JP2005125674A - Biodegradable heat-shrinkable material and manufacturing method therefor - Google Patents

Biodegradable heat-shrinkable material and manufacturing method therefor Download PDF

Info

Publication number
JP2005125674A
JP2005125674A JP2003365058A JP2003365058A JP2005125674A JP 2005125674 A JP2005125674 A JP 2005125674A JP 2003365058 A JP2003365058 A JP 2003365058A JP 2003365058 A JP2003365058 A JP 2003365058A JP 2005125674 A JP2005125674 A JP 2005125674A
Authority
JP
Japan
Prior art keywords
heat
biodegradable
kgy
less
shrinkable material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003365058A
Other languages
Japanese (ja)
Other versions
JP4231381B2 (en
Inventor
Naotane Nagasawa
尚胤 長澤
Toshiaki Yagi
敏明 八木
Fumio Yoshii
文男 吉井
Shinichi Kanazawa
進一 金澤
Kiyoshi Kawano
清 川野
Yoshihiro Nakatani
吉弘 中谷
Hiroshi Mitomo
宏志 三友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Fine Polymer Inc
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Sumitomo Electric Fine Polymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003365058A priority Critical patent/JP4231381B2/en
Application filed by Japan Atomic Energy Research Institute, Sumitomo Electric Fine Polymer Inc filed Critical Japan Atomic Energy Research Institute
Priority to CN200810181267XA priority patent/CN101423592B/en
Priority to DE112004001201T priority patent/DE112004001201T5/en
Priority to PCT/JP2004/015482 priority patent/WO2005040255A1/en
Priority to US10/569,966 priority patent/US20060160984A1/en
Priority to KR1020067004311A priority patent/KR20060135605A/en
Priority to TW093132103A priority patent/TWI336706B/en
Publication of JP2005125674A publication Critical patent/JP2005125674A/en
Priority to US12/276,711 priority patent/US20090085260A1/en
Application granted granted Critical
Publication of JP4231381B2 publication Critical patent/JP4231381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodegradable heat-shrinkable material which improves heat resistance and increases a shrinkage ratio. <P>SOLUTION: This heat-shrinkable material is formed through the following processes: a monomer with an allyl group is added and mixed into a biodegradable aliphatic polyester in a low concentrations; a mixture is molded in a required shape; after that, ionizing radiation is applied in a range of ≥ 1 kGy and ≤150 kGy, so as to cause crosslinking reaction and set a gel content ratio in a range of ≥10% and ≤90%; and after the application of the ionizing radiation, the mixture is stretched while being heated in a range of 60-200°C. The heat-shrinkable material is manufactured in such a manner as to be shrunk in the range of a shrinkage ratio of ≥40% and ≤80%, when heated at a temperature as high as/higher than a temperature in orientation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、生分解性熱収縮材および該生分解性熱収縮材の製造方法に関し、詳しくは、合成生分解性高分子材料からなり、耐熱性を備えると共に熱収縮率が大きい特性を有し、フィルム、包装材、保護材、シール材等として、従来プラスチックで成形されている製品の代替品として好適に用いることができ、生分解性能を有することにより使用後の廃棄処理問題の解決が図れるものである。   The present invention relates to a biodegradable heat-shrinkable material and a method for producing the biodegradable heat-shrinkable material. Specifically, the biodegradable heat-shrinkable material is made of a synthetic biodegradable polymer material and has heat resistance and a large heat shrinkage rate. , Film, packaging material, protective material, sealing material, etc., can be suitably used as an alternative to products that have been molded with conventional plastics. Is.

石油合成高分子材料からフィルム、容器、熱収縮材等の多種の製品が成形されているが、使用後の燃焼廃棄処理に問題が発生している。即ち、燃焼時に発生する熱及び排出ガスによる地球温暖化、更に燃焼ガス及び燃焼後残留物中の毒性物質による食物や健康への影響等の問題、廃棄処理廃棄埋設処理地の確保など、社会的な問題となっている。
これらの問題に対して、デンプンやポリ乳酸を代表とするなどの生分解性高分子は、石油合成高分子の廃棄処理の問題点を解決する材料として従来から注目されてきた材料である。生分解性高分子は、石油合成高分子に比べて、燃焼に伴う熱量が少なく自然環境での分解再合成のサイクルが保たれる等、生態系を含む地球環境に悪影響を与えない。中でも、強度や加工性の点で、石油合成高分子に匹敵する特性をもつ脂肪族ポリエステル系の樹脂は、近年注目を浴びてきた素材である。
Various products such as films, containers, and heat-shrink materials are formed from petroleum synthetic polymer materials, but there is a problem in the disposal of combustion after use. In other words, global warming due to heat and exhaust gas generated during combustion, problems such as effects on food and health due to toxic substances in combustion gas and post-combustion residues, and securing of disposal treatment disposal buried land Has become a serious problem.
In response to these problems, biodegradable polymers such as starch and polylactic acid have been attracting attention as materials for solving the problems of disposal of petroleum synthetic polymers. Biodegradable polymers do not adversely affect the global environment, including ecosystems, as compared to petroleum synthetic polymers, the amount of heat associated with combustion is small and the cycle of decomposition and resynthesis in the natural environment is maintained. Among them, aliphatic polyester resins having properties comparable to petroleum synthetic polymers in terms of strength and processability are materials that have attracted attention in recent years.

特に、ポリ乳酸は、植物から供給されるデンプンから作られ、近年の大量生産によるコストダウンで他の生分解性高分子に比べて非常に安価になりつつある点から、現在その応用について多くの検討がなされている。
ポリ乳酸は、その特性の面から見ても汎用の石油合成高分子に匹敵する加工性、強度を持つことから、その代替材料に最も近い生分解性樹脂である。またアクリル樹脂に匹敵する透明性からその代替や、ヤング率が高く形状保持性がある点からは電気機器の筐体等のABS樹脂の代替等、様々な用途への応用が期待される。
In particular, polylactic acid is made from starch supplied from plants, and is currently becoming much cheaper than other biodegradable polymers due to cost reduction due to mass production in recent years. Consideration has been made.
Polylactic acid is the closest biodegradable resin to its substitute material because it has processability and strength comparable to general-purpose petroleum synthetic polymers in terms of its characteristics. In addition, it is expected to be applied to various uses such as substitution from transparency comparable to acrylic resin and substitution of ABS resin such as a casing of electrical equipment from the viewpoint of high Young's modulus and shape retention.

しかしながら、ポリ乳酸は60℃近辺と比較的低い温度にガラス転移点をもち、その温度前後で所謂ガラス板が突然ビニル製のテーブルクロスになってしまうというほどに、ヤング率が激減し、もはや低温時の形状を維持することが困難になるという、致命的な欠点を持つ。
かつ、160℃と比較的高い融点に達するまでは溶融しないポリ乳酸の結晶部分が、大きな塊状を示さない微結晶であり、通常の結晶化度では結晶部分だけで全体の強度を支えるような構造になりにくいることも激しいヤング率変化の一因ではあるが、非結晶の部分が自由に動くようになる温度であるガラス転移点前後でその変化が起こることから、非結晶部分が60℃以上でほとんど分子間の相互作用を失うことに大きな原因があると言える。
However, polylactic acid has a glass transition point at a relatively low temperature of around 60 ° C., and the so-called glass plate suddenly becomes a vinyl table cloth before and after that temperature. It has a fatal defect that it is difficult to maintain the shape of time.
In addition, the polylactic acid crystal part that does not melt until it reaches a relatively high melting point of 160 ° C. is a microcrystal that does not show a large lump shape, and in a normal crystallinity, the crystal part alone supports the overall strength. Although it is also a cause of drastic Young's modulus change, since the change occurs before and after the glass transition temperature, which is the temperature at which the amorphous part can move freely, the amorphous part is 60 ° C. or higher. So, it can be said that there is a big cause in losing the interaction between molecules.

耐熱性を改善するため、放射線を照射して架橋構造とすることは、従来より知られている。例えば、汎用樹脂である100℃付近で溶融するポリエチレンに対して100kGy程度の放射線を照射することで耐熱ポリエチレンが得られている。また、ポリマー単独では分解しやすい材料や橋架け効率が低い材料では、反応性の高い多官能性モノマーを添加すると放射線による橋架けを促進できることも知られている。
なお、生分解性ポリマーについての耐熱性改善については、ポリ乳酸では放射線を照射しただけでは分解のみが生じ、有効な橋かけが得られないことが知られている。
In order to improve heat resistance, it is conventionally known to form a crosslinked structure by irradiation with radiation. For example, heat-resistant polyethylene is obtained by irradiating polyethylene of about 100 kGy with respect to polyethylene that melts near 100 ° C., which is a general-purpose resin. In addition, it is also known that when a polymer alone is easily decomposed or a material having low crosslinking efficiency, the addition of a highly reactive polyfunctional monomer can promote crosslinking by radiation.
Regarding the improvement of heat resistance of biodegradable polymers, it is known that polylactic acid only decomposes when irradiated with radiation, and an effective crosslinking cannot be obtained.

一方、医療用途で用いられる生分解材料として、特開2002−114921号公報(特許文献1)および特開2003−695号公報(特許文献2)で、耐熱性の改良ではなく、減菌のために放射線を照射することが開示されている。
即ち、特許文献1では、生分解性ポリマーにトリアリルイソシアヌレート等の多官能性モノマーを添加することで、加熱成形および放射線減菌した後の重量平均分子量低下が初期の30%以下に抑制される組成物が提供されている。
特許文献2では、生体内で利用されるコラーゲン、ゼラチン、ポリ乳酸、ポリカプロラクトン等の高分子にトリアリルイソシアヌレート等の多官能性トリアジン化合物を含有させ、放射線を照射することで減菌可能とした医用材料が提供されている。
特許文献1および2の組成物は、生分解ポリマーの熱成形時の熱履歴および放射線照射による減菌過程での生分解性ポリマーの分子量低下を抑制するため、多官能性モノマーを添加している。
On the other hand, as biodegradable materials used in medical applications, JP 2002-114921 A (Patent Document 1) and JP 2003-695 A (Patent Document 2) are not for improving heat resistance but for sterilization. Is disclosed.
That is, in Patent Document 1, by adding a polyfunctional monomer such as triallyl isocyanurate to a biodegradable polymer, a decrease in weight average molecular weight after thermoforming and radiation sterilization is suppressed to 30% or less of the initial stage. A composition is provided.
In Patent Document 2, a polymer such as collagen, gelatin, polylactic acid, polycaprolactone and the like used in vivo contains a polyfunctional triazine compound such as triallyl isocyanurate and can be sterilized by irradiation with radiation. Medical materials are provided.
In the compositions of Patent Documents 1 and 2, a polyfunctional monomer is added to suppress the thermal history during thermoforming of the biodegradable polymer and the molecular weight of the biodegradable polymer during the sterilization process due to radiation irradiation. .

この場合、多官能性モノマーは、通常、全体の5重量%以上の高濃度で添加されるが、高濃度に多官能モノマーが添加された生分解材料に放射線を照射しても100%反応させることは難しく、未反応モノマーが橋架けモノマーに残留して橋架け効率が悪くなり、加熱により容易に変形し、耐熱性が悪くなる問題がある。
一般に、生分解性材料はその99%以上が微生物の働きにより分解されるものとして分類されるため、多官能性モノマーを用いる橋かけ技術を生分解性材料について適用する場合には、多官能性モノマ一の濃度によっては生分解性材料の範疇から外れることとなる。
In this case, the polyfunctional monomer is usually added at a high concentration of 5% by weight or more of the whole. However, even if the biodegradable material to which the polyfunctional monomer is added at a high concentration is irradiated with radiation, it is allowed to react 100%. This is difficult, and there is a problem that unreacted monomer remains in the crosslinking monomer, resulting in poor crosslinking efficiency, easily deformed by heating, and poor heat resistance.
Generally, 99% or more of biodegradable materials are classified as those that are degraded by the action of microorganisms. Therefore, when applying a crosslinking technique using a polyfunctional monomer to a biodegradable material, it is multifunctional. Depending on the monomer concentration, it will fall outside the category of biodegradable materials.

熱収縮材については、従来、ポリエチレンを利用した熱収縮材が市販されている。此の種の熱収縮財は電線の接続部の被覆等に利用されているが、電線は使用時の発熱により100℃を越える事もある。70〜80℃で変形、50〜60℃で収縮すれば、このような用途には使用できない。また、通常の用途でも、例えば、夏場の自動車の内部など60℃以上になる環境はありうるため、非常に用途が限定される。   Conventionally, heat-shrinkable materials using polyethylene are commercially available. This kind of heat-shrinkable goods is used for covering the connecting portion of the electric wire, but the electric wire may exceed 100 ° C. due to heat generation during use. If it deforms at 70-80 ° C. and shrinks at 50-60 ° C., it cannot be used for such applications. Further, even in normal applications, for example, there may be an environment where the temperature is 60 ° C. or higher, such as in the interior of a car in summer, so the applications are very limited.

生分解性を有する熱収縮材については、一般的な熱収縮材のように100〜120℃以上の温度で、かつ、40%以上の収縮率で収縮可能な、使い勝手の良い熱収縮材は、従来提供されていなかった。
この種の生分解材料よりなる熱収縮材として、特開2003−221499号公報(特許文献3)で、ポリ乳酸系重合体とポリ乳酸系重合体以外の脂肪族系ポリエステルとの混合物に、ポリカルボジイミドを配合して透明性を向上させたポリ乳酸系熱収縮材が提供されている。
しかしながら、ポリ乳酸を含むポリ乳酸系熱収縮材では、前記したように、ポリ乳酸はガラス転移温度が50〜60℃であるため、加熱により変形し易く、耐熱性が劣る問題がある。また、特許文献3のポリ乳酸系熱収縮材では延伸時に、ポリ乳酸のガラス転移温度(60℃弱)より若干高い70〜80℃で加熱して延伸し、ポリ乳酸の融点以上で延伸していないため、加熱時における熱収縮は、変形に対する復元力が弱い結晶部分の収縮であるため、熱収縮率は30〜40%程度となっている。
特開2002−114921号公報 特開2003−695号公報 特開2003−221499号公報
For heat-shrinkable materials having biodegradability, a heat-shrinkable material that can be shrunk at a temperature of 100 to 120 ° C. or more and a shrinkage rate of 40% or more like a general heat-shrinkable material, It has not been provided in the past.
As a heat-shrink material made of this type of biodegradable material, in Japanese Patent Application Laid-Open No. 2003-221499 (Patent Document 3), a mixture of a polylactic acid polymer and an aliphatic polyester other than the polylactic acid polymer is added to There has been provided a polylactic acid heat-shrinkable material containing carbodiimide to improve transparency.
However, in the polylactic acid heat-shrinkable material containing polylactic acid, as described above, since polylactic acid has a glass transition temperature of 50 to 60 ° C., there is a problem that it is easily deformed by heating and inferior in heat resistance. Further, in the polylactic acid heat-shrink material of Patent Document 3, at the time of stretching, it is stretched by heating at 70 to 80 ° C., which is slightly higher than the glass transition temperature of polylactic acid (a little less than 60 ° C.), and stretched above the melting point of polylactic acid. Therefore, the heat shrinkage during heating is a shrinkage of a crystal portion having a weak restoring force against deformation, and thus the heat shrinkage rate is about 30 to 40%.
JP 2002-114921 A JP 2003-695 A JP 2003-221499 A

上記問題に鑑みて、本発明は、生分解材の耐熱性を高めて、高温環境下で好適に使用できるようにし、かつ、熱収縮性が大きい熱収縮材を提供することを課題としている。
具体的には、ガラス転移点以上で激しく低下する形状保持性を改良するとともに、工業生産性にも優れたポリ乳酸からなる熱収縮材およびその製造方法を提供することを課題としている。
In view of the above problems, an object of the present invention is to provide a heat-shrinkable material that has high heat-shrinkability by increasing the heat resistance of the biodegradable material so that it can be suitably used in a high-temperature environment.
Specifically, it is an object of the present invention to provide a heat shrinkable material made of polylactic acid and a method for producing the same that improve shape retention properties that are drastically lowered at the glass transition point or higher and are also excellent in industrial productivity.

本発明者は、この問題について鋭意研究を重ねた結果、生分解性脂肪族ポリエステルにアリル系モノマーを混合し、放射線照射等により、一定条件以上の分子同士の架橋を行うことでこの問題を解決できることを見出した。特に、従来、放射線崩壊型で一般的なモノマーでは架橋しないと考えられてきたポリ乳酸については、アリル系モノマーにて非結晶部分を十分に架橋させることで、その高温における形状維持性を大きく改善できることを見いだした。   As a result of intensive research on this problem, the present inventor solved this problem by mixing allylic monomers with biodegradable aliphatic polyester and cross-linking molecules over a certain condition by irradiation or the like. I found out that I can do it. In particular, for polylactic acid, which was previously considered to be a radiation-disintegrating type and not to be crosslinked with common monomers, the shape retention at high temperatures is greatly improved by sufficiently crosslinking the amorphous part with an allylic monomer. I found what I could do.

上記知見に基づいてなされた本発明は、第一に、生分解性脂肪族ポリエステルと低濃度のアリル基を有するモノマーの混合物からなり、電離性放射線の照射あるいは化学開始剤の混合で架橋構造とされた状態で加熱下で延伸されており、
延伸時の温度以上で加熱されると収縮率が40%以上80%以下の範囲で収縮する構成としていることを特徴とする生分解性熱収縮材を提供している。
The present invention made on the basis of the above knowledge is firstly composed of a mixture of a biodegradable aliphatic polyester and a monomer having a low-concentration allyl group, and has a crosslinked structure by irradiation with ionizing radiation or mixing of a chemical initiator. Stretched under heating in a state where
A biodegradable heat-shrinkable material is provided, which is configured such that when it is heated at a temperature equal to or higher than the stretching temperature, the shrinkage rate is contracted in a range of 40% to 80%.

詳細には、上記生分解性脂肪族ポリエステルとしてポリ乳酸を用い、架橋によるゲル分率(ゲル分乾燥重量/初期乾燥重量)は10〜90%で、140℃以下で収縮率が10%未満で、160℃以上で収縮率が40〜80%である生分解性熱収縮材としていることが好ましい。収縮率とは、下記のように定義される。
シートの場合は、
(長さ)収縮率(%)=(収縮前長さー収縮後長さ)/(収縮前の長さ)×100
チューブの場合は、
(内径)収縮率(%)=(収縮前内径ー収縮後内径)/(収縮前内径)×100
したがって、収縮率50%は元の長さ(内径)の1/2(50%)になり、
収縮率80%は元の長さ(内径)の20%になる。
Specifically, polylactic acid is used as the biodegradable aliphatic polyester, the gel fraction by crosslinking (gel dry weight / initial dry weight) is 10 to 90%, and the shrinkage is less than 10% at 140 ° C. or less. It is preferable to use a biodegradable heat shrinkable material having a shrinkage ratio of 40 to 80% at 160 ° C. or higher. The shrinkage rate is defined as follows.
For sheets,
(Length) Shrinkage rate (%) = (Length before shrinkage-Length after shrinkage) / (Length before shrinkage) x 100
For tubes,
(Inner diameter) Shrinkage rate (%) = (Inner diameter before shrinkage-Inner diameter after shrinkage) / (Inner diameter before shrinkage) x 100
Therefore, the shrinkage rate 50% is 1/2 (50%) of the original length (inner diameter),
The shrinkage rate of 80% is 20% of the original length (inner diameter).

上記生分解性熱収縮材は、様々な特性において汎用石油合成高分子からなる熱収縮材と同等の特性を持ち、それを代替しうる生分解性の熱収縮材となる。
生分解性原料として用いる脂肪族ポリエステルは、例えば、ポリ乳酸、そのL体、D体、または混合物、ポリブチレンサクシネート、ポリカプロラクトン、ポリヒドロキシブチレートなどが挙げられる。これらを単独あるいは2種類以上を混合して利用可能であるが、コスト面や特性面からは、特にポリ乳酸類が適している。
The biodegradable heat-shrinkable material has the same characteristics as the heat-shrinkable material made of general-purpose petroleum synthetic polymer in various characteristics, and becomes a biodegradable heat-shrinkable material that can replace it.
Examples of the aliphatic polyester used as the biodegradable raw material include polylactic acid, L-form, D-form, or a mixture thereof, polybutylene succinate, polycaprolactone, and polyhydroxybutyrate. These can be used alone or in combination of two or more, but polylactic acids are particularly suitable from the viewpoint of cost and characteristics.

さらに、上記生分解性脂肪族ポリエステルへの添加物として、柔軟性を向上させる目的で、グリセリンやエチレングリコール、トリアセチルグリセリンなどの常温では液状の可塑剤、あるいは常温では固形の可塑剤としての、ポリグルコール酸やポリビニルアルコール等の生分解性樹脂の添加、あるいは、ポリ乳酸に少量のポリカプロラクトンを可塑剤として添加する等、他の生分解性脂肪酸ポリエステルを添加することは可能であるが、本発明においては必須ではない。   Furthermore, as an additive to the biodegradable aliphatic polyester, for the purpose of improving flexibility, glycerin, ethylene glycol, triacetylglycerin and other liquid plasticizers at room temperature, or solid plasticizers at room temperature, It is possible to add other biodegradable fatty acid polyesters, such as adding biodegradable resins such as polyglycolic acid and polyvinyl alcohol, or adding a small amount of polycaprolactone to polylactic acid as a plasticizer. It is not essential in the invention.

脂肪族ポリエステルに混合する架橋型多官能性モノマーとしては、一分子内に二つ以上の二重結合を持つアクリル系およびメタクリル系の多官能性モノマー、例えば1,6ヘキサンジオールジアクリレート、トリメチロールプロパントリメタクリレート(以下、TMPTと記す)などでも効果はあるが、比較的低濃度で高い架橋度を得るために、次に挙げるアリル基を有するモノマーを用いている。
トリアリルイソシアヌレート、トリメタアリルイソシアヌレート、トリアリル
シアヌレート、トリメタアリルシアヌレート、ジアリルアミン、トリアリルアミン、ジアクリルクロレンテート、アリルアセテート、アリルベンゾエート、アリルジプロピルイソシナヌレート、アリルオクチルオキサレート、アリルプロピルフタレート、ビチルアリルマレート、ジアリルアジペート、ジアリルカーボネート、ジアリルジメチルアンモニウムクロリド、ジアリルフマレート、ジアリルイソフタレート、ジアリルマロネート、ジアリルオキサレート、ジアリルフタレート、ジアリルプロピルイソシアヌレート、ジアリルセバセート、ジアリルサクシネート、ジアリルテレフタレート、ジアリルタトレート、ジメチルアリルフタレート、エチルアリルマレート、メチルアリルフマレート、メチルメタアリルマレート。
Examples of the crosslinkable polyfunctional monomer mixed with the aliphatic polyester include acrylic and methacrylic polyfunctional monomers having two or more double bonds in one molecule, such as 1,6-hexanediol diacrylate, trimethylol. Propane trimethacrylate (hereinafter referred to as TMPT) is effective, but in order to obtain a high degree of crosslinking at a relatively low concentration, the following monomer having an allyl group is used.
Triallyl isocyanurate, trimethallyl isocyanurate, triallyl cyanurate, trimethallyl cyanurate, diallylamine, triallylamine, diacrylic chlorate, allyl acetate, allyl benzoate, allyl dipropyl isocyanurate, allyl octyl oxalate Allylpropyl phthalate, bityl allyl malate, diallyl adipate, diallyl carbonate, diallyl dimethyl ammonium chloride, diallyl fumarate, diallyl isophthalate, diallyl malonate, diallyl oxalate, diallyl phthalate, diallyl propyl isocyanurate, diallyl sebacate, Diallyl succinate, diallyl terephthalate, diallyl tartrate, dimethylallyl phthalate, ethyl allyl Over DOO, methyl allyl fumarate, methyl meta-allyl maleate.

上記アリル基を有するモノマーのうちで望ましいのは、トリアリルイソシアヌレート(以下、TAICと記す)、トリメタアリルイソシアヌレート(以下TMAIC)であり、特に、TAICはポリ乳酸に対する効果が高い。また、TAIC、TMAICと、加熱によって相互に構造変換しうる、トリアリルシアヌレートおよびトリメタアリルシアヌレートも実質的に効果は同様である。   Among the monomers having an allyl group, triallyl isocyanurate (hereinafter referred to as TAIC) and trimethallyl isocyanurate (hereinafter TMAIC) are desirable, and TAIC is particularly effective for polylactic acid. Further, TAIC, TMAIC and triallyl cyanurate and trimethallyl cyanurate, which can be mutually converted by heating, have substantially the same effect.

上記アリル基を有するモノマーの濃度比率は、ポリ乳酸類100重量%に対して、0.5重量%では殆ど架橋反応が生じない。よって、本発明の目的である耐熱性および高収縮性を得るためにゲル分率を10〜90%とするには、モノマー濃度は0.5重量%では十分ではなく、0.7重量%〜3重量%が好ましい。
また、3重量%以上では効果に顕著な差がなく、5重量%程度の高濃度になると、すぐに80%以上にゲル分率が上がって制御しにくくなる。
なお、熱収縮率を高めるためにはゲル分率は50〜70%が好ましくであり、そのためには上記モノマーは0.7〜2重量%の範囲でよく、0.8〜0.9重量%が最も好ましい。
When the concentration ratio of the monomer having an allyl group is 0.5% by weight relative to 100% by weight of the polylactic acid, the crosslinking reaction hardly occurs. Therefore, in order to obtain a gel fraction of 10 to 90% in order to obtain heat resistance and high shrinkage which are the objects of the present invention, a monomer concentration of 0.5% by weight is not sufficient, and 0.7% by weight to 3% by weight is preferred.
Further, when the concentration is 3% by weight or more, there is no remarkable difference in the effect, and when the concentration is as high as 5% by weight, the gel fraction immediately increases to 80% or more and is difficult to control.
In order to increase the heat shrinkage rate, the gel fraction is preferably 50 to 70%. For this purpose, the monomer may be in the range of 0.7 to 2% by weight, and 0.8 to 0.9% by weight. Is most preferred.

架橋の程度は、ゲル分率により評価することができる。
ゲル分率は照射橋かけ又は化学橋かけを行ったフィルムの所定量を200メッシュの金網に包み、クロロホルム溶剤の中で48時間煮沸する。次いで、溶解したゾル分を除き金銅中に残ったゲル分を50℃で24時間乾燥しその重量を求める。ゲル分率は次式により算出している。
ゲル分率(%)=(ゲル分乾燥重量)/(初期乾燥重量)×100
The degree of crosslinking can be evaluated by the gel fraction.
As for the gel fraction, a predetermined amount of the film subjected to irradiation crosslinking or chemical crosslinking is wrapped in a 200 mesh wire net and boiled in a chloroform solvent for 48 hours. Next, the gel content remaining in the gold-copper except for the dissolved sol content is dried at 50 ° C. for 24 hours, and the weight is determined. The gel fraction is calculated by the following formula.
Gel fraction (%) = (gel content dry weight) / (initial dry weight) × 100

上記混合物を架橋構造とするために、電離性放射線の照射しているが、化学開始剤を混合して架橋反応を発生させても良い。
電離性放射線を照射する場合、橋架けに使用する電離性放射線は、γ線、エックス線、β線或いはα線などが使用できるが、工業的生産にはコバルト−60によるγ線照射や電子加速器による電子線が好ましい。照射量はモノマーの濃度にも多少依存し、1〜150kGyでも架橋は認められるが、橋架け効果および高温時の強度向上効果が出てくるのは5kGy以上で、より望ましくは効果が確実な10kGy以上である。
一方、脂肪族ポリエステルとして好ましいポリ乳酸は、樹脂単独では放射線で崩壊する性質を持つため、必要以上の照射は架橋とは逆に分解を進行させることになる。したがって、上限は80kGy、好ましくは50kGyである。
In order to make the said mixture into a crosslinked structure, although ionizing radiation is irradiated, you may mix a chemical initiator and generate | occur | produce a crosslinking reaction.
When irradiating with ionizing radiation, the ionizing radiation used for bridging can be γ-ray, X-ray, β-ray or α-ray, but for industrial production, it is irradiated with γ-ray irradiation by cobalt-60 or electron accelerator. An electron beam is preferred. The amount of irradiation depends somewhat on the monomer concentration, and even at 1 to 150 kGy, crosslinking is observed, but the bridging effect and the strength improvement effect at high temperatures appear at 5 kGy or more, and more desirably 10 kGy where the effect is more reliable. That's it.
On the other hand, since polylactic acid preferable as an aliphatic polyester has a property of being disintegrated by radiation when the resin is used alone, excessive irradiation causes decomposition to proceed contrary to crosslinking. Therefore, the upper limit is 80 kGy, preferably 50 kGy.

このように、本発明では、上記架橋型多官能性モノマーの添加量をある程度ゲル化する範囲内で、且つ、出来るだけ少量として低濃度にすることにより、後工程での電離性放射線の照射時にゲル分率を10〜90%、好ましい50〜70%になるようにして、耐熱性を高めると同時に収縮率を高くしている。ゲル分離は低すぎると当然のことながら記憶形状すべきネットワークが形成されず収縮しない。
従来の石油合成樹脂の熱収縮材で収縮に必要なゲル分率が10〜30%であるのに対して、本発明では、脂肪族ポリエステル、特に、ポリ乳酸のゲル分率を90%まで高めても熱収縮性を付与できるようにしている。
なお、ゲル分率が余り高すぎると、橋架けしたネットワークが強固すぎて収縮する力は高いものの変形量、即ち、延伸できる量が小さくなり、その結果、収縮率はとしては小さくなるため、ゲル分率は前記したように50〜70%が好ましい。
As described above, in the present invention, the amount of the cross-linked polyfunctional monomer added is within a range in which gelation is performed to some extent, and by reducing the concentration as low as possible, the ionization radiation can be irradiated in the subsequent step. The gel fraction is set to 10 to 90%, preferably 50 to 70%, to improve the heat resistance and at the same time increase the shrinkage rate. If the gel separation is too low, as a matter of course, a network to be memorized is not formed and the gel separation does not shrink.
In contrast to conventional petroleum synthetic resin heat shrinkable materials, the gel fraction required for shrinkage is 10 to 30%. In the present invention, the gel fraction of aliphatic polyester, particularly polylactic acid, is increased to 90%. However, heat shrinkability can be imparted.
If the gel fraction is too high, the bridged network is too strong and the shrinking force is high, but the amount of deformation, that is, the amount that can be stretched is small, and as a result, the shrinkage rate is small. As described above, the fraction is preferably 50 to 70%.

本来、ポリ乳酸は放射線崩壊型の樹脂であるが、架橋されたポリ乳酸は部分的に分解されても一部分が架橋されたネットワークに接続していれば、見かけ上ゲル分率は下がらない。しかし、形状記憶という目的に鑑みれば、このような接続しているものの形状記憶には役立たないゲルの部分が多い構造よりも、架橋しているポリ乳酸分子が多くの点で繋がって網状に強い骨格をなし、かつ、加熱時に自由に動く非架橋の部分が多いほど、収縮力も変形量も高くなって高い収縮率になるといえる。従って、本発明の場合は理想的にはモノマーの架橋反応が完了した直後がその状態である。
更に詳しくは、横軸に照射量、縦軸にゲル分率をとった図1に示すグラフでは、照射量を増やしていくにつれてゲル分率は上がっていき、それが飽和してゲル分率の上昇が止まってゲル分率が横ばいになる直前、グラフの変曲点付近であると言える。
その理想的な状態は、当然モノマーの濃度により相違する。高濃度では高いゲル分率で飽和し、低濃度では低いゲル分率で飽和する。
本発明者らの検討によれば、理想的なゲル分率は前記したように50〜70%で、この理想的な状態、グラフにおける変曲点を迎えるモノマー濃度は前記したように0.7〜1.3重量%である。
なお、架橋反応の終了後に、電離性放射線の照射を続けると、ポリ乳酸の分子自身が溶解して、ゲル分率としては架橋していることになってゲル分率が大きくなっても、架橋の綱があちこち切断された構造となって、架橋している分子が形状記憶に寄与しなくなる。そのため、同じゲル分率、例えば50〜70%であっても、照射量の増加に伴いゲル分率がピークを過ぎた後、低下し過ぎて50〜70%になったものは不適となる。
Originally, polylactic acid is a radiation-disintegrating resin, but even if crosslinked polylactic acid is partially decomposed, if it is connected to a partially crosslinked network, the gel fraction does not seem to decrease. However, in view of the purpose of shape memory, the cross-linked polylactic acid molecules are connected in many respects and are stronger than the net structure rather than the structure having many gel parts that are not useful for shape memory. It can be said that the more the non-crosslinked portion that forms a skeleton and moves freely during heating, the higher the shrinkage force and the amount of deformation and the higher the shrinkage rate. Therefore, in the case of the present invention, the state is ideally immediately after the completion of the monomer crosslinking reaction.
In more detail, in the graph shown in FIG. 1 in which the horizontal axis represents the irradiation amount and the vertical axis represents the gel fraction, the gel fraction increases as the irradiation amount increases, It can be said that it is near the inflection point of the graph immediately before the rise stops and the gel fraction becomes flat.
The ideal state naturally depends on the monomer concentration. Saturates at a high gel fraction at high concentrations and saturates at a low gel fraction at low concentrations.
According to the study by the present inventors, the ideal gel fraction is 50 to 70% as described above, and the monomer concentration reaching the inflection point in this ideal state and graph is 0.7 as described above. -1.3 wt%.
In addition, if irradiation of ionizing radiation is continued after completion of the crosslinking reaction, the polylactic acid molecules themselves are dissolved, and the gel fraction is crosslinked, so that even if the gel fraction increases, As a result, the cross-linked molecule does not contribute to shape memory. Therefore, even if it is the same gel fraction, for example, 50 to 70%, after the gel fraction has passed the peak with the increase of the irradiation dose, it has become too low to become 50 to 70%.

上記のように、ゲル分率を10〜90%、好ましくは50〜70%とすることで、ポリマー内に無数の三次元網目構造が生成し、ガラス転移温度以上でも変形しない耐熱性を付与することができる。
一方、後述するように、延伸時において、ポリ乳酸の融点以上の温度で加熱して延伸しているため、ポリ乳酸は非結晶部分と共に結晶部分も解けて延伸される。その形状のまま冷却されると非結晶部分と結晶部分が固まって延伸が維持されるが、モノマーによる強固な三次元網目構造が延伸による歪みを記憶している。その後、再び加熱するとガラス転移温度で非結晶部分が溶けても結晶部分によって延伸は維持され、融点に達して結晶部分が溶けて初めて三次元網目構造に蓄えられていた歪みが解放されて収縮して元の形状に回復する。
例えば、ポリ乳酸類の生分解性熱収縮材であれば、延伸時の温度を160〜180℃とすれば、160℃以上の加熱で収縮し、強固な三次元網目構造より収縮率を40〜80%と飛躍的に高めることができる。
As described above, by setting the gel fraction to 10 to 90%, preferably 50 to 70%, an innumerable three-dimensional network structure is generated in the polymer, and heat resistance that does not deform even at the glass transition temperature or higher is imparted. be able to.
On the other hand, as will be described later, at the time of stretching, since the film is heated and stretched at a temperature equal to or higher than the melting point of polylactic acid, the polylactic acid is stretched along with the non-crystalline portion as well as the crystalline portion. When cooled in its shape, the amorphous portion and the crystalline portion are solidified and the stretching is maintained, but a strong three-dimensional network structure of the monomer stores the strain due to stretching. After that, when heated again, even if the amorphous part melts at the glass transition temperature, stretching is maintained by the crystalline part, and the strain stored in the three-dimensional network structure is released and contracts only after the melting point is reached and the crystalline part melts. To restore the original shape.
For example, in the case of a polylactic acid biodegradable heat-shrinkable material, if the temperature during stretching is 160 to 180 ° C., the material shrinks by heating at 160 ° C. or higher, and the shrinkage rate is 40 to 40% more than a strong three-dimensional network structure. It can be dramatically increased to 80%.

放射線照射の代わりに化学開始剤を用いて架橋反応を発生させる場合、生分解性材料にその融点以上の温度でアリル基を有するモノマーと化学開始剤とを加え、よく混練し、均一に混ぜた後、この混合物からなる成形品を、化学開始剤が熱分解する温度まで上げている。
本発明に使用することができる化学開始剤は、熱分解により過酸化ラジカルを生成する過酸化ジクミル、過酸化プロピオニトリル、過酸化ペンソイル、過酸化ジーt−ブチル、過酸化ジアシル、過酸化ベラルゴニル、過酸化ミリストイル、過安息香酸−t−ブチル、2,2’−アゾビスイソブチルニトリルなどの過酸化物触媒又はモノマーの重合を開始する触媒であればいずれでもよい.橋かけは、放射線照射の場合と同様、空気を除いた不活性雰蹄気下や真空下で行うのが好ましい。
When a cross-linking reaction is generated using a chemical initiator instead of irradiation, a monomer having an allyl group and a chemical initiator are added to the biodegradable material at a temperature equal to or higher than its melting point, and the mixture is thoroughly kneaded and mixed uniformly. Thereafter, the molded article made of this mixture is raised to a temperature at which the chemical initiator is thermally decomposed.
Chemical initiators that can be used in the present invention are dicumyl peroxide, propionitrile peroxide, pensoyl peroxide, di-t-butyl peroxide, diacyl peroxide, and verargonyl peroxide that generate peroxide radicals by thermal decomposition. , Peroxide catalyst such as myristoyl peroxide, t-butyl perbenzoate, 2,2′-azobisisobutylnitrile, or any catalyst that initiates polymerization of monomers. As in the case of irradiation, the crosslinking is preferably performed under an inert atmosphere or a vacuum excluding air.

本発明の生分解性熱収縮材の製造方法は、基本的には、生分解性原料中に架橋型多官能性モノマーを低濃度で添加して混練し、該混合物を加熱加圧でプレスした後に急冷して所要形状に成形した後、電離性放射線を照射して橋架け反応を生じさせ、ゲル分率を10%以上90%以下とし、上記電離性放射線の照射後に、上記生分解性原料の溶融温度以上で、生分解性原料の融点+20℃以下の範囲で加熱しながら延伸させて形成している。
該製造方法によれば、上記延伸時の温度以上で加熱されると収縮率が40%以上80%の範囲で収縮する熱収縮材とすることができる。
The method for producing a biodegradable heat shrinkable material of the present invention basically includes adding a low-concentration cross-linked polyfunctional monomer to a biodegradable raw material, kneading, and pressing the mixture by heating and pressing. After rapid cooling and shaping into a required shape, ionizing radiation is irradiated to cause a crosslinking reaction, the gel fraction is set to 10% or more and 90% or less, and after irradiation with the ionizing radiation, the biodegradable raw material It is formed by stretching while heating in the range of the melting point of the biodegradable raw material + 20 ° C.
According to this manufacturing method, it can be set as the heat-shrinkable material which shrink | contracts in 40% or more of the range of 80% or more when it heats above the temperature at the time of the said extending | stretching.

上記熱収縮率が40〜80%の生分解性熱収縮材の製造方法としては、具体的には、
生分解性脂肪族ポリエステル中にアリル基を有するモノマーを低濃度で添加して混練し、該混合物を所要形状に成形した後、
電離性放射線を1kGy以上150kGy以下で照射して、架橋反応を生じさせ、ゲル分率を10%以上90%以下とし、
上記電子線の照射後に60℃〜200℃の範囲で加熱しながら延伸させて形成し、
延伸時の温度以上で加熱されると収縮率が40%〜80の範囲で収縮する熱収縮材としている。
As a method for producing a biodegradable heat shrinkable material having a heat shrinkage rate of 40 to 80%, specifically,
A monomer having an allyl group is added to the biodegradable aliphatic polyester at a low concentration and kneaded, and the mixture is molded into a required shape.
Irradiating with ionizing radiation at 1 kGy or more and 150 kGy or less to cause a crosslinking reaction, the gel fraction is 10% or more and 90% or less,
Stretching while heating in the range of 60 ° C to 200 ° C after irradiation with the electron beam,
When heated at a temperature equal to or higher than the temperature at the time of stretching, the heat shrinkable material shrinks in a range of 40% to 80%.

上記生分解性脂肪族ポリエステルとしてポリ乳酸を用いた場合、配合する上記アリル基を有するモノマーはポリ乳酸100重量%に対して、0.7重量%以上3.0重量%以下で添加して混練し、
上記混合物を、薄いフィルム状、厚みのあるシート状、チューブ状に成形後に、電離性放射線を5kGy以上50kGy以下で照射して架橋反応を発生させ、ゲル分率を50〜70%とし、
上記架橋構造とした後に、150℃以上180℃以下で加熱して、延伸倍率2〜5倍に延伸している。
When polylactic acid is used as the biodegradable aliphatic polyester, the monomer having the allyl group to be blended is added in an amount of 0.7% by weight to 3.0% by weight with respect to 100% by weight of the polylactic acid, and kneaded. And
After forming the mixture into a thin film, a thick sheet, or a tube, ionizing radiation is irradiated at 5 kGy or more and 50 kGy or less to generate a crosslinking reaction, and the gel fraction is set to 50 to 70%.
After making it the said crosslinked structure, it heats at 150 degreeC or more and 180 degrees C or less, and is extended | stretched by 2-5 times of draw ratio.

より好ましくは、上記アリル基を有するモノマーとしてトリアリルイソシアヌレートを用い、該トリアリルイソシアヌレートの配合量をポリ乳酸100重量%に対して0.7重量%以上2.0重量%以下とし、該混合物を成形後に、電子線を10kGy以上30kGy以下で照射し、かつ、上記延伸時において160℃以上180℃以下で加熱している。   More preferably, triallyl isocyanurate is used as the monomer having an allyl group, and the amount of the triallyl isocyanurate is 0.7 wt% or more and 2.0 wt% or less with respect to 100 wt% of polylactic acid, After forming the mixture, an electron beam is irradiated at 10 kGy or more and 30 kGy or less, and is heated at 160 ° C. or more and 180 ° C. or less during the stretching.

上記アリル基を有するモノマーはポリ乳酸100重量%に対して、0.7重量%以上3.0重量%以下としているのは、前述したように、耐熱性および高収縮性を得るためには、0.7重量%は必要であり、3重量%を越えても効果に差がなく、5重量%を越える高濃度にすると殆どゲル化しない架橋が促進されないことによる。   The monomer having an allyl group is 0.7% by weight to 3.0% by weight with respect to 100% by weight of polylactic acid, as described above, in order to obtain heat resistance and high shrinkage, 0.7% by weight is necessary, and even if it exceeds 3% by weight, there is no difference in effect, and if the concentration exceeds 5% by weight, crosslinking that hardly gels is not promoted.

電子線の照射量を5kGy以上50kGy以下としているのは、前述したように、照射量はモノマーの濃度にも多少依存し、1〜150kGyでも架橋は認められるが、橋架け効果および高温時の強度向上効果が出てくるのは5kGy以上であり、ポリ乳酸では50kGyを越えると、架橋とは逆に分解を進行させるためである。
好ましくは10kGy以上50kGy以下、最も好ましくは15kGy以上30kGy以下である。
The amount of electron beam irradiation is 5 kGy or more and 50 kGy or less, as described above, the irradiation amount depends somewhat on the monomer concentration, and crosslinking is observed even at 1 to 150 kGy, but the bridging effect and strength at high temperature The improvement effect comes out at 5 kGy or more, and when polyklactic acid exceeds 50 kGy, the decomposition progresses contrary to crosslinking.
Preferably they are 10 kGy or more and 50 kGy or less, Most preferably, they are 15 kGy or more and 30 kGy or less.

架橋反応終了時のゲル分率を10〜90%、好ましくは50〜70%としているのも、前述したように、この範囲であれば、架橋向上で耐熱性が高められると同時に、熱収縮率を大きくすることができるためである。なお、ゲル分率を60%近傍とすることで、160℃以上の加熱で40〜80%の収縮性を得ることができる。   As described above, the gel fraction at the end of the crosslinking reaction is 10 to 90%, preferably 50 to 70%. As described above, within this range, the heat resistance can be improved by improving the crosslinking, and at the same time, the heat shrinkage rate. It is because it can enlarge. In addition, 40 to 80% contractility can be obtained by heating at 160 ° C. or higher by setting the gel fraction to around 60%.

延伸性評価では、ゲル分率は50〜70%が◎、10〜50と70〜90%が○、10〜6%が△、5〜0%と90〜96が×であった。
これは、架橋によるネットワークによって形状記憶するので、架橋密度が50%より低く、特に10%未満と低下すると収縮性および耐熱性が失われる一方、70%を越え、特に90%を越えると架橋が進みすぎて、形状が強固になって変形しにくくなるため、延伸性、収縮性が低下する。よって、耐熱性および熱収縮性の両方を付与できる範囲は10〜90%で、その中で50〜70%の範囲が延伸性および熱収縮性が優れることとなると認められた。
In the stretchability evaluation, the gel fraction was ◎ for 50 to 70%, ○ for 10 to 50 and 70 to 90%, Δ for 10 to 6%, and × for 5 to 0% and 90 to 96.
This is because the shape is memorized by the network by cross-linking, and when the cross-link density is lower than 50%, especially when it is reduced to less than 10%, shrinkage and heat resistance are lost. Since it progresses too much and it becomes difficult to deform | transform and a shape becomes difficult, stretchability and shrinkability will fall. Therefore, the range which can provide both heat resistance and heat-shrinkability is 10 to 90%, and it was recognized that the range of 50 to 70% would be excellent in stretchability and heat-shrinkability.

延伸前のゲル分率に応じた網目構造と、延伸と、熱収縮との関係を図1に示す如す。
図1中において黒丸が結晶部分A、それ以外が非結晶部分Bであり、斜線が網目Cである。ゲル分率50〜70%の架橋構造とされた図1(A)に示すシート10を160〜180℃の加熱下で延伸すると、図1(B)に示すように、網目Cの傾斜角度が変わって伸びた状態となる。この延伸されたシートがポリ乳酸のガラス転移温度の60℃以上で加熱されると、図1(C)に示すように、非結晶部分Bが溶ける。さらに、ポリ乳酸の溶融温度160℃以上で加熱されると、結晶部分Aも溶けるが、網目Cは分子が完全に結合しているためにとけず、網目が形状記憶性が高いことより、延伸により伸びた網目Cが元の図1(D)に示す形状に戻り、収縮することとなる。
The relationship between the network structure corresponding to the gel fraction before stretching, stretching, and heat shrinkage is shown in FIG.
In FIG. 1, the black circle is the crystal part A, the other part is the non-crystal part B, and the oblique line is the mesh C. When the sheet 10 shown in FIG. 1 (A) having a crosslinked structure with a gel fraction of 50 to 70% is stretched under heating at 160 to 180 ° C., the inclination angle of the mesh C is as shown in FIG. 1 (B). It will change and become stretched. When this stretched sheet is heated at a glass transition temperature of 60 ° C. or higher of polylactic acid, the non-crystalline portion B is melted as shown in FIG. Furthermore, when the polylactic acid is heated at a melting temperature of 160 ° C. or higher, the crystal part A is also melted, but the network C is not completely melted because the molecules are completely bonded, and the network has a high shape memory property. As a result, the mesh C that has been stretched by the process returns to the original shape shown in FIG. 1D and contracts.

なお、図2は、ポリ乳酸を原料とし架橋構造とされていないシートの場合を示し、図2(A)に示すシート1が70〜80℃の加熱条件下で図2(B)に示すように延伸させるた後、ポリ乳酸のガラス転移温度付近で図2(C)に示すように非結晶部分Bは溶けて形状が変形し、図2(D)に示すように、融点以上で加熱すると結晶部分Aも溶けてしまうこととなる。   2 shows the case of a sheet made of polylactic acid as a raw material and not having a cross-linked structure, and the sheet 1 shown in FIG. 2 (A) is shown in FIG. 2 (B) under heating conditions of 70 to 80 ° C. After stretching the film, the amorphous portion B melts and deforms in the vicinity of the glass transition temperature of polylactic acid as shown in FIG. 2 (C), and when heated above the melting point as shown in FIG. 2 (D). The crystal part A will also melt.

架橋後における延伸時の加熱条件を60℃〜200℃、好ましくは150℃以上180℃以下、最も好ましくは160℃以上180℃以下としているのは、架橋されたポリ乳酸の非結晶が動き出す温度(ガラス転移温度)が60℃弱、結晶も解ける融点が150〜160℃であることに起因している。
ガラス転移温度以上で融点までの範囲(60〜150℃)で延伸すると、ガラス転移温度で非結晶がとけて変形するので、60℃で熱収縮が発生するが、結晶部分は収縮しないため、熱収縮率は大きくならない。よって、熱収縮率を大きくするためには、結晶部分も解ける150℃以上で延伸させておき、150℃〜160℃で収縮させることにより、熱収縮率を40〜80%と大きくすることができる。
よって、延伸時の加熱温度は150℃以上が好ましい。なお、200℃とすると短時間で延伸させる必要があるため、180℃以下が好ましい。最も好ましいのは、融点以上の160℃以上180℃以下である。
The heating conditions during stretching after crosslinking are 60 ° C. to 200 ° C., preferably 150 ° C. or more and 180 ° C. or less, and most preferably 160 ° C. or more and 180 ° C. or less. The temperature at which the amorphous polylactic acid starts to move ( This is because the glass transition temperature is slightly less than 60 ° C. and the melting point at which crystals can be dissolved is 150 to 160 ° C.
When stretched in the range from the glass transition temperature to the melting point (60 to 150 ° C.), the amorphous material dissolves and deforms at the glass transition temperature, and heat shrinkage occurs at 60 ° C., but the crystal portion does not shrink. Shrinkage does not increase. Therefore, in order to increase the thermal contraction rate, the thermal contraction rate can be increased to 40 to 80% by stretching at 150 ° C. or higher where the crystal part can be dissolved and contracting at 150 ° C. to 160 ° C. .
Therefore, the heating temperature during stretching is preferably 150 ° C. or higher. In addition, since it is necessary to extend | stretch in a short time when it is 200 degreeC, 180 degrees C or less is preferable. Most preferably, the melting point is 160 ° C. or higher and 160 ° C. or higher.

上記加熱温度で延伸する際、延伸倍率を2〜5倍としている。これは、ポリ乳酸類の生分解性熱収縮材では、熱収縮率を40〜80%としていることに対応している。
なお、熱収縮率は、延伸率にかかわらず、140℃までの温度では収縮率は5%以下であり、150℃で収縮率は40%前後である。しかし、160℃以上に加熱すると、65〜70%となるため、延伸倍率は2倍以上3倍以下、より好ましくは2.5倍以下としている。
延伸は1軸、2軸、多軸のいずれでも良く、ロール法、デンター法、チューブ法等の方法で延伸している。
When extending | stretching at the said heating temperature, the draw ratio shall be 2-5 times. This corresponds to the fact that the polylactic acid biodegradable heat-shrinkable material has a heat shrinkage rate of 40 to 80%.
The thermal shrinkage rate is 5% or less at temperatures up to 140 ° C. regardless of the stretch rate, and the shrinkage rate is around 40% at 150 ° C. However, since it will be 65 to 70% when heated to 160 ° C. or higher, the draw ratio is 2 to 3 times, more preferably 2.5 times or less.
The stretching may be uniaxial, biaxial, or multiaxial, and is performed by a method such as a roll method, a denter method, or a tube method.

上述した如く、本発明によれば、アリル基を有するモノマーの添加により電離性放射線の照射時に、ポリ乳酸等の生分解性脂肪族ポリエステルの架橋が促進され、ゲル分率を10〜90%としているため、延伸により5倍程度まで延伸させることができると共に、この延伸させた熱収縮材を融点以上に加熱すると、形状記憶している網目により収縮率40〜80%程度のまで熱収縮させることができる。かつ、ポリ乳酸のガラス転移温度程度では溶融しない結晶部分と網目とにより形状が変形せず、耐熱性を有するものとなる。   As described above, according to the present invention, crosslinking of biodegradable aliphatic polyester such as polylactic acid is promoted upon irradiation with ionizing radiation by adding a monomer having an allyl group, and the gel fraction is set to 10 to 90%. Therefore, it can be stretched up to about 5 times by stretching, and when the stretched heat-shrinkable material is heated to the melting point or more, it is thermally shrunk to a shrinkage rate of about 40 to 80% by the mesh memorized. Can do. Moreover, the shape is not deformed by crystal parts and networks that do not melt at the glass transition temperature of polylactic acid, and it has heat resistance.

以下、本発明の実施形態を説明する。
実施形態の生分解性熱収縮材は、ポリ乳酸にTAIC(トリアリルイソシアヌレート)を低濃度で配合し、ポリ乳酸を100重量%とするとTAICを0.7〜0.9重量%で配合している。
上記ポリ乳酸を溶解した状態でTAICを添加して混練し、この混合物を180℃で加圧加熱成形(熱プレス)した後、約100℃/分で急冷して常温として所要厚さのシートとして成形している。
該シートを空気を除いた不活性雰囲気中で、加圧電圧2MeV、電流値1mAで電子線を10〜30kGyで照射し、TAICによりポリ乳酸の分子の架橋とポリ乳酸の分子自体の溶解とを同時に進行させ、架橋終了状態で、ゲル分率を50〜70%としている。
電子線照射後のシートを160℃〜180℃まで加熱して、最大5倍まで1軸延伸させている。延伸後は、延伸状態の固定したまま室温まで冷却し、生分解性熱収縮材を製造している。
Embodiments of the present invention will be described below.
In the biodegradable heat-shrink material of the embodiment, TAIC (triallyl isocyanurate) is blended into polylactic acid at a low concentration, and TAIC is blended at 0.7 to 0.9% by weight with 100% by weight of polylactic acid. ing.
TAIC is added and kneaded with the polylactic acid dissolved, and the mixture is press-heated and molded at 180 ° C. (hot pressing), and then rapidly cooled at about 100 ° C./min. Molding.
The sheet is irradiated with an electron beam at an applied voltage of 2 MeV and a current value of 1 mA at 10 to 30 kGy in an inert atmosphere excluding air, and crosslinking of polylactic acid molecules and dissolution of the polylactic acid molecules themselves are performed by TAIC. The gel fraction is set to 50 to 70% at the same time when the crosslinking is completed.
The sheet after electron beam irradiation is heated to 160 ° C. to 180 ° C. and uniaxially stretched up to 5 times. After stretching, the film is cooled to room temperature while the stretched state is fixed to produce a biodegradable heat shrinkable material.

上記のようにゲル分率が10〜90%の架橋構造としているため、延伸工程で最大5倍程度まで延伸させることができる一方、融点以上の加熱時に架橋の網目による形状記憶で40〜80%程度収縮させることができる。かつ、融点以上まで加熱されない限り、架橋構造によるネットワークにより形状変形が発生するのを抑止でき、耐熱性を高めることができる。   Since it has a crosslinked structure with a gel fraction of 10 to 90% as described above, it can be stretched up to about 5 times in the stretching step, while it is 40 to 80% in shape memory due to crosslinking network when heated above the melting point. It can be contracted to some extent. And unless it heats more than melting | fusing point or more, it can suppress that a shape deformation | transformation generate | occur | produces with the network by a bridge | crosslinking structure, and can improve heat resistance.

なお、本発明の生分解性熱収縮材は上記実施形態の限定されず、生分解材の原料の種類、アリル基を有するモノマーの種類および配合量を変えることで、電子線の照射量、該電子線の照射による架橋によるゲル分率、延伸時の加熱温度、延伸倍率等は前記本発明の範囲内で変更しえる。其の際、延伸時の加熱温度を生分解材の原料の融点以上で且つ融点近傍)まで加熱し、この加熱条件下で延伸して熱収縮材を製造している。これにより、該加熱温度以上で加熱すると、熱収縮率を80%程度まで高めることができる。   The biodegradable heat-shrinkable material of the present invention is not limited to the above-described embodiment, and by changing the type of raw material of the biodegradable material, the type of monomer having an allyl group, and the blending amount, The gel fraction due to crosslinking by electron beam irradiation, the heating temperature during stretching, the stretching ratio, and the like can be changed within the scope of the present invention. In that case, the heating temperature at the time of extending | stretching is heated more than the melting | fusing point of the raw material of a biodegradable material, and it is near melting | fusing point), and is extended | stretched on this heating condition, and heat-shrinkable material is manufactured. Thereby, when it heats more than this heating temperature, a thermal contraction rate can be raised to about 80%.

(実施例および比較例)
下記の表1に示す42種類のサンプルを作成した。
脂肪族ポリエステルとして、微粉末状のポリ乳酸(三井化学製レイシアH−100J)を使用した。ポリ乳酸を略閉鎖型混練機ラボプラストミルにて、180℃で融解させ透明になるまで十分溶融混練した中に、アリル系モノマーの1種であるTAIC(日本化成株式会社製)をポリ乳酸に対してそれぞれ下記の表1に示すように、0重量%、0.5重量%、1.0重量%、2.0重量%、3.0重量%で配合し、回転数20rpmで10分間良く練って混合した。
その後、この混練物を180℃で熱プレスにて1mm厚のシートを作製した。このシートを、空気を除いた不活性雰囲気下で電子加速器(加速電圧2MeV 電流量1mA)により電子線を照射した。照射量を下記の表1に示すように、0kGy、10kGy、20kGy、30kGy、50kGy、80kGy、120kGyとした。
ついで、電子線照射後のシートを180℃で加熱して、最大2.5倍まで延伸した。
延伸後に、その状態で固定して室温まで冷却し、熱収縮サンプルを製造した。
(Examples and Comparative Examples)
42 types of samples shown in Table 1 below were prepared.
As the aliphatic polyester, finely powdered polylactic acid (Lacia H-100J manufactured by Mitsui Chemicals) was used. Polylactic acid was melted at 180 ° C in a substantially closed kneader, Labo Plast Mill, and melted and kneaded until it became transparent. TAIC (Nippon Kasei Co., Ltd.), a kind of allyl monomer, was converted into polylactic acid. On the other hand, as shown in Table 1 below, 0 wt%, 0.5 wt%, 1.0 wt%, 2.0 wt%, and 3.0 wt% were blended, and 10 minutes at a rotation speed of 20 rpm. Kneaded and mixed.
Thereafter, the kneaded product was heated at 180 ° C. to produce a 1 mm thick sheet. This sheet was irradiated with an electron beam by an electron accelerator (acceleration voltage 2 MeV current amount 1 mA) under an inert atmosphere excluding air. As shown in Table 1 below, the dose was set to 0 kGy, 10 kGy, 20 kGy, 30 kGy, 50 kGy, 80 kGy, and 120 kGy.
Then, the sheet after electron beam irradiation was heated at 180 ° C. and stretched up to 2.5 times.
After stretching, the sample was fixed in that state and cooled to room temperature to produce a heat-shrinkable sample.

42種類のサンプルについて延伸性を評価すると共に、ゲル分率を測定し、その結果を表1に示す。ゲル分率は前記した方法で測定している。ゲル分率は各サンプルの下段に記載した。
ゲル分率と電子線照射量との関係を図3のグラフに示す。
The stretchability of 42 types of samples was evaluated, the gel fraction was measured, and the results are shown in Table 1. The gel fraction is measured by the method described above. The gel fraction is shown in the lower part of each sample.
The relationship between the gel fraction and the electron beam dose is shown in the graph of FIG.

「延伸性の評価方法」
延伸倍率を元の長さの2.5倍まで延伸できなかったサンプルについて、切れずに延伸できる倍率を段階的に評価し、各サンプルの上段に記載した。
×=殆ど延伸できないサンプル
△=延伸が1.2〜2.0倍で切断したサンプル
○=2.0〜2.5倍
◎=2.5倍以上
"Evaluation method of stretchability"
About the sample which was not able to extend | stretch a draw ratio to 2.5 time of the original length, the magnification which can be extended without cutting was evaluated in steps, and it described in the upper stage of each sample.
X = Sample that can hardly be stretched △ = Sample that has been stretched by 1.2 to 2.0 times ○ = 2.0 to 2.5 times ◎ = 2.5 times or more

表1中において、延伸性評価が◎と○となる2重線で囲む部分のサンプルが実施例であり、それ以外の△と×となる外周領域の部分のサンプルが比較例となる。
上記△と×である比較例のサンプルは電子線照射量が0kGyあるいはTAICの配合量が0.5重量%以下であった。あるいは、TAICの配合量に関係なく電子線照射量が80kGyと120kGyであった。
In Table 1, a sample of a portion surrounded by a double line where the stretchability evaluation is ◎ and ◯ is an example, and a sample of a portion of the outer peripheral region where Δ and × are other than that is a comparative example.
The samples of the comparative examples having the above Δ and × had an electron beam irradiation amount of 0 kGy or a TAIC compounding amount of 0.5% by weight or less. Or the electron beam irradiation amount was 80 kGy and 120 kGy irrespective of the compounding quantity of TAIC.

上記表1に示す測定結果より、TAIC濃度が1.0重量%未満(0.5重量%)である比較例は、電子線を照射してもゲル分率が9%以下と上がらなかった。また、ゲル分率はいずれのTAIC濃度でも30〜50kGyで最大であり、20kGyではその約80〜90%の効果であることがわかった。さらに照射量が増えると、徐々にゲル分率は減少することも確認できた。   From the measurement results shown in Table 1, the comparative example having a TAIC concentration of less than 1.0% by weight (0.5% by weight) did not increase the gel fraction to 9% or less even when irradiated with an electron beam. Moreover, it turned out that a gel fraction is the maximum at 30-50 kGy in any TAIC density | concentration, and it is the effect of about 80-90% in 20 kGy. It was also confirmed that the gel fraction gradually decreased as the irradiation amount increased.

延伸性評価では、ゲル分率は50〜70%が◎、10〜50%と70〜90%が○、10〜6%が△、5〜0%と90〜96%が×であった。
これは、架橋によるネットワークによって形状記憶するので、架橋密度が50%より低く、特に10%未満と低下すると収縮性および耐熱性が失われる一方、70%を越え、特に90%を越えると架橋が進みすぎて、形状が強固になって変形しにくくなるため、延伸性、収縮性が低下する。よって、50〜70%の範囲が延伸性および熱収縮性が優れることとなると認められた。
In the stretchability evaluation, the gel fraction was 50 to 70% ◎, 10 to 50% and 70 to 90% ○, 10 to 6% Δ, 5 to 0% and 90 to 96% x.
This is because the shape is memorized by the network by cross-linking, and when the cross-link density is lower than 50%, especially when it is reduced to less than 10%, shrinkage and heat resistance are lost. Since it progresses too much and it becomes difficult to deform | transform and a shape becomes difficult, stretchability and shrinkability will fall. Therefore, it was recognized that the range of 50 to 70% would be excellent in stretchability and heat shrinkability.

また、電子線の照射量の好ましい範囲は、前述したように、10kGy〜50kGyであった。
これは30〜50kGyでTAICによる架橋反応が終了すると、あとはポリ乳酸の分子自身の分解反応がすすむだけとなるためである。即ち、架橋反応の終了後はポリ乳酸の分子の分解で架橋の綱があちこちで切断された状態となり、架橋している分子が形状記憶に寄与しなくなり、熱収縮性が低下すると認められた。
Moreover, the preferable range of the irradiation amount of the electron beam was 10 kGy to 50 kGy as described above.
This is because when the cross-linking reaction by TAIC is completed at 30 to 50 kGy, only the decomposition reaction of the polylactic acid molecule itself proceeds. That is, it was recognized that after completion of the crosslinking reaction, the cross-links were broken in various ways due to the decomposition of the polylactic acid molecules, and the cross-linked molecules did not contribute to shape memory, resulting in a decrease in heat shrinkability.

上記◎と○のサンプルのシート状熱収縮材は、ゲル分率が50〜70%とした状態で、ポリ乳酸の溶融温度の150〜160℃以上180℃以下の加熱条件下で延伸させている。 この延伸時に2.5倍以上延伸することができ、よって、熱収縮させるために160℃以上に加熱すると、TAICで架橋が部分的に切れると共に架橋分子が記憶していた形状へと戻り、40%以上で70%近くまで収縮することとなる。
しかも、ポリ乳酸のガラス転移温度(60℃弱)にでは熱収縮率は10%以下であり、ゲル分率を50〜70%とし架橋を促進しているため、常温では容易に変形せず、耐熱性が改善されていることより、車両用や屋外用に用いられる熱収縮材として好適に用いられる。
The sheet-like heat-shrinkable materials of the above samples ◎ and ○ are stretched under a heating condition of 150 to 160 ° C. or more and a melting temperature of polylactic acid with a gel fraction of 50 to 70%. . At this time, the film can be stretched by 2.5 times or more. Therefore, when heated to 160 ° C. or higher for heat shrinkage, the cross-linking is partially broken by TAIC and the cross-linked molecule returns to the memorized shape. If it is at least%, it will shrink to nearly 70%.
Moreover, since the thermal shrinkage is 10% or less at the glass transition temperature of polylactic acid (less than 60 ° C.) and the gel fraction is 50 to 70% to promote crosslinking, it is not easily deformed at room temperature. Since the heat resistance is improved, it is suitably used as a heat shrink material used for vehicles and outdoors.

表1をまとめると、延伸性評価が◎または○のサンプルは、下記の3条件を満たすものであった。
(1)TAICの配合量が1.0重量%〜3.0重量%
特に1.0〜2.0重量%では◎が多かった。
(2)電子線の照射量が10kGy〜50kGy
(3)ゲル分率が50%〜70%
When Table 1 is summarized, the samples having an extensibility evaluation of “◎” or “○” satisfy the following three conditions.
(1) The amount of TAIC is 1.0 wt% to 3.0 wt%
In particular, 1.0 was large at 1.0 to 2.0% by weight.
(2) The electron beam dose is 10 kGy to 50 kGy
(3) Gel fraction is 50% to 70%

「熱収縮率の測定」
延伸後のサンプルに熱をかけ、延伸前へ回復する度合いを測定した。
測定方法は延伸サンプルを恒温槽に入れて所定の温度に暖めた後、延伸方向の長さを測定した。40℃より10℃づつ昇温し、各温度に付いて実施した。
(長さ)収縮率(%)=(収縮前長さー収縮後長さ)/(収縮前長さ)×100
"Measurement of heat shrinkage"
The sample after stretching was heated to measure the degree of recovery before stretching.
The measuring method put the extending | stretching sample in the thermostat, and warmed to predetermined temperature, Then, the length of the extending | stretching direction was measured. The temperature was raised from 40 ° C. by 10 ° C., and each temperature was applied.
(Length) Shrinkage rate (%) = (Length before shrinkage−Length after shrinkage) / (Length before shrinkage) × 100

TAICの配合量が1.0重量%、電子線の照射量が20kGyのサンプルの熱収縮率の測定結果を図5のグラフに示す。
図4のグラフに示すように、収縮率は延伸率にかかわらず、140℃までは5%以下で、140℃を越えると収縮を開始し、150℃で40%前後、160℃以上で65〜70%であった。
The graph of FIG. 5 shows the measurement result of the thermal shrinkage rate of a sample having a TAIC compounding amount of 1.0% by weight and an electron beam irradiation amount of 20 kGy.
As shown in the graph of FIG. 4, the shrinkage rate is 5% or less up to 140 ° C., regardless of the stretch rate, starts shrinking when it exceeds 140 ° C., around 40% at 150 ° C., 65 to 65% at 160 ° C. or more. 70%.

上記実施例1と同一のポリ乳酸とTAICとを用い、この混練物より熱収縮チューブを成形した。このチューブに実施例1と同様に電子線を照射量を変えて照射した。照射後に実施例1と同様に延伸し、最大2.5倍まで延伸させ、熱収縮チューブのサンプルを作成した。   Using the same polylactic acid and TAIC as in Example 1, a heat shrinkable tube was formed from this kneaded product. The tube was irradiated with an electron beam at a different dose in the same manner as in Example 1. After irradiation, the sample was stretched in the same manner as in Example 1 and stretched up to 2.5 times to prepare a sample of a heat-shrinkable tube.

収縮チューブとした場合においても、TAICが1.0重量%以上は必要で、電子線の照射量は10〜50kGyでゲル分率10〜90%とできることが確認できた。   Even in the case of a shrinkable tube, it was confirmed that TAIC is required to be 1.0% by weight or more, and the gel fraction can be 10 to 90% at an electron beam irradiation amount of 10 to 50 kGy.

上記したように、本発明の生分解性熱収縮材は、電子線を照射してゲル分率を10〜90%、好ましくは50〜70%の架橋構造としているため、耐熱性を有すると共に延伸後において、該延伸時の温度で熱収縮させると、架橋している網目のネットワークが形状記憶により収縮し、該収縮率を40〜80%と従来品より大きくすることができる。   As described above, the biodegradable heat-shrinkable material of the present invention is irradiated with an electron beam to have a gel fraction of 10 to 90%, preferably 50 to 70%, and thus has heat resistance and stretched. Later, when the film is thermally shrunk at the temperature at the time of stretching, the cross-linked network is shrunk by shape memory, and the shrinkage rate can be made 40-80% larger than the conventional product.

(A)〜(D)は本発明のシートの架橋構造、延伸構造、ガラス転移温度時の構造、熱収縮構造をそれぞれ示す概略図である。(A)-(D) are the schematic which shows the bridge | crosslinking structure of the sheet | seat of this invention, an extending | stretching structure, the structure at the time of a glass transition temperature, and a heat contraction structure, respectively. (A)〜(D)は架橋構造とされていない場合の概略図である。(A)-(D) are the schematic when not having a crosslinked structure. 電子線照射量とゲル分率の関係を示すグラフである。It is a graph which shows the relationship between an electron beam irradiation amount and a gel fraction. 収縮温度と収縮率の関係を示すグラフである。It is a graph which shows the relationship between shrinkage temperature and shrinkage rate.

符号の説明Explanation of symbols

A 結晶部分
B 非結晶部分
C 網目
A Crystal part B Non-crystal part C Network

Claims (6)

生分解性脂肪族ポリエステルと低濃度のアリル基を有するモノマーの混合物からなり、電離性放射線の照射あるいは化学開始剤の混合で架橋構造とされた状態で加熱下で延伸されており、
延伸時の温度以上で加熱されると収縮率が40%以上80%以下の範囲で収縮する構成としていることを特徴とする生分解性熱収縮材。
It consists of a mixture of a biodegradable aliphatic polyester and a monomer having a low concentration of allyl groups, and is stretched under heating in a state of a crosslinked structure by irradiation with ionizing radiation or mixing of a chemical initiator,
A biodegradable heat-shrinkable material, characterized in that when it is heated at a temperature equal to or higher than the temperature at the time of stretching, the shrinkage rate is shrunk in a range of 40% to 80%.
上記生分解性脂肪族ポリエステルとしてポリ乳酸を用い、ゲル分率(ゲル分乾燥重量/初期乾燥重量)は10%以上90%以下で、140℃以下では収縮率が10%未満で、160℃以上で収縮率が40%以上80%以下である請求項1に記載の生分解性熱収縮材。   Polylactic acid is used as the biodegradable aliphatic polyester, and the gel fraction (gel fraction dry weight / initial dry weight) is 10% or more and 90% or less, and the shrinkage is less than 10% at 140 ° C. or less, and 160 ° C. or more. The biodegradable heat-shrinkable material according to claim 1, wherein the shrinkage ratio is 40% or more and 80% or less. 生分解性原料中に架橋型多官能性モノマーを低濃度で添加して混練し、該混合物を所要形状に成形した後、
電離性放射線を照射して橋架け反応を生じさせ、ゲル分率を10%以上90%以下とし、 上記電離性放射線の照射後に、生分解性原料の溶融温度以上、溶融温度+20℃以下の範囲で加熱しながら延伸させて形成し、
上記延伸時の温度以上で加熱されると収縮率が40%以上80%以下の範囲で収縮する熱収縮材としていることを特徴とする生分解性熱収縮材の製造方法。
After adding a crosslinkable polyfunctional monomer in a biodegradable raw material at a low concentration and kneading, and molding the mixture into a required shape,
Irradiating with ionizing radiation to cause a cross-linking reaction with a gel fraction of 10% or more and 90% or less, and after irradiation with the ionizing radiation, a range from the melting temperature of the biodegradable raw material to the melting temperature + 20 ° C. It is formed by stretching while heating with
A method for producing a biodegradable heat-shrinkable material, wherein the heat-shrinkable material shrinks when heated at a temperature equal to or higher than the temperature at the time of stretching within a range of 40% to 80%.
生分解性脂肪族ポリエステル中にアリル基を有するモノマーを低濃度で添加して混練し、該混合物を所要形状に成形した後、
電離性放射線を1kGy以上150kGy以下で照射して、橋架け反応を生じさせて架橋構造とし、そのゲル分率(ゲル分乾燥重量/初期乾燥重量)を10%以上90%以下とし、
上記電離性放射線の照射後に60℃〜200℃の範囲で加熱しながら延伸させて形成し、 上記延伸時の温度以上で加熱されると収縮率が40%以上80%以下の範囲で収縮する熱収縮材としていることを特徴とする生分解性熱収縮材の製造方法。
A monomer having an allyl group is added to the biodegradable aliphatic polyester at a low concentration and kneaded, and the mixture is molded into a required shape.
Irradiating with ionizing radiation at 1 kGy or more and 150 kGy or less to cause a crosslinking reaction to form a crosslinked structure, and a gel fraction (gel content dry weight / initial dry weight) of 10% to 90%,
Heat that is stretched while being heated in the range of 60 ° C. to 200 ° C. after irradiation with the ionizing radiation, and contracts in a range of 40% to 80% when contracted at a temperature equal to or higher than the temperature during the stretching. A method for producing a biodegradable heat-shrinkable material, characterized by comprising a shrinkable material.
上記生分解性脂肪族ポリエステルとしてポリ乳酸を用い、配合する上記アリル基を有するモノマーはポリ乳酸100重量%に対して、0.7重量%以上3.0重量%以下で添加して混練し、
上記混合物を、薄いフィルム状、厚みのあるシート状、チューブ状に成形後に、電離性放射線を5kGy以上50kGy以下で照射して橋架け反応を発生させて架橋構造とし、そのゲル分率を50%以上70%以下とし、
上記架橋構造とした後に、150℃以上180℃以下で加熱して、延伸倍率2〜5倍に延伸している請求項4に記載の生分解性熱収縮材の製造方法。
Polylactic acid is used as the biodegradable aliphatic polyester, and the monomer having an allyl group to be blended is added in an amount of 0.7% by weight to 3.0% by weight with respect to 100% by weight of the polylactic acid, and is kneaded.
After the mixture is formed into a thin film, a thick sheet, or a tube, ionizing radiation is irradiated at 5 kGy or more and 50 kGy or less to generate a crosslinking reaction to form a crosslinked structure, and the gel fraction is 50%. More than 70%,
The method for producing a biodegradable heat-shrinkable material according to claim 4, wherein after the cross-linked structure is formed, the film is heated at 150 ° C or higher and 180 ° C or lower and drawn at a draw ratio of 2 to 5 times.
上記アリル基を有するモノマーとしてトリアリルイソシアヌレートを用い、該トリアリルイソシアヌレートの配合量をポリ乳酸100重量%に対して0.7重量%以上2.0重量%以下とし、該混合物を成形後に、電子線を10kGy以上30kGy以下で照射し、かつ、上記延伸時において160℃以上180℃以下で加熱している請求項5に記載の生分解性熱収縮材の製造方法。   Triallyl isocyanurate is used as the above-mentioned monomer having an allyl group, the blending amount of the triallyl isocyanurate is 0.7% by weight or more and 2.0% by weight or less with respect to 100% by weight of polylactic acid, and the mixture is molded. The method for producing a biodegradable heat-shrinkable material according to claim 5, wherein the electron beam is irradiated at 10 kGy or more and 30 kGy or less and heated at 160 ° C or more and 180 ° C or less during the stretching.
JP2003365058A 2003-10-24 2003-10-24 Biodegradable heat shrinkable material and method for producing the biodegradable heat shrinkable material Expired - Fee Related JP4231381B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003365058A JP4231381B2 (en) 2003-10-24 2003-10-24 Biodegradable heat shrinkable material and method for producing the biodegradable heat shrinkable material
DE112004001201T DE112004001201T5 (en) 2003-10-24 2004-10-20 Biodegradable material and manufacturing process for the same
PCT/JP2004/015482 WO2005040255A1 (en) 2003-10-24 2004-10-20 Biodegradable material and process for producing the same
US10/569,966 US20060160984A1 (en) 2003-10-24 2004-10-20 Biodegradable material and process for producing the same
CN200810181267XA CN101423592B (en) 2003-10-24 2004-10-20 Biodegradable material and process for producing the same
KR1020067004311A KR20060135605A (en) 2003-10-24 2004-10-20 Biodegradable material and process for producing the same
TW093132103A TWI336706B (en) 2003-10-24 2004-10-22 Biodegradable material and process for producing said biodegradable material
US12/276,711 US20090085260A1 (en) 2003-10-24 2008-11-24 Biodegradable material and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365058A JP4231381B2 (en) 2003-10-24 2003-10-24 Biodegradable heat shrinkable material and method for producing the biodegradable heat shrinkable material

Publications (2)

Publication Number Publication Date
JP2005125674A true JP2005125674A (en) 2005-05-19
JP4231381B2 JP4231381B2 (en) 2009-02-25

Family

ID=34643855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365058A Expired - Fee Related JP4231381B2 (en) 2003-10-24 2003-10-24 Biodegradable heat shrinkable material and method for producing the biodegradable heat shrinkable material

Country Status (1)

Country Link
JP (1) JP4231381B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092031A (en) * 2005-08-30 2007-04-12 Sumitomo Electric Fine Polymer Inc Crosslinked material of polylactic acid and method for manufacturing the same
JP2008036911A (en) * 2006-08-03 2008-02-21 Japan Atomic Energy Agency Heat-shrinkable material made of polylactic acid
JP2011148739A (en) * 2010-01-22 2011-08-04 Shikoku Chem Corp Diallyl isocyanurate compound
CN114015185A (en) * 2021-10-20 2022-02-08 界首市天鸿新材料股份有限公司 Biodegradable heat shrinkable film and processing technology thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092031A (en) * 2005-08-30 2007-04-12 Sumitomo Electric Fine Polymer Inc Crosslinked material of polylactic acid and method for manufacturing the same
JP2008036911A (en) * 2006-08-03 2008-02-21 Japan Atomic Energy Agency Heat-shrinkable material made of polylactic acid
JP2011148739A (en) * 2010-01-22 2011-08-04 Shikoku Chem Corp Diallyl isocyanurate compound
CN114015185A (en) * 2021-10-20 2022-02-08 界首市天鸿新材料股份有限公司 Biodegradable heat shrinkable film and processing technology thereof
CN114015185B (en) * 2021-10-20 2024-01-12 界首市天鸿新材料股份有限公司 Biodegradable heat-shrinkable film and processing technology thereof

Also Published As

Publication number Publication date
JP4231381B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
US20090085260A1 (en) Biodegradable material and process for producing the same
WO2006098159A1 (en) Process for producing crosslinked material of polylactic acid and crosslinked material of polylactic acid
JP4238174B2 (en) Production method of transparent material made of polylactic acid and transparent material made of polylactic acid
KR20080015367A (en) Molding material, molded part, and method for manufacturing them
KR20070122461A (en) Polylactic acid complex and production method thereof
JP4231381B2 (en) Biodegradable heat shrinkable material and method for producing the biodegradable heat shrinkable material
CN100453581C (en) Biodegradable material and process for producing the same
JP3759067B2 (en) Method for producing crosslinked biodegradable material
JP2006249384A (en) Method for producing cross-linked material made of polylactic acid and the cross-linked material made of polylactic acid
JP3767195B2 (en)   Method for producing plasticized polylactic acid composition
JP2008291095A (en) Method for producing resin crosslinked product and resin crosslinked product produced by the production method
JP2007063359A (en) Heat-resistant polylactic acid and method for producing the same
JP2007182484A (en) Method for producing crosslinked molded article of polylactic acid, and crosslinked molded article of polylactic acid
JP4926594B2 (en) Method for producing heat-shrinkable material made of polylactic acid and heat-shrinkable material made of polylactic acid produced by the method
JP2008001837A (en) Biodegradable resin composite material and method for producing the same
JP2008163136A (en) Polylactic acid composite and manufacturing method of polylactic acid composite
US20080207844A1 (en) Exterior member for electronic devices and electronic device equipped with externally connecting terminal cap comprising the same
JP4238113B2 (en) Heat-resistant crosslinked product having biodegradability and method for producing the heat-resistant crosslinked product
JP4977418B2 (en) Method for producing polylactic acid crosslinking material and polylactic acid crosslinking material
JP5126670B2 (en) Method for producing heat-resistant biodegradable polyester
JP2006335904A (en) Polylactic acid-based oriented film
JP4761105B2 (en) Highly efficient crosslinking method for biodegradable polyester
JP2005126603A (en) Heat resistant crosslinked product having biodegradability and method for producing the same
JP5167540B2 (en) Method for producing heat-responsive material and heat-responsive material
JP4366848B2 (en) Method for producing crosslinked soft lactic acid polymer and composition thereof

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20051005

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081205

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees