JP2005127386A - Rubber bush mount - Google Patents

Rubber bush mount Download PDF

Info

Publication number
JP2005127386A
JP2005127386A JP2003361741A JP2003361741A JP2005127386A JP 2005127386 A JP2005127386 A JP 2005127386A JP 2003361741 A JP2003361741 A JP 2003361741A JP 2003361741 A JP2003361741 A JP 2003361741A JP 2005127386 A JP2005127386 A JP 2005127386A
Authority
JP
Japan
Prior art keywords
rubber bush
conductive polymer
electrolyte
polymeric material
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003361741A
Other languages
Japanese (ja)
Inventor
Hidetoshi Amano
英俊 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003361741A priority Critical patent/JP2005127386A/en
Publication of JP2005127386A publication Critical patent/JP2005127386A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To control a spring constant of a rubber bush mount at good responsiveness with a small and light structure. <P>SOLUTION: A polymer actuator 18 with a conductive polymeric material contacting an electrolyte is embedded inside of a rubber bush 17 connecting an outer cylinder 14 and an inner cylinder 16 of a rubber bush mount 13. An electric potential of the conductive polymeric material is made higher than that of the electrolyte to extend the conductive polymeric material. Also, the electric potential of the conductive polymeric material is made lower than that of the electrolyte to shrink the conductive polymeric material, so as to change a spring constant of the rubber bush 17 by telescopic driving of the polymer actuator 18. This can secure rigidity of a suspension device in turning, improve riding comfort in a straight traveling, control a toe by a side force of a tire, and realize an active anti-vibration function and the like matched with vibration input from a road surface at good responsiveness with a simple and low-cost structure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車のサスペンションアームを車体あるいはナックルに弾性的に接続するゴムブッシュマウントに関する。   The present invention relates to a rubber bush mount that elastically connects a suspension arm of an automobile to a vehicle body or a knuckle.

自動車のサスペンションアームを車体あるいはナックルに弾性的に接続するゴムブッシュマウントは、サスペンションアームの端部に圧入等で固定される外筒と、車体あるいはナックルにボルト等で固定される内筒と、外筒および内筒を接続するゴムブッシュとを備えており、このゴムブッシュのばね定数を調整すべく、その適宜の部位に「すぐり」と呼ばれる空間を形成することが行われている。   A rubber bush mount that elastically connects the suspension arm of an automobile to a vehicle body or a knuckle consists of an outer cylinder that is fixed to the end of the suspension arm by press fitting, an inner cylinder that is fixed to the vehicle body or the knuckle by bolts, etc. A rubber bush connecting the cylinder and the inner cylinder is provided, and in order to adjust the spring constant of the rubber bush, a space called “tickling” is formed at an appropriate portion thereof.

また下記特許文献1には、ゴムブッシュマウントのばね定数を可変とすべく、ゴムブッシュの内部に形成された油室に供給する油圧の大きさを制御することで、ゴムブッシュの固さを変化させるものが記載されている。
特許第2998224号公報
In Patent Document 1 below, in order to make the spring constant of the rubber bush mount variable, the hardness of the rubber bush is changed by controlling the hydraulic pressure supplied to the oil chamber formed inside the rubber bush. What is to be done is described.
Japanese Patent No. 2998224

しかしながら上記特許文献1に記載されたものは、ゴムブッシュの内部に形成された油室に供給する油圧の大きさを制御するために、オイルポンプ、制御バルブ、油圧配管等が必要になり、装置が大型化して重量の増加やコストアップの要因となるだけでなく、油室へのオイルの供給・排出に時間が掛かるために充分な応答性が得られないという問題があった。   However, what is described in Patent Document 1 requires an oil pump, a control valve, hydraulic piping, and the like in order to control the hydraulic pressure supplied to the oil chamber formed inside the rubber bush. However, there is a problem that not only the increase in weight and the cost increase but also the supply / discharge of oil to the oil chamber takes time, and sufficient response cannot be obtained.

本発明は前述の事情に鑑みてなされたもので、小型軽量な構造でゴムブッシュマウントのばね定数を応答性良く制御できるようにすることを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to make it possible to control the spring constant of a rubber bush mount with high responsiveness with a small and lightweight structure.

上記目的を達成するために、請求項1に記載された発明によれば、サスペンションアームに固定される外筒と車体またはナックルに固定される内筒とをゴムブッシュで接続したゴムブッシュマウントにおいて、導電性高分子材料を電解質に接触させた高分子アクチュエータをゴムブッシュの内部に埋設し、導電性高分子材料の電位を電解質の電位よりも高くして導電性高分子材料を伸長させ、また導電性高分子材料の電位を電解質の電位よりも低くして導電性高分子材料を収縮させることで、高分子アクチュエータを伸縮駆動してゴムブッシュのばね定数を変化させることを特徴とするゴムブッシュマウントが提案される。   In order to achieve the above object, according to the invention described in claim 1, in the rubber bush mount in which the outer cylinder fixed to the suspension arm and the inner cylinder fixed to the vehicle body or the knuckle are connected by the rubber bush, A polymer actuator with a conductive polymer material in contact with the electrolyte is embedded in the rubber bush, the potential of the conductive polymer material is made higher than the potential of the electrolyte, and the conductive polymer material is stretched. The rubber bush mount is characterized in that the potential of the conductive polymer material is made lower than the potential of the electrolyte and the conductive polymer material is contracted to drive the expansion and contraction of the polymer actuator to change the spring constant of the rubber bush. Is proposed.

また請求項2に記載された発明によれば、請求項1の構成に加えて、車両の走行状態を検出する走行状態検出手段と、走行状態検出手段で検出した車両の走行状態に応じて高分子アクチュエータの作動を制御する制御手段とを備えたことを特徴とするゴムブッシュマウントが提案される。   According to the second aspect of the present invention, in addition to the configuration of the first aspect, the driving state detecting means for detecting the driving state of the vehicle, and a high level according to the driving state of the vehicle detected by the driving state detecting means. A rubber bush mount characterized by comprising control means for controlling the operation of the molecular actuator is proposed.

尚、実施例の固体電解質28は本発明の電解質に対応し、実施例の横加速度センサ29は本発明の走行状態検出手段に対応し、実施例の電子制御ユニットUは本発明の制御手段に対応する。   The solid electrolyte 28 of the embodiment corresponds to the electrolyte of the present invention, the lateral acceleration sensor 29 of the embodiment corresponds to the traveling state detection means of the present invention, and the electronic control unit U of the embodiment corresponds to the control means of the present invention. Correspond.

請求項1の構成によれば、ゴムブッシュマウントの外筒および内筒を接続するゴムブッシュの内部に、導電性高分子材料を電解質に接触させた高分子アクチュエータを埋設したので、導電性高分子材料の電位を電解質の電位よりも高くして導電性高分子材料を伸長させ、また導電性高分子材料の電位を電解質の電位よりも低くして導電性高分子材料を収縮させることで、高分子アクチュエータを伸縮駆動してゴムブッシュのばね定数を変化させることができる。これにより、旋回時におけるサスペンション装置の剛性の確保、直進走行時における乗り心地性の向上、タイヤのサイドフォースによるトーコントロール、路面からの振動入力に合わせてたアクティブな防振機能等を簡単で低コストな構造で応答性良く実現することができる。   According to the configuration of claim 1, since the polymer actuator in which the conductive polymer material is brought into contact with the electrolyte is embedded in the rubber bush connecting the outer cylinder and the inner cylinder of the rubber bush mount, the conductive polymer The potential of the material is made higher than the potential of the electrolyte to elongate the conductive polymer material, and the potential of the conductive polymer material is made lower than the potential of the electrolyte to shrink the conductive polymer material. The spring constant of the rubber bush can be changed by driving the molecular actuator to expand and contract. As a result, the rigidity of the suspension system during turning, improvement of ride comfort during straight running, toe control by the side force of the tire, active anti-vibration function according to the vibration input from the road surface, etc. are simple and low. It can be realized with a cost structure and good responsiveness.

請求項2の構成によれば、走行状態検出手段で検出した車両の走行状態に応じて制御手段が高分子アクチュエータの作動を制御するので、ドライバーによる特別の操作を必要とせずに、ゴムブッシュマウントの特性を車両の走行状態に適した特性に変更することができる。   According to the configuration of the second aspect, since the control means controls the operation of the polymer actuator according to the running state of the vehicle detected by the running state detection means, the rubber bush mount is not required for special operation by the driver. The characteristic can be changed to a characteristic suitable for the running state of the vehicle.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図5は本発明の第1実施例を示すもので、図1は自動車のサスペンションアームの正面図、図2は図1の2部拡大断面図、図3は図2の3部拡大断面図、図4は導電性高分子チューブの斜視図、図5は高分子アクチュエータの作動時の作用説明図である。   1 to 5 show a first embodiment of the present invention. FIG. 1 is a front view of a suspension arm of an automobile, FIG. 2 is an enlarged sectional view of a part 2 in FIG. 1, and FIG. FIG. 4 is a perspective view of the conductive polymer tube, and FIG. 5 is an explanatory view of the action when the polymer actuator is operated.

図1に示すように、自動車のサスペンションアーム10はアーム本体11と、その両端に一体に形成された円筒状の接続部12,12とを備えており、各々の接続部12,12に支持されたゴムブッシュマウント13,13は、その一方が車体に接続され、その他方がナックルに接続される。   As shown in FIG. 1, a suspension arm 10 of an automobile includes an arm body 11 and cylindrical connection portions 12 and 12 integrally formed at both ends thereof, and is supported by the connection portions 12 and 12. One of the rubber bush mounts 13 and 13 is connected to the vehicle body, and the other is connected to the knuckle.

図2から明らかなように、ゴムブッシュマウント13はサスペンションアーム10の接続部12に圧入される外筒14と、外筒14の内部に配置されてボルト15で車体あるいはナックルに固定される内筒16と、外筒14および内筒16を接続するゴムブッシュ17とを備えており、ゴムブッシュ17の内部に2個の高分子アクチュエータ18,18が埋め込まれる。高分子アクチュエータ18,18は概略円筒状のもので、その軸線をアーム本体11の軸線Lに一致させた状態で、内筒16の両側に配置される。   As is clear from FIG. 2, the rubber bush mount 13 includes an outer cylinder 14 that is press-fitted into the connection portion 12 of the suspension arm 10, and an inner cylinder that is disposed inside the outer cylinder 14 and is fixed to the vehicle body or knuckle with a bolt 15. 16 and a rubber bush 17 that connects the outer cylinder 14 and the inner cylinder 16, and two polymer actuators 18, 18 are embedded in the rubber bush 17. The polymer actuators 18 and 18 are substantially cylindrical, and are arranged on both sides of the inner cylinder 16 in a state where the axis thereof is aligned with the axis L of the arm body 11.

図3から明らかなように、高分子アクチュエータ18は、有底円筒状のシリンダ21と、このシリンダ21の内部に摺動自在に嵌合する有底円筒状のピストン22と、シリンダ21およびピストン22により区画される円筒状の空間に螺旋状に巻かれて収納されたアクチュエータエレメント23とを備える。アクチュエータエレメント23は、図4に示す導電性高分子チューブ24を約100本程度束ね、その両端部を固定リング25,25でかしめて固定したものである。   As apparent from FIG. 3, the polymer actuator 18 includes a bottomed cylindrical cylinder 21, a bottomed cylindrical piston 22 that is slidably fitted inside the cylinder 21, and the cylinder 21 and the piston 22. And an actuator element 23 that is spirally wound and accommodated in a cylindrical space partitioned by. The actuator element 23 is formed by bundling about 100 conductive polymer tubes 24 shown in FIG. 4 and caulking both ends thereof with fixing rings 25 and 25.

図4に示すように、導電性高分子チューブ24は細い金属線をコイル状に巻いたコイル部材26を導電性高分子材料27の薄い皮膜(例えば厚さ20μm)で覆い、その内部に固体電解質28を充填して構成される。導電性高分子チューブ24の直径は約0.25mmであり、それを束ねたアクチュエータエレメント23の直径は約4.5mmである。   As shown in FIG. 4, in the conductive polymer tube 24, a coil member 26 in which a thin metal wire is wound in a coil shape is covered with a thin film (for example, 20 μm thick) of a conductive polymer material 27, and a solid electrolyte is contained therein. 28 is filled. The diameter of the conductive polymer tube 24 is about 0.25 mm, and the diameter of the actuator element 23 bundled with the conductive polymer tube 24 is about 4.5 mm.

導電性高分子材料27は例えばポリピロール、ポリアニリン、ポリチオフェンおよびこれらの誘導体のうちの一種、あるいは複数種の混合物で構成される。また固体電解質28は、非水電池電解質に使用されるリチウム塩と、このリチウム塩を溶解する溶媒と、溶媒を保持する高分子マトリクスとによって構成される。導電性高分子材料27および固体電解質28にそれぞれプラス電位およびマイナス電位を与えると、導電性高分子材料27に固体電解質28中のマイナスイオンが吸収されて膨張し、逆に導電性高分子材料27および固体電解質28にそれぞれマイナス電位およびプラス電位を与えると、導電性高分子材料27から固体電解質28中のマイナスイオンが放出されて収縮する。このとき、僅かに1V〜3Vの電圧を加えるだけで導電性高分子材料27は15%程度の伸縮率と22MPa程度の出力を発生することができ、かつ0.2秒程度の応答時間で伸長状態および収縮状態を切り替えることができる。   The conductive polymer material 27 is made of, for example, one or a mixture of polypyrrole, polyaniline, polythiophene, and derivatives thereof. The solid electrolyte 28 includes a lithium salt used for the nonaqueous battery electrolyte, a solvent that dissolves the lithium salt, and a polymer matrix that holds the solvent. When a positive potential and a negative potential are applied to the conductive polymer material 27 and the solid electrolyte 28, respectively, negative ions in the solid electrolyte 28 are absorbed and expanded by the conductive polymer material 27, and conversely, the conductive polymer material 27. When a negative potential and a positive potential are applied to the solid electrolyte 28, negative ions in the solid electrolyte 28 are released from the conductive polymer material 27 and contract. At this time, the conductive polymer material 27 can generate an expansion ratio of about 15% and an output of about 22 MPa with only a voltage of 1 V to 3 V, and stretches with a response time of about 0.2 seconds. The state and the contraction state can be switched.

図2に示すように、横加速度センサ29で検出した車両の横加速度が入力される電子制御ユニットUは、検出した横加速度に応じて高分子アクチュエータ18,18の作動を制御する。   As shown in FIG. 2, the electronic control unit U to which the lateral acceleration of the vehicle detected by the lateral acceleration sensor 29 is input controls the operation of the polymer actuators 18 and 18 according to the detected lateral acceleration.

しかして、アクチュエータエレメント23の導電性高分子チューブ24の導電性高分子材料27にプラス電圧を印加して固体電解質28にマイナス電圧を印加すると、アクチュエータエレメント23がその長手方向に伸長する。このとき、シリンダ21およびピストン22により区画される円筒状の空間に螺旋状に巻かれて収納されたアクチュエータエレメント23は、その螺旋の径が増加する方向に膨張できないため、その螺旋の巻回軸方向に旋回しながら伸長してシリンダ21からピストン22を押し出す方向に駆動し、高分子アクチュエータ18が伸長する。   Thus, when a positive voltage is applied to the conductive polymer material 27 of the conductive polymer tube 24 of the actuator element 23 and a negative voltage is applied to the solid electrolyte 28, the actuator element 23 extends in the longitudinal direction. At this time, the actuator element 23 spirally wound and accommodated in the cylindrical space defined by the cylinder 21 and the piston 22 cannot expand in the direction in which the diameter of the spiral increases. The polymer actuator 18 is extended while rotating in a direction to drive the piston 22 from the cylinder 21 in the direction of pushing out, and the polymer actuator 18 is extended.

逆に、アクチュエータエレメント23の導電性高分子チューブ24の導電性高分子材料27にマイナス電圧を印加して固体電解質28にプラス電圧を印加すると、アクチュエータエレメント23がその長手方向に収縮する。すると、ゴムブッシュ17から受ける反力でピストン22がシリンダ21の内部に押し込まれて高分子アクチュエータ18が収縮する。   Conversely, when a negative voltage is applied to the conductive polymer material 27 of the conductive polymer tube 24 of the actuator element 23 and a positive voltage is applied to the solid electrolyte 28, the actuator element 23 contracts in the longitudinal direction. Then, the piston 22 is pushed into the cylinder 21 by the reaction force received from the rubber bush 17 and the polymer actuator 18 contracts.

次に、上記構成を備えた本発明の第1実施例について説明する。   Next, a first embodiment of the present invention having the above configuration will be described.

車両の高速旋回時に横加速度センサ29が所定値以上の横加速度を検出すると、電子制御ユニットUがゴムブッシュマウント13の2個の高分子アクチュエータ18,18を伸長方向に作動させる。すると図5(A)に示すように、高分子アクチュエータ18のシリンダ21からピストン22が押し出されてゴムブッシュ17を圧縮するため、そのばね定数が大きくなる。つまりゴムブッシュ17が固くなって外筒14および内筒16の相対位置が変化し難くなり、高速旋回時の横加速度によりタイヤに作用するサイドフォースに耐え得るようにサスペンション装置の剛性を高めることで、旋回性能を向上させることができる。   When the lateral acceleration sensor 29 detects a lateral acceleration of a predetermined value or more during high-speed turning of the vehicle, the electronic control unit U operates the two polymer actuators 18 and 18 of the rubber bush mount 13 in the extending direction. Then, as shown in FIG. 5 (A), the piston 22 is pushed out from the cylinder 21 of the polymer actuator 18 to compress the rubber bush 17, so that the spring constant becomes large. In other words, the rubber bush 17 becomes hard and the relative positions of the outer cylinder 14 and the inner cylinder 16 hardly change, and the rigidity of the suspension device is increased so that it can withstand the side force acting on the tire due to the lateral acceleration during high-speed turning. , Turning performance can be improved.

一方、車両の直進走行時に横加速度センサ29が検出する横加速度が所定値以下になると、電子制御ユニットUがゴムブッシュマウント13の2個の高分子アクチュエータ18,18を収縮方向に作動させる。すると図2に示すように、高分子アクチュエータ18のシリンダ21内にピストン22が引き込まれてゴムブッシュ17の圧縮が解かれるため、そのばね定数が小さくなる。つまりゴムブッシュ17が柔らかくなって外筒14および内筒16の相対位置が変化し易くなり、路面からの振動が車体に伝達され難くして乗り心地を向上させることができる。   On the other hand, when the lateral acceleration detected by the lateral acceleration sensor 29 becomes equal to or less than a predetermined value when the vehicle is traveling straight ahead, the electronic control unit U operates the two polymer actuators 18 and 18 of the rubber bush mount 13 in the contracting direction. Then, as shown in FIG. 2, since the piston 22 is drawn into the cylinder 21 of the polymer actuator 18 and the compression of the rubber bush 17 is released, the spring constant becomes small. That is, the rubber bush 17 becomes soft and the relative positions of the outer cylinder 14 and the inner cylinder 16 are easily changed, and vibration from the road surface is hardly transmitted to the vehicle body, thereby improving the riding comfort.

また、車両の高速旋回時に横加速度センサ29が所定値以上の横加速度を検出したとき、図5(B)に示すようにアーム本体11側の高分子アクチュエータ18だけを伸長方向に作動させると、内筒16を外筒14に対してアーム本体11から遠ざかる方向に移動させ、サスペンションアーム10の長さを実質的に長くすることができる。逆に、図5(C)に示すようにアーム本体11と反対側の高分子アクチュエータ18だけを伸長方向に作動させると、内筒16を外筒14に対してアーム本体11に近づける方向に移動させ、サスペンションアーム10の長さを実質的に短くすることができる。   Further, when the lateral acceleration sensor 29 detects a lateral acceleration of a predetermined value or more during high-speed turning of the vehicle, if only the polymer actuator 18 on the arm body 11 side is operated in the extending direction as shown in FIG. The inner cylinder 16 can be moved away from the arm main body 11 with respect to the outer cylinder 14 to substantially increase the length of the suspension arm 10. Conversely, as shown in FIG. 5C, when only the polymer actuator 18 on the opposite side of the arm body 11 is operated in the extending direction, the inner cylinder 16 moves in a direction closer to the arm body 11 with respect to the outer cylinder 14. Thus, the length of the suspension arm 10 can be substantially shortened.

このように、サスペンションアーム10の実質的な長さを任意に調整することにより、例えば旋回時に後輪がトーインする方向に、あるいは前輪がトーアウトする方向にサスペンションアーム10の実質的な長さを調整し、車両をアンダーステア傾向にして操安性能を高めることができる。   In this way, by adjusting the substantial length of the suspension arm 10, for example, the substantial length of the suspension arm 10 is adjusted in the direction in which the rear wheels are toe-in or the direction in which the front wheels are toe-out when turning. In addition, the vehicle can be understeered to improve the steering performance.

以上説明したように、車両の運動状態に応じてサスペンションアーム10のゴムブッシュマウント13,13のばね定数を変化させることができるので、高速旋回時に作用するタイヤのサイドフォースに対抗するサスペンション装置の剛性と、直進走行時における乗り心地とを両立させることができる。しかも、横加速度センサ29で検出した車両の横加速度に応じて電子制御ユニットU高分子アクチュエータ18,18の作動を制御するので、ドライバーによる特別の操作を必要とせずに、ゴムブッシュマウント13の特性を車両の走行状態に適した特性に変更することができる。   As described above, since the spring constants of the rubber bush mounts 13 and 13 of the suspension arm 10 can be changed according to the motion state of the vehicle, the rigidity of the suspension device that resists the side force of the tire acting during high-speed turning. And the ride comfort when traveling straight ahead. In addition, since the operation of the electronic control unit U polymer actuators 18 and 18 is controlled in accordance with the lateral acceleration of the vehicle detected by the lateral acceleration sensor 29, the characteristics of the rubber bush mount 13 are not required for any special operation by the driver. Can be changed to characteristics suitable for the running state of the vehicle.

しかも、固体電解質28の周囲に導電性高分子材料27の皮膜を形成した導電性高分子チューブ24を多数束ねたものを螺旋状に巻回したアクチュエータエレメント23をシリンダ21およびピストン22の内部に収納して高分子アクチュエータ18を構成したので、従来の油圧シリンダを用いたものに比べて、簡単な構造で低コストでありながら高出力で応答性の高い高分子アクチュエータ18を得ることができる。   In addition, the actuator element 23 in which a large number of bundles of conductive polymer tubes 24 each having a film of the conductive polymer material 27 formed around the solid electrolyte 28 are spirally wound is housed in the cylinder 21 and the piston 22. Since the polymer actuator 18 is configured as described above, it is possible to obtain a polymer actuator 18 having a simple structure and a low output while having a high output and high responsiveness as compared with a conventional one using a hydraulic cylinder.

次に、図6に基づいて本発明の第2実施例を説明する。   Next, a second embodiment of the present invention will be described with reference to FIG.

第1実施例のゴムブッシュマウント13のゴムブッシュ17は、サスペンションアーム10の軸線L上に内筒16を挟むように2個の高分子アクチュエータ18,18を備えているが、第2実施例のゴムブッシュマウント13のゴムブッシュ17は、サスペンションアーム10の軸線L上に内筒16を挟むように、アーム本体11側に1個の高分子アクチュエータ18を備え、アーム本体11と反対側に1個の空間部17aを備えている。   The rubber bush 17 of the rubber bush mount 13 of the first embodiment is provided with two polymer actuators 18 and 18 so as to sandwich the inner cylinder 16 on the axis L of the suspension arm 10. The rubber bushing 17 of the rubber bushing mount 13 includes one polymer actuator 18 on the arm body 11 side so as to sandwich the inner cylinder 16 on the axis L of the suspension arm 10, and one on the opposite side of the arm body 11. The space portion 17a is provided.

しかして、高分子アクチュエータ18を伸長駆動すると、図6(A)に示すように、それまで外筒14の中央にあった内筒16がアーム本体11から遠ざかる方向に移動し、サスペンションアーム10の実質的な長さを増加させることができる。このとき、内筒16を挟んで高分子アクチュエータ18の反対側に空間部17aが形成されているため、ゴムブッシュ17を変形し易くして外筒14に対する内筒16の移動量を充分に確保することができる。   When the polymer actuator 18 is driven to extend, as shown in FIG. 6 (A), the inner cylinder 16 that has been at the center of the outer cylinder 14 so far moves away from the arm body 11, and the suspension arm 10. The substantial length can be increased. At this time, since the space portion 17a is formed on the opposite side of the polymer actuator 18 with the inner cylinder 16 in between, the rubber bush 17 is easily deformed, and a sufficient amount of movement of the inner cylinder 16 with respect to the outer cylinder 14 is ensured. can do.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、実施例では車両の運動状態を横加速度に基づいて検出しているが、ヨーレート、車速、操舵角等に基づいて検出することができる。   For example, in the embodiment, the motion state of the vehicle is detected based on the lateral acceleration, but can be detected based on the yaw rate, the vehicle speed, the steering angle, and the like.

また路面からサスペンションアーム10に入力される振動の波形を検出し、その振動を打ち消す方向に高分子アクチュエータ18,18の作動を制御することで、路面から車体に伝達される振動を吸収して乗り心地を高めることができる。   In addition, by detecting the waveform of the vibration input to the suspension arm 10 from the road surface and controlling the operation of the polymer actuators 18 and 18 in the direction to cancel the vibration, the vibration transmitted from the road surface to the vehicle body is absorbed. You can increase your comfort.

また第2実施例ではアーム本体11側に高分子アクチュエータ18を設け、アーム本体11と反対側に空間部17aを設けているが、高分子アクチュエータ18および空間部17aの位置関係を入れ替えれば、高分子アクチュエータ18を伸長駆動することで、外筒14の中央にあった内筒16をアーム本体11に近づく方向に移動させ、サスペンションアーム10の実質的な長さを減少させることができる。   In the second embodiment, the polymer actuator 18 is provided on the arm body 11 side, and the space portion 17a is provided on the opposite side of the arm body 11. However, if the positional relationship between the polymer actuator 18 and the space portion 17a is changed, the high By driving the molecular actuator 18 to extend, the inner cylinder 16 located at the center of the outer cylinder 14 can be moved in a direction approaching the arm main body 11, and the substantial length of the suspension arm 10 can be reduced.

また高分子アクチュエータ18の構造は実施例に限定されず、適宜の構造のものを採用することができる。   The structure of the polymer actuator 18 is not limited to the embodiment, and an appropriate structure can be adopted.

自動車のサスペンションアームの正面図Front view of automobile suspension arm 図1の2部拡大断面図2 is an enlarged sectional view of part 2 in FIG. 図2の3部拡大断面図3 is an enlarged sectional view of part 3 in FIG. 導電性高分子チューブの斜視図Perspective view of conductive polymer tube 高分子アクチュエータの作動時の作用説明図Action diagram when the polymer actuator operates 第2実施例に係る、前記図2に対応する図The figure corresponding to the said FIG. 2 based on 2nd Example.

符号の説明Explanation of symbols

10 サスペンションアーム
14 外筒
16 内筒
17 ゴムブッシュ
18 高分子アクチュエータ
27 導電性高分子材料
28 固体電解質(電解質)
29 横加速度センサ(走行状態検出手段)
U 電子制御ユニット(制御手段)
10 Suspension arm 14 Outer cylinder 16 Inner cylinder 17 Rubber bush 18 Polymer actuator 27 Conductive polymer material 28 Solid electrolyte (electrolyte)
29 Lateral acceleration sensor (running state detection means)
U Electronic control unit (control means)

Claims (2)

サスペンションアーム(10)に固定される外筒(14)と車体またはナックルに固定される内筒(16)とをゴムブッシュ(17)で接続したゴムブッシュマウントにおいて、
導電性高分子材料(27)を電解質(28)に接触させた高分子アクチュエータ(18)をゴムブッシュ(17)の内部に埋設し、導電性高分子材料(27)の電位を電解質(28)の電位よりも高くして導電性高分子材料(27)を伸長させ、また導電性高分子材料(27)の電位を電解質(28)の電位よりも低くして導電性高分子材料(27)を収縮させることで、高分子アクチュエータ(18)を伸縮駆動してゴムブッシュ(17)のばね定数を変化させることを特徴とするゴムブッシュマウント。
In a rubber bush mount in which an outer cylinder (14) fixed to a suspension arm (10) and an inner cylinder (16) fixed to a vehicle body or a knuckle are connected by a rubber bush (17),
A polymer actuator (18) in which the conductive polymer material (27) is brought into contact with the electrolyte (28) is embedded in the rubber bush (17), and the potential of the conductive polymer material (27) is set to the electrolyte (28). The potential of the conductive polymer material (27) is elongated by raising the potential of the conductive polymer material (27), and the potential of the conductive polymer material (27) is lowered to be lower than the potential of the electrolyte (28). The rubber bush mount is characterized in that the spring constant of the rubber bush (17) is changed by extending and contracting the polymer actuator (18) by contracting.
車両の走行状態を検出する走行状態検出手段(29)と、走行状態検出手段(29)で検出した車両の走行状態に応じて高分子アクチュエータ(18)の作動を制御する制御手段(U)とを備えたことを特徴とする、請求項1に記載のゴムブッシュマウント。
A traveling state detecting means (29) for detecting the traveling state of the vehicle, and a control means (U) for controlling the operation of the polymer actuator (18) in accordance with the traveling state of the vehicle detected by the traveling state detecting means (29). The rubber bush mount according to claim 1, comprising:
JP2003361741A 2003-10-22 2003-10-22 Rubber bush mount Pending JP2005127386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003361741A JP2005127386A (en) 2003-10-22 2003-10-22 Rubber bush mount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003361741A JP2005127386A (en) 2003-10-22 2003-10-22 Rubber bush mount

Publications (1)

Publication Number Publication Date
JP2005127386A true JP2005127386A (en) 2005-05-19

Family

ID=34641594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361741A Pending JP2005127386A (en) 2003-10-22 2003-10-22 Rubber bush mount

Country Status (1)

Country Link
JP (1) JP2005127386A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101491358B1 (en) 2013-12-02 2015-02-06 현대자동차주식회사 Trailing-arm with variable-angle-bridge and operation-method threrof
DE102015215426A1 (en) * 2015-08-13 2017-02-16 Schaeffler Technologies AG & Co. KG Switchable bearing bush for a motor vehicle
DE102015215423A1 (en) * 2015-08-13 2017-02-16 Schaeffler Technologies AG & Co. KG Switchable bearing bush for a motor vehicle
CN108757816A (en) * 2018-07-23 2018-11-06 重庆理工大学 It is a kind of to recycle thermal energy and the raw electric MR damper of chemistry under power failure state
DE102005028563B4 (en) * 2005-06-21 2021-06-10 Contitech Vibration Control Gmbh warehouse

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005028563B4 (en) * 2005-06-21 2021-06-10 Contitech Vibration Control Gmbh warehouse
KR101491358B1 (en) 2013-12-02 2015-02-06 현대자동차주식회사 Trailing-arm with variable-angle-bridge and operation-method threrof
DE102015215426A1 (en) * 2015-08-13 2017-02-16 Schaeffler Technologies AG & Co. KG Switchable bearing bush for a motor vehicle
DE102015215423A1 (en) * 2015-08-13 2017-02-16 Schaeffler Technologies AG & Co. KG Switchable bearing bush for a motor vehicle
DE102015215426B4 (en) 2015-08-13 2019-06-19 Schaeffler Technologies AG & Co. KG Switchable bearing bush for a motor vehicle
US10570978B2 (en) 2015-08-13 2020-02-25 Schaeffler Technologies AG & Co. KG Switchable bearing bush for a motor vehicle
CN108757816A (en) * 2018-07-23 2018-11-06 重庆理工大学 It is a kind of to recycle thermal energy and the raw electric MR damper of chemistry under power failure state

Similar Documents

Publication Publication Date Title
US4844506A (en) Stabilizer control system
US20100207309A1 (en) Regenerative damping apparatus for vehicle
JP4977152B2 (en) Rear wheel steering control device
JP2007145175A (en) Travelling control device of vehicle
CN110650887B (en) Vehicle with a steering wheel
JP2005127386A (en) Rubber bush mount
JP2008247182A (en) Suspension device
JP2023134849A (en) Elastic support device and stabilizer device
JP2009132378A (en) Vehicle and control device
JP4134109B2 (en) Bearing device for control arm for automobile
KR100674137B1 (en) Actuator for active geometry control suspension system
JP2007534545A (en) Automotive steering system
US7311315B2 (en) Apparatus for controlling stiffness of anti-roll bar for vehicle
KR100511737B1 (en) Rear wheel toe angle control systems of the vehicles
JP3157343B2 (en) 4-link rear suspension system for automobiles
JP2007153186A (en) Control system for variable damping force damper
JP2020185816A (en) Steering unit
JP2006051910A (en) Vehicle control device
JP7265412B2 (en) ELASTIC BUSH, SUSPENSION DEVICE, AND SUPPORT STRUCTURE FOR POWER TRANSMISSION MECHANISM
KR100511742B1 (en) Rear wheel toe angle control systems of the vehicles
JP3008622B2 (en) Wheel alignment control device
KR100511741B1 (en) Rear wheel toe angle control systems of the vehicles
KR100511738B1 (en) Rear wheel toe angle control systems of the vehicles
KR100559319B1 (en) System for increasing force of restoration for rotation of steering wheel fot vehicle
JP4825163B2 (en) Vehicle suspension system