JP2005126833A - Carbon fiber coated with wholly aromatic condensation polymer - Google Patents

Carbon fiber coated with wholly aromatic condensation polymer Download PDF

Info

Publication number
JP2005126833A
JP2005126833A JP2003360618A JP2003360618A JP2005126833A JP 2005126833 A JP2005126833 A JP 2005126833A JP 2003360618 A JP2003360618 A JP 2003360618A JP 2003360618 A JP2003360618 A JP 2003360618A JP 2005126833 A JP2005126833 A JP 2005126833A
Authority
JP
Japan
Prior art keywords
carbon fiber
aromatic
group
represented
wholly aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003360618A
Other languages
Japanese (ja)
Other versions
JP2005126833A6 (en
Inventor
Masayuki Jokai
真之 畳開
Hiroaki Kuwabara
広明 桑原
Shunichi Matsumura
俊一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2003360618A priority Critical patent/JP2005126833A/en
Priority to EP04703262A priority patent/EP1589079A4/en
Priority to US10/542,641 priority patent/US7754328B2/en
Priority to PCT/JP2004/000363 priority patent/WO2004065496A1/en
Priority to JP2005508067A priority patent/JP3995696B2/en
Priority to CA2513618A priority patent/CA2513618C/en
Priority to KR1020057013350A priority patent/KR101010550B1/en
Priority to TW093101664A priority patent/TW200427740A/en
Publication of JP2005126833A publication Critical patent/JP2005126833A/en
Publication of JP2005126833A6 publication Critical patent/JP2005126833A6/ja
Pending legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber having an improved affinity for a resin and a solvent and to provide a method for producing the carbon fiber. <P>SOLUTION: The carbon fiber is coated with a wholly aromatic condensation polymer in an amount of 0.01-100 pts. wt. based on 100 pts. wt. of the carbon fiber. The method for producing the carbon fiber is provided. The wholly aromatic condensation polymer is preferably a wholly aromatic azole satisfying formula (A) or formula (B) [wherein, X<SP>1</SP>and X<SP>2</SP>are each independently selected from the group consisting of O, S and NH; Ar<SP>1</SP>denotes a 6-20C tetravalent aromatic group; and Ar<SP>2</SP>denotes a 6-20C bivalent aromatic group]. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は全芳香族縮合系高分子で表面を被覆した炭素繊維、及びその製造方法に関するものである。   The present invention relates to a carbon fiber whose surface is coated with a wholly aromatic condensation polymer and a method for producing the same.

炭素繊維の表面をポリマーで被覆した報告例としては極細炭素フィブリルの表面をポリスチレン、ポリエチレン、ポリアクリル酸等のポリオレフィンで被覆し表面の濡れ性を改良したとの報告例が有る。(特許文献1)
また炭素繊維表面にカルボジイミド試薬を付着させポリアミド、ポリカーボネート等の熱可塑性樹脂との界面の接着性を改善するといった報告例が有る(特許文献2)。
As a report example of coating the surface of carbon fiber with a polymer, there is a report example of improving the surface wettability by coating the surface of ultrafine carbon fibrils with a polyolefin such as polystyrene, polyethylene, polyacrylic acid or the like. (Patent Document 1)
In addition, there is a report example in which a carbodiimide reagent is attached to the carbon fiber surface to improve the adhesion at the interface with a thermoplastic resin such as polyamide or polycarbonate (Patent Document 2).

またチタン酸カリウムウィスカー表面をオルガノポリシロキサンにて被覆しポリカーボネート樹脂界面との安定性を改善するといった報告例が有る(特許文献3)。   In addition, there is a report example in which the surface of a potassium titanate whisker is coated with an organopolysiloxane to improve the stability with the polycarbonate resin interface (Patent Document 3).

このほか、単層カーボンナノチューブ存在下ポリベンゾオキサゾールを重合し機械特性を改善したとの報告が有る(非特許文献1)が炭素繊維そのものの表面改質についての報告はない。   In addition, there is a report that polybenzoxazole is polymerized in the presence of single-walled carbon nanotubes to improve mechanical properties (Non-Patent Document 1), but there is no report on the surface modification of the carbon fiber itself.

このほか公知の技術としてガラス繊維の表面をシランカップリング剤で表面処理しマトリックスで有るポリマーとの接着性を改善する事が知られている。
特開平3−287821号公報 3〜4頁 特開平5−106163号公報 3〜4頁 特開平6−322092号公報 5〜10頁 Macromolecules,35,9039−9043(2002)
In addition, it is known as a known technique that the surface of the glass fiber is surface-treated with a silane coupling agent to improve the adhesion with the polymer as a matrix.
Japanese Patent Laid-Open No. 3-287821, pages 3-4 JP-A-5-106163, pages 3-4 JP-A-6-320992, pages 5-10 Macromolecules, 35, 9039-9043 (2002).

炭素繊維と樹脂との組成物を製造する際、炭素繊維は樹脂、および溶剤との接着性、親和性が悪く、組成物の機械強度の向上を達成する事が困難で有った。本発明の主たる課題は樹脂および溶剤との親和性を向上させることである。   When producing a composition of carbon fiber and resin, the carbon fiber has poor adhesion and affinity with the resin and solvent, and it has been difficult to achieve improvement in the mechanical strength of the composition. The main problem of the present invention is to improve the affinity with resins and solvents.

本発明は炭素繊維の表面をマトリックスで有る樹脂と相溶性の高い樹脂であらかじめ被覆することにより、樹脂および溶剤との親和性を向上した炭素繊維を提供するものである。また本発明はは表面を被覆した炭素繊維の製造方法を提供するものである。   This invention provides the carbon fiber which improved the affinity with resin and a solvent by previously coat | covering the surface of carbon fiber with resin highly compatible with resin which has a matrix. Moreover, this invention provides the manufacturing method of the carbon fiber which coat | covered the surface.

本発明により樹脂および溶剤との親和性を向上した炭素繊維を提供することができ、炭素繊維、より好ましくは極細炭素繊維を高度に分散させた樹脂組成物を提供することが可能である。   According to the present invention, it is possible to provide a carbon fiber having improved affinity with a resin and a solvent, and it is possible to provide a resin composition in which carbon fibers, more preferably ultrafine carbon fibers, are highly dispersed.

以下、本発明の具体的内容ついて詳述する。
(炭素繊維について)
本発明において用いられる炭素繊維、より好ましくは極細炭素繊維(N)としては、具体的には直径が300nm以下、好ましくは0.3〜250nm、さらに好ましくは0.4〜100nmのものが挙げられる。直径が0.3nm以下のものは実質的に製造が困難であり、300nm以上のものは溶媒中での分散の改善効果が少ない。
Hereinafter, the specific contents of the present invention will be described in detail.
(About carbon fiber)
The carbon fiber used in the present invention, more preferably the ultrafine carbon fiber (N), specifically has a diameter of 300 nm or less, preferably 0.3 to 250 nm, more preferably 0.4 to 100 nm. . Those having a diameter of 0.3 nm or less are substantially difficult to produce, and those having a diameter of 300 nm or more have little effect of improving dispersion in a solvent.

またアスペクト比の好ましい値として上限の制限はないが現状の製品の点として100000以下、下限としては5.0以上さらには10.0以上、さらに好ましくは50.0以上である事が好ましい。   Moreover, although there is no upper limit as a preferable value of the aspect ratio, it is preferable that it is 100,000 or less in terms of the current product, the lower limit is 5.0 or more, 10.0 or more, more preferably 50.0 or more.

極細炭素繊維の形状としてはグラフェンシートが円筒状あるいは円錐状に巻かれたもので、この円筒が単層のものでも複数の層からなるものでも構わない。またグラフェンシートがカップ状に積み重なったものでも構わない。すなわち本発明は、単層カーボンナノチューブ、多層カーボンナノチューブ、カップスタック型カーボンナノチューブ、カーボンナノホーンが好ましい。   As the shape of the ultrafine carbon fiber, a graphene sheet is wound in a cylindrical shape or a conical shape, and this cylinder may be a single layer or a plurality of layers. In addition, graphene sheets stacked in a cup shape may be used. That is, in the present invention, single-walled carbon nanotubes, multi-walled carbon nanotubes, cup-stacked carbon nanotubes, and carbon nanohorns are preferable.

これら極細炭素繊維の製造方法としては従来既知の方法である気相流動法、触媒担持型気相流動法、レーザーアブレーション法、高圧一酸化炭素法、アーク放電法等が挙げられるが、これに限定されるものではない。   Examples of methods for producing these ultrafine carbon fibers include conventionally known gas phase flow methods, catalyst-supported gas phase flow methods, laser ablation methods, high pressure carbon monoxide methods, arc discharge methods, and the like. It is not done.

(炭素繊維の前処理)
また、炭素繊維を全芳香族縮合系高分子で被覆する際、炭素繊維をあらかじめ物理処理、および/または化学処理を施しておくことが好ましい。
(Pretreatment of carbon fiber)
Further, when the carbon fiber is coated with the wholly aromatic condensation polymer, it is preferable that the carbon fiber is previously subjected to physical treatment and / or chemical treatment.

化学処理の好ましい例としては硝酸および硫酸の混合液、硫酸および過酸化水素の混合液を使用することが好ましく、さらには超音波存在下で処理することがさらに好ましい。   As a preferable example of the chemical treatment, it is preferable to use a mixed solution of nitric acid and sulfuric acid, a mixed solution of sulfuric acid and hydrogen peroxide, and it is more preferable to perform the treatment in the presence of ultrasonic waves.

物理処理の好ましい例としてはボールミル、ビーズミル、超音波処理、強力なせん断処理等などが挙げられる。   Preferable examples of physical treatment include ball mill, bead mill, ultrasonic treatment, strong shearing treatment and the like.

(全芳香族縮合系高分子について)
本発明における全芳香族縮合系高分子は分子鎖の構成単位が主に芳香族環からなる剛直姓を持った直線状分子であり例えば、全芳香族ポリアミド、全芳香族ポリイミド、全芳香族ポリエステル、ポリベンゾオキサゾール、ポリベンゾイミダゾール、ポリベンゾチアゾール、ポリピリドビスイミダゾール、などが挙げられる。これらのなかでもポリベンゾオキサゾール、ポリベンゾイミダゾール、ポリベンゾチアゾール、ポリピリドビスイミダゾール等の全芳香族アゾールが好ましい。
(All aromatic condensation polymers)
The wholly aromatic condensation polymer in the present invention is a linear molecule having a rigid last name in which the structural unit of the molecular chain mainly consists of an aromatic ring. For example, wholly aromatic polyamide, wholly aromatic polyimide, wholly aromatic polyester , Polybenzoxazole, polybenzimidazole, polybenzothiazole, polypyridobisimidazole, and the like. Among these, wholly aromatic azoles such as polybenzoxazole, polybenzimidazole, polybenzothiazole, and polypyridobisimidazole are preferable.

(全芳香族縮合系高分子について)
全芳香族縮合系高分子としては、下記式(A)およびまたは(B)
(All aromatic condensation polymers)
As the wholly aromatic condensation polymer, the following formulas (A) and (B)

(A)
(B)
[上記式(A)、(B)において、X、XはO、S、およびNHからなる群からそれぞれ独立に選ばれ、Arは炭素数6〜20の4価の芳香族基を表わし,Arは炭素数6〜20の2価の芳香族基を表わす。]
の各構成単位からなる全芳香族アゾールであることが好ましい。
(A)
(B)
[In the above formulas (A) and (B), X 1 and X 2 are each independently selected from the group consisting of O, S and NH, and Ar 1 represents a tetravalent aromatic group having 6 to 20 carbon atoms. Ar 2 represents a divalent aromatic group having 6 to 20 carbon atoms. ]
It is preferably a wholly aromatic azole composed of each of the structural units.

全芳香族縮合系高分子において(A)、(B)はそれぞれ単独でも、併存してもよく、(A):(B)のモル比は0:100〜100:0の任意の比率で適宜選択できる。   In the wholly aromatic condensation polymer, (A) and (B) may be used alone or in combination, and the molar ratio of (A) :( B) is appropriately set at an arbitrary ratio of 0: 100 to 100: 0. You can choose.

上記式(A)、(B)におけるArは、各々独立に炭素数6〜20の4価の芳香族基を表わし、その具体例としては Ar 1 in the above formulas (A) and (B) each independently represents a tetravalent aromatic group having 6 to 20 carbon atoms.






[YはO、S、SO、SO2、NH、C(CHのいずれかから選ばれる。]
等が挙げられるがこれに限定されるものではない。これらの芳香族基の水素原子のうち1つまたは複数がそれぞれ独立にフッ素、塩素、臭素等のハロゲン基;メチル基、エチル基、プロピル基、ヘキシル基等の炭素数1〜6のアルキル基;シクロペンチル基、シクロヘキシル基等の炭素数5〜10のシクロアルキル基;フェニル基等の炭素数6〜10の芳香族基で置換されていてもよい。





[Y is O, S, SO, SO2, NH, selected from any of C (CH 3) 2. ]
However, it is not limited to this. 1 or more of hydrogen atoms of these aromatic groups are each independently halogen groups such as fluorine, chlorine, bromine; alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, propyl group, hexyl group; A cycloalkyl group having 5 to 10 carbon atoms such as a cyclopentyl group and a cyclohexyl group; an aromatic group having 6 to 10 carbon atoms such as a phenyl group may be substituted.

上記式(A)、(B)におけるArは、各々独立に炭素数6〜20の2価の芳香族基を表わし、その具体例としては、メタフェニレン基、パラフェニレン基、オルトフェニレン基、2,6−ナフチレン基、2,7−ナフチレン基、4,4’−イソプロピリデンジフェニレン基、4,4’−ビフェニレン基、4,4’−ジフェニレンスルフィド基、4,4’−ジフェニレンスルホン基、4,4’−ジフェニレンケトン基、4,4’−ジフェニレンエーテル基、3,4’−ジフェニレンエーテル基、メタキシリレン基、パラキシリレン基、オルトキシリレン基等が挙げられる。これらの芳香族基の水素原子のうち1つまたは複数がそれぞれ独立にフッ素、塩素、臭素等のハロゲン基;メチル基、エチル基、プロピル基、ヘキシル基等の炭素数1〜6のアルキル基;シクロペンチル基、シクロヘキシル基等の炭素数5〜10のシクロアルキル基;フェニル基等の炭素数6〜10の芳香族基で置換されていてもよい。なお、上記式(A)及び/又(B)の構成単位が、2種以上の芳香族基からなる共重合体であっても差し支えない。 Ar 2 in the above formulas (A) and (B) each independently represents a divalent aromatic group having 6 to 20 carbon atoms, and specific examples thereof include a metaphenylene group, a paraphenylene group, an orthophenylene group, 2,6-naphthylene group, 2,7-naphthylene group, 4,4'-isopropylidenediphenylene group, 4,4'-biphenylene group, 4,4'-diphenylene sulfide group, 4,4'-diphenylene A sulfone group, 4,4′-diphenylene ketone group, 4,4′-diphenylene ether group, 3,4′-diphenylene ether group, metaxylylene group, paraxylylene group, orthoxylylene group and the like can be mentioned. 1 or more of hydrogen atoms of these aromatic groups are each independently halogen groups such as fluorine, chlorine, bromine; alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, propyl group, hexyl group; A cycloalkyl group having 5 to 10 carbon atoms such as a cyclopentyl group and a cyclohexyl group; an aromatic group having 6 to 10 carbon atoms such as a phenyl group may be substituted. In addition, the structural unit of the above formula (A) and / or (B) may be a copolymer composed of two or more aromatic groups.

これらの中でパラフェニレン基、2,6−ナフチレン基が好ましい。
好適な全芳香族縮合系高分子としては、具体的にはポリベンゾビスオキサゾール、すなわち(A)で表される全芳香族アゾールが
Of these, a paraphenylene group and a 2,6-naphthylene group are preferable.
As a preferred wholly aromatic condensation polymer, specifically, polybenzobisoxazole, that is, a wholly aromatic azole represented by (A) is used.



である、あるいはポリベンゾビスチアゾール、


Or polybenzobisthiazole,



を好ましく例示することができる。


Can be preferably exemplified.

これら全芳香族縮合系高分子は溶液重合法、溶融重合法など従来公知の方法にて製造する事が出来る。ポリマーの重合度としては98重量%濃硫酸に0.5g/100ml溶かした溶液を30℃にて測定した特有粘度(inherent viscosity)ηinhが0.05〜100(dl/g)好ましくは1.0〜80(dl/g)の間に有るものが好ましい。   These wholly aromatic condensation polymers can be produced by a conventionally known method such as a solution polymerization method or a melt polymerization method. As the degree of polymerization of the polymer, the inherent viscosity ηinh measured at 30 ° C. in a solution of 0.5 g / 100 ml in 98% by weight concentrated sulfuric acid is 0.05 to 100 (dl / g), preferably 1.0. Those between ˜80 (dl / g) are preferred.

(本発明の全芳香族縮合系高分子の製造方法について)
上記の如き全芳香族縮合系高分子は、本発明に従って次の方法によって良好な生産性で工業的に製造することができる。
(Regarding the method for producing the wholly aromatic condensation polymer of the present invention)
The wholly aromatic condensation polymer as described above can be industrially produced with good productivity by the following method according to the present invention.

すなわち下記式(C)、(D)
(C)
(D)
(上記式(C)、(D)において、X、XはO、S、およびNHからなる群からそれぞれ独立に選ばれ、Arは炭素数6〜20の4価の芳香族基を表わし、また(C)、(D)は塩酸塩でも構わない。)
で表わされる芳香族アミン誘導体およびその塩酸塩からなる群から選択される少なくとも1種と、下記式(E)
―OC―Ar―CO―R’ (E)
(Arは各々独立に炭素数6〜20の2価の芳香族基を表わし、R,R’は各々独立に水素あるいは炭素数6〜20の芳香族基を表す。)
で表わされる芳香族ジカルボン酸誘導体の少なくとも1種とを反応させ、得られた反応物を有機溶媒に溶かし炭素繊維成分をろ過、単離する方法が挙げられる。
That is, the following formulas (C) and (D)
(C)
(D)
(In the above formulas (C) and (D), X 1 and X 2 are each independently selected from the group consisting of O, S and NH, and Ar 1 represents a tetravalent aromatic group having 6 to 20 carbon atoms. And (C) and (D) may be hydrochlorides.)
At least one selected from the group consisting of an aromatic amine derivative represented by the formula:
R 1 —O 2 C—Ar 2 —CO 2 —R 1 ′ (E)
(Ar 2 represents each independently a divalent aromatic group having 6 to 20 carbon atoms, and R 1 and R 1 ′ each independently represent hydrogen or an aromatic group having 6 to 20 carbon atoms.)
And a method in which the obtained reaction product is dissolved in an organic solvent and the carbon fiber component is filtered and isolated.

上記式(C)(D)におけるAr、Arは、それぞれ全芳香族アゾールの組成に関して説明したAr、Arと同じであり、また、一般式(D)におけるR,R’は各々独立に、水素あるいは炭素数6〜20の1価の芳香族基を表わし、芳香族機の具体例はフェニレン基、ナフタレン基、ビフェニレン基、イソプロピリデンジフェニル基、ジフェニルエーテル基、ジフェニルスルフィド基、ジフェニルスルホン基、ジフェニルケトン基等である。これらの芳香族基の水素原子のうち1つまたは複数が各々独立にフッ素、塩素、臭素等のハロゲン基;メチル基、エチル基、プロピル基、ヘキシル基等の炭素数1〜6のアルキル基;シクロペンチル基、シクロヘキシル基等の炭素数5〜10のシクロアルキル基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基等で置換されていてもよい。 Ar 1, Ar 2 in the formula (C) (D) is the same as Ar 1, Ar 2 described with respect to the composition of the wholly aromatic azole respectively, also, R 1, R 1 in the general formula (D) ' Each independently represents hydrogen or a monovalent aromatic group having 6 to 20 carbon atoms, and specific examples of the aromatic unit include phenylene group, naphthalene group, biphenylene group, isopropylidene diphenyl group, diphenyl ether group, diphenyl sulfide group, A diphenylsulfone group, a diphenylketone group, and the like. One or more hydrogen atoms of these aromatic groups are each independently a halogen group such as fluorine, chlorine or bromine; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group or a hexyl group; It may be substituted with a C5-C10 cycloalkyl group such as a cyclopentyl group or a cyclohexyl group; an alkoxycarbonyl group such as a methoxycarbonyl group or an ethoxycarbonyl group.

各モノマー(反応成分)のモル数が上記数式(1)
下記数式(1)
0.8≦ (c+d)/e ≦1.2 (1)
[上記式中cは上記式(C)で表される芳香族アミン誘導体、dは上記式(D)で表される芳香族アミン誘導体、eは上記式(E)で表される芳香族ジカルボン酸誘導体の各仕込みモル数である。]
を同時に満たすことが好ましい(c+d)/eが0.8より小さい場合や1.2より大きい場合には、重合度の十分なポリマーを得ることが困難である場合がある。(c+d)/eの下限としては、0.9以上が適当であり、より好ましくは0.93以上、さらに好ましくは0.95以上である。また、(c+d)/eの上限としては、1.1以下が適当であり、より好ましくは1.07以下、さらに好ましくは1.05以下である。従って、本発明におけるc/dの最適範囲は0.95≦ c/d ≦1.05ということができる。
The number of moles of each monomer (reaction component) is the above formula (1)
The following mathematical formula (1)
0.8 ≦ (c + d) /e≦1.2 (1)
[Wherein c is an aromatic amine derivative represented by the above formula (C), d is an aromatic amine derivative represented by the above formula (D), and e is an aromatic dicarboxylic acid represented by the above formula (E). This is the number of moles of each charged acid derivative. ]
When (c + d) / e is preferably smaller than 0.8 or larger than 1.2, it may be difficult to obtain a polymer having a sufficient degree of polymerization. The lower limit of (c + d) / e is suitably 0.9 or more, more preferably 0.93 or more, and even more preferably 0.95 or more. Moreover, as an upper limit of (c + d) / e, 1.1 or less is suitable, More preferably, it is 1.07 or less, More preferably, it is 1.05 or less. Therefore, it can be said that the optimum range of c / d in the present invention is 0.95 ≦ c / d ≦ 1.05.

(C)、(D)はそれぞれ単独で用いても、併用してもよく、(C):(D)のモル比は0:100〜100:0の任意の比率で適宜選択できる。   (C) and (D) may be used alone or in combination, and the molar ratio of (C) :( D) can be appropriately selected at an arbitrary ratio of 0: 100 to 100: 0.

反応は、溶媒中で行う反応、無溶媒の加熱溶融反応のいずれも採用できるが、例えば、後述する反応溶媒中で攪拌下に加熱反応させるのが好ましい。反応温度は、50℃から500℃が好ましく、100℃から350℃がさらに好ましい。50℃より温度が低いと反応が進まず、500℃より温度が高いとあるいは分解等の副反応が起こりやすくなるためである。反応時間は温度条件にもよるが、通常は1時間から数十時間である。反応は加圧下から減圧下で行うことができる。   For the reaction, either a reaction performed in a solvent or a solvent-free heating and melting reaction can be employed. For example, it is preferable to carry out a heating reaction in a reaction solvent described later with stirring. The reaction temperature is preferably 50 ° C to 500 ° C, more preferably 100 ° C to 350 ° C. This is because if the temperature is lower than 50 ° C., the reaction does not proceed, and if the temperature is higher than 500 ° C., side reactions such as decomposition tend to occur. Although the reaction time depends on temperature conditions, it is usually 1 hour to several tens of hours. The reaction can be carried out from under pressure to under reduced pressure.

反応は、通常、無触媒でも進行するが、必要に応じてエステル交換触媒を用いてもよい。本発明で用いるエステル交換触媒としては三酸化アンチモンといったアンチモン化合物、酢酸第一錫、オクチル酸錫、ジブチル錫オキシド、ジブチル錫ジアセテートといった錫化合物、酢酸カルシウムのようなアルカリ土類金属塩、炭酸ナトリウム、炭酸カリウムのようなアルカリ金属塩等、亜リン酸ジフェニル、亜リン酸トリフェニル等の亜リン酸を例示することができる。また、反応時には酸化防止剤等の各種添加剤を併用することが好ましい。   The reaction usually proceeds even without a catalyst, but a transesterification catalyst may be used if necessary. Examples of transesterification catalysts used in the present invention include antimony compounds such as antimony trioxide, stannous acetate, tin octylate, dibutyltin oxide, tin compounds such as dibutyltin diacetate, alkaline earth metal salts such as calcium acetate, sodium carbonate Examples thereof include phosphorous acids such as alkali metal salts such as potassium carbonate, diphenyl phosphite, triphenyl phosphite and the like. In addition, it is preferable to use various additives such as an antioxidant in the reaction.

本発明の全芳香族縮合系高分子で被覆された炭素繊維においては重合原料である上記の(C),(D),(E)に反応前にあらかじめ炭素繊維(N)を
001≦(n)/(x)≦100 (3)
[式中、(x)は芳香族ジアミン(C)、芳香族ジカルボン酸ジアリールエステル(D)、および芳香族ジカルボン酸誘導体(E)の重量部の総和を示し、(n)は炭素繊維(N)の重量部を示す。]
を満足する割合で加え反応を行うことが好ましい。
ここでいう炭素繊維(N)は先にのべたものと同義である。
In the carbon fiber coated with the wholly aromatic condensation polymer of the present invention, the carbon fiber (N) is preliminarily added to the above-mentioned (C), (D), and (E), which are polymerization raw materials, before the reaction. ) / (X) ≦ 100 (3)
[Wherein (x) represents the sum of parts by weight of aromatic diamine (C), aromatic dicarboxylic acid diaryl ester (D), and aromatic dicarboxylic acid derivative (E), and (n) represents carbon fiber (N ) Parts by weight. ]
It is preferable to carry out the reaction by adding at a ratio satisfying.
Carbon fiber (N) here is synonymous with what was mentioned previously.

上記重量比(n)/(x)が0.001より小さいと、ポリマー中からの炭素繊維成分の単離が困難となることがある。また、重量比(n)/(x)が100より大きいと、炭素繊維のポリマーの被覆が十分でなく好ましくない。本発明者らの研究では、上記式(3)において、0.01≦(n)/(x)≦10の範囲が好ましく、0.01≦(n)/(x)≦1.0の範囲が特に好ましい。   When the weight ratio (n) / (x) is less than 0.001, it may be difficult to isolate the carbon fiber component from the polymer. On the other hand, if the weight ratio (n) / (x) is greater than 100, the coating of the carbon fiber polymer is not sufficient, which is not preferable. In the study by the present inventors, in the above formula (3), a range of 0.01 ≦ (n) / (x) ≦ 10 is preferable, and a range of 0.01 ≦ (n) / (x) ≦ 1.0. Is particularly preferred.

またこのとき炭素繊維としては上述のとおりあらかじめ物理処理、および/または化学処理を施したものを用いることが好ましい。化学処理の好ましい例としては硝酸および硫酸の混合液、硫酸および過酸化水素の混合液を使用することが好ましく、さらには超音波存在下で処理することがさらに好ましい。   At this time, it is preferable to use carbon fibers that have been previously subjected to physical treatment and / or chemical treatment as described above. As a preferable example of the chemical treatment, it is preferable to use a mixed solution of nitric acid and sulfuric acid, a mixed solution of sulfuric acid and hydrogen peroxide, and it is more preferable to perform the treatment in the presence of ultrasonic waves.

またボールミル、ビーズミル、ホモジナイザー、超音波処理、強力なせん断処理等等の物理処理により炭素繊維を溶媒中に分散させた炭素繊維分散液を用いることが好ましい。   Further, it is preferable to use a carbon fiber dispersion liquid in which carbon fibers are dispersed in a solvent by physical treatment such as ball mill, bead mill, homogenizer, ultrasonic treatment, and strong shearing treatment.

上記の反応は、無溶媒で行うこともできるが、必要に応じて、りん酸、ポリりん酸、五酸化りん、1―メチル―2−ピロリドン、1―シクロヘキシル−2―ピロリドン、ジメチルアセトアミド、ジフェニルスルホン、ジクロロメタン、クロロロホルム、テトラヒドロフラン等の溶媒を用いてもよい。これらの溶媒は単独で使用してもよく、2種以上を組み合わせて用いてもよい。   The above reaction can be carried out without a solvent, but if necessary, phosphoric acid, polyphosphoric acid, phosphorus pentoxide, 1-methyl-2-pyrrolidone, 1-cyclohexyl-2-pyrrolidone, dimethylacetamide, diphenyl A solvent such as sulfone, dichloromethane, chloroform or tetrahydrofuran may be used. These solvents may be used alone or in combination of two or more.

上記の方法により得られる炭素繊維を含む全芳香族アゾールをメタンスルホン酸、硫酸、1−メチル−2−ピロリドン、1―シクロヘキシル−2−ピロリドン、ジメチルアセトアミド等、に一度溶解しろ過する事で本発明の全芳香族ポリエステルに被覆された炭素繊維を得る事が出来る。   The total aromatic azole containing carbon fiber obtained by the above method is dissolved in methanesulfonic acid, sulfuric acid, 1-methyl-2-pyrrolidone, 1-cyclohexyl-2-pyrrolidone, dimethylacetamide, etc. Carbon fibers coated with the wholly aromatic polyester of the invention can be obtained.

以下、実施例を挙げて本発明を詳述するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is explained in full detail, this invention is not limited at all by these Examples.

遠心分離:MILLIPORE社製パーソナル遠心機チビタンを用いて行った。
炭素繊維を被覆する全芳香族アゾールの量:全芳香族アゾールで被覆された炭素繊維をリガク社製示差熱走査熱量天秤、TG−8120を用いAir中、昇温速度10℃/minで1500℃まで加熱し全芳香族アゾールと炭素繊維の分解に由来する重量減少の比から求めた値である。
Centrifugation: A personal centrifuge Chibitan manufactured by MILLIPORE was used.
Amount of wholly aromatic azole coating the carbon fiber: The carbon fiber coated with the wholly aromatic azole was 1500 ° C. at a temperature rising rate of 10 ° C./min in Air using a differential thermal scanning calorimeter, TG-8120 manufactured by Rigaku Corporation. It is the value calculated | required from the ratio of the weight reduction derived from decomposition | disassembly of a total aromatic azole and carbon fiber.

[参考例1:炭素繊維の酸処理]
昭和電工製社製カーボンナノチューブVGCF1重量部に硫酸30重量部を加えた後、硝酸10重量部をゆっくりと滴化した。滴下が終了した後、70℃の温水浴中で28kHzの超音波にて1時間処理した。反応終了後の溶液を100重量部の水に加え希釈し孔径0.22μmのテフロン(登録商標)製メンブレンフィルターにて吸引ろ過及び水にて水洗し単離した。
[Reference Example 1: Acid treatment of carbon fiber]
After adding 30 parts by weight of sulfuric acid to 1 part by weight of carbon nanotube VGCF manufactured by Showa Denko KK, 10 parts by weight of nitric acid was slowly dropped. After the completion of the dropping, it was treated with a 28 kHz ultrasonic wave in a 70 ° C. warm water bath for 1 hour. The solution after completion of the reaction was diluted with 100 parts by weight of water, isolated by suction filtration with a Teflon (registered trademark) membrane filter having a pore size of 0.22 μm and washed with water.

[実施例1]
ポリりん酸9.37重量部に4,6−ジアミノレゾルシノール2塩酸塩0.21306重量部を加え176mmHg、80℃にて24時間攪拌した。反応物を60℃に冷却し五酸化りん6.82重量部、テレフタル酸0.16613重量部、参考例1にて得られた炭素繊維0.23421重量部を加え100℃で2時間、140℃で18時間攪拌した。得られた反応体を100重量部の水に加え再沈殿させた。沈殿物を硫酸100重量部で3回洗い孔径0.22μmのテフロン(登録商標)製メンブレンフィルターにて吸引ろ過洗浄し全芳香族アゾールにて被覆された炭素繊維0.21重量部を単離した。このようにして得られた被覆された炭素繊維0.1重量部を100重量部の98%硫酸中に超音波にて分散させ遠心加速度が51000m/sの遠心分離処理を1分間行ったところ得られた沈殿物は0.02重量部であり、0.08重量部の炭素繊維は硫酸中に相溶化されていることが確認できた。100重量部のメタンスルホン酸中にて同様の処理を行ったところ得られた沈殿物は0.01重量部であり、0.09重量部の炭素繊維はメタンスルホン酸中に相溶化されていることが確認できた。
[Example 1]
To 9.37 parts by weight of polyphosphoric acid, 0.21306 parts by weight of 4,6-diaminoresorcinol dihydrochloride was added and stirred at 176 mmHg and 80 ° C. for 24 hours. The reaction product was cooled to 60 ° C. and 6.82 parts by weight of phosphorus pentoxide, 0.16613 parts by weight of terephthalic acid and 0.23421 parts by weight of the carbon fiber obtained in Reference Example 1 were added at 100 ° C. for 2 hours, 140 ° C. For 18 hours. The obtained reactant was added to 100 parts by weight of water and reprecipitated. The precipitate was washed three times with 100 parts by weight of sulfuric acid and suction filtered and washed with a membrane filter made of Teflon (registered trademark) having a pore diameter of 0.22 μm to isolate 0.21 part by weight of carbon fiber coated with wholly aromatic azole. . When 0.1 part by weight of the coated carbon fiber thus obtained is dispersed in 100 parts by weight of 98% sulfuric acid with ultrasonic waves, and subjected to a centrifugal separation treatment with a centrifugal acceleration of 51000 m / s 2 for 1 minute. The obtained precipitate was 0.02 part by weight, and it was confirmed that 0.08 part by weight of carbon fiber was compatibilized in sulfuric acid. When the same treatment was performed in 100 parts by weight of methanesulfonic acid, the obtained precipitate was 0.01 parts by weight, and 0.09 parts by weight of carbon fiber was compatibilized in methanesulfonic acid. I was able to confirm.

また示差熱走査熱量天秤による測定結果炭素繊維を被覆した全芳香族アゾールの量は8.39wt%であった。   Further, the result of measurement with a differential thermal scanning calorimeter balance was 8.39 wt% of the total aromatic azole coated with carbon fiber.

[比較例1]
昭和電工製炭素繊維(VGCF)0.1重量部を100重量部の98%硫酸中に超音波にて分散させ遠心加速度が51000m/sの遠心分離処理を1分間行ったところ得られた沈殿物は0.08重量部であり、0.02重量部の炭素繊維は硫酸中に相溶化されていることが確認できた。100重量部のメタンスルホン酸中にて同様の処理を行ったところ得られた沈殿物は0.07重量部であり、0.03重量部の炭素繊維はメタンスルホン酸中に相溶化されていることが確認できた。
結果を以下の表1にまとめる。
[Comparative Example 1]
Precipitation obtained when 0.1 part by weight of Showa Denko carbon fiber (VGCF) was dispersed in 100 parts by weight of 98% sulfuric acid with ultrasonic waves and subjected to a centrifugal separation at a centrifugal acceleration of 51000 m / s 2 for 1 minute. The product was 0.08 part by weight, and it was confirmed that 0.02 part by weight of carbon fiber was compatibilized in sulfuric acid. When the same treatment was performed in 100 parts by weight of methanesulfonic acid, the resulting precipitate was 0.07 parts by weight, and 0.03 parts by weight of carbon fibers were compatibilized in methanesulfonic acid. I was able to confirm.
The results are summarized in Table 1 below.

Claims (11)

炭素繊維100重量部に対して0.01〜100重量部の全芳香族縮合系高分子により被覆された炭素繊維。   Carbon fiber coated with 0.01 to 100 parts by weight of a wholly aromatic condensation polymer with respect to 100 parts by weight of carbon fiber. 該炭素繊維がカーボンナノチューブである請求項1記載の炭素繊維。   The carbon fiber according to claim 1, wherein the carbon fiber is a carbon nanotube. 該全芳香族縮合系高分子が下記式(A)及びまたは(B)
(A)
(B)
[上記式(A)、(B)において、X、XはO、S、およびNHからなる群からそれぞれ独立に選ばれ、Arは炭素数6〜20の4価の芳香族基を表わし,Arは炭素数6〜20の2価の芳香族基を表わす。]
を満足する全芳香族アゾールである請求項1、2の何れか1項に記載の炭素繊維。
The wholly aromatic condensation polymer is represented by the following formula (A) and / or (B):
(A)
(B)
[In the above formulas (A) and (B), X 1 and X 2 are each independently selected from the group consisting of O, S and NH, and Ar 1 represents a tetravalent aromatic group having 6 to 20 carbon atoms. Ar 2 represents a divalent aromatic group having 6 to 20 carbon atoms. ]
The carbon fiber according to any one of claims 1 and 2, wherein the carbon fiber is a wholly aromatic azole that satisfies the following conditions.
(A)で表される全芳香族アゾールが

およびまたは


である請求項3に記載の炭素繊維。
The wholly aromatic azole represented by (A) is

And or


The carbon fiber according to claim 3, wherein
(B)で表される全芳香族アゾールが

およびまたは

である請求項3に記載の炭素繊維。
The wholly aromatic azole represented by (B)

And or

The carbon fiber according to claim 3, wherein
下記式(C)、(D)
(C)
(D)
(上記式(C)、(D)において、X、XはO、S、およびNHからなる群からそれぞれ独立に選ばれ、Arは炭素数6〜20の4価の芳香族基を表わし、また(C)、(D)は塩酸塩でも構わない。)で表わされる芳香族アミン誘導体およびその塩酸塩からなる群から選択される少なくとも1種と、下記式(E)
―OC―Ar―CO―R’ (E)
(Arは各々独立に炭素数6〜20の2価の芳香族基を表わし、R,R’は各々独立に水素あるいは炭素数6〜20の芳香族基を表す。)
で表わされる芳香族ジカルボン酸誘導体の少なくとも1種とを、
下記式(1)
0.8≦ (c+d)/e ≦1.2 (1)
[上記式中cは上記式(C)で表される芳香族アミン誘導体、dは上記式(D)で表される芳香族アミン誘導体、eは上記式(E)で表される芳香族ジカルボン酸誘導体の各仕込みモル数である。]
を満足する割合で反応させ、得られた反応物を有機溶媒に溶かし炭素繊維成分をろ過、単離する請求項1〜3の何れか1項に記載の全芳香族縮合系高分子により被覆された炭素繊維の製造方法。
Following formula (C), (D)
(C)
(D)
(In the above formulas (C) and (D), X 1 and X 2 are each independently selected from the group consisting of O, S and NH, and Ar 1 represents a tetravalent aromatic group having 6 to 20 carbon atoms. And at least one selected from the group consisting of the aromatic amine derivatives represented by (C) and (D) may be hydrochlorides) and the hydrochlorides thereof, and the following formula (E):
R 1 —O 2 C—Ar 2 —CO 2 —R 1 ′ (E)
(Ar 2 represents each independently a divalent aromatic group having 6 to 20 carbon atoms, and R 1 and R 1 ′ each independently represent hydrogen or an aromatic group having 6 to 20 carbon atoms.)
At least one aromatic dicarboxylic acid derivative represented by:
Following formula (1)
0.8 ≦ (c + d) /e≦1.2 (1)
[Wherein c is an aromatic amine derivative represented by the above formula (C), d is an aromatic amine derivative represented by the above formula (D), and e is an aromatic dicarboxylic acid represented by the above formula (E). This is the number of moles of each charged acid derivative. ]
Is coated with the wholly aromatic condensation polymer according to any one of claims 1 to 3, wherein the obtained reaction product is dissolved in an organic solvent, and the carbon fiber component is filtered and isolated. Carbon fiber manufacturing method.
あらかじめ重合原料に炭素繊維を加え、全芳香族縮合系高分子の重合を行うことを特徴とする請求項6に記載の全芳香族縮合系高分子で被覆された炭素繊維の製造方法。   The method for producing a carbon fiber coated with a wholly aromatic condensation polymer according to claim 6, wherein carbon fiber is added in advance to the polymerization raw material to polymerize the wholly aromatic condensation polymer. 硝酸および硫酸の混合溶液中で表面処理を行った炭素繊維を用いる事を特徴とする請求項6または7に記載の炭素繊維の製造方法。   The method for producing carbon fiber according to claim 6 or 7, wherein carbon fiber subjected to surface treatment in a mixed solution of nitric acid and sulfuric acid is used. ボールミル、ビーズミル、ホモジナイザー等の物理処理により炭素繊維を溶媒中に分散させた炭素繊維分散液を用いることを特徴とする請求項6または7に記載の炭素繊維の製造方法。   The carbon fiber production method according to claim 6 or 7, wherein a carbon fiber dispersion liquid in which carbon fibers are dispersed in a solvent by a physical treatment such as a ball mill, a bead mill, or a homogenizer is used. (C)で表される芳香族アミン誘導体が

あるいはその2塩酸塩
及びまたは

あるいはその2塩酸塩であり、かつ(E)で表わされる芳香族ジカルボン酸誘導体がテレフタル酸である請求項6〜9の何れか1項に記載の炭素繊維の製造方法。
The aromatic amine derivative represented by (C) is

Or its dihydrochloride and / or

Or the aromatic dicarboxylic acid derivative which is the dihydrochloride and represented by (E) is a terephthalic acid, The manufacturing method of the carbon fiber of any one of Claims 6-9.
(D)で表される芳香族アミン誘導体が

あるいはその2塩酸塩
及びまたは

あるいはその2塩酸塩であり、かつ
(E)で表わされる芳香族ジカルボン酸誘導体がテレフタル酸である請求項6〜9の何れか1項に記載の炭素繊維の製造方法。
The aromatic amine derivative represented by (D) is

Or its dihydrochloride and / or

Or the aromatic dicarboxylic acid derivative which is the dihydrochloride and represented by (E) is a terephthalic acid, The manufacturing method of the carbon fiber of any one of Claims 6-9.
JP2003360618A 2003-01-20 2003-10-21 Carbon fiber coated with wholly aromatic condensation polymer Pending JP2005126833A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003360618A JP2005126833A (en) 2003-10-21 2003-10-21 Carbon fiber coated with wholly aromatic condensation polymer
EP04703262A EP1589079A4 (en) 2003-01-20 2004-01-19 Carbon nanotube coated with aromatic condensation polymer
US10/542,641 US7754328B2 (en) 2003-01-20 2004-01-19 Carbon nanotube coated with aromatic condensation polymer
PCT/JP2004/000363 WO2004065496A1 (en) 2003-01-20 2004-01-19 Carbon nanotube coated with aromatic condensation polymer
JP2005508067A JP3995696B2 (en) 2003-01-20 2004-01-19 Carbon nanotubes coated with aromatic condensation polymer
CA2513618A CA2513618C (en) 2003-01-20 2004-01-19 Carbon nanotubes coated with aromatic condensation polymer
KR1020057013350A KR101010550B1 (en) 2003-01-20 2004-01-19 Carbon nanotube coated with aromatic condensation polymer
TW093101664A TW200427740A (en) 2003-01-20 2004-01-20 Carbon nanotube coated with aromatic condensation polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360618A JP2005126833A (en) 2003-10-21 2003-10-21 Carbon fiber coated with wholly aromatic condensation polymer

Publications (2)

Publication Number Publication Date
JP2005126833A true JP2005126833A (en) 2005-05-19
JP2005126833A6 JP2005126833A6 (en) 2005-12-15

Family

ID=34640875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360618A Pending JP2005126833A (en) 2003-01-20 2003-10-21 Carbon fiber coated with wholly aromatic condensation polymer

Country Status (1)

Country Link
JP (1) JP2005126833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100455508C (en) * 2007-03-29 2009-01-28 浙江大学 Method for producing Nano carbon tube clad by metallic sulfide
JP2016056096A (en) * 2008-01-07 2016-04-21 ウィシス テクノロジー ファウンデーション,インコーポレイティド Method and apparatus for identifying and characterizing material solvents and composite matrices and methods of using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100455508C (en) * 2007-03-29 2009-01-28 浙江大学 Method for producing Nano carbon tube clad by metallic sulfide
JP2016056096A (en) * 2008-01-07 2016-04-21 ウィシス テクノロジー ファウンデーション,インコーポレイティド Method and apparatus for identifying and characterizing material solvents and composite matrices and methods of using the same

Similar Documents

Publication Publication Date Title
KR101010550B1 (en) Carbon nanotube coated with aromatic condensation polymer
CN109071808B (en) Bisphenol M bisphthalonitrile ether resin blends containing filler and articles
KR101932801B1 (en) Polymerizable composition
Dodda et al. Progress in designing poly (amide imide) s (PAI) in terms of chemical structure, preparation methods and processability
CN109923149B (en) Polymerizable composition
JP6818123B2 (en) Polymerizable composition
KR20120024838A (en) Process for making filled resins
JP2012210608A (en) Composite hollow fiber membrane
Jin et al. High-performance polymers adapted to facile melt processing through structure design of benzocyclobutene-containing precursors
JP2005126833A (en) Carbon fiber coated with wholly aromatic condensation polymer
KR101742546B1 (en) Functionalized carbon curing agents and epoxy compounds using the same, and methods of preparing the same
JP3687178B2 (en) Aromatic polyesterimide, process for producing the same and varnish containing the same
Esmaielzadeh et al. Gas permeation, thermal, morphology and mechanical properties of polyimide/clay nanocomposites: Effect of organically modified montmorillonite
JP5144427B2 (en) Method for producing polyimide resin aqueous dispersion
Mallakpour et al. Thermoplastic nonvinyl polymers: From macro to nanostructure
Ahmadizadegan et al. Synthesis and characterization of green membranes polyimide/titania bionanocomposites containing amino acid and benzimidazole moieties for gas transport properties
TWI343412B (en)
Liu et al. Novel preparation of poly (arylene ether sulfone amide) s via supported palladium-catalyzed carbonylative polymerization
JP2018058966A (en) Resin solution containing polyamide imide and method for using the same
JP2009013346A (en) Polyamic acid fine particle or polyimide fine particle, and method for producing polyamic acid fine particle and polyimide fine particle
JPH0531574B2 (en)
JP7496547B2 (en) Imide oligomer, varnish, cured product thereof, and prepreg and fiber-reinforced composite material using the same
WO2022244576A1 (en) Melt-processing material and melt-processed article
JP2880352B2 (en) Amorphous polyimide powder and method for producing the same
JPH0366729A (en) Linear polymer