 3D 3D modeling apparatus having the 3D 3D modeling apparatus 4, and based on this, the 3D 3D model 5 of the organ can be created at low cost by the 3D 3D modeling apparatus 4. In addition, the hospital side can also perform a surgical operation prior examination 6 in which the exact form and position of the organ is grasped.
Note that the means for transmitting the image data from the hospital to the 3D three-dimensional modeler is not limited to the above-mentioned DICOM, but may be other communication means, or may be transmitted via a recording medium such as a DVD. . Furthermore, CT and MRI can be used as the three-dimensional diagnostic apparatus, and an NC machine can be used as the three-dimensional three-dimensional modeling apparatus 4.

本発明によれば、病院に3次元立体造形装置を設置することなく、短時間で安価に臓器や胎児の立体模型を作成することができ、また、病院側にとっても臓器の正確な形態や位置を把握できることや、患者などへの医学的解説を行う際に有効に活用することができるという効果があるので本発明は医療関係分野などで有用である。   According to the present invention, it is possible to create a three-dimensional model of an organ or a fetus in a short time and inexpensively without installing a three-dimensional three-dimensional modeling apparatus in a hospital. Therefore, the present invention is useful in medical fields and the like because it can be used effectively when medical explanations are given to patients and the like.

本発明に係る臓器の模型製造方法の一実施の形態を説明するためのブロック図1 is a block diagram for explaining an embodiment of an organ model manufacturing method according to the present invention;

符号の説明Explanation of symbols

1 超音波プローブ
2 超音波診断装置
3 DICOM
4 3次元立体造形装置(光造形装置)
5 3次元立体模型
1 Ultrasonic probe 2 Ultrasonic diagnostic equipment 3 DICOM
4 3D 3D modeling equipment (Optical modeling equipment)
5 3D solid model

Claims (3)

病院に設置された3次元診断装置により撮像された臓器の3次元画像データを伝送媒体を介して3次元立体造形業者の3次元立体造形装置に転送し、
前記伝送媒体を介して転送された3次元画像データに基づいて前記3次元立体造形装置により臓器の立体模型を作成する臓器の模型製造方法。
Transfer the 3D image data of the organ imaged by the 3D diagnostic apparatus installed in the hospital to the 3D 3D modeling apparatus of the 3D 3D modeling company via the transmission medium,
An organ model manufacturing method for creating a three-dimensional model of an organ using the three-dimensional solid modeling apparatus based on three-dimensional image data transferred via the transmission medium.
前記3次元画像データの形式がDICOMであり、前記伝送媒体が少なくともLAN、データを格納するストレージメディア、電話回線、光ファイバのいずれかを用いることを特徴とする請求項1に記載の臓器の模型製造方法。   The organ model according to claim 1, wherein the format of the three-dimensional image data is DICOM, and the transmission medium uses at least one of a LAN, a storage medium for storing data, a telephone line, and an optical fiber. Production method. 前記3次元診断装置は、3次元超音波診断装置、CT、MRIのいずれかであることを特徴とする請求項1又は2に記載の臓器の模型製造方法。
3. The organ model manufacturing method according to claim 1, wherein the three-dimensional diagnostic apparatus is any one of a three-dimensional ultrasonic diagnostic apparatus, CT, and MRI.
JP2003365272A 2003-10-24 2003-10-24 Model manufacturing method of organ Pending JP2005128354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365272A JP2005128354A (en) 2003-10-24 2003-10-24 Model manufacturing method of organ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365272A JP2005128354A (en) 2003-10-24 2003-10-24 Model manufacturing method of organ

Publications (1)

Publication Number Publication Date
JP2005128354A true JP2005128354A (en) 2005-05-19

Family

ID=34644002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365272A Pending JP2005128354A (en) 2003-10-24 2003-10-24 Model manufacturing method of organ

Country Status (1)

Country Link
JP (1) JP2005128354A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465437B1 (en) * 2009-10-23 2010-05-19 国立大学法人 岡山大学 Intubation training model
JP4465436B1 (en) * 2009-06-03 2010-05-19 国立大学法人 岡山大学 Intubation training model and method of manufacturing intubation training model
JP2012137514A (en) * 2010-12-24 2012-07-19 Jmc:Kk Method for manufacturing artificial organ, and artificial organ
CN104658396A (en) * 2015-03-20 2015-05-27 四川林大全科技有限公司 Artificial human skeleton manufacturing method based on radiation detection
CN104700698A (en) * 2015-03-20 2015-06-10 四川林大全科技有限公司 Anthropomorphic phantom manufacturing method based on radiation detection
JP2016014792A (en) * 2014-07-02 2016-01-28 株式会社東芝 Medical image processor and medical image processing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465436B1 (en) * 2009-06-03 2010-05-19 国立大学法人 岡山大学 Intubation training model and method of manufacturing intubation training model
JP2010281937A (en) * 2009-06-03 2010-12-16 Okayama Univ Tube insert training model, and method of manufacturing tube insert training model
JP4465437B1 (en) * 2009-10-23 2010-05-19 国立大学法人 岡山大学 Intubation training model
JP2010282170A (en) * 2009-10-23 2010-12-16 Okayama Univ Tube insert training model
JP2012137514A (en) * 2010-12-24 2012-07-19 Jmc:Kk Method for manufacturing artificial organ, and artificial organ
JP2016014792A (en) * 2014-07-02 2016-01-28 株式会社東芝 Medical image processor and medical image processing method
CN104658396A (en) * 2015-03-20 2015-05-27 四川林大全科技有限公司 Artificial human skeleton manufacturing method based on radiation detection
CN104700698A (en) * 2015-03-20 2015-06-10 四川林大全科技有限公司 Anthropomorphic phantom manufacturing method based on radiation detection
CN104700698B (en) * 2015-03-20 2017-03-22 四川林大全科技有限公司 Anthropomorphic phantom manufacturing method based on radiation detection

Similar Documents

Publication Publication Date Title
JP5208415B2 (en) Method, system and computer program for generating ultrasound images
Lee et al. Three dimensional ultrasound: abnormalities of the fetal face in surface and volume rendering mode
Werner et al. Additive manufacturing models of fetuses built from three‐dimensional ultrasound, magnetic resonance imaging and computed tomography scan data
US20070238981A1 (en) Methods and apparatuses for recording and reviewing surgical navigation processes
WO2014200099A1 (en) Ultrasonic diagnostic device
JP2009261800A (en) Ultrasonic diagnosing device
JP2017514594A (en) System for linking features in medical images to an anatomical model and method of operation thereof
US11602329B2 (en) Control device, control method, control system, and non-transitory recording medium for superimpose display
Dückelmann et al. Three‐dimensional ultrasound in evaluating the fetus
EP1795129B1 (en) Apparatus and method for displaying an ultrasound image
US20200305845A1 (en) Enhanced ultrasound imaging apparatus and associated methods of work flow
CN109820594A (en) A method of production heart part 3D printing model is guided using ultrasonic wave initial data
Yiu et al. Spiral flow phantom for ultrasound flow imaging experimentation
US20150217515A1 (en) Apparatus and method for processing medical images and computer-readable recording medium
JP2005128354A (en) Model manufacturing method of organ
CN111936057A (en) Ultrasound imaging system and method
Platt et al. Three-dimensional ultrasonography in obstetrics and gynecology: preliminary experience
KR102646993B1 (en) A ultrasound imaging apparatus and a control method of ultrasound the imaging apparatus
JP2006247206A (en) Ultrasonic diagnostic equipment
CN108778142A (en) The automatic ultrasonic of neck fold semi-transparent zone measures
JP2007029456A (en) Ultrasonic diagnostic apparatus
US9962140B2 (en) Ultrasound probe and method of controlling the same
D'Urso et al. Fetal biomodelling
JP2014018336A (en) Ultrasonic diagnostic apparatus and method for the same
WO2010060170A1 (en) Method for forming physical tridimensional models of a foetus in the womb using fast prototyping technology from archives generated in ultrasonography, magnetic resonance imaging and/or computer tomography equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090811