JP2009013346A - Polyamic acid fine particle or polyimide fine particle, and method for producing polyamic acid fine particle and polyimide fine particle - Google Patents
Polyamic acid fine particle or polyimide fine particle, and method for producing polyamic acid fine particle and polyimide fine particle Download PDFInfo
- Publication number
- JP2009013346A JP2009013346A JP2007178766A JP2007178766A JP2009013346A JP 2009013346 A JP2009013346 A JP 2009013346A JP 2007178766 A JP2007178766 A JP 2007178766A JP 2007178766 A JP2007178766 A JP 2007178766A JP 2009013346 A JP2009013346 A JP 2009013346A
- Authority
- JP
- Japan
- Prior art keywords
- polyamic acid
- fine particles
- polyimide
- component
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
本発明は、ポリアミック酸微粒子またはポリイミド微粒子、ポリアミック酸微粒子の製造方法およびポリイミド微粒子の製造方法に関する。 The present invention relates to polyamic acid fine particles or polyimide fine particles, a method for producing polyamic acid fine particles, and a method for producing polyimide fine particles.
ポリイミドは耐熱性や電気的性質が優れているため、耐熱性材料や絶縁性材料として、フィルム、コーティング剤、微粒子等の各種形態で、電子材料、液晶、接着剤、塗料などの分野で幅広く用いられている。このポリイミドを均一な微粒子として製造することができれば、電機・電子材料等として非常に有用である。 Since polyimide has excellent heat resistance and electrical properties, it is widely used in various fields such as electronic materials, liquid crystals, adhesives, and paints as heat-resistant materials and insulating materials in various forms such as films, coating agents, and fine particles. It has been. If this polyimide can be produced as uniform fine particles, it is very useful as an electric / electronic material.
従来、ポリイミド微粒子は、例えば、テトラカルボン酸二無水物とジアミン化合物をN-メチルピロリドン(NMP)やN,N−ジメチルホルムアミド等のポリアミック酸が可溶な溶媒中で反応させ、ワニスを調製し、このワニスを加熱しイミド化反応を進める過程で溶解性の違いにより析出させる方法や、ポリイミドの固形物を粉砕して微粒子を調整する方法が知られている。しかしながら、これらの方法で得られるポリイミド微粒子は、多くのものが不定形であり、粒子径分布が広く、粒子径も大きいため電子材料分野など各分野への展開があまり進まなかった。 Conventionally, polyimide fine particles are prepared, for example, by reacting a tetracarboxylic dianhydride and a diamine compound in a solvent in which a polyamic acid such as N-methylpyrrolidone (NMP) or N, N-dimethylformamide is soluble to prepare a varnish. In addition, there are known a method in which the varnish is heated and the imidization reaction proceeds to cause precipitation due to a difference in solubility, and a polyimide solid is pulverized to adjust fine particles. However, many of the polyimide fine particles obtained by these methods are indefinite, have a wide particle size distribution, and have a large particle size, so that they have not developed much in various fields such as the electronic materials field.
そこで、無水テトラカルボン酸類溶液と、ジアミン類溶液を混合し、混合溶液からポリアミック酸を析出させ、粒子形状、粒子径分布等が制御できるポリアミック酸微粒子の製造方法が提案されている。(特許文献1)当該方法によれば、単一組成の粒子形状、粒子分布が揃ったポリイミド微粒子が得ることができた。 Therefore, a method for producing fine polyamic acid particles in which a tetracarboxylic anhydride solution and a diamine solution are mixed, polyamic acid is precipitated from the mixed solution, and the particle shape, particle size distribution and the like can be controlled has been proposed. (Patent Document 1) According to this method, polyimide fine particles having a single particle shape and a uniform particle distribution can be obtained.
しかし、近年、電子材料分野など各分野における近年の発展に伴い、微粒子材料にもより高水準の機械的強度、低熱膨張性、絶縁性などが要求されるようになってきており、単一組成のポリイミドではこれらの要求を満たすことができないということが明らかになってきた。 However, in recent years, with the recent development in each field such as the electronic materials field, finer materials have been required to have higher levels of mechanical strength, low thermal expansion, insulation, etc. It has become clear that these polyimides cannot meet these requirements.
このような状況の中、フィルム形状や他の成形体においては異なる特性を有する材料を複合化させ、より高性能化させる技術が用いられており、ポリイミド微粒子においてもこれら複合化の手法を用いた例が提案されている(例えば、特許文献2)。当該方法は、多層化のためにシード粒子表面からポリイミド前駆体の分子鎖を成長させ、これをイミド化させて厚さ3〜1000nm程度のポリイミド微粒子による層を形成させるものであるが、当該方法は、ポリイミド微粒子によって表面層が形成されているため、表面に凹凸が存在し、かつ形状の制御が困難であるといった問題があった。 Under such circumstances, the technology that combines materials with different characteristics in film shape and other molded products to improve performance is used, and these composite methods were also used for polyimide fine particles. An example has been proposed (for example, Patent Document 2). In this method, a molecular chain of a polyimide precursor is grown from the seed particle surface for multilayering, and this is imidized to form a layer of polyimide fine particles having a thickness of about 3 to 1000 nm. Has a problem that since the surface layer is formed of polyimide fine particles, there are irregularities on the surface and it is difficult to control the shape.
また、上記製造方法ではシード粒子から成長する分子鎖長が層の厚みに影響しており、合成上得られる分子鎖長に限界があるため、層の厚さに制限があった。さらに、反応中にシード粒子上での成長よりも反応液中で起こる副反応(重付加及び重縮合反応)が起こりやすく、反応収率が低いため工業化は困難であった。
本発明は、平滑な表面を有する球状複合化ポリイミド微粒子及びその前駆体である複合化ポリアミック酸微粒子とその製造方法を提供することを目的とする。 An object of the present invention is to provide spherical composite polyimide fine particles having a smooth surface, composite polyamic acid fine particles which are precursors thereof, and a method for producing the same.
本発明者は、前記課題を解決すべく、鋭意検討を行った結果、反応条件を制御し、ポリアミック酸微粒子またはポリイミド微粒子表面上に優先的に特性の異なる成分を析出させ、等方的なポリアミック酸層を形成させ、これを分子鎖の運動を抑制できる温度範囲で加熱してイミド化することにより、表面粗さが20nm未満の平滑な表面を有するポリイミド微粒子が得られることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventor has controlled the reaction conditions, preferentially deposits components having different characteristics on the surface of the polyamic acid fine particles or polyimide fine particles, and isotropic polyamic It has been found that polyimide particles having a smooth surface with a surface roughness of less than 20 nm can be obtained by forming an acid layer and imidizing it by heating in a temperature range in which the movement of molecular chains can be suppressed. Was completed.
すなわち、本発明は、芯材微粒子(D)の外層に、少なくとも2層のポリアミック酸層および/またはポリイミド層を有し、表面粗さが20nm未満である表面が平滑なポリアミック酸またはポリイミド微粒子;芯材微粒子(D)の存在下でテトラカルボン酸無水物(A)とジアミン化合物(B)を混合・反応させ、芯材微粒子(D)上に析出させることにより、芯材微粒子(D)上にポリアミック酸層を形成させ、シード微粒子(C)とした後にさらにテトラカルボン酸無水物(A)とジアミン化合物(B)(ただし、(D)上に成分層を形成させた際に用いたテトラカルボン酸無水物(A)およびジアミン化合物(B)の少なくとも一方は異なるものである)を混合、反応させ、シード微粒子(C)上にさらにポリアミック酸層を形成させることを特徴とするポリアミック酸の製造方法及び、当該方法で得られたポリアミック酸微粒子を構成成分のガラス転移点以下の温度でイミド化することを特徴とするポリイミド微粒子の製造方法に関する。 That is, the present invention provides polyamic acid or polyimide fine particles having a smooth surface with at least two polyamic acid layers and / or polyimide layers in the outer layer of the core fine particles (D) and having a surface roughness of less than 20 nm; The tetracarboxylic acid anhydride (A) and the diamine compound (B) are mixed and reacted in the presence of the core material fine particles (D) and precipitated on the core material fine particles (D). After forming a polyamic acid layer to form seed fine particles (C), the tetracarboxylic acid anhydride (A) and the diamine compound (B) (however, the tetralayer used when the component layer was formed on (D)) At least one of carboxylic acid anhydride (A) and diamine compound (B) is mixed and reacted) to form a polyamic acid layer on seed fine particles (C). Method for producing a polyamic acid according to claim Rukoto and a process for producing a polyimide fine particles, characterized by imidizing polyamic acid particles obtained in the method a glass transition temperature below components.
本発明によれば、容易に層数、層厚等を制御可能な多層構造を有し、粒子表面が平滑な球状ポリアミック酸複合微粒子及びポリイミド複合微粒子が得られる。また、各層の組成、導入量等を変更することによって所望の物性を有するポリマー微粒子を得することができる。さらにイミド化時の体積収縮率の異なるポリアミック酸層を形成させることにより、層間にポロシティを導入することができる。ポロシティの導入は屈折率を大幅に変更することができるため、光学材料への応用ができる。 According to the present invention, spherical polyamic acid composite fine particles and polyimide composite fine particles having a multilayer structure in which the number of layers, the layer thickness, etc. can be easily controlled and having a smooth particle surface can be obtained. In addition, polymer fine particles having desired physical properties can be obtained by changing the composition, introduction amount, and the like of each layer. Furthermore, porosity can be introduced between the layers by forming polyamic acid layers having different volume shrinkage rates during imidization. Since the introduction of porosity can change the refractive index significantly, it can be applied to optical materials.
また、本発明の微粒子は、表面が平滑であるため、例えば、位相差を利用した光学微粒子材料用途に展開することができ、これらに適する1.0〜100μm程度の粒子径の複合微粒子を簡便に製造することができる。粒子表面の平滑性は、光学特性や、機械特性に大きな影響を与え、さらに特に硬質であるが脆いポリイミドについては、例えば、力学特性を必要とする用途において、荷重を加えた際に突起部分の局所的な破壊を起こす原因となるため、本発明の微粒子ではこれら性能の向上に有効である。 In addition, since the fine particles of the present invention have a smooth surface, they can be applied to, for example, optical fine particle materials using a phase difference, and composite fine particles having a particle size of about 1.0 to 100 μm suitable for these can be easily used. Can be manufactured. The smoothness of the particle surface has a great influence on the optical properties and mechanical properties, and in particular for hard but brittle polyimides, for example, in applications that require mechanical properties, Since it causes local destruction, the fine particles of the present invention are effective in improving these performances.
本発明のポリアミック酸またはポリイミド微粒子(以下、ポリアミック酸またはポリイミド微粒子を、ポリイミド等微粒子ということがある。)は、芯材微粒子(D)(以下、(D)成分という)の外層に、少なくとも2層のポリアミック酸層および/またはポリイミド層を有し、表面粗さが20nm未満である表面が平滑なことを特徴としている。ここで、表面粗さは、数式1:表面粗さ(nm)=Σ{(LH1+LH2+LH3+LH4+LH5)/5−(LL1+LL2+LL3+LL4+LL5)/5}/n(式中、LHxは、凸部の半径(nm)であって、測定部分においてx番目に長い半径を表し、LLxは、凹部の半径(nm)であって、測定部分においてx番目に短い半径を表し、nは、サンプル数を表す。)により計算される値である。すなわち、n個(サンプル数)の微粒子の断面を透過型電子顕微鏡(TEM)で観察し、それぞれの最も長い半径から5番目に長い半径までの和を5で除して得られた平均値と最も短い半径から5番目に短い半径までの和を5で除して得られた平均値の差を求め、それらを加えた後、nで除することにより得られた値である。 The polyamic acid or polyimide fine particles of the present invention (hereinafter, polyamic acid or polyimide fine particles may be referred to as “polyimide fine particles”) are present in the outer layer of the core fine particles (D) (hereinafter referred to as “component (D)”). It has a polyamic acid layer and / or a polyimide layer, and has a smooth surface with a surface roughness of less than 20 nm. Here, the surface roughness is expressed by Equation 1: Surface roughness (nm) = Σ {(L H1 + L H2 + L H3 + L H4 + L H5 ) / 5- (L L1 + L L2 + L L3 + L L4 + L L5 ) / 5} / n (where L Hx is the radius of the convex portion (nm) and represents the xth longest radius in the measurement portion, and L Lx is the radius of the concave portion (nm)) Where x represents the xth shortest radius in the measurement part, and n represents the number of samples. That is, an average value obtained by observing a cross section of n (number of samples) fine particles with a transmission electron microscope (TEM) and dividing the sum from the longest radius to the fifth longest radius by 5. This is a value obtained by calculating the difference between the average values obtained by dividing the sum from the shortest radius to the fifth shortest radius by 5, adding them, and then dividing by n.
本発明に用いられる(D)成分は、本発明のポリアミック酸またはポリイミド微粒子の核となるものである。(D)成分の材質は特に限定されず、公知のものを用いることができる。具体的には、ポリイミド、ポリアミック酸、ポリアミド、ポリウレタン、架橋ポリスチレン系樹脂、架橋アクリル系樹脂、等の有機高分子微粒子の他、シリカ、アルミナ、等の無機微粒子も用いることができる。(D)成分の粒子径は所望とするポリアミック酸またはポリイミド微粒子の粒子径に応じて適宜選択すればよい。なお、最終的に得られるポリアミック酸またはポリイミド微粒子の表面が平滑なものとするため、当該(D)成分の表面は平滑なものを用いることが好ましい。(D)成分としては、例えば、特開2006−183018号公報や特開平11−140181号公報などに記載の方法で調製したポリアミック酸微粒子またはポリイミド微粒子を用いることが好ましい。 (D) component used for this invention becomes a nucleus of the polyamic acid of this invention, or a polyimide microparticle. The material for the component (D) is not particularly limited, and known materials can be used. Specifically, inorganic fine particles such as silica and alumina can be used in addition to organic polymer fine particles such as polyimide, polyamic acid, polyamide, polyurethane, cross-linked polystyrene resin, and cross-linked acrylic resin. The particle size of the component (D) may be appropriately selected according to the desired particle size of the polyamic acid or polyimide fine particles. In addition, in order to make the surface of the polyamic acid or polyimide fine particle finally obtained smooth, it is preferable to use a smooth surface for the component (D). As the component (D), for example, polyamic acid fine particles or polyimide fine particles prepared by a method described in JP-A-2006-183018, JP-A-11-140181, or the like is preferably used.
当該ポリイミド微粒子の前駆体であるポリアミック酸微粒子は、例えば、(D)成分の存在下でテトラカルボン酸無水物(A)(以下、(A)成分という)とジアミン化合物(B)(以下、(B)成分という)を混合・反応させ、(D)上に析出させることにより、(D)成分上にポリアミック酸層を形成させ、シード微粒子(C)(以下、(C)成分という)とした後にさらに(A)成分と(B)成分(ただし、(D)上に成分層を形成させた際に用いたテトラカルボン酸無水物(A)およびジアミン化合物(B)の少なくとも一方は異なるものである)を混合、反応させ、(C)成分上にさらにポリアミック酸層を形成させることにより得られる。ここで(C)成分において、最外層とその1つ下の層のポリアミック酸はその構成原料が異なるものである。そして、このようにして得られた2層のポリアミック酸層を有する微粒子を用いて同様の操作をn−2回繰り返すことにより、n個のポリアミック酸層を有する微粒子を得ることができる。なお、n個の層を持つ多層構造ポリアミック酸微粒子を合成する場合は、(C)成分は(n−1)個の層を持つ多層構造ポリアミック酸微粒子をいう。この様にして得られた多層構造ポリアミック酸微粒子を構成成分のガラス転移点以下の温度でイミド化することで多層構造を有するポリイミド微粒子が得られる。 The polyamic acid fine particles, which are the precursors of the polyimide fine particles, are, for example, tetracarboxylic anhydride (A) (hereinafter referred to as (A) component) and diamine compound (B) (hereinafter referred to as (D) in the presence of component (D). B) component) is mixed and reacted, and precipitated on (D) to form a polyamic acid layer on (D) component to form seed fine particles (C) (hereinafter referred to as (C) component). Further, at least one of the tetracarboxylic acid anhydride (A) and the diamine compound (B) used when the component layer is formed on the component (A) and the component (B) (D) is different. And a polyamic acid layer is further formed on the component (C). Here, in the component (C), the constituent materials of the polyamic acid in the outermost layer and the layer below it are different. Then, by repeating the same operation n-2 times using the thus obtained fine particles having two polyamic acid layers, fine particles having n polyamic acid layers can be obtained. In addition, when synthesizing multi-layered polyamic acid fine particles having n layers, the component (C) refers to multi-layered polyamic acid fine particles having (n-1) layers. Polyimide fine particles having a multilayer structure can be obtained by imidizing the thus-obtained multilayer polyamic acid fine particles at a temperature below the glass transition point of the constituent components.
本発明に用いられる(A)成分としては、通常、ポリイミドの製造に用いられるテトラカルボン酸無水物であれば特に限定されず公知のものを使用することができる。具体的には、例えば、3,3´,4,4´−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3´,4,4´−ビフェニルテトラカルボン酸二無水物、2,3,3´,4´−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物(PMDA)、1,3−ビス(2,3−ジカルボキシフェノキシ)ベンゼン二無水物、1,4−ビス(2,3−ジカルボキシフェノキシ)ベンゼン二無水物、2,3,3´,4´−ベンゾフェノンテトラカルボン酸二無水物、2,2´,3,3´−ベンゾフェノンテトラカルボン酸二無水物、2,2´,3,3´−ビフェニルテトラカルボン酸二無水物、2,2´,6,6´−ビフェニルテトラカルボン酸二無水物、ナフタレン−1,2,4,5−テトラカルボン酸二無水物、アントラセン−2,3,6,7−テトラカルボン酸二無水物、フェナンスレン−1,8,9,10−テトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物;ブタン−1,2,3,4−テトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物;シクロブタン−1,2,3,4−テトラカルボン酸二無水物等の脂環族テトラカルボン酸二無水物;チオフェン−2,3,4,5−テトラカルボン酸二無水物、ピリジン−2,3,5,6−テトラカルボン酸無水物等の複素環族テトラカルボン酸二無水物等を用いることができる。これらは、1種を単独で用いても2種以上を混合して用いてもよい。本発明では、特にBTDA、ピロメリット酸二無水物等が好ましい。また、本発明では、無水テトラカルボン酸の一部を相当するテトラ酸クロライドで置換したものを使用することができる。 As (A) component used for this invention, if it is the tetracarboxylic acid anhydride normally used for manufacture of a polyimide, it will not specifically limit, A well-known thing can be used. Specifically, for example, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3, 3 ', 4'-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride (PMDA), 1,3-bis (2,3-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (2 , 3-dicarboxyphenoxy) benzene dianhydride, 2,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 2, 2 ', 3,3'-biphenyltetracarboxylic dianhydride, 2,2', 6,6'-biphenyltetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic dianhydride , Anthracene-2,3 Aromatic tetracarboxylic dianhydrides such as 6,7-tetracarboxylic dianhydride and phenanthrene-1,8,9,10-tetracarboxylic dianhydride; butane-1,2,3,4-tetracarboxylic Aliphatic tetracarboxylic dianhydrides such as acid dianhydrides; Alicyclic tetracarboxylic dianhydrides such as cyclobutane-1,2,3,4-tetracarboxylic dianhydride; Thiophene-2,3,4 , 5-tetracarboxylic dianhydride, heterocyclic tetracarboxylic dianhydrides such as pyridine-2,3,5,6-tetracarboxylic anhydride and the like can be used. These may be used alone or in combination of two or more. In the present invention, BTDA, pyromellitic dianhydride and the like are particularly preferable. Moreover, in this invention, what substituted some tetracarboxylic anhydrides with the corresponding tetra acid chloride can be used.
また、本発明の効果を損なわない範囲で、トリメリット酸無水物、ブタン−1,2,4−トリカルボン酸、ナフタレン−1,2,4−トリカルボン酸などのトリカルボン酸類、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ビメリン酸、スベリン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸などの脂肪族ジカルボン酸類の酸無水物、イソフタル酸、テレフタル酸、ジフェニルメタン−4,4´−ジカルボン酸など芳香族ジカルボン酸類の酸無水物を併用することができる。但し、テトラカルボン酸類に対するこれらの割合が多すぎると、得られるポリマーの耐熱性が悪化する傾向があるため、通常、その使用量は(A)成分中、30モル%以下であることが好ましい。 Further, within the range not impairing the effects of the present invention, tricarboxylic acids such as trimellitic anhydride, butane-1,2,4-tricarboxylic acid, naphthalene-1,2,4-tricarboxylic acid, oxalic acid, malonic acid, Acid anhydrides of aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, vimelic acid, suberic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, isophthalic acid, terephthalic acid, diphenylmethane-4, An acid anhydride of an aromatic dicarboxylic acid such as 4′-dicarboxylic acid can be used in combination. However, since the heat resistance of the resulting polymer tends to be deteriorated when the proportion of tetracarboxylic acids is too large, the amount used is preferably 30 mol% or less in the component (A).
本発明に用いられる(B)成分としては、通常、ポリイミドの製造に用いられるジアミン類であれば特に限定されず、公知のものを使用することができる。具体的には、例えば、4,4´−ジアミノジフェニルメタン(DDM)、4,4´−ジアミノジフェニルエーテル(DPE)、4,4´−ビス(4−アミノフェノキシ)ビフェニル(BAPB)、1,4´−ビス(4−アミノフェノキシ)ベンゼン(TPE−Q)、1,3´−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)、1,5−ビス(4−アミノフェノキシ)アルカン(DA5MG)、1,4−ビス(4−アミノフェノキシ)アルカン(DA4MG)、1,3−ビス(4−アミノフェノキシ)アルカン(DA3MG)、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、3,4´−ジアミノジフェニルエーテル、4,4´−ジアミノジフェニルスルフォン、3,4−ジアミノジフェニルスルフォン、3,3´−ジアミノジフェニルスルフォン、4,4´−メチレン−ビス(2−クロロアニリン)、3,3´−ジメチル−4,4´−ジアミノビフェニル、4,4´−ジアミノジフェニルスルフィド、2,6´−ジアミノトルエン、2,4−ジアミノクロロベンゼン、1,2−ジアミノアントラキノン、1,4−ジアミノアントラキノン、3,3´−ジアミノベンゾフェノン、3,4−ジアミノベンゾフェノン、4,4´−ジアミノベンゾフェノン、4,4´−ジアミノビベンジル、R(+)−2,2´−ジアミノ−1,1´−ビナフタレン、S(+)−2,2´−ジアミノ−1,1´−ビナフタレン等の芳香族ジアミン;1,2−ジアミノメタン、1,4−ジアミノブタン、テトラメチレンジアミン、1,10−ジアミノドデカン等の脂肪族ジアミン、1,4−ジアミノシクロヘキサン、1,2−ジアミノシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、4,4´−ジアミノジシクロヘキシルメタン等の脂環族ジアミンのほか、3,4−ジアミノピリジン、1,4−ジアミノ−2−ブタノン等を使用することができる。これらは、1種又は2種以上を混合して用いることができる。また、本発明では、本発明の効果を損なわない範囲で、他のアミン類(モノアミン、トリアミン等)も用いることができ、これらの中では、特にDPE、TPE−R、DA5MG等を用いることが好ましい。 As (B) component used for this invention, if it is diamine normally used for manufacture of a polyimide, it will not specifically limit, A well-known thing can be used. Specifically, for example, 4,4'-diaminodiphenylmethane (DDM), 4,4'-diaminodiphenyl ether (DPE), 4,4'-bis (4-aminophenoxy) biphenyl (BAPB), 1,4 ' -Bis (4-aminophenoxy) benzene (TPE-Q), 1,3'-bis (4-aminophenoxy) benzene (TPE-R), 1,5-bis (4-aminophenoxy) alkane (DA5MG), 1,4-bis (4-aminophenoxy) alkane (DA4MG), 1,3-bis (4-aminophenoxy) alkane (DA3MG), o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,4 '-Diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4-diaminodiphenyl sulfone, 3 3'-diaminodiphenylsulfone, 4,4'-methylene-bis (2-chloroaniline), 3,3'-dimethyl-4,4'-diaminobiphenyl, 4,4'-diaminodiphenyl sulfide, 2,6 ' -Diaminotoluene, 2,4-diaminochlorobenzene, 1,2-diaminoanthraquinone, 1,4-diaminoanthraquinone, 3,3'-diaminobenzophenone, 3,4-diaminobenzophenone, 4,4'-diaminobenzophenone, 4, Aromatic diamines such as 4'-diaminobibenzyl, R (+)-2,2'-diamino-1,1'-binaphthalene, S (+)-2,2'-diamino-1,1'-binaphthalene; 1,2-diaminomethane, 1,4-diaminobutane, tetramethylenediamine, aliphatic diamines such as 1,10-diaminododecane, In addition to alicyclic diamines such as 4-diaminocyclohexane, 1,2-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 4,4′-diaminodicyclohexylmethane, 3,4-diaminopyridine, 1,4-diamino -2-butanone or the like can be used. These can be used alone or in combination of two or more. In the present invention, other amines (monoamine, triamine, etc.) can be used as long as the effects of the present invention are not impaired. Among these, DPE, TPE-R, DA5MG, etc. are particularly used. preferable.
(A)成分及び(B)成分は、副反応の進行を抑制する点から、(A)成分、(B)成分をあらかじめ溶媒に溶解して溶液として使用することが好ましい。なお、(A)成分溶液及び(B)成分溶液を調製する際に用いる溶媒としては、(A)成分及び(B)成分と反応せず、(A)成分、及び(B)成分を溶解し、かつ、生成するポリマーが溶解しないものまたは難溶解性のものであれば特に限定されずに公知のものを用いることができる。 The component (A) and the component (B) are preferably used as a solution by previously dissolving the component (A) and the component (B) in a solvent from the viewpoint of suppressing the progress of the side reaction. In addition, as a solvent used when preparing (A) component solution and (B) component solution, it does not react with (A) component and (B) component, but dissolves (A) component and (B) component. In addition, any known polymer can be used without particular limitation as long as the polymer to be produced is insoluble or hardly soluble.
具体的には、例えば、ケトン系溶媒、塩素系溶媒、エーテル系溶媒、エステル系溶媒、ニトリル系溶媒、アミド系溶媒、芳香族系溶媒等が挙げられ、これらの一種を単独で用いても2種以上を併用してもよいう。ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン(MEK)等が挙げられる。塩素系溶媒としては、クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン等が挙げられる。エーテル系溶媒としては、例えば、ジエチルエーテル等が挙げられる。エステル系溶媒としては、例えば、酢酸メチル、酢酸エチル等が挙げられる。ニトリル系溶媒としては、例えば、アセトニトリル、プロピオニトリル等が挙げられる。アミド系溶媒としては、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチルピロリドン(NMP)等が挙げられる。芳香族系溶媒としてはベンゼン、トルエン、キシレン等が挙げられる。これらの中では、ケトン系溶媒、エステル系溶媒、ニトリル系溶媒、エーテル系溶媒を用いることが好ましく、特にケトン系、エーテル系溶媒が好ましい。また、例えばDMF、DMAc、NMP等の非プロトン極性溶媒のようなポリアミック酸の溶解性が高い溶媒であっても、アセトン、酢酸メチル、MEK、トルエン、キシレン等のポリアミック酸の貧溶媒と混合してポリアミック酸微粒子が生成するように調整すれば、これらも使用できる。 Specific examples include ketone solvents, chlorine solvents, ether solvents, ester solvents, nitrile solvents, amide solvents, aromatic solvents, and the like. More than one species may be used in combination. Examples of the ketone solvent include acetone and methyl ethyl ketone (MEK). Examples of the chlorinated solvent include chloroform, dichloromethane, carbon tetrachloride, dichloroethane and the like. Examples of the ether solvent include diethyl ether. Examples of ester solvents include methyl acetate and ethyl acetate. Examples of the nitrile solvent include acetonitrile, propionitrile and the like. Examples of amide solvents include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP) and the like. Aromatic solvents include benzene, toluene, xylene and the like. Among these, ketone solvents, ester solvents, nitrile solvents, and ether solvents are preferably used, and ketone solvents and ether solvents are particularly preferable. In addition, even if the solvent of the polyamic acid is high, such as an aprotic polar solvent such as DMF, DMAc, or NMP, it is mixed with a poor solvent of the polyamic acid such as acetone, methyl acetate, MEK, toluene, xylene. These can also be used if they are adjusted to produce polyamic acid fine particles.
(A)成分溶液の濃度は、用いる(A)成分の種類、(B)成分溶液の濃度、溶液とした場合の粘度等に応じて適宜設定すれば良いが、通常は0.001〜1モル/リットル程度、好ましくは0.01〜0.1モル/リットルとする。 The concentration of the component solution (A) may be appropriately set according to the type of the component (A) to be used, the concentration of the component solution (B), the viscosity of the solution, etc., but is usually 0.001 to 1 mol. / Liter, preferably 0.01 to 0.1 mol / liter.
(B)成分溶液の濃度は、用いる(B)成分の種類、(A)成分溶液の濃度、溶液とした場合の粘度等に応じて適宜設定すれば良いが、通常は0.001〜1モル/リットル程度、好ましくは0.01〜0.1モル/リットルとする。 The concentration of the component solution (B) may be appropriately set according to the type of the component (B) to be used, the concentration of the component solution (A), the viscosity of the solution, etc., but is usually 0.001 to 1 mol. / Liter, preferably 0.01 to 0.1 mol / liter.
本発明に用いられる(C)成分は、製造するポリイミド等微粒子の芯材となるものである。この(C)成分中の最中深部((D)成分)の組成及び粒径は特に限定されず、比重や使用する溶媒系への溶解性、分散安定性、ポリマー成分との密着性および所望とするポリマー微粒子の物性等を勘案して適宜選定すればよい。当該(D)成分は析出させるポリアミック酸と親和性の高い結合様式や官能基を持つことが好ましく、ポリアミック酸またはポリイミドが好適である。また、粒子径としては、0.1〜400μm程度のものを使用することができ、所望とするポリマー微粒子の粒子径よりも小さなものを用いればよい。特に、粒子形状、粒子径の揃ったものを用いることにより、均質なポリマー微粒子を得やすいため特に好ましい。なお、(D)成分を重合溶媒中に安定して分散させる目的で、必要に応じて分散安定剤を使用することもできる。 (C) component used for this invention becomes a core material of microparticles | fine-particles, such as a polyimide to manufacture. The composition and particle size of the middle deep part (component (D)) in component (C) are not particularly limited. Specific gravity, solubility in the solvent system used, dispersion stability, adhesion to polymer component and desired It may be appropriately selected in consideration of the physical properties of the polymer fine particles. The component (D) preferably has a bonding mode or functional group having a high affinity for the polyamic acid to be deposited, and polyamic acid or polyimide is preferred. Moreover, as a particle diameter, a thing about 0.1-400 micrometers can be used, What is necessary is just to use a thing smaller than the particle diameter of the polymer fine particle desired. In particular, it is particularly preferable to use particles having a uniform particle shape and particle diameter because uniform polymer fine particles can be easily obtained. In addition, a dispersion stabilizer can also be used as needed for the purpose of stably dispersing the component (D) in the polymerization solvent.
本発明のポリマー微粒子の(C)成分は、例えば、溶媒中、(A)成分と(B)成分を(D)成分の存在下で混合、反応させて、生成するポリマーを(D)成分表面上に析出させ、ポリマー層を形成させることにより得られる。具体的には、例えば、(A)成分、(B)成分、(D)成分および溶媒を一括で仕込み、混合、重合させる方法、(D)成分の存在下で、あらかじめ(A)成分溶液と(B)成分溶液を混合した混合溶液を供給しながら、重合させる方法、(D)成分の存在下で、(A)成分溶液と(B)成分溶液を個別に供給しながら混合、重合させる方法などから選択することができる。特に、重合、粒子成長の制御が容易な点から、(D)成分の存在下で、あらかじめ(A)成分溶液と(B)成分溶液を混合した混合溶液を供給させる方法が好ましい。なお、(A)成分溶液と(B)成分溶液を混合する方法としては、混合効率が高く、温度制御が容易であり、反応制御が容易なためマイクロミキサーを用いて混合する方法が好ましい。なお、本発明において、マイクロミキサーとは、2以上の流入路および1以上の流出路並びに該2以上の流入路が合流する空間を有するものであって、合流空間につながる流入路の口径が、0.01〜100μm程度であるものをいう。なお、あらかじめ(A)成分溶液と(B)成分溶液を混合した混合液を供給する場合、(D)成分表面上でポリマー層を形成させるため、(A)成分溶液と(B)成分溶液を混合して混合液を調製する段階においては、ポリマーの析出が起こらないように反応条件を設定する必要がある。生成したポリマーの(D)成分表面以外でのポリマーの形成が生じた場合、(D)成分をシードとした粒子の成長と新粒子の形成および生成した新粒子をシードとした粒子の成長が同時に起こるため、粒子径分布が広がってしまい粒子径を制御することが難しくなる。また、重合時の混合方法としては、特に限定されず、公知の方法を採用すればよい。具体的には、例えば、攪拌羽根等で攪拌することにより混合してもよく、超音波照射で行ってもよい。超音波照射は、適宜公知の超音波装置、操作条件を採用すればよく、具体的には、例えば、28〜100kHz程度の周波数で行えばよい。 The component (C) of the polymer fine particle of the present invention is prepared by, for example, mixing and reacting the components (A) and (B) in the presence of the component (D) in a solvent to form a polymer formed on the surface of the component (D) It is obtained by depositing on top and forming a polymer layer. Specifically, for example, the (A) component, the (B) component, the (D) component and the solvent are charged all at once, mixed and polymerized, and in the presence of the (D) component, (B) Method of polymerizing while supplying a mixed solution in which component solutions are mixed, Method of mixing and polymerizing while (A) component solution and (B) component solution are separately supplied in the presence of component (D) Etc. can be selected. In particular, from the viewpoint of easy control of polymerization and particle growth, a method of supplying a mixed solution obtained by previously mixing the (A) component solution and the (B) component solution in the presence of the (D) component is preferable. In addition, as a method of mixing the component solution (A) and the component solution (B), a method of mixing using a micromixer is preferable because mixing efficiency is high, temperature control is easy, and reaction control is easy. In the present invention, the micromixer has a space where two or more inflow paths and one or more outflow paths and the two or more inflow paths merge, and the diameter of the inflow path leading to the merge space is The thing which is about 0.01-100 micrometers. In addition, when supplying the liquid mixture which mixed (A) component solution and (B) component solution beforehand, in order to form a polymer layer on the (D) component surface, (A) component solution and (B) component solution are used. In the step of preparing a mixed solution by mixing, it is necessary to set reaction conditions so that polymer precipitation does not occur. When the formation of a polymer other than the surface of the (D) component of the generated polymer occurs, the growth of particles using the (D) component as a seed and the formation of new particles and the growth of particles using the generated new particles as a seed simultaneously As a result, the particle size distribution spreads and it becomes difficult to control the particle size. Moreover, it does not specifically limit as a mixing method at the time of superposition | polymerization, What is necessary is just to employ | adopt a well-known method. Specifically, for example, mixing may be performed by stirring with a stirring blade or the like, or ultrasonic irradiation may be performed. For the ultrasonic irradiation, a known ultrasonic device and operating conditions may be adopted as appropriate. Specifically, for example, the ultrasonic irradiation may be performed at a frequency of about 28 to 100 kHz.
本発明の微粒子を得るためには、例えば上記の方法によって得られたポリアミック酸微粒子を(C)成分とし、(A)成分、(B)成分(ただし、(D)上に成分層を形成させた際に用いたテトラカルボン酸無水物(A)およびジアミン化合物(B)の少なくとも一方は異なるものである)を反応させ、(C)成分上に析出させることにより、3層のポリアミック酸を有する微粒子を得ることができる。なお、同様の操作を繰り返すことにより、多層の所望の層を有する微粒子を得ることができる。例えば、(C)成分上にn層(nは2以上の整数)のポリアミック酸および/またはポリイミド層を有する微粒子を調製する場合には、(C)成分上にn−1層のポリアミック酸および/またはポリイミド層を有する微粒子をシード微粒子として用いれば良い。なお、(C)成分としては、ポリアミック酸をそのまま用いてもよいが、一旦、閉環反応をさせ、ポリイミド微粒子としたものを用いてもよい。 In order to obtain the fine particles of the present invention, for example, the polyamic acid fine particles obtained by the above method are used as the component (C), and the component layer is formed on the components (A) and (B) (however, (D). The tetracarboxylic acid anhydride (A) and the diamine compound (B) used in the reaction are different from each other) and precipitated on the component (C), thereby having a three-layer polyamic acid. Fine particles can be obtained. By repeating the same operation, fine particles having a desired multilayer can be obtained. For example, when preparing fine particles having an n layer (n is an integer of 2 or more) polyamic acid and / or a polyimide layer on the component (C), an n-1 layer polyamic acid and a polyamic acid on the component (C) / Or fine particles having a polyimide layer may be used as seed fine particles. In addition, as the component (C), polyamic acid may be used as it is, but it is also possible to use a polyimide fine particle which is once subjected to a ring-closing reaction.
得られるポリマー微粒子の粒子径は、(D)成分または(n−1)個の層を持つ多層構造粒子からなる(C)成分の粒子径、((A)成分+(B)成分)/(C)成分の比率を調整することにより制御することができる。例えば、((A)成分+(B)成分)/(C)成分の比率を一定にして、より大きな微粒子を製造する場合には、(C)成分の粒子径を大きくすれば良い。また、同じ粒子径の(C)成分を用いて、より大きな微粒子を製造するためには、((A)成分+(B)成分)/(C)成分の比率を高くすれば良い。通常は、平均粒子径は、0.2〜800μm程度とすることが好ましい。 The particle diameter of the polymer fine particles obtained is the particle diameter of the component (C) consisting of the (D) component or the multilayer structure particles having (n-1) layers, ((A) component + (B) component) / ( C) It can be controlled by adjusting the ratio of the components. For example, in the case of producing larger fine particles while keeping the ratio of ((A) component + (B) component) / (C) component constant, the particle size of the (C) component may be increased. In order to produce larger fine particles using the component (C) having the same particle diameter, the ratio of ((A) component + (B) component) / (C) component may be increased. Usually, the average particle diameter is preferably about 0.2 to 800 μm.
なお、(C)成分の粒子径分布が、得られるポリマー微粒子の粒子径分布に反映されるため、既知の方法により製造される粒子径の揃った(D)成分を使用することにより、従来方法では困難であった粒子径の揃った粒子径の大きな微粒子を容易に製造することができる。 In addition, since the particle size distribution of the component (C) is reflected in the particle size distribution of the polymer fine particles obtained, the conventional method can be achieved by using the component (D) having a uniform particle size manufactured by a known method. Thus, it is possible to easily produce fine particles having a uniform particle size and a large particle size.
(A)成分と(B)成分の反応は、特に限定されず公知の条件で行えばよいが、通常は、−10℃〜50℃程度で行うことが、粒子径の制御が容易にできるため好ましい。特に、マイクロミキサーを用いて、あらかじめ(A)成分溶液と(B)成分溶液を混合、供給する場合、(A)成分溶液及び(B)成分溶液の供給速度は、特に限定されず、(A)成分と(B)成分との反応性により適宜選択すればよいが、通常、(A)成分/(B)成分の比(モル)が、0.9〜1.1程度となるようにそれぞれの供給速度を設定する事が収率等の面から好ましい。例えば、0.04モル/リットルの濃度の溶液を供給する場合には0.5〜100ミリリットル/分程度とすればよい。供給速度が遅い場合、製造時間が長時間となり現実的ではなく、供給速度が速すぎた場合には、(C)成分表面以外でのポリアミック酸の形成が起こりやすくなる場合がある。 The reaction between the component (A) and the component (B) is not particularly limited and may be performed under known conditions. Usually, the reaction is performed at about -10 ° C to 50 ° C because the particle diameter can be easily controlled. preferable. In particular, when the (A) component solution and the (B) component solution are mixed and supplied in advance using a micromixer, the supply rates of the (A) component solution and the (B) component solution are not particularly limited. )) And (B) may be appropriately selected depending on the reactivity of the component, but usually the ratio (mol) of (A) component / (B) component is about 0.9 to 1.1, respectively. It is preferable from the standpoint of yield and the like to set the feed rate. For example, when a solution having a concentration of 0.04 mol / liter is supplied, it may be set to about 0.5 to 100 ml / min. When the supply rate is slow, the production time is long, which is not practical. When the supply rate is too fast, formation of polyamic acid on the surface other than the component (C) may be likely to occur.
この様にして得られたポリアミック酸の数平均分子量(ゲルパーメーションクロマトグラフィー法によるポリスチレン換算値)は、2千〜50万程度であり、(C)成分及び(D)成分への選択的な析出がスムーズに進行するためには1千〜5万程度であることが好ましい。また、これらの分子量は反応の条件に起因するため、同条件で反応を進める限り、同一層内の分子量はほぼ一定となる。 The number average molecular weight of the polyamic acid thus obtained (polystyrene conversion value by gel permeation chromatography method) is about 2,000 to 500,000, and is selective to the (C) component and the (D) component. In order for precipitation to proceed smoothly, it is preferably about 1,000 to 50,000. In addition, since these molecular weights are caused by the reaction conditions, the molecular weights in the same layer are almost constant as long as the reaction proceeds under the same conditions.
具体的には、例えば、BTDA−DPEからなるポリイミド微粒子を(D)成分として用い、(A)成分としてBTDAを(B)成分としてDA5MGを用いた場合には、BTAD−DPE/BTDA−DA5MGの2層構造を有するポリアミック酸微粒子が得られる。さらに、この2層構造を有するポリアミック酸微粒子を(C)成分として用い、(A)成分としてBTDAを(B)成分としてDPEを用いた場合には、BTAD−DPE/BTDA−DA5MG/BTAD−DPEの3層構造を有するポリアミック酸微粒子が得られる。 Specifically, for example, when polyimide fine particles made of BTDA-DPE are used as the component (D), BTDA is used as the component (A), and DA5MG is used as the component (B), BTAD-DPE / BTDA-DA5MG Polyamic acid fine particles having a two-layer structure are obtained. Further, when the polyamic acid fine particles having this two-layer structure are used as the component (C) and BTDA is used as the component (A) and DPE is used as the component (B), BTAD-DPE / BTDA-DA5MG / BTAD-DPE Thus, polyamic acid fine particles having a three-layer structure are obtained.
なお、得られたポリアミック酸微粒子をさらにイミド閉環反応をさせることにより、ポリイミド微粒子が得られる。閉環の際にポリアミック酸のガラス転移点未満の温度であれば、ポリアミック酸微粒子において見られた表面の平滑性及び層構造をそのまま保持する事が出来る。なお、ポリアミック酸のイミド閉環反応は、加熱や触媒を添加する等の公知の方法で行えばよい。 The resulting polyamic acid fine particles are further subjected to an imide ring-closing reaction to obtain polyimide fine particles. If the temperature is lower than the glass transition point of the polyamic acid at the time of ring closure, the surface smoothness and layer structure observed in the polyamic acid fine particles can be maintained as they are. In addition, what is necessary is just to perform the imide ring-closing reaction of polyamic acid by well-known methods, such as heating and adding a catalyst.
このようにして得られるポリイミド微粒子及び、ポリアミック酸微粒子の各層厚は通常0.1μm以上で任意の層厚を設計できるが、通常、0.1〜400μm程度、合成操作の簡便さからは0.4〜4.0μm程度であることが好ましい。 Each layer thickness of the polyimide fine particles and polyamic acid fine particles obtained in this manner is usually 0.1 μm or more, and an arbitrary layer thickness can be designed. It is preferably about 4 to 4.0 μm.
なお、ポリアミック酸微粒子のイミド化において、各層の体積収縮率差を利用した微粒子設計によって、ポリイミド微粒子の各層間に5〜50nmのポロシティを形成させることが出来る。具体的には、例えば、外層にイミド化時の体積収縮率の小さなポリアミック酸層、内層にはそれよりもイミド化時の体積収縮率の大きなポリアミック酸層を導入すればよい。体積収縮率の小さなポリアミック酸の組成としては、例えば、PMDA−DPEやBTDA−DPEの組み合わせのような全芳香族系のポリアミック酸が例示でき、体積収縮率の大きなポリアミック酸としては、例えば、ブタン−1,2,3,4−テトラカルボン酸二無水物−DA5MGなどの脂肪族系モノマーを用いた組成や、BTDA−DA5MGなどの(A)成分及び(B)成分のどちらか一方のみが脂肪族系モノマーを使用した組成が例示される。 In the imidization of the polyamic acid fine particles, a porosity of 5 to 50 nm can be formed between the layers of the polyimide fine particles by designing the fine particles using the difference in volume shrinkage between the layers. Specifically, for example, a polyamic acid layer having a small volume shrinkage during imidization may be introduced into the outer layer, and a polyamic acid layer having a larger volume shrinkage during imidization may be introduced into the inner layer. Examples of the composition of the polyamic acid having a small volumetric shrinkage include wholly aromatic polyamic acids such as a combination of PMDA-DPE and BTDA-DPE. Examples of the polyamic acid having a large volumetric shrinkage include butane. -1,2,3,4-tetracarboxylic dianhydride-composition using an aliphatic monomer such as DA5MG, or only one of component (A) and component (B) such as BTDA-DA5MG is fat A composition using a group-based monomer is exemplified.
以下に、実施例をあげて本発明をさらに具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
また、平均粒子径等及び表面粗さは下記方法により決定した。
平均粒子径:微粒子を走査型電子顕微鏡(SEM)で観察し、任意の100個の微粒子を選び、これらの微粒子の粒子径を測定し、平均値を算出して決定した。
変動係数:前記方法により算出された平均粒子径の値から、数式:
C=[{1/(n−1)×Σ(M−X)2}1/2 / X ]×100
C:変動係数、X:平均粒子径、M:粒子径実測値、n:サンプル数を表す。により、変動係数を決定した。変動係数が大きいほどばらつきが大きいことを示す。
表面粗さ:微粒子が埋抱されたマトリクス樹脂をミクロトーム等で切り出し、断面観察サンプルを調製する。これを透過型電子顕微鏡(TEM)で1粒の粒子断面を観察し、最長径がSEMによる表面観察で得られた平均粒子径と誤差±0.5%以内の粒子の断面像を選び、その観察粒子において最短半径の値とその他凹部の4箇所、凸部5箇所の半径の値を測定、以下の十点平均高さを利用した数式から表面粗さを算出した。
数式:
表面粗さ(nm)=Σ{(LH1+LH2+LH3+LH4+LH5)/5−(LL1+LL2+LL3+LL4+LL5)/5}/n
LHx:凸部の半径(nm)、LLx:凹部の半径(nm)(最短半径を含む)、n:サンプル数、(本実施例ではn=10)により、表面粗さを決定した。数値が小さいほど表面が平滑であることを示す。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
Moreover, the average particle diameter and the surface roughness were determined by the following methods.
Average particle diameter: The fine particles were observed with a scanning electron microscope (SEM), 100 arbitrary fine particles were selected, the particle diameters of these fine particles were measured, and the average value was calculated and determined.
Coefficient of variation: From the average particle size value calculated by the above method,
C = [{1 / (n−1) × Σ (M−X) 2 } 1/2 / X] × 100
C: coefficient of variation, X: average particle size, M: measured particle size, n: number of samples. Thus, the coefficient of variation was determined. The larger the coefficient of variation, the greater the variation.
Surface roughness: A matrix resin in which fine particles are embedded is cut out with a microtome or the like to prepare a cross-sectional observation sample. This was observed with a transmission electron microscope (TEM), and the cross section of one particle was selected, and the cross-sectional image of the particles with the longest diameter obtained by surface observation with SEM and the error within ± 0.5% was selected. In the observed particles, the value of the shortest radius and the values of the radius of the other four concave portions and the five convex portions were measured, and the surface roughness was calculated from the following formula using the ten-point average height.
Formula:
Surface roughness (nm) = Σ {(L H1 + L H2 + L H3 + L H4 + L H5 ) / 5- (L L1 + L L2 + L L3 + L L4 + L L5 ) / 5} / n
The surface roughness was determined by L Hx : radius of convex part (nm), L Lx : radius of concave part (nm) (including the shortest radius), n: number of samples (in this example, n = 10). The smaller the value, the smoother the surface.
製造例1(芯材微粒子(D)の製造)
3,3´,4,4´−ベンゾフェノンテトラカルボン酸二無水物(BTDA)のアセトン溶液(0.06モル/l)150mlと、4,4´−ジアミノジフェニルエーテル(DPE)アセトン溶液(0.06モル/l)150mlを混合した後、38kHzの超音波((株)カイジョー製超音波洗浄機SONO CLEANER 100Zを使用)を照射しながら、25℃、30分間反応させ、ポリアミック酸微粒子のアセトン分散液300mlを得た。この分散液中に含まれる微粒子(D)は3.5gで、表面粗さ8nm、平均粒子径0.31μm、変動係数18.2%であった。
Production Example 1 (Manufacture of core material fine particles (D))
150 ml of an acetone solution (0.06 mol / l) of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and an acetone solution of 4,4′-diaminodiphenyl ether (DPE) (0.06 After mixing 150 ml of mol / l), the reaction was carried out at 25 ° C. for 30 minutes while irradiating 38 kHz ultrasonic waves (using an ultrasonic cleaner SONO CLEANER 100Z manufactured by Kaijo Corporation), and an acetone dispersion of polyamic acid fine particles 300 ml was obtained. The fine particles (D) contained in this dispersion were 3.5 g, the surface roughness was 8 nm, the average particle size was 0.31 μm, and the coefficient of variation was 18.2%.
実施例1
(A)成分溶液として3,3´,4,4´−ベンゾフェノンテトラカルボン酸二無水物 (BTDA)のアセトン溶液(0.04モル/l)、(A´)成分溶液3,3´,4,4´−ベンゾフェノンテトラカルボン酸二無水物 (BTDA)のアセトン溶液として(0.06モル/l)、(B)成分溶液として1,5−ビス(4−アミノフェノキシ)アルカン(DA5MG)のアセトン溶液(0.04モル/l)、(B’)成分溶液として4,4´−ジアミノジフェニルエーテル(DPE)のアセトン溶液(0.06モル/l)、を調製した。マイクロミキサー(YM−1型、(株)山武製)を用い、図2に示すような反応装置を組み立て、ポリアミック酸微粒子の合成を実施した。攪拌装置がついた容量5000mlの微粒子調製槽に、製造例1で得られたシード微粒子(D)分散液20mlを加え、攪拌しながら(A)成分溶液、(B)成分溶液をそれぞれ40ml/分でマイクロミキサーを通じて混合し、供給した。なお、各溶液、ライン3、ライン4、マイクロミキサー5および微粒子調製槽7は5℃に保った。(A)成分溶液と(B)成分溶液との混合液を合計で3000ml流出させたのち、切り替えバルブを使用し、(A)成分液、(B)成分液の代わりに(A´)成分溶液、(B´)成分溶液をそれぞれ30ml/分の流速でマイクロミキサーを通じて混合し、供給した。液組成が切り替わったところで、送液を続けながら抜き出しバルブを開き2300mLの分散液を抜き出した。その後も送液を続け、(A´)成分溶液と(B´)成分溶液との混合液を合計で3300ml流出させながら反応を行い、得られた微粒子をろ過し、アセトンで洗浄、次いで乾燥させることによって、表面粗さ3nm、平均粒子径2.19μm、変動係数29.7%の3層構造を有するポリアミック酸微粒子48.2g(収率46.1%)を得た。SEM写真を図3に示す。
Example 1
(A) 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA) acetone solution (0.04 mol / l) as component solution, (A ′) component solution 3,3 ′, 4 , 4'-Benzophenonetetracarboxylic dianhydride (BTDA) as an acetone solution (0.06 mol / l), and (B) component solution as an acetone of 1,5-bis (4-aminophenoxy) alkane (DA5MG) An acetone solution (0.06 mol / l) of 4,4′-diaminodiphenyl ether (DPE) was prepared as a solution (0.04 mol / l) and (B ′) component solution. Using a micromixer (YM-1 type, manufactured by Yamatake Corporation), a reactor as shown in FIG. 2 was assembled, and polyamic acid fine particles were synthesized. Add 20 ml of the seed fine particle (D) dispersion obtained in Production Example 1 to a fine particle preparation tank with a capacity of 5000 ml with a stirrer, and stir (A) component solution and (B) component solution at 40 ml / min while stirring. And mixed through a micromixer. In addition, each solution, the line 3, the
実施例2
実施例1で得られた3層構造を有するポリアミック酸微粒子10.0gを、テトラリンに分散させ、加熱し、還流下4時間反応を行い、表面粗さ8nm、平均粒子径1.93μm、変動係数35.0%の3層構造を有するポリイミド微粒子9.5g(収率95.0%)を得た。SEM写真を図4に示す。また、得られた粒子のIR測定行い、1550cm−1のアミド基吸収帯が消失していること、1720cm−1、1380cm−1、及び720cm−1のイミド基特有の吸収帯の出現からイミド化が進行していること、さらに、図5に示す断面TEM写真にて微粒子が層構造を有すること及び層間に平均10nm程度のポロシティの形成を確認した。
Example 2
10.0 g of the polyamic acid fine particles having a three-layer structure obtained in Example 1 are dispersed in tetralin, heated, and reacted for 4 hours under reflux, with a surface roughness of 8 nm, an average particle size of 1.93 μm, and a coefficient of variation. 9.5 g (yield 95.0%) of polyimide fine particles having a 35.0% three-layer structure was obtained. An SEM photograph is shown in FIG. The obtained do IR measurement of the particle, the amide group absorption band of 1550 cm -1 had disappeared, 1720 cm -1, 1380 cm -1, and imidization from the appearance of the absorption bands of imide group-specific 720 cm -1 Further, it was confirmed in the cross-sectional TEM photograph shown in FIG. 5 that the fine particles have a layer structure and the formation of a porosity of about 10 nm on average between the layers.
比較例1
3,3´,4,4´−ベンゾフェノンテトラカルボン酸二無水物 (BTDA)のアセトン溶液(0.002モル/l)、及び、2,4,6−トリアミノピリミジン(TAPM)と4,4´−ジアミノジフェニルエーテル(DPE)の混合アセトン溶液(0.002モル/l TAPM:DPEのモル比は1:4)、をそれぞれ用意し、25℃でBTDAのアセトン溶液100mlとTAPMとDPEの混合アセトン溶液100mlを混合して38kHzの超音波((株)カイジョー製超音波洗浄機SONO CLEANER 100Zを使用)を照射しながら、25℃、30分間反応させ、ポリアミック酸微粒子のアセトン分散液200mlを得た。その後、ろ過にて析出物を回収しアセトン3回、キシレン3回で洗浄し、で表面に官能基を有するポリアミック酸微粒子(収率46.0%)を得た。回収したポリアミック酸微粒子0.3gを200mlキシレン中に分散させた後、4時間還流してイミド化を行った。イミド化した微粒子をろ過にて回収した後、キシレンで3回洗浄し、平均粒子径520nm、変動係数17.8%の表面に官能基を有するポリイミド微粒子229mg(収率76.3%)を得た。上記ポリイミド微粒子100mgをジメチルホルムアミド(DMF)10mlに分散させ、BTDA 644mgを加え1時間攪拌し、次にDPE400mgをDMF10mlに溶解した溶液を加え24時間攪拌した。反応終了後、ろ過にて微粒子を回収し、物理的に吸着したポリアミド酸をDMFで3回洗浄した後、キシレンで3回洗浄して表面がポリアミック酸膜で被覆されたポリイミド微粒子112.9mg(収率9.9%)を得た。上記微粒子90.0mgをDMF20mlとトルエン2mlとの混合溶媒中に分散し、4時間還流して表面のポリアミック酸層をイミド化した。反応終了後ろ過にて微粒子を回収し、アセトン3回、キシレン3回で洗浄した後、真空乾燥にて溶媒を留去して、表面粗さ52nm、平均粒子径500nm、変動係数18.5%の層構造化ポリイミド微粒子76.0mg(収率88.4%を得た。SEM写真を図6に示す。
Comparative Example 1
3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA) in acetone (0.002 mol / l), 2,4,6-triaminopyrimidine (TAPM) and 4,4 A mixed acetone solution of '-diaminodiphenyl ether (DPE) (0.002 mol / l TAPM: DPE molar ratio is 1: 4) was prepared, respectively. At 25 ° C., 100 ml of an acetone solution of BTDA and a mixed acetone of TAPM and DPE 100 ml of the solution was mixed and reacted with ultrasonic waves of 38 kHz (using a ultrasonic cleaning machine SONO CLEANER 100Z manufactured by Kaijo Co., Ltd.) at 25 ° C. for 30 minutes to obtain 200 ml of an acetone dispersion of polyamic acid fine particles. . Thereafter, the precipitate was collected by filtration and washed with acetone 3 times and xylene 3 times to obtain polyamic acid fine particles having a functional group on the surface (yield 46.0%). The recovered polyamic acid fine particles (0.3 g) were dispersed in 200 ml xylene, and then imidized by refluxing for 4 hours. The imidized fine particles were collected by filtration and then washed with xylene three times to obtain 229 mg (yield 76.3%) of polyimide fine particles having a functional group on the surface with an average particle size of 520 nm and a coefficient of variation of 17.8%. It was. 100 mg of the above polyimide fine particles were dispersed in 10 ml of dimethylformamide (DMF), 644 mg of BTDA was added and stirred for 1 hour, and then a solution of 400 mg of DPE dissolved in 10 ml of DMF was added and stirred for 24 hours. After completion of the reaction, the fine particles were collected by filtration. The physically adsorbed polyamic acid was washed with DMF three times, and then washed with xylene three times to obtain polyimide fine particles having a surface coated with a polyamic acid film 112.9 mg ( Yield 9.9%). 90.0 mg of the fine particles were dispersed in a mixed solvent of 20 ml of DMF and 2 ml of toluene, and refluxed for 4 hours to imidize the polyamic acid layer on the surface. After completion of the reaction, the fine particles are collected by filtration, washed with acetone 3 times and xylene 3 times, and then the solvent is distilled off by vacuum drying. The surface roughness is 52 nm, the average particle diameter is 500 nm, and the coefficient of variation is 18.5%. 76.0 mg of the layer-structured polyimide fine particles (yield 88.4% was obtained. The SEM photograph is shown in FIG. 6.
1 テトラカルボン酸酸無水物(A)溶液供給手段
2 ジアミン化合物(B)溶液供給手段
3 テトラカルボン酸酸無水物(A)溶液供給ライン
4 ジアミン化合物(B)溶液供給ライン
5 マイクロミキサー
6 混合物排出ライン
7 微粒子調製槽
8 送液切り替えバルブ
9 テトラカルボン酸酸無水物(A´)溶液供給手段
10 ジアミン化合物(B´)溶液供給手段
11 テトラカルボン酸酸無水物(A´)溶液供給ライン
12 ジアミン化合物(B´)溶液供給ライン
13 槽液抜き出しバルブ
14 槽液抜き出しライン
DESCRIPTION OF
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007178766A JP5522335B2 (en) | 2007-07-06 | 2007-07-06 | Polyamic acid fine particles or polyimide fine particles, method for producing polyamic acid fine particles, and method for producing polyimide fine particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007178766A JP5522335B2 (en) | 2007-07-06 | 2007-07-06 | Polyamic acid fine particles or polyimide fine particles, method for producing polyamic acid fine particles, and method for producing polyimide fine particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009013346A true JP2009013346A (en) | 2009-01-22 |
JP5522335B2 JP5522335B2 (en) | 2014-06-18 |
Family
ID=40354640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007178766A Expired - Fee Related JP5522335B2 (en) | 2007-07-06 | 2007-07-06 | Polyamic acid fine particles or polyimide fine particles, method for producing polyamic acid fine particles, and method for producing polyimide fine particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5522335B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012122065A (en) * | 2010-11-18 | 2012-06-28 | Sekisui Chem Co Ltd | Method for producing polyamic acid particle, method for producing polyimide particle, polyimide particle and bonding material for electronic component |
WO2013105611A1 (en) * | 2012-01-13 | 2013-07-18 | 宇部興産株式会社 | Aggregate containing polyimide powder and polyimide precursor, method for producing same, and polyimide molded body using same |
JPWO2016158030A1 (en) * | 2015-03-30 | 2017-04-27 | 株式会社リトルデバイス | Conductive ball |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6487307A (en) * | 1987-09-30 | 1989-03-31 | Nitto Denko Corp | Polyimide powder and manufacture thereof |
JP2004010653A (en) * | 2002-06-04 | 2004-01-15 | Osaka Prefecture | Composite fine particle and method for producing the same |
-
2007
- 2007-07-06 JP JP2007178766A patent/JP5522335B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6487307A (en) * | 1987-09-30 | 1989-03-31 | Nitto Denko Corp | Polyimide powder and manufacture thereof |
JP2004010653A (en) * | 2002-06-04 | 2004-01-15 | Osaka Prefecture | Composite fine particle and method for producing the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012122065A (en) * | 2010-11-18 | 2012-06-28 | Sekisui Chem Co Ltd | Method for producing polyamic acid particle, method for producing polyimide particle, polyimide particle and bonding material for electronic component |
WO2013105611A1 (en) * | 2012-01-13 | 2013-07-18 | 宇部興産株式会社 | Aggregate containing polyimide powder and polyimide precursor, method for producing same, and polyimide molded body using same |
JP2013163800A (en) * | 2012-01-13 | 2013-08-22 | Ube Industries Ltd | Aggregate containing polyimide powder and polyimide precursor, method for producing the same, and polyimide molded body using the same |
JPWO2016158030A1 (en) * | 2015-03-30 | 2017-04-27 | 株式会社リトルデバイス | Conductive ball |
Also Published As
Publication number | Publication date |
---|---|
JP5522335B2 (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3478977B2 (en) | Polyamide acid fine particles and polyimide fine particles, and methods for producing them | |
JP4998040B2 (en) | Polyamic acid imidized polymer insulating film, film-forming composition and production method thereof | |
WO2002102882A1 (en) | Semiconductive polyimide film and process for production thereof | |
TW202138435A (en) | Resin composition, manufacturing method thereof, resin film, and metal-clad laminate wherein the resin composition includes a polyimide and a filler containing a liquid crystal polymer | |
JP2013109842A (en) | Manufacturing method of separator for lithium ion battery | |
JP5522335B2 (en) | Polyamic acid fine particles or polyimide fine particles, method for producing polyamic acid fine particles, and method for producing polyimide fine particles | |
JP4475711B2 (en) | Polyimide precursor solution | |
JP2004010653A (en) | Composite fine particle and method for producing the same | |
JP2006131706A (en) | Low-dielectric polyimide material and high-efficiency separation membrane | |
JPH0315931B2 (en) | ||
JP5672210B2 (en) | Method for producing polyamic acid fine particles and method for producing polyimide fine particles | |
JPH09227697A (en) | Preparation of heat-resistant polyimide film through gel | |
JP2004292682A (en) | Polyimide particulate and its preparation process | |
WO2004055096A1 (en) | Process for producing fine porous polyimide particle | |
JPS62280224A (en) | Polyamide-imide film | |
JPH02233727A (en) | New polymide-polymide block copolymer | |
JPWO2009041299A1 (en) | Ink composition | |
JP4905878B2 (en) | Composition for polyimide synthesis and method for producing polyimide | |
JP2004002731A (en) | Polyamide fine particles and its manufacturing method | |
JPH07316294A (en) | Polyimide copolymer and production thereof | |
JP3507943B2 (en) | Thermosetting amic acid microparticles, thermosetting imide microparticles, crosslinked imide microparticles, and methods for producing them | |
TWI856927B (en) | Method for producing polyimide film, method for producing metal-clad laminate, and method for producing circuit substrate | |
JP2004010664A (en) | Material having resin layer thereon and manufacturing method therefor | |
JP2007217486A (en) | Manufacturing method of fine polymer particle and fine polymer particle | |
JPH111614A (en) | Polyimide precursor solution, polyimide coating film or polyimide film obtained therefrom and their production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100604 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120718 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130716 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140312 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140325 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5522335 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |