JP2005127932A - Optical method and instrument for detecting wood preservative - Google Patents

Optical method and instrument for detecting wood preservative Download PDF

Info

Publication number
JP2005127932A
JP2005127932A JP2003365426A JP2003365426A JP2005127932A JP 2005127932 A JP2005127932 A JP 2005127932A JP 2003365426 A JP2003365426 A JP 2003365426A JP 2003365426 A JP2003365426 A JP 2003365426A JP 2005127932 A JP2005127932 A JP 2005127932A
Authority
JP
Japan
Prior art keywords
wood
cca
light
wavelength
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003365426A
Other languages
Japanese (ja)
Inventor
Norio Ando
則男 安藤
Mitsuyoshi Okazaki
充良 岡崎
Masao Kobayashi
正男 小林
Toshiyuki Sato
敏幸 佐藤
Mitsunori Saito
光憲 齋藤
Takeo Tsushima
武夫 對馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HYWOOD CO Ltd
R TEC KK
Yamagata Prefecture
Original Assignee
HYWOOD CO Ltd
R TEC KK
Yamagata Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HYWOOD CO Ltd, R TEC KK, Yamagata Prefecture filed Critical HYWOOD CO Ltd
Priority to JP2003365426A priority Critical patent/JP2005127932A/en
Publication of JP2005127932A publication Critical patent/JP2005127932A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To nondestructively/noncontactingly determine a wood impregnated/applied with a toxic CCA metal compound or the like out of a large amount of waste woods to separate/sort the CCA-treated wood from the waste woods. <P>SOLUTION: In this optical method/instrument for detecting a wood preservative for the wood, the inspected wood is irradiated with 380 nm-2500 nm of visible light or near-infrared ray, to be spectrally dispersed into light having 964 nm±20 nm of wavelength assigned to the toxic wood preservative (CCA) containing copper, chromium and/or arsenic and light having 922 nm±20 nm of wavelength not assigned to the CCA wood preservative and to be photoreceived, via an optical sensor for receiving reflected light, and the method/instrument is provided with an absorbance calculator for conducting digital signal processing conversion for an absorbance in each of the wavelengths, a computer for computing a secondary differential value of the absorbance, and a computation software for each, conducts the nondestructive/noncontact determination, and outputs a determination result with screen display, an alarm sound or relay contact. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、木材に含浸または塗布されている有毒な金属化合物系木材防腐剤を非接触かつ非破壊で検出する木材防腐剤検出方法とその装置に関するもので、産業廃棄物処理場や建築解体現場等での多数の廃木材の中から防腐剤処理木材を効率よく発見し、廃木材をクリーンな資源と汚染物質に分別して再利用時の安全性を確保することに役立てようとするものである。   The present invention relates to a wood preservative detection method and apparatus for detecting a toxic metal compound wood preservative impregnated or coated on wood in a non-contact and non-destructive manner, and an industrial waste treatment plant or a building demolition site Efficiently discovers preservative-treated wood from a large number of waste wood, etc., and sorts waste wood into clean resources and pollutants to help ensure safety during reuse .

1996年の廃棄物統計によると、我が国での廃木材の発生は年間約4700万mであり、90%以上が再利用されずに、焼却ないしは埋め立てにより処分されている。発生原因の多くは、家屋の解体や建設時に発生する木材で、廃棄物全体の約74%を占めている。この中で、特に家屋の解体に伴う廃木材は、防腐・防蟻のため木材に木材防腐剤(銅、クロム、ヒ素を含んだ有毒木材防腐剤(CCA))を含浸または塗布したものが多い。 According to the waste statistics of 1996, the generation of waste wood in our country is about 47 million m 3 per year, more than 90% without being re-used, have been disposed of by incineration or landfill. Most of the causes are timber generated at the time of demolition and construction of houses, accounting for about 74% of the total waste. Among them, waste wood caused by the dismantling of houses, in particular, is often obtained by impregnating or applying wood preservatives (a toxic wood preservative (CCA) containing copper, chromium, arsenic) to preserve and protect ants. .

日本工業規格JIS K1570に登録されている木材防腐剤の種類としては、水溶性防腐剤としてクロム・銅・ヒ素系化合物(CCA)、フェーノール類・無機ふっ化物系化合物(FCAP)、アルキルアンモニウム系化合物(AAC)、クロム・銅・亜鉛系化合物(CFKZ)、銅・アルキルアンモニウム系化合物(ACQ)、銅・ほう素・アゾール系化合物(CUAZ)、ほう素・アルキルアンモニウム系化合物(BAAC)、また、乳化性防腐剤として脂肪酸金属塩系化合物(NCU{ナフテン酸銅化合物}・NZN{ナフテン酸亜鉛化合物}・VZN{バーサチック酸亜鉛化合物})、アゾール系化合物(AZP)、その他油性木材防腐剤としてクレオソート油木材防腐剤がある。   The types of wood preservatives registered in Japanese Industrial Standard JIS K1570 include chromium, copper, arsenic compounds (CCA), phenols, inorganic fluoride compounds (FCAP), and alkylammonium compounds as water-soluble preservatives. (AAC), chromium / copper / zinc compound (CFKZ), copper / alkyl ammonium compound (ACQ), copper / boron / azole compound (CUAZ), boron / alkyl ammonium compound (BAAC), Fatty acid metal salt-based compounds (NCU {Naphthenic acid copper compound} · NZN {Naphthenic acid zinc compound} · VZN {Versatic acid zinc compound}), azole-based compounds (AZP) as other emulsifying preservatives, and Creo as other oily wood preservatives There is a sort oil wood preservative.

なかでもCCA防腐剤(クロム・銅・ヒ素系化合物系木材防腐剤)を注入した防腐剤処理木材(以下「CCA処理木材」ともいう)は、有毒な重金属化合物を含浸・塗布されたCCA処理木材が代表で、過去の使用量が圧倒的に多く廃木材のリサイクルをすすめる上で大きな障害となっている。   In particular, preservative-treated wood (hereinafter also referred to as “CCA-treated wood”) into which CCA preservatives (chromium, copper, arsenic compound-based wood preservatives) are injected is CCA-treated wood impregnated and coated with toxic heavy metal compounds. Is the representative, and the past usage is overwhelmingly large, which is a major obstacle to promoting the recycling of waste wood.

CCA処理木材は、産業廃棄物処理場等において焼却減容化を行う場合にヒ素を含む有毒ガスが発生するほか、焼却灰に有毒物である六価クロム及びヒ素が含まれることとなる。また、現在一般的な処理方法とされる炭化処理においても木炭製品に高濃度の銅、クロム及びヒ素が含まれる。さらに、埋め立て地からはヒ素やクロム、銅が地下水に流出するなど、環境問題を引き起こす恐れがある。   When CCA-treated wood is subjected to incineration volume reduction at an industrial waste treatment plant or the like, toxic gas containing arsenic is generated, and incinerated ash contains hexavalent chromium and arsenic which are toxic substances. Further, in the carbonization treatment, which is currently a common treatment method, charcoal products contain high concentrations of copper, chromium and arsenic. In addition, arsenic, chromium, and copper may flow into groundwater from landfills, causing environmental problems.

含有重金属の挙動については、木材学会誌、Vol.46、No.6、(2000p587−595)に示される様にCCA処理木材の燃焼時における銅、クロム、ヒ素の挙動は、木材に含有するクロムは燃焼温度に依存せず100%に近い残留率で焼却灰に残る。銅、ヒ素は燃焼温度の上昇とともに低下する傾向がみられ40%〜80%の残留率であり、特に銅、クロム、ヒ素の含有率の高いサンプルほど低下する。このヒ素の残留率の低下は熱的な蒸発によるもので、ヒ素ガスとして大気中に放散されているものと考えられる。また、CCA処理木材を炭化した場合は、銅、クロムの蒸発は生じにくく高濃度で木炭内に残留し、ヒ素が蒸発することが確認された。以上のことからCCA処理木材を原料としたリサイクルや木炭を製造する場合には、含有する重金属の対策を行なう必要がある。   Regarding the behavior of the heavy metals contained, Journal of the Wood Society, Vol. 46, no. 6. As shown in (2000p587-595), the behavior of copper, chromium and arsenic during combustion of CCA-treated wood shows that the chromium contained in the wood does not depend on the combustion temperature and remains in incineration ash with a residue rate close to 100%. Remains. Copper and arsenic tend to decrease with an increase in combustion temperature, and the residual rate is 40% to 80%. Particularly, a sample having a higher content of copper, chromium and arsenic decreases. This decrease in the residual rate of arsenic is due to thermal evaporation, and is considered to be diffused into the atmosphere as arsenic gas. Moreover, when carbonizing the CCA-treated wood, it was confirmed that the evaporation of copper and chromium hardly occurs and remains in the charcoal at a high concentration, and arsenic evaporates. From the above, it is necessary to take measures against heavy metals contained when recycling and producing charcoal using CCA-treated wood.

また、廃棄物研究財団の行った廃木材の化学物質に関する調査によると、CCA処理木材の重金属含有量を測定した結果は下記の表1の通りであり、重金属類の平均含有量はクロム1053mg/kg、銅425mg/kg、ヒ素460mg/kg、であった。また、CCA処理木材から溶出試験を行なった結果、クロム6.2〜19.2mg/L、銅3.8〜12.2mg/L、ヒ素2.8〜14.6mg/Lの濃度で溶出が確認された。また、CCA処理木材を埋め立て処分した場合、溶出率としては粉体試料で銅、クロム、ヒ素は含有量の5〜10%程度ではあるが、重金属類が溶出する可能性が確認され、この濃度は法律で規定された基準(環境庁告示13号法における判定基準(表2))を上回る濃度で溶出する可能性が確認されたことから、廃木材の埋立て処分に関しても注意が指摘されるところである。 In addition, according to a survey on waste wood chemicals conducted by the Waste Research Foundation, the results of measuring the heavy metal content of CCA-treated wood are as shown in Table 1 below, and the average content of heavy metals is 1053 mg chromium / kg, copper 425 mg / kg, and arsenic 460 mg / kg. Moreover, as a result of conducting a dissolution test from CCA-treated wood, elution was observed at concentrations of chromium 6.2 to 19.2 mg / L, copper 3.8 to 12.2 mg / L, and arsenic 2.8 to 14.6 mg / L. confirmed. In addition, when CCA-treated wood is disposed of in landfill, the elution rate is about 5 to 10% of the content of copper, chromium, and arsenic in powder samples, but it is confirmed that heavy metals may be eluted. Has been confirmed that it may be eluted at a concentration exceeding the standards stipulated by law (judgment standards in the Environmental Agency Notification No. 13 Act (Table 2)). By the way.

Figure 2005127932
Figure 2005127932

Figure 2005127932
Figure 2005127932

今後、住宅の建替え工事や最近のガーデニング材の普及を考慮すると防腐木材、とりわけCCA処理された木材が増加し廃木材として大量に発生することは容易に予想されCCA防腐剤等が含浸・塗布されている木材を非破壊、非接触で迅速な判定・分別を可能とする防腐剤処理木材検出技術とその装置の開発が求められている。   In the future, considering the rebuilding of houses and the recent spread of gardening materials, it is expected that preservative timber, especially timber treated with CCA, will increase and will be generated in large quantities as waste timber and impregnated and coated with CCA preservatives. Development of a preservative-treated wood detection technology and its equipment that enable rapid judgment and separation of non-destructive, non-contact wood is required.

その上で、廃木材のリサイクルをすすめるには産業廃棄物処分場や建築解体現場においてはCCA処理木材をはじめとする有害な金属化合物に汚染された木材とその他の廃木材に対して、有害物が注入されている可能性がある部分を含めてこれをすべて分離・分別し、区別して適正にリサイクルと廃棄処理を行う必要がある。 従って、CCA処理木材等を非破壊、非接触で迅速に判別・分離することが重要な課題であり、廃木材の受入れ業、廃棄物処理業や建築解体現場で利用可能な自動化、低コスト化につながる検出手法の開発が切望されている。   On top of that, in order to promote the recycling of waste wood, at industrial waste disposal sites and construction demolition sites, toxic materials against wood contaminated with harmful metal compounds such as CCA-treated wood and other waste wood It is necessary to separate and separate all of this, including the parts that may have been injected, and to properly recycle and dispose of them separately. Therefore, it is important to quickly identify and separate non-destructive and non-contact CCA-treated timber, etc., and automation and cost reduction that can be used in the waste wood receiving business, waste processing business and building demolition sites The development of detection techniques that lead to

現在、木材の成分や木材に含浸・塗布された有害な重金属化合物(CCA防腐剤)等を検出定量化する方法には、原子吸光分析法、吸光光度法による元素分析、また、滴定法による化合物の定量化などが主に用いられている。CCA防腐剤の簡易な試薬塗布による呈色反応としては、クロムの化合物はクロムにジフェニルカルバジド液を作用させ赤紫色の錯体による呈色反応および原子吸光法によって、銅は銅イオンがジエチルジチオカルバミン酸ナトリウムと反応して生成する黄褐色の錯体を酢酸−N−ブチルで抽出し吸光度を測定する。また、ヒ素は水素化ヒ素として発生させ、ジエチルジチオカルバミン酸銀のクロロホルム溶液に吸収させて、生成する赤紫色の溶液の吸光度を測定する方法等がある。   Currently, methods for detecting and quantifying wood components and harmful heavy metal compounds (CCA preservatives) impregnated and coated on wood include atomic absorption spectrometry, elemental analysis by spectrophotometry, and compounds by titration The quantification of these is mainly used. As a color reaction by applying a simple reagent of CCA preservative, chromium compound is reacted with diphenylcarbazide solution on chromium and colored reaction with reddish purple complex and atomic absorption method. Copper is converted to diethyldithiocarbamate. The yellow-brown complex formed by reaction with sodium is extracted with N-butyl acetate and the absorbance is measured. Further, there is a method in which arsenic is generated as arsenic hydride, absorbed in a chloroform solution of silver diethyldithiocarbamate, and the absorbance of the resulting red-purple solution is measured.

また、機器を用いて木材成分を定量分析する方法も検討されており、その方法としてNMR(核磁気共鳴)分光法、FTIR(フーリエ変換赤外)分光法、蛍光分光法などがある。   In addition, methods for quantitative analysis of wood components using an instrument are also being studied, and examples of such methods include NMR (nuclear magnetic resonance) spectroscopy, FTIR (Fourier transform infrared) spectroscopy, and fluorescence spectroscopy.

しかし、NMR分光法では試料管にサンプルを採取する必要があり、分析時間が長くなる欠点をもつ。又、指紋領域である650〜1600cm−1(6,250〜15,300nm)の範囲を用いる通常のFTIR分光法はサンプル調製の必要と、その際KBr粉末を混ぜて成形しなければならないという煩わしさがある。   However, in NMR spectroscopy, it is necessary to collect a sample in a sample tube, and there is a disadvantage that analysis time becomes long. In addition, the usual FTIR spectroscopy using the fingerprint region of 650-1600 cm-1 (6,250-15,300 nm) requires sample preparation, and at that time, KBr powder must be mixed and molded. There is.

これに対して、NIR(近赤外)分光法は、試料を直接測定できるため簡便である利点を備え、木材成分のセルロース、リグニン、熱水可溶分やアルカリ可溶分等の定量に使われている例がある。しかし、これまでNIR分光法は、多くの木材成分の吸収域と水の吸収域が重複していることや、各吸収帯がブロードになるなど分析法としては問題が多く、木材の含有化合物や木材防腐剤等の評価や判定に使われた例はない。またNIRを含む分光分析では、試料の形状や表面状態に依存しないようにするため、光の透過特性の変化を計測している場合が殆どである。しかし、透過特性計測のためには被検査木材を特定の形状に加工する必要が生じ、内容物(有害物)を特定計量することは専門技術を必要とし困難であり、非常にコストの高い方法であった。非破壊・非接触計測をおこなうのは困難であった。   In contrast, NIR (near-infrared) spectroscopy has the advantage of being simple because it can directly measure a sample, and can be used for quantification of wood components such as cellulose, lignin, hot water-soluble components, and alkali-soluble components. There are some examples. However, until now, NIR spectroscopy has many problems as analytical methods such as the absorption range of many wood components and the absorption range of water overlapping, and each absorption band becomes broad. There is no example used for evaluation and judgment of wood preservatives. Also, in spectroscopic analysis including NIR, in most cases, changes in light transmission characteristics are measured so as not to depend on the shape or surface state of the sample. However, in order to measure the transmission characteristics, it is necessary to process the inspected wood into a specific shape, and it is difficult to specially measure the contents (hazardous materials) because it requires specialized techniques and is a very expensive method. Met. It was difficult to perform non-destructive and non-contact measurement.

そこで必要とされる技術として、非破壊、非接触測定がある。現在、非破壊、非接触で試料の分析が可能な技術の一つとして、蛍光分光法が用いられている。しかし、この方式は、試料に特定の励起光を照射しそれによって発生する光は元の励起光よりも長波長であり、この光を検出しようとするものであるが線幅が広いため汎用器とするには問題があった。(例えば、蛍光検出法で紫外光や可視光を励起光とし照射した場合、分子レベルでの特定の構造をもつものだけが蛍光を発する。更に、紫外光や可視光による蛍光は線幅が広い場合が多く、汎用分析器としては問題があるため、生物、科学、医療など特定の分野で蛍光特性の顕著な物質を用いた応用計測に主に利用されている。)   Therefore, there is a non-destructive and non-contact measurement as a required technique. Currently, fluorescence spectroscopy is used as one of the techniques capable of non-destructive and non-contact sample analysis. However, this method irradiates a sample with specific excitation light, and the light generated thereby has a longer wavelength than the original excitation light, and this light is intended to be detected. There was a problem with it. (For example, when ultraviolet light or visible light is irradiated as excitation light in the fluorescence detection method, only those having a specific structure at the molecular level emit fluorescence. Furthermore, fluorescence by ultraviolet light or visible light has a wide line width. Because there are many cases and problems as general-purpose analyzers, they are mainly used for applied measurement using substances with remarkable fluorescence characteristics in specific fields such as biological, scientific, and medical.)

また、高いエネルギーを有するX線を励起光として用いた蛍光X線法は物質内部の原子内殻の電子を励起するため物質を構成する原子の同定が可能である。しかし、一般の蛍光X線法では取り扱いに危険が伴うX線管を必要とし、さらに分光のための回折格子や波高分析器が必要となるため大掛かりな装置形態となっている。 In addition, the fluorescent X-ray method using X-rays having high energy as excitation light excites electrons in the inner core of the substance, so that the atoms constituting the substance can be identified. However, the general fluorescent X-ray method requires an X-ray tube that is dangerous to handle, and further requires a diffraction grating and a wave height analyzer for spectroscopy, resulting in a large-scale apparatus configuration.

建築物の解体は機械を用いることが多い。木屑はすべてミンチ状(混合廃棄物)になっている場合が多く、表面の汚れをはじめ、熱放射の影響や、空気、水分の影響が大きい。そのような状態で防腐処理した木材かどうかを見分けるのは大変困難である。すべて手作業による解体の場合でも防腐処理してあるかどうかの判断は難しい。従って、呈色などによる外観検査、大掛かりな機器を用いた従来の分光法は、廃棄木材の処分場や建築解体材等における有害廃木材の判別には、木材表面の濡れ、汚れなど様々な問題に対応できないため実用可能な判別手段とはなり得ていない。 Buildings are often demolished using machines. Wood chips are often minced (mixed waste) and are greatly affected by heat radiation, air, and moisture, including surface contamination. It is very difficult to tell whether wood is preserved in such a state. Even in the case of all manual dismantling, it is difficult to judge whether or not antiseptic treatment has been applied. Therefore, conventional spectroscopic methods using color inspections and large-scale equipment are difficult to identify hazardous waste wood in waste wood disposal sites and building demolition materials. It cannot be a practical discriminating means because it cannot cope with the above.

本発明は、前述した従来技術の問題点に鑑みてなされたもので、光学的な検出手法をもちいることで大量の廃木材のなかから有毒な金属化合物が含浸・塗布された木材、とりわけCCA木材防腐剤が含浸・塗布されているCCA処理木材を迅速かつ非破壊で判別、分離・分別を可能とし、分別作業の自動化、低コスト化を実現しようとするものである。     The present invention has been made in view of the above-mentioned problems of the prior art, and is a wood in which a toxic metal compound is impregnated and applied from a large amount of waste wood by using an optical detection technique, particularly CCA. CCA-treated wood impregnated and coated with wood preservatives can be quickly and non-destructively identified, separated and sorted, and the automation of the sorting work and cost reduction will be realized.

すなわち家屋の解体に伴う廃木材は、リサイクル資源として、チップ化し、再生木質ボード(建設発生木材を破砕したものを用いて製造した木質ボード。)、再生木質マルチング材(雑草防止材及び植物の生育を保護・促進する材料等として廃木材を再資源化したもの)、堆肥等や炭化して木質燃料や活性炭、環境浄化剤、土壌改良剤等の原材料として有効利用することが目論まれるところである。   In other words, waste wood from the dismantling of houses is converted into chips as recycled resources, and recycled wood boards (wood boards produced using crushed construction wood), recycled wood mulching materials (weed prevention materials and plant growth) Recycled waste wood as a material that protects and promotes waste), compost, etc. and carbonized to be used effectively as raw materials for wood fuel, activated carbon, environmental cleaners, soil conditioners, etc. is there.

CCA防腐剤はクロム・銅・ヒ素の化合物で,それぞれの混合配分によって1号、2号、3号がある。この場合の有効性分とはクロム化合物(CrO3として)、銅化合物(CuOとして)、ヒ素化合物(As2O5として)、1号は20%以上でクロムの化合物が多く、ヒ素が少ない配合物で、クロム、銅の塩類を用いて製造する塩型と、酸化物を用いて製造する酸化物型がある。   CCA preservatives are compounds of chromium, copper, and arsenic, and there are No. 1, No. 2, and No. 3 depending on their mixed distribution. In this case, the effective component is a chromium compound (as CrO3), a copper compound (as CuO), an arsenic compound (as As2O5), No. 1 is a compound containing 20% or more of a chromium compound and a small amount of arsenic. There are a salt type produced using a copper salt and an oxide type produced using an oxide.

このCCA防腐剤は、国内においては昭和38年頃から使われはじめ昭和45年頃から年間約10万トン使用されており、平成4年をピークに安全性の面が指摘され最近は減少傾向にある。しかし、CCA処理木材は、電柱や枕木に使われてきたクレオソート油と違い、水溶性で無色無臭のため、主に住宅用の土台や建築用途に約30万m/年使われている。特に最近は、米国やカナダから加工したCCA処理木材が輸入されるようになり,住宅用やガーデニング用材、公園資材等で使用されるCCA処理木材の使用量は増える傾向にある。 This CCA preservative has been used in Japan since about 1968, and has been used about 100,000 tons annually since around 1960. The safety aspect has been pointed out at the peak of 1992 and has recently been decreasing. However, unlike creosote oil that has been used for utility poles and sleepers, CCA-treated wood is water-soluble and colorless and odorless, so it is mainly used for residential foundations and architectural applications at about 300,000 m 3 / year. . Particularly recently, CCA-treated timber processed from the United States and Canada has come to be imported, and the amount of CCA-treated timber used for housing, gardening materials, park materials, etc. tends to increase.

ここで言う有毒な金属化合物が含浸・塗布された木材、とりわけCCA木材防腐剤等が含浸・塗布されている木材は、以下のような用途で主に使用されている。木造建築物の土台、根太、床板、柱、筋交い、バルコニー材、テラス材、ぬれ縁、木製フェンス、木製電柱、枕木、街路樹支柱、庭木の支柱、荷物輸送用コンテナパネル、土木用基礎杭、木橋、木製丸太製品、公園用遊貝、べンチ、園芸材料など。   The wood impregnated and coated with the toxic metal compound mentioned here, particularly the wood impregnated and coated with the CCA wood preservative, etc. is mainly used in the following applications. Wooden building foundations, joists, floorboards, pillars, braces, balcony materials, terrace materials, wet edges, wooden fences, wooden utility poles, sleepers, street tree pillars, garden tree pillars, container panels for luggage transportation, foundation piles for civil engineering, Wooden bridges, wooden logs, park snails, benches, gardening materials, etc.

CCA処理木材に注入されるCCA防腐剤は、木材に注入処理されたあと木材の中で水に溶け難い化合物を生成し、有機金属化合物として木材に定着する。その反応式はCCA−1号で以下のようになる。
2CuSO4+4K2Cr2O7+5AS2O5・2H2O→8CrAsO4+4CuHAsO4+2K2SO4+4KOH+7H2O+12O↑
しかし、この化学反応は注入後の温度や樹種、乾燥の早さや吸収量の関係から定着時間を3週間とされているが、工場や時間管理によって変化するためその挙動ははっきりしていない。
The CCA preservative injected into the CCA-treated wood generates a compound that is hardly soluble in water in the wood after being injected into the wood, and is fixed to the wood as an organometallic compound. The reaction formula of CCA-1 is as follows.
2CuSO4 + 4K2Cr2O7 + 5AS2O5 · 2H2O → 8CrAsO4 + 4CuHAsO4 + 2K2SO4 + 4KOH + 7H2O + 12O ↑
However, this chemical reaction has a fixing time of 3 weeks due to the relationship between the temperature after injection, tree species, the speed of drying and the amount of absorption, but its behavior is not clear because it changes depending on the factory and time management.

廃棄物研究財団の行なった廃木材からの化学物質に関する実験によると、CCA処理木材の重金属含有量を測定した結果(表1)、重金属類の平均含有量はクロム1053mg/kg、銅425mg/kg、ヒ素460mg/kgと報告されている。   According to the experiment on chemical substances from waste wood conducted by the Waste Research Foundation, the heavy metal content of CCA-treated wood was measured (Table 1). The average heavy metal content was 1053 mg / kg chromium and 425 mg / kg copper. Arsenic is reported to be 460 mg / kg.

つまりCCA木材防腐剤は、木材の成分(セルロース、ヘミセルロース、リグニン、その他)と金属塩の化合物であり、有機化合物が金属を含んでいる化学構造である。これら液体状の有機金属化合物は、一般に多量の重金属を含んでいる場合ほど安定した化合物となる場合が多く、有機金属化合物は毒性が極めて強いことが特長でメチル水銀、有機スズ化合物、CCA木材防腐剤、ジエチル亜鉛、などに代表される。
その化学構造形態は、以下の3種類に分けられる。
(1)イオン結合化合物:酸、アルコール類の金属塩
(2)共有結合性化合物:炭素原子と金属がΑ結合をしている化合物で、有機金属化合物。
(3)配位結合性化合物:分子または陰イオンが金属に配位したかたちの錯体金属。
木材防腐剤として使用されているクロム・銅・ヒ素系化合物(CCA)、フェーノール類・無機ふっ化物系化合物(FCAP)、アルキルアンモニウム系化合物(AAC)、クロム・銅・亜鉛系化合物(CFKZ)、銅・アルキルアンモニウム系化合物(ACQ)、銅・ほう素・アゾール系化合物(CUAZ)、ほう素・アルキルアンモニウム系化合物(BAAC)、脂肪酸金属塩系化合物(NCU{ナフテン酸銅化合物}・NZN{ナフテン酸亜鉛化合物}・VZN{バーサチック酸亜鉛化合物})、アゾール系化合物(AZP)、など水溶性防腐剤は前述したイオン結合、共有結合、配位結合を複雑に組合わせたもので、イオン結合化合物は水に溶けやすく反応性が高く、共有結合・錯体金属は反応が低く安定している。有機金属化合物は共有結合でアルキル基に代表され、錯体金属は2重、3重結合の場合が多い。有機金属化合物と錯体金属は、はっきり区別しにくい部分が多い。
That is, the CCA wood preservative is a chemical structure in which a component of wood (cellulose, hemicellulose, lignin, etc.) and a metal salt are included, and an organic compound contains a metal. These liquid organometallic compounds generally become more stable as they contain a large amount of heavy metals, and organometallic compounds are extremely toxic and feature methylmercury, organotin compounds, CCA wood preservatives. Represented by agents such as diethyl zinc.
The chemical structure forms are classified into the following three types.
(1) Ion-binding compound: Metal salt of acid or alcohol (2) Covalent compound: A compound in which a carbon atom and a metal are bonded to each other with an organic metal compound.
(3) Coordinative binding compound: A complex metal in which molecules or anions are coordinated to a metal.
Chromium / copper / arsenic compounds (CCA), phenols / inorganic fluoride compounds (FCAP), alkylammonium compounds (AAC), chromium / copper / zinc compounds (CFKZ) used as wood preservatives, Copper / alkylammonium compounds (ACQ), copper / boron / azole compounds (CUAZ), boron / alkylammonium compounds (BAAC), fatty acid metal salt compounds (NCU {copper naphthenates} / NZN {naphthenes) Water-soluble preservatives such as zinc oxide compounds} / VZN {zinc versatic acid compounds}) and azole compounds (AZP) are complex combinations of the ionic bonds, covalent bonds, and coordinate bonds described above. Is easily soluble in water and highly reactive, and covalent bonds and complex metals are stable with low reaction. The organometallic compound is represented by an alkyl group with a covalent bond, and the complex metal is often a double or triple bond. Organometallic compounds and complex metals are often difficult to distinguish.

通常、赤外吸収スペクトル(infrared absorption spectrum;IRと略称)は、光源から放射される赤外光を試料に照射して、試料によって吸収された赤外光を波長と吸光度によって描かれた曲線で表している。これらの赤外吸収スペクトルは、有機化合物の分子の化学構造の特長を示す特有なものであり、分子構造、電子状態、官能基などについて各種情報がえられるため、構造の確認、定性、定量などに利用される。   In general, an infrared absorption spectrum (abbreviated as IR) is a curve drawn by irradiating a sample with infrared light emitted from a light source, and the infrared light absorbed by the sample by wavelength and absorbance. Represents. These infrared absorption spectra are unique in that they show the characteristics of the chemical structure of the molecule of an organic compound. Since various information on the molecular structure, electronic state, functional group, etc. can be obtained, confirmation of the structure, qualitative, quantitative, etc. Used for

しかしながら、赤外吸収スペクトルの指紋領域(中赤外)では、試料からの熱放射の影響や、空気、水分の影響が大きく、様々な表面状態をもつ被検木材を非破壊で計測するのは極めて困難である。   However, in the fingerprint region (mid-infrared) of the infrared absorption spectrum, the influence of thermal radiation from the sample, the influence of air and moisture is large, and it is not possible to measure non-destructively the test wood with various surface states. It is extremely difficult.

これに対して近赤外光および可視光は中赤外光よりも短波長の光(波長で、380nm〜2500nm)で熱、空気、水分による影響が少なく屋外での非破壊計測に適しているものの、電子の励起、官能基の倍振動などに帰属される吸収ピークは、吸収線幅が広く、いろいろな要因でスペクトルが変化するなどの欠点を有するため、これまで化学構造の同定には殆ど利用されていない光領域である。 On the other hand, near-infrared light and visible light are light having a shorter wavelength than that of mid-infrared light (wavelength: 380 nm to 2500 nm) and are less affected by heat, air, and moisture, and are suitable for nondestructive measurement outdoors. However, absorption peaks attributed to electron excitation, functional group double vibration, etc. have a wide absorption line width and have the disadvantage that the spectrum changes due to various factors. This is an unused light region.

しかしながら可視光、近赤外光は、光ファイバーやガラスレンズなど安価に入手可能な既存の光学部品で容易に光学系を構築することが可能であるため、この帯域の有効活用が非破壊・非接触計測の上で重要と考えられる。 However, for visible light and near-infrared light, it is possible to easily construct an optical system using existing optical components such as optical fibers and glass lenses that are available at low cost. It is considered important in measurement.

非破壊非接触計測のためには、反射光を用いた分光分析方式が有望な手段となるが、反射光は試料の表面状態(表面あらさ、反射角度、汚れ、水分など)に大きく依存するためこれらの影響を受けない手法の開発が必要となる。   For non-destructive non-contact measurement, a spectroscopic analysis method using reflected light is a promising means, but the reflected light largely depends on the surface condition of the sample (surface roughness, reflection angle, dirt, moisture, etc.). It is necessary to develop methods that are not affected by these effects.

本発明は前述した防腐処理木材、とりわけCCA処理木材に含有された有害な木材防腐剤の有無を判定する方法を技術課題として鋭意研究を重ねた結果、CCA木材防腐剤が含浸・塗布された木材が通常の木材との間に可視光、近赤外光の特定帯域に反射特性に差異があることを見いだし、その特性を利用した光学式のCCA処理木材検出手法に係るものである。   In the present invention, as a result of intensive research as a technical subject, a method for determining the presence or absence of harmful wood preservatives contained in the above-mentioned preservative treated wood, particularly CCA treated wood, wood impregnated and coated with CCA wood preservatives. However, the present invention relates to an optical CCA-treated wood detection method using the characteristics, which is found to have a difference in reflection characteristics in specific bands of visible light and near-infrared light with ordinary wood.

本発明者らは実験で、CCA処理木材に複数の波長からなる可視光または近赤外光を試料に照射し、反射スペクトルを分析した結果、近赤外光の波長帯600〜1050nmでCCA化合物の吸光特性低下が顕著化し、さらに1200〜1600nmにおいてはCCA化合物の有無による吸収の差異が小さいこと(グラフ1)を知見した。また、近赤外光は可視光に比べて波長が長いため透過特性が高くなり被検査木材表面の汚れにも強いことも確認された。被検査木材が濡れている場合は水分の吸収ピークがある1450nm付近の吸収が増大し影響を受けることが懸念されたが、逆にこの帯域を避けることで水分による影響を小さくできることも確認された。   In the experiment, the present inventors irradiated a sample with visible light or near-infrared light having a plurality of wavelengths onto a CCA-treated wood, and analyzed the reflection spectrum. As a result, the CCA compound was observed in the near-infrared light wavelength band of 600 to 1050 nm. It was found that the decrease in the absorption characteristics was remarkable, and that the difference in absorption due to the presence or absence of the CCA compound was small (graph 1) at 1200 to 1600 nm. It was also confirmed that near-infrared light has a longer wavelength than visible light and thus has high transmission characteristics and is resistant to dirt on the surface of the wood to be inspected. When the wood to be inspected is wet, there is a concern that the absorption near 1450 nm, which has a moisture absorption peak, increases and is affected, but it was also confirmed that the influence of moisture can be reduced by avoiding this band. .

グラフ1Graph 1

Figure 2005127932
Figure 2005127932

これらの特性は被検査木材の原材料となる樹種に殆ど依存しないことも針葉樹、広葉樹を含んだ米マツ、赤マツ、杉、スプルース、ツガ、ケヤキ、クルミ、ナラでの計測から明らかとなった。また芯材と辺材では可視光の短波長域(青、緑)で差異があるものの、近赤外域では殆ど差異がなく外乱要因とはならないことも確認されている。   These characteristics are almost independent of the species of wood used as the raw material of the timber to be examined, and it has become clear from measurements in coniferous and broad-leaved rice pine, red pine, cedar, spruce, tsuga, zelkova, walnut and oak. It has also been confirmed that although there is a difference between the core material and the sap material in the short wavelength range (blue, green) of visible light, there is almost no difference in the near infrared region and no disturbance factor.

例としてグラフ2に示した反射スペクトルの2次微分がCCAの含有量に応じて特定波長のピークが変化していることを示した。しかしながら、本発明はこの例に限定されることはない。   As an example, the second derivative of the reflection spectrum shown in graph 2 shows that the peak at a specific wavelength changes depending on the content of CCA. However, the present invention is not limited to this example.

グラフ2Graph 2

Figure 2005127932
Figure 2005127932

これら光学的検出実験結果の信頼性を裏付けるため、本発明者らは、CCA木材防腐剤の判別に赤外吸収スペクトルや蛍光の強度比による判断と呈色反応、核磁気共鳴、元素分析などの化学的手法を併用して判断した。これらの実験から、本発明者らは、光学的手法によりCCA木材防腐剤の有無を有意に判定可能であることを明らかにした。   In order to support the reliability of these optical detection experiment results, the present inventors determined the CCA wood preservative based on the determination of the infrared absorption spectrum and fluorescence intensity ratio, color reaction, nuclear magnetic resonance, elemental analysis, etc. Judgment was made using a chemical method. From these experiments, the present inventors have clarified that the presence or absence of CCA wood preservative can be significantly determined by an optical method.

このように、本発明者らは反射スペクトルの木材特有のピーク、変曲点がCCAの結合により変化していること、CCA自体も特異的なスペクトルがあり、木材に塗布・含浸後もその特徴が検出可能であることを見出し、スペクトルの高次微分波形の解析などから、CCAの有無、濃度などを検出する手法を研究し実証に成功した。   In this way, the present inventors have found that the peaks and inflection points peculiar to wood in the reflection spectrum have changed due to the binding of CCA, and that CCA itself has a specific spectrum, and its characteristics even after coating and impregnation on wood. We have succeeded in demonstrating the research to detect the presence and concentration of CCA from the analysis of the high-order differential waveform of the spectrum.

また、木材の内部のみに木材防腐剤が浸透している場合は、光線による表面からの判別では不可能となることが懸念されるが、CCA処理木材をはじめとする防腐処理木材は木材を使用状態に加工してから木材表面からの圧力注入や塗布による処理加工となるため、注入された木材防腐剤が木材の表面を中心に木目にそって化合物を生成し定着しており、表面のみ防腐剤が欠落しているサンプルは見出せなかった。   Also, if the wood preservative penetrates only inside the wood, there is a concern that it will be impossible to discriminate from the surface with light, but wood is used for preservative treated wood including CCA treated wood. Since it is processed by pressure injection or application from the wood surface after processing into a state, the injected wood preservative generates and settles a compound along the grain centering on the wood surface, and only the surface is preserved No sample lacking agent was found.

本発明は、近赤外光の性質を利用して、この光の特定波長の反射光の特性が木材に含浸・塗布されたCCA木材防腐剤の有無や濃度を瞬時に、尚且つ非破壊で測定する光学式CCA処理木材検出手法によるCCA処理木材判別装置にかかるものである。   The present invention makes use of the properties of near-infrared light to instantly and non-destructively determine the presence and concentration of CCA wood preservatives impregnated and applied to wood. The present invention relates to a CCA-treated wood discriminating apparatus using an optical CCA-treated wood detection technique to be measured.

本発明者らは、木材に含有するCCA木材防腐剤に帰属する964nm±20nmの波長、及びCCA防腐剤単体の815nmの波長と木材に含有するCCA木材防腐剤に帰属しない922nm±20nmの波長を特定し、これらの反射光強度、並びにこの二次微分値を演算し、この計算結果に基づいて木材に含有する銅、クロム、ヒ素を含んだ有毒なCCA木材防腐剤の含浸または塗布の有無を判定することを見い出した。
その装置は、被検査木材に2500nm以下の近赤外光を照射する光源部と、木材からの反射光を受光する受光部と、照射光及び反射光のいずれかをCCAに帰属する964nmの波長の光CCAに帰属しない922nmの波長の光に分光する分光器と、受光部が受光した反射光からCCAに帰属する964nmの波長の吸光度及びCCAに帰属しない922nmの波長の吸光度を演算する吸光度デジタル信号処理装置と、これらの吸光度の二次微分値を演算する中央演算装置(CPU)を用いてCCAの吸光度に起因する有無及び濃度数値を補正する演算装置を備え以下の数式1によって、被検査木材への銅、クロム、ヒ素を含んだ有毒なCCA木材防腐剤の含浸または塗布の有無を非破壊・非接触で判定し、判定結果を画面表示または警告音またはリレー接点出力できるようにしたCCA処理木材の光学式判別装置である。
数式1の、λは波長、Α)は、CCAに帰属する波長λ(964nm)の吸光度、Α)は、CCAに帰属しないとされる波長λ(922nm)の吸光度、K0、K1、K3は、CCA濃度2%調整液含浸木材から測定された吸光度を用いて最小二乗法で決定した係数である。
The inventors have a wavelength of 964 nm ± 20 nm attributed to the CCA wood preservative contained in the wood, a wavelength of 815 nm of the CCA preservative alone and a wavelength of 922 nm ± 20 nm not attributed to the CCA wood preservative contained in the wood. Identify and calculate the intensity of the reflected light as well as the second derivative, and based on the calculation result, determine whether or not the poisonous CCA wood preservative containing copper, chromium and arsenic contained in the wood is impregnated or applied. I found out to judge.
The apparatus includes a light source unit that irradiates near-infrared light of 2500 nm or less on the wood to be inspected, a light-receiving unit that receives reflected light from the wood, and a wavelength of 964 nm that is attributed to either CIR or irradiated light. A spectroscope that divides light into a wavelength of 922 nm that does not belong to the light CCA, and an absorbance digital that calculates the absorbance at a wavelength of 964 nm that belongs to the CCA and the absorbance at 922 nm that does not belong to the CCA from the reflected light received by the light receiving unit A signal processing device and a central processing unit (CPU) for calculating the second derivative of the absorbance are used to correct the presence / absence and concentration value due to the absorbance of the CCA, and the following equation 1 Non-destructive and non-contact judgment of the presence or absence of impregnation or application of toxic CCA wood preservatives containing copper, chromium and arsenic to the wood, and display or warning of the judgment result Or is an optical discrimination system CCA treated wood to be able to relay contact output.
In Equation 1, λ is the wavelength, Α 11 ) is the absorbance at wavelength λ 1 (964 nm) attributed to CCA, and Α 22 ) is the wavelength λ 2 (922 nm) not attributed to CCA. , K0, K1, and K3 are coefficients determined by the least square method using the absorbance measured from the wood impregnated with the CCA concentration 2% adjustment liquid.

数式1Formula 1

Figure 2005127932
C:CCA有無
λ: 波長
Α): 波長λ1における吸光度
Α): 波長λ2における吸光度
K0、K1、K3: 係数
Figure 2005127932
C: CCA presence / absence λ: wavelength Α 11 ): absorbance at wavelength λ 1 Α 22 ): absorbance at wavelength λ 2
K0, K1, K3: coefficients

以上の構成からなるCCA木材防腐剤の含浸または塗布の有無を判定する方法、及び光学式木材防腐剤検出装置によって、建築解体現場等から発生する被検査木材のCCA木材防腐剤含浸または塗布木材の分離・分別時の判別用に適用され、被検査木材からの反射光を受光すれば、CCA木材防腐剤含浸または塗布木材の判別とCCA濃度の判別が可能となる。
本発明者らは、前述の作用を確かめるためにCCA木材防腐剤の含量を変化させたCCA処理木材サンプルを作成し800nmから1000nmの範囲で吸光度測定とCPUによる二次微分処理を行った結果、CCA木材防腐剤の含量によってグラフ3に示す矢印にビークがあることを知見した。
The method of determining the presence or absence of impregnation or application of the CCA wood preservative having the above structure and the optical wood preservative detection device, the CCA wood preservative impregnation or application of the wood to be inspected generated from the building demolition site, etc. If it is applied for discrimination at the time of separation / sorting and receives reflected light from the wood to be inspected, it becomes possible to discriminate CCA wood preservative impregnation or coated wood and CCA concentration.
The present inventors made a CCA-treated wood sample in which the content of the CCA wood preservative was changed in order to confirm the above-mentioned action, and as a result of performing absorbance measurement and second-order differential treatment by the CPU in the range of 800 nm to 1000 nm, It was found that there is a beak on the arrow shown in graph 3 depending on the content of the CCA wood preservative.

グラフ3Graph 3

Figure 2005127932
Figure 2005127932

グラフ2の演算結果からCCA木材防腐剤の含量によって吸光スペクトルにピークが見られCCA木材防腐剤に帰属する964nm±20nmの波長の吸光度と、CCA木材防腐剤に帰属しない922nm±20nmの波長の吸光度とが観察され、さらにこの吸光スペクトルのピークがCCA木材防腐剤に帰属するものであるかを確かめるために、被検査木材をヒバ柾目、ヒバ小口、サワラCCA塗布(無)、サワラCCA塗布(有)、桧CCA含浸(多)、桧CCA含浸(小)をつくり実験を行った。その結果、CCA木材防腐剤を含んでいない各種木材と、CCA処理木材で吸光スペクトルを比較すると964nm±20nmの波長近辺で吸光度のピークが顕著に表れた。(グラフ4)   From the calculation results of graph 2, a peak is observed in the absorption spectrum depending on the content of the CCA wood preservative, and the absorbance at a wavelength of 964 nm ± 20 nm attributed to the CCA wood preservative and the absorbance at a wavelength of 922 nm ± 20 nm not attributed to the CCA wood preservative. In addition, in order to confirm whether the peak of the absorption spectrum is attributed to the CCA wood preservative, the wood to be inspected is applied with hibermata, hiba noguchi, Sawara CCA application (none), Sawara CCA application (present ), Soot CCA impregnation (many) and soot CCA impregnation (small). As a result, when the absorption spectra were compared between various woods not containing the CCA wood preservative and the CCA-treated woods, a peak of absorbance appeared remarkably in the vicinity of a wavelength of 964 nm ± 20 nm. (Graph 4)

グラフ4Graph 4

Figure 2005127932
Figure 2005127932

この中央演算装置(CPU)を使い二次微分値を用いて演算補正する方法は、木材の種類やその表面に付着した外乱要因を極力除去したデータに加工することが可能となるため、CCA木材防腐剤の含浸または塗布の有無を判定する際に極めて制度の高い判別測定が可能となる。そこで、桧に2%に希釈したCCA木材防腐剤を含浸したCCA処理木材の含浸値と吸光度を演算する吸光度デジタル信号処理装置と、これらの吸光度の二次微分値を演算する中央演算装置(CPU)を持つ本考案にかかるCCA判別測定器を用いて測定した測定値を比較したのが表3とグラフ5である。明らかにCCA木材防腐剤2%含浸処理木材とその他の木材では異なっており、CCA判別測定器の測定数値の誤差は極めて小さいことから本発明にかかる光学式木材防腐剤検出方法は、被検査木材から確実にCCA処理木材を判別可能である。 Since this central processing unit (CPU) is used to correct the calculation using the second derivative value, it is possible to process the data to remove the disturbance factors attached to the wood type and the surface as much as possible. When determining whether or not a preservative is impregnated or applied, it is possible to perform highly discriminative measurement. Therefore, an absorbance digital signal processing device for calculating the impregnation value and absorbance of CCA-treated wood impregnated with 2% diluted CCA wood preservative in a cocoon, and a central processing unit (CPU) for calculating the second derivative of these absorbances. Table 3 and graph 5 compare the measured values measured using the CCA discriminating / measuring instrument according to the present invention. Obviously, the CCA wood preservative 2% impregnated wood is different from other wood, and the error in the measured numerical value of the CCA discrimination measuring instrument is very small. Therefore, the CCA-treated wood can be discriminated reliably.

Figure 2005127932
Figure 2005127932

グラフ5Graph 5

Figure 2005127932
Figure 2005127932

本発明は、被検査木材に照明装置を用いて特定の波長帯を含む光を照射し、被検査木材からCCA木材防腐剤の有無の判断を行う目的で反射光を特定の波長帯に分光する分光器で捉えて、これらの反射光強度を信号処理装置で演算し、さらに吸光度の二次微分値を演算する中央演算装置(CPU)よって演算し、CCA防腐剤の吸光度に起因する有無及び濃度数値を補正する光学式CCA処理木材判別装置であり、さらに判定結果を出力装置に出力可能とするものである。   The present invention irradiates light to be inspected wood with light including a specific wavelength band using a lighting device, and splits the reflected light into a specific wavelength band for the purpose of determining the presence or absence of the CCA wood preservative from the inspected wood. Captured by a spectroscope, the reflected light intensity is calculated by a signal processing device, further calculated by a central processing unit (CPU) that calculates the second derivative of the absorbance, and the presence and concentration due to the absorbance of the CCA preservative This is an optical CCA-processed wood discriminating apparatus that corrects numerical values, and further allows determination results to be output to an output device.

以下において、本発明で提供される光学式木材防腐剤検出手法によるCCA処理木材判別装置におけるシステム構成を図1に説明する。ただし、本発明の範囲は以下に記載する例に限定されるものではない。
本装置で使用する光源は可視光、近赤外光の全部または一部で連続したスペクトル光を発生することができれば、いかなるものを用いてもよい。低価格で比較的長寿命のハロゲンランプはこの装置に好適であるが、他にもメタルハライドランプ、キセノンランプ、発光ダイオードなどの光源も適宜使用可能である。なお、発光部の構造は携帯用に小型化する必要があり、発光ランプと受光用光ファイバーの一端が取り付けられたセンサとなる必要があり、特許第3056458号及び特許第3056459号の光センサ装置等が適している。
In the following, the system configuration of the CCA-treated wood discriminating apparatus using the optical wood preservative detection method provided in the present invention will be described with reference to FIG. However, the scope of the present invention is not limited to the examples described below.
Any light source may be used as long as the light source used in this apparatus can generate continuous spectrum light with all or part of visible light and near infrared light. A low-priced and relatively long-life halogen lamp is suitable for this apparatus, but other light sources such as metal halide lamps, xenon lamps, and light-emitting diodes can also be used as appropriate. The structure of the light emitting unit needs to be miniaturized for portable use, and needs to be a sensor to which one end of a light emitting lamp and a light receiving optical fiber is attached, such as the optical sensor device of Patent Nos. 3056458 and 3056459, etc. Is suitable.

本装置で使用する分光器は可視光または近赤外光を、波長により分別(分光)できるものであれば、いかなるものを用いてもよい。回折格子と受光素子アレイ、若しくは機械的駆動可能な回折格子と受光素子の組み合わせが一般的な構成であるが、AOTFやフォトニクス結晶などを用いることも可能である。また複数のフィルターを組み合わせることで分光することも可能である。 Any spectroscope may be used as long as it can separate (spectroscope) visible light or near-infrared light according to wavelength. A combination of a diffraction grating and a light receiving element array, or a combination of a mechanically driven diffraction grating and a light receiving element is a common configuration, but an AOTF, a photonic crystal, or the like can also be used. It is also possible to perform spectroscopy by combining a plurality of filters.

光強度検出器はフォトダイオードが一般的であるが、焦電センサやCdSなど光強度を最終的に電気信号に変換可能であるものでればどのような素子を用いてもよい。 The light intensity detector is generally a photodiode, but any element may be used as long as it can finally convert the light intensity into an electric signal, such as a pyroelectric sensor or CdS.

分光データの演算器は、アナログ−ディジタル変換器によりディジタルデータに変換した後にマイクロプロセッサで演算する構成が一般的であるが、DSP(ディジタルシグナルプロセッサ)、論理素子を用いたディジタル演算器で演算してもよい。また電気信号を直接アナログ演算器で演算することも可能である。これらは、いずれも当業者に公知であり適宜選択可能である。 Spectral data calculators are generally configured to operate with a microprocessor after being converted to digital data by an analog-to-digital converter. However, they are operated with a DSP (digital signal processor) or a digital calculator using logic elements. May be. It is also possible to directly calculate an electrical signal with an analog calculator. These are all known to those skilled in the art and can be appropriately selected.

防腐剤の有無、濃度を通報・表示する通報・表示器はLED(発光ダイオード)や液晶、EL(エレクトロルミネッセンス)を用いた表示器、リレー接点、ブザーやスピーカを用いた音源などを適宜利用可能である。 Reporting / displaying of the presence / absence of preservatives and the concentration / indicator can be used as appropriate, such as LED (light-emitting diode), liquid crystal, EL (electroluminescence) display, relay contact, sound source using buzzer or speaker. It is.

検出ヘッドを小型・フレキシブルにするための光ファイバーは、マルチモードファイバーの単線または集合線が、価格、光結合の容易さから好適であるが、単一モードのファイバーも使用可能である。またガラス製のファイバーは低損失で可視〜近赤外の広い範囲で特異的な吸収がないため好適であるが、プラスチックファイバーは低価格で曲げに強い特徴があり設計方針に基づいて選択できる。 As the optical fiber for making the detection head small and flexible, a single line or a collective line of a multimode fiber is preferable from the viewpoint of cost and optical coupling, but a single mode fiber can also be used. Glass fiber is suitable because it has low loss and no specific absorption in a wide range from visible to near infrared, but plastic fiber is low in price and strong in bending and can be selected based on the design policy.

装置をポータブルにするための電池は、マンガン乾電池、アルカリ乾電池、リチウム電池などの一次電池の他に、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン電池、鉛電池などの二次電池、燃料電池などを適宜選択可能である。また、電気二重層コンデンサなど大容量のコンデンサも利用可能である。 In addition to primary batteries such as manganese batteries, alkaline batteries, and lithium batteries, secondary batteries such as nickel cadmium batteries, nickel metal hydride batteries, lithium ion batteries, and lead batteries, and fuel cells can be used to make the device portable. It can be selected as appropriate. Also, a large capacity capacitor such as an electric double layer capacitor can be used.

前述のような構成により、本発明を用いるとCCA木材防腐剤の有無の特定が可能であり、光センサや受光センサ等を小型化することで建築現場や木材工場、廃木材処理工場等で容易にCCA処理木材の判別が可能となり、これまで不可能であった廃木材からCCA処理木材の分離・分別に活路が開かれることは明らかである。   With the configuration as described above, it is possible to specify the presence or absence of CCA wood preservatives by using the present invention, and it is easy to reduce the size of photosensors and photosensors at construction sites, wood factories, waste wood processing factories, etc. It is clear that CCA-treated timber can be discriminated, and it is clear that there will be a way to separate and separate CCA-treated timber from waste timber, which was impossible before.

本発明で提供される木材防腐剤検出法は図1のフローチャートに示すプロセスによって達成される。 The wood preservative detection method provided in the present invention is achieved by the process shown in the flowchart of FIG.

本発明に係るフローチャートによる説明図Explanatory drawing by the flowchart which concerns on this invention

Claims (6)

木材へ木材防腐剤が含浸または塗布された被検査木材に可視光(380nm〜780nm)または近赤外光(780nmから2500nm)を照射することにより、その光線の反射率の波長特性(反射スペクトル)の変化する現象を読み取り、被検査木材上の木材防腐剤の有無の判定、または濃度を導出し、通報・表示する木材に於ける木材防腐剤の光学式検出方法。   Wavelength characteristics (reflection spectrum) of the reflectance of light by irradiating visible light (380 nm to 780 nm) or near-infrared light (780 nm to 2500 nm) to the inspected wood impregnated or coated with wood preservatives An optical detection method for wood preservatives in wood that reads the phenomenon of change in the wood, determines the presence or absence of wood preservatives on the inspected wood, and derives and reports the concentration. 請求項1の可視光または近赤外光の(波長380nm以上、2500nm以下の可視光〜近赤外光)全部または一部に連続したスペクトルをもつ光を被検査木材に照射し、その反射光を分光して、反射スペクトルを計測し、さらに計測した反射スペクトルデータに演算を施すことで、木材へ含浸または塗布された木材防腐剤の有無の判定、または濃度を導出し、結果を通報・表示する木材に於ける木材防腐剤の光学式検出方法。 The wood to be inspected is irradiated with light having a spectrum continuous to all or part of visible light or near infrared light (visible light to near infrared light having a wavelength of 380 nm or more and 2500 nm or less) of claim 1, and reflected light thereof. To measure the reflection spectrum, calculate the reflection spectrum data, determine the presence or concentration of wood preservatives impregnated or applied to wood, and report and display the results. Method for optical detection of wood preservatives in wood. 請求項1の可視光または近赤外光の一部または全部の連続したスペクトルをもつ光を被検査木材に照射自在の照明装置と、被検査木材からの反射光を分光可能な分光器と、分光器で分光した光強度を電気信号に変換する検出器と、得られた分光データ(反射スペクトル)に演算を施すことが可能な演算器と、演算結果をもとに木材防腐剤の有無や濃度を表示・通報する表示器からなる木材に於ける木材防腐剤の光学式検出装置。 An illumination device capable of irradiating the inspected wood with light having a continuous spectrum of part or all of the visible light or near-infrared light of claim 1, a spectroscope capable of spectroscopically reflecting the reflected light from the inspected wood, A detector that converts the light intensity dispersed by the spectroscope into an electrical signal, an arithmetic unit that can perform operations on the obtained spectral data (reflection spectrum), and the presence or absence of wood preservatives based on the calculation results An optical detector for wood preservatives in wood, which consists of a display that displays and reports the concentration. 電池を搭載して、光源、分光装置、光強度検出部、演算部、通報・表示部に電池から電力を供給自在とした請求項3の木材に於ける木材防腐剤の光学式検出装置。 4. An optical detection device for wood preservatives in wood according to claim 3, wherein a battery is mounted and power can be supplied from the battery to the light source, the spectroscopic device, the light intensity detection unit, the calculation unit, and the notification / display unit. 請求項1の可視光または近赤外光の光源から得られる光を、光ファイバーを介してもしくは直接光源を被検査木材に照射し、反射光を、同一または並行する別の光ファイバーを介して分光器へ導入する様にした請求項3記載の木材に於ける木材防腐剤の光学式検出装置。 The light obtained from the visible light or near-infrared light source of claim 1 is applied to the wood to be inspected through the optical fiber or directly from the light source, and the reflected light is applied to the spectroscope through another optical fiber that is the same or in parallel. 4. An optical detection device for wood preservatives in wood according to claim 3, which is introduced into the wood. 被検査木材に近赤外光を照射し得られた反射スペクトル強度から銅、クロム、ヒ素を含んだ木材防腐剤(CCA)に帰属する964nm±20nmの波長の光、及び815nm±20nmの波長、CCAに帰属しない922nm±20nmの波長の光の吸光度の二次微分値を下記の数式1によって、被検査木材への木材防腐剤(CCA)の含浸または塗布の有無を非破壊・非接触で判定し、判定結果を画面表示または警告音またはリレー接点出力できるようにした木材に於ける木材防腐剤(CCA)の光学式検出方法。
数式1
Figure 2005127932
数式1の、λは波長、Α)は、CCAに帰属する波長λ(964nm)の吸光度、Α)は、CCAに帰属しないとされる波長λ(922nm)の吸光度、K0、K1、K3は、CCA濃度2%調整液含浸木材から測定された吸光度を用いて最小二乗法で決定した係数である。
From the reflection spectrum intensity obtained by irradiating the inspected wood with near-infrared light, light having a wavelength of 964 nm ± 20 nm and a wavelength of 815 nm ± 20 nm belonging to a wood preservative (CCA) containing copper, chromium and arsenic, Non-destructive and non-contact determination of the presence or absence of wood preservative (CCA) impregnation or application to the wood to be inspected using the following formula 1 for the second derivative of the absorbance of light with a wavelength of 922 nm ± 20 nm not belonging to CCA And a method for optically detecting wood preservative (CCA) in wood so that the judgment result can be displayed on the screen or output a warning sound or relay contact.
Formula 1
Figure 2005127932
In Equation 1, λ is the wavelength, Α 11 ) is the absorbance at wavelength λ 1 (964 nm) attributed to CCA, and Α 22 ) is the wavelength λ 2 (922 nm) not attributed to CCA. , K0, K1, and K3 are coefficients determined by the least square method using the absorbance measured from the wood impregnated with the CCA concentration 2% adjustment liquid.
JP2003365426A 2003-10-27 2003-10-27 Optical method and instrument for detecting wood preservative Pending JP2005127932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365426A JP2005127932A (en) 2003-10-27 2003-10-27 Optical method and instrument for detecting wood preservative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365426A JP2005127932A (en) 2003-10-27 2003-10-27 Optical method and instrument for detecting wood preservative

Publications (1)

Publication Number Publication Date
JP2005127932A true JP2005127932A (en) 2005-05-19

Family

ID=34644094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365426A Pending JP2005127932A (en) 2003-10-27 2003-10-27 Optical method and instrument for detecting wood preservative

Country Status (1)

Country Link
JP (1) JP2005127932A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010371A (en) * 2005-06-28 2007-01-18 Kenji Yasuda Harmful substance detecting system, detection method of harmful wood, and waste wood treatment system
JP2010123031A (en) * 2008-11-21 2010-06-03 Katsutoshi Corp System for selecting and analyzing construction material
WO2011125162A1 (en) * 2010-04-05 2011-10-13 カツトシ株式会社 Construction material selection/analysis system
JP2013044729A (en) * 2011-08-26 2013-03-04 Sumitomo Electric Ind Ltd Coating state measuring method
CN106526021A (en) * 2016-11-09 2017-03-22 通标标准技术服务(上海)有限公司 Method for measuring creosote in wood product
KR20190098558A (en) * 2018-02-14 2019-08-22 서울대학교산학협력단 Method for analysis of extractive and lignin content of conifer by near infrared spectrometry

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010371A (en) * 2005-06-28 2007-01-18 Kenji Yasuda Harmful substance detecting system, detection method of harmful wood, and waste wood treatment system
JP2010123031A (en) * 2008-11-21 2010-06-03 Katsutoshi Corp System for selecting and analyzing construction material
WO2011125162A1 (en) * 2010-04-05 2011-10-13 カツトシ株式会社 Construction material selection/analysis system
JP2013044729A (en) * 2011-08-26 2013-03-04 Sumitomo Electric Ind Ltd Coating state measuring method
CN106526021A (en) * 2016-11-09 2017-03-22 通标标准技术服务(上海)有限公司 Method for measuring creosote in wood product
CN106526021B (en) * 2016-11-09 2018-12-28 通标标准技术服务(上海)有限公司 A kind of method of creosote in measurement woodwork
KR20190098558A (en) * 2018-02-14 2019-08-22 서울대학교산학협력단 Method for analysis of extractive and lignin content of conifer by near infrared spectrometry
KR102037792B1 (en) * 2018-02-14 2019-10-29 서울대학교 산학협력단 Method for analysis of extractive and lignin content of conifer by near infrared spectrometry

Similar Documents

Publication Publication Date Title
US6525319B2 (en) Use of a region of the visible and near infrared spectrum to predict mechanical properties of wet wood and standing trees
Chudyk et al. Remote detection of groundwater contaminants using far-ultraviolet laser-induced fluorescence
Nkansah et al. Rapid characterization of biomass using near infrared spectroscopy coupled with multivariate data analysis: Part 1 yellow-poplar (Liriodendron tulipifera L.)
Block et al. Use of handheld X-ray fluorescence spectrometry units for identification of arsenic in treated wood
Shetty et al. Measuring light absorption by freshly emitted organic aerosols: optical artifacts in traditional solvent-extraction-based methods
Blassino et al. Pilot scale evaluation of sorting technologies for CCA treated wood waste
CA2766406A1 (en) Method of detecting contaminants
Moschos et al. Source-specific light absorption by carbonaceous components in the complex aerosol matrix from yearly filter-based measurements
Sut et al. Feasibility of field portable near infrared (NIR) spectroscopy to determine cyanide concentrations in soil
JP3739086B2 (en) Optical wood preservative detection method
Milic et al. Biomass burning and biogenic aerosols in northern Australia during the SAFIRED campaign
JP2005127932A (en) Optical method and instrument for detecting wood preservative
US6593572B2 (en) Method of predicting mechanical properties of decayed wood
Hazel et al. Multivariate analysis of mid-IR FT-IR spectra of hydrocarbon-contaminated wet soils
JP4997639B2 (en) Asbestos determination method using laser-induced fluorescence
Taylor et al. Potential of near infrared spectroscopy to quantify boron concentration in treated wood
Van den Broeke On-line and in-situ UV/vis spectroscopy
Che et al. Research on chemical oxygen demand based on laser Fluorescence-Raman spectroscopy
Kim et al. Real-time spectroscopic methods for analysis of organic compounds in water
CN103257122A (en) Method for detecting oil mist in workshop air by three-wavelength infrared process
Snels et al. First results obtained with a lidar fluorescence sensor system
Helsen et al. Tanalith E 3494 impregnated wood: Characterisation and thermal behaviour
CN112577941A (en) Method for detecting organic pollutants in soil
CN215493147U (en) Detection apparatus for many material parameters
Spencer et al. Surface-enhanced Raman for monitoring toxins in water

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060925