JP2005125319A - Method and apparatus for power generation by organic waste - Google Patents

Method and apparatus for power generation by organic waste Download PDF

Info

Publication number
JP2005125319A
JP2005125319A JP2004287743A JP2004287743A JP2005125319A JP 2005125319 A JP2005125319 A JP 2005125319A JP 2004287743 A JP2004287743 A JP 2004287743A JP 2004287743 A JP2004287743 A JP 2004287743A JP 2005125319 A JP2005125319 A JP 2005125319A
Authority
JP
Japan
Prior art keywords
gas
power generation
gaseous fuel
organic waste
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004287743A
Other languages
Japanese (ja)
Other versions
JP4461209B2 (en
Inventor
Akiko Miya
晶子 宮
Naoaki Kataoka
直明 片岡
Roberto Masahiro Serikawa
ロベルト正浩 芹川
Takashi Usui
高史 臼井
Takayuki Suzuki
隆幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2004287743A priority Critical patent/JP4461209B2/en
Publication of JP2005125319A publication Critical patent/JP2005125319A/en
Application granted granted Critical
Publication of JP4461209B2 publication Critical patent/JP4461209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economical and extremely low environmental-load technology which produces electric energy from organic waste by using biological reactions and chemical reactions. <P>SOLUTION: The method and the apparatus for power generation by the organic waste are characterized in that, in the power generation method by the organic waste comprising a process for producing gaseous fuel from the organic waste by the biological reactions, a gas purification process for purifying gas obtained from the gaseous fuel production process, and a power generation process for supplying the purified gas and generating power, whole or a part of waste liquid containing a residue discharged from the process for producing the gaseous fuel by the biological reactions is fed to a hydrothermal electrolysis process for supplying a direct current, at a temperature not less than 100°C and below the critical temperature of the waste liquid, under the pressure making the waste liquid maintain its liquid phase, and hydrogen gas recovered in the hydrothermal electrolysis process is used after being mixed with gas obtained from the gaseous fuel production process, or both gases are used independently. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機性廃棄物から生物反応と化学反応を利用して発電する技術に関する。   The present invention relates to a technique for generating power from organic waste by utilizing biological reactions and chemical reactions.

近年、バイオマスから生産されるエネルギーは、CO排出量に算入されないカーボンニュートラルなエネルギーとして注目されている。バイオマスには、間伐材や建設廃材のような木質系バイオマスや農作物残渣のほかに、生ごみや下水汚泥などの廃棄物系バイオマスがあるが、特に廃棄物系バイオマスは、本来的に環境負荷の面から処理・処分が必要なものである。 In recent years, energy produced from biomass has attracted attention as carbon neutral energy that is not included in CO 2 emissions. Biomass includes waste biomass, such as garbage and sewage sludge, in addition to woody biomass such as thinned wood and construction waste, and crop residues. It needs to be treated and disposed of from the surface.

メタン発酵は、生ごみや畜産廃棄物、下水汚泥等の有機性廃棄物の減量・安定化方法として古くから適用されてきたが、近年は未利用バイオマス資源からのエネルギー回収方法として位置付けられるようになってきた。回収されるエネルギーの形態としては、燃料としてのメタンガスそのもの、熱、及び電気エネルギーなどがあるが、汎用性の面では電気エネルギーとすることが最もよい。発電装置としては、従来からガスエンジンやガスタービンなどのような熱機関を利用して発電する装置が用いられてきたが、近年は比較的小規模な設備にも適応できる高効率の発電装置として、燃料電池が注目されている。   Methane fermentation has long been applied as a method for reducing and stabilizing organic waste such as food waste, livestock waste, and sewage sludge, but in recent years it has been positioned as a method for recovering energy from unused biomass resources. It has become. The form of energy to be recovered includes methane gas itself as a fuel, heat, electric energy, and the like, but electric energy is the best in terms of versatility. As a power generation device, a device that generates power using a heat engine such as a gas engine or a gas turbine has been used, but in recent years, as a high-efficiency power generation device that can be applied to relatively small-scale facilities. Fuel cells are attracting attention.

しかしながら、有機性廃棄物のメタン発酵においては、発生ガスの主要成分はメタン(60〜70%)およびCO(30〜40%)であるが、そのほかに微量成分として硫化水素、アンモニア、メチルメルカプタン、塩化水素、SOx、NOx、CO、シロキサンなどが含まれる。ガスエンジンやガスタービンなどでは、硫化水素などの酸性ガスは装置内の腐食を引き起こし、また、シロキサンはガスの流れを阻害したり堆積物の原因となるため、それらの有害成分を除去するための様々なガス精製装置が開発されている(特許文献1など参照)。 However, in the methane fermentation of organic waste, although the major component of the generated gas is methane (60% to 70%) and CO 2 (30 to 40%), hydrogen sulfide as a minor component in other, ammonia, methyl mercaptan , Hydrogen chloride, SOx, NOx, CO, siloxane and the like. In gas engines, gas turbines, etc., acidic gases such as hydrogen sulfide cause corrosion in the equipment, and siloxanes block gas flow and cause deposits. Various gas purification apparatuses have been developed (see Patent Document 1).

一方、現在実用レベルにある固体高分子型燃料電池又はリン酸型燃料電池においては、燃料となる物質は水素であるため、メタンを水素に変換するガス改質工程が必須であり、且つ、硫化水素などの酸性ガスの制限が、ガスエンジンやガスタービンなどに比べて非常に厳しい(300〜5000倍)ほか、アンモニアやCO、シロキサン濃度にも制限があるため、より一層の高度なガス精製工程が必要であった(特許文献2など参照)。   On the other hand, in a polymer electrolyte fuel cell or a phosphoric acid fuel cell that is currently in practical use, since the fuel substance is hydrogen, a gas reforming process that converts methane to hydrogen is essential, and sulfurization is also required. The restriction of acidic gases such as hydrogen is very strict (300 to 5000 times) compared to gas engines and gas turbines, and the ammonia, CO, and siloxane concentrations are also limited, so even more sophisticated gas purification processes. Is necessary (see Patent Document 2, etc.).

特開2002−275482号公報JP 2002-275482 A 特開2001−804046号公報Japanese Patent Laid-Open No. 2001-804046

以上に述べたように、有機性廃棄物から生物反応を利用してメタンのような気体燃料を生産し、これを利用して発電する装置においては、発電装置に有害な成分を除去するためのガス精製装置が必要であり、特に燃料電池を利用する場合は、メタンを水素に変換するガス改質工程と高度のガス精製工程を必要としていた。   As described above, in a device that produces a gaseous fuel such as methane from organic waste using a biological reaction and generates electricity using this, it is necessary to remove harmful components from the power generation device. A gas purification apparatus is required, and particularly when a fuel cell is used, a gas reforming process for converting methane into hydrogen and a high-level gas purification process are required.

本発明は、このような従来の課題に鑑みてなされたものであり、有機性廃棄物から生物反応と化学反応を利用して電気エネルギーを生産する経済的、且つ環境負荷が極めて低い技術を提供することを課題とするものである。   The present invention has been made in view of such conventional problems, and provides an economical and extremely low environmental impact technology for producing electrical energy from organic waste using biological and chemical reactions. It is an object to do.

上記課題を解決するために、本発明者らは、有機性廃棄物から生物反応を用いて気体燃料を生産した後の残渣を含む廃液の全量又は一部を、100℃以上前記廃液の臨界温度未満の温度において、前記廃液が液相を維持する圧力の下、直流電流を供給する水熱電気分解した後に、有機物から微生物作用(例:エタノール発酵、乳酸発酵、水素発酵、メタン発酵)によるアルコール類や気体燃料などの有価物を生産する有価物生産工程へ戻すことにより、有価物生産量を増加させると共に、廃液の有機物濃度、窒素濃度を大幅に削減できること、同時に水熱電気分解工程において水素ガスを回収できることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors set the total amount or a part of the waste liquid containing the residue after producing the gaseous fuel from the organic waste by using a biological reaction at a critical temperature of 100 ° C. or higher. Alcohol by microbial action (eg ethanol fermentation, lactic acid fermentation, hydrogen fermentation, methane fermentation) from organic matter after hydrothermal electrolysis that supplies direct current under pressure that maintains the liquid phase of the waste liquid at a temperature below By returning to the valuable production process that produces valuables such as fuel and gaseous fuel, the production of valuable resources can be increased and the organic matter concentration and nitrogen concentration in the waste liquid can be greatly reduced. The present inventors have found that gas can be recovered and have completed the present invention.

すなわち、本発明は、下記の手段により上記の課題を解決した。
(1)有機性廃棄物から生物反応によって気体燃料を生産する工程と、気体燃料を生産する工程から得られたガスを精製するガス精製工程と、精製したガスを供給して発電する発電工程とを有する有機性廃棄物による発電方法において、生物反応によって気体燃料を生産する工程から排出される残渣を含む廃液の全量又は一部を、100℃以上前記廃液の臨界温度未満の温度において、前記廃液が液相を維持する圧力の下、直流電流を供給する水熱電気分解工程に供給され、該水熱電気分解工程において回収される水素ガスを、気体燃料を生産する工程から得られたガスと併せて、又はそれぞれのガスを単独に両者とも利用することを特徴とする有機性廃棄物による発電方法。
That is, the present invention has solved the above problems by the following means.
(1) A process for producing gaseous fuel from organic waste by a biological reaction, a gas purification process for purifying gas obtained from the process for producing gaseous fuel, and a power generation process for generating electricity by supplying the purified gas In the power generation method using the organic waste having the above, the total amount or a part of the waste liquid containing the residue discharged from the step of producing the gaseous fuel by the biological reaction at a temperature of 100 ° C. or higher and lower than the critical temperature of the waste liquid. Is supplied to a hydrothermal electrolysis process for supplying a direct current under a pressure that maintains a liquid phase, and hydrogen gas recovered in the hydrothermal electrolysis process is obtained by using a gas obtained from a process for producing gaseous fuel. A power generation method using organic waste, characterized by using both of them individually or individually.

(2)精製したガスを供給して発電する発電工程が、燃料電池を含むことを特徴とする前記(1)に記載の有機性廃棄物による発電方法。
(3)ガス精製工程がメタンを水素ガスに改質する工程を含むことを特徴とする前記(1)又は(2)に記載の有機性廃棄物による発電方法。
(4)精製したガスを供給して発電する発電工程が熱機関を利用して発電する工程であり、且つ前記水熱電気分解工程において回収される水素ガスを供給して発電する発電工程が、燃料電池を利用して発電する工程であることを特徴とする前記(1)〜(3)のいずれか1項に記載の有機性廃棄物による発電方法。
(2) The power generation method using the organic waste according to (1), wherein the power generation step of generating power by supplying purified gas includes a fuel cell.
(3) The power generation method using organic waste according to (1) or (2) above, wherein the gas purification step includes a step of reforming methane to hydrogen gas.
(4) A power generation step of generating power by supplying purified gas is a step of generating power using a heat engine, and a power generation step of generating power by supplying hydrogen gas recovered in the hydrothermal electrolysis step, The power generation method using organic waste according to any one of (1) to (3), wherein the power generation is performed using a fuel cell.

(5)有機性廃棄物から生物反応によって気体燃料を生産する装置と、気体燃料を生産する工程から得られたガスを精製するガス精製装置と、気体燃料を生産する工程から排出される残渣を含む廃液の全量又は一部が供給される、100℃以上前記廃液の臨界温度未満の温度において、前記廃液が液相を維持する圧力の下、直流電流を供給する水熱電気分解装置と、前記精製したガス及び前記水熱電気分解装置において回収される水素ガスを供給して発電する発電装置とを有することを特徴とする有機性廃棄物による発電装置。 (5) An apparatus for producing gaseous fuel from organic waste by a biological reaction, a gas purification apparatus for purifying gas obtained from the process for producing gaseous fuel, and a residue discharged from the process for producing gaseous fuel. A hydrothermal electrolysis apparatus that supplies a direct current under a pressure at which the waste liquid maintains a liquid phase at a temperature that is 100 ° C. or higher and lower than the critical temperature of the waste liquid, in which all or a part of the waste liquid is supplied. A power generation apparatus using organic waste, comprising: a power generation apparatus that generates electricity by supplying purified gas and hydrogen gas recovered in the hydrothermal electrolysis apparatus.

本発明においては、有価物を生産する工程から排出される残渣を大幅に低減し、環境負荷が極めて低い、有機性廃棄物からの発電方法を提供することができる。特に、固体性あるいは高濃度の有機性廃棄物から、生物反応を利用して水素やメタンなどの気体燃料を生産する工程は、大量の残渣を含む廃液を排出するため、残渣あるいは環境負荷低減の効果がより発揮される。また、規模に適正な発電システムを選択できるため、CO排出量削減に大きく貢献することができる。さらに、前記廃液を水熱電気分解することにより水素ガスが得られるので、それを用いて発電量を増加させることができる。 In the present invention, it is possible to provide a method for generating electricity from organic waste that significantly reduces the residue discharged from the process of producing valuable materials and has an extremely low environmental load. In particular, the process of producing gaseous fuels such as hydrogen and methane from solid or high-concentration organic wastes using biological reactions discharges waste liquids that contain a large amount of residues, thus reducing residues or environmental impact. More effective. Moreover, since a power generation system suitable for the scale can be selected, it can greatly contribute to the reduction of CO 2 emissions. Furthermore, since hydrogen gas is obtained by hydrothermally electrolyzing the waste liquid, it is possible to increase the amount of power generation using the hydrogen gas.

本発明において、有機性廃棄物から生物反応によって生産される気体燃料は、メタン及び/又は水素を含む気体であることが望ましいが、メタンが主体である場合、メタン濃度が60%以上であることが好ましく、さらにメタン濃度が70%以上であることが好ましい。   In the present invention, the gaseous fuel produced by the biological reaction from the organic waste is preferably a gas containing methane and / or hydrogen, but when methane is the main component, the methane concentration is 60% or more. It is preferable that the methane concentration be 70% or more.

有機性廃棄物からメタン及び/又は水素を含む気体燃料を生物学的方法を用いて生産する好ましい態様としては、酸発酵法や水素発酵法、メタン発酵法などが挙げられる。これらはいずれもが嫌気性処理法と称される発酵法であり、温度30〜70℃、pH5〜8.5、酸化還元電位−100〜−600mVでの嫌気性雰囲気下で有価物であるメタン及び/又は水素を含む気体燃料を生産する。なお、これらの嫌気性発酵系では微生物菌体(余剰汚泥)、アンモニア態窒素も生成され、さらには難分解性の固形物が未分解残渣として残存する。   Preferable embodiments for producing a gaseous fuel containing methane and / or hydrogen from an organic waste using a biological method include an acid fermentation method, a hydrogen fermentation method, a methane fermentation method, and the like. These are all fermentative methods called anaerobic treatment methods, such as methane and / or a valuable material in an anaerobic atmosphere at a temperature of 30 to 70 ° C., a pH of 5 to 8.5, and a redox potential of −100 to −600 mV. Or produce gaseous fuel containing hydrogen. In these anaerobic fermentation systems, microbial cells (excess sludge) and ammonia nitrogen are also produced, and solids that are hardly decomposable remain as undegraded residues.

ここで水素発酵法とは、有機性廃棄物の固形物が加水分解された後、酸発酵、エタノール発酵、乳酸発酵などの嫌気性発酵過程で水素生成を行わせる生物反応プロセスである。水素発酵工程では、反応温度30〜70℃、pH4.5〜7より好ましくはpH5〜6、水理学的滞留時間(HRT)1〜5日で行うことが好ましい。特に、有機性廃棄物の種類によっては可溶化段階が反応律速となりやすいことから、温度45〜70℃の高温反応でHRT 2〜5日で行うことが好ましい。酸発酵、乳酸発酵、エタノール発酵、水素発酵などの工程では、水素、二酸化炭素、硫化水素の他に、蟻酸、酢酸、プロピオン酸、乳酸、酪酸、吉草酸、カプロン酸などの有機酸、エタノール、プロパノール、2、3-ブタンジオール、アセトン、ブタノールなどのアルコール類が主に生成される。   Here, the hydrogen fermentation method is a biological reaction process in which hydrogen is generated in an anaerobic fermentation process such as acid fermentation, ethanol fermentation, and lactic acid fermentation after the solid matter of organic waste is hydrolyzed. In the hydrogen fermentation step, the reaction is preferably performed at a reaction temperature of 30 to 70 ° C., pH 4.5 to 7, more preferably pH 5 to 6, and a hydraulic residence time (HRT) of 1 to 5 days. In particular, depending on the type of organic waste, the solubilization step tends to be rate-determining, so it is preferable to carry out the reaction at a high temperature of 45 to 70 ° C. for 2 to 5 days. In processes such as acid fermentation, lactic acid fermentation, ethanol fermentation, hydrogen fermentation, in addition to hydrogen, carbon dioxide, hydrogen sulfide, organic acids such as formic acid, acetic acid, propionic acid, lactic acid, butyric acid, valeric acid, caproic acid, ethanol, Alcohols such as propanol, 2,3-butanediol, acetone and butanol are mainly produced.

メタン発酵ではメタン、二酸化炭素、硫化水素、アンモニアなどのバイオガスが主に生産される。メタン発酵では、分解された有機物1kgあたり0.35m3(標準状態)のメタンが生産される。メタン発酵法については、発酵温度30〜70℃、好ましくは35〜40℃の中温性メタン発酵領域又は50〜65℃の高温性メタン発酵領域で行う。これは、多くの中温性又は高温性メタン生成細菌群やその他の嫌気性細菌群の生育至適温度がこれらの範囲内にあるためである。pH条件はpH6〜9より好ましくはpH7〜8、HRTは5〜30日より好ましくは10〜25日の操作条件で運転することが好ましい。 In methane fermentation, biogas such as methane, carbon dioxide, hydrogen sulfide and ammonia is mainly produced. In methane fermentation, 0.35 m 3 (standard state) of methane is produced per 1 kg of decomposed organic matter. The methane fermentation method is performed in a fermentation temperature of 30 to 70 ° C, preferably in a mesophilic methane fermentation region of 35 to 40 ° C or in a high temperature methane fermentation region of 50 to 65 ° C. This is because the optimum growth temperature of many mesophilic or thermophilic methanogenic bacteria and other anaerobic bacteria is within these ranges. The pH conditions are preferably pH 6-9, more preferably pH 7-8, and HRT is preferably operated under the operating conditions of 5-30 days, more preferably 10-25 days.

本発明に係わる有機性廃棄物処理のメタン発酵工程では、反応処理形式として、浮遊床型、固定床型、流動床型、UASB(上向流式嫌気性スラッジブランケット)型のいずれにおいても適用可能である。この選択に際しては、特にSS(Suspended Solids)濃度、油脂濃度に注意を払う必要がある。具体的には、SS濃度2,000mg/L以上の場合には浮遊床型メタン発酵を適用することが好ましい。また、油脂濃度としては、1,000mg/L以上の場合には浮遊床型メタン発酵を適用することが好ましい。メタン発酵槽内においては中性脂肪や高級脂肪酸は温度が高いほうが分散性が増すため、油脂成分の多く含まれる廃棄物原料を適用する場合には、50〜65℃の高温メタン発酵方法を選択することが好ましい。   In the methane fermentation process of organic waste treatment according to the present invention, any of the floating treatment type, fixed bed type, fluidized bed type, and UASB (upward flow type anaerobic sludge blanket) type can be applied as a reaction treatment type. It is. In this selection, it is necessary to pay particular attention to the SS (Suspended Solids) concentration and the fat and oil concentration. Specifically, when the SS concentration is 2,000 mg / L or more, it is preferable to apply floating bed type methane fermentation. In addition, when the oil and fat concentration is 1,000 mg / L or more, it is preferable to apply floating bed type methane fermentation. In the methane fermenter, neutral fats and higher fatty acids have higher dispersibility at higher temperatures, so when applying waste materials that contain a large amount of fats and oils, select a high-temperature methane fermentation method of 50 to 65 ° C. It is preferable to do.

本発明において、気体燃料を生産する工程から得られたガスを精製するガス精製工程は、発電装置に供給するガスを精製する装置であれば、どのような型の装置でも用いることができるが、ガスエンジン、ガスタービンなどの熱機関を利用して発電する発電装置に供給する場合には、それに適した装置を使用することが好ましい。一般にはガス中の硫化水素を除去するための脱硫装置を用いる。脱硫装置としては、水酸化鉄もしくはマグネシウム類を主成分とするペレット状又は粉末状脱硫剤による乾式脱硫装置、微生物反応を利用して湿式脱硫する微生物脱硫装置などを用いる。脱硫装置によって、気体燃料中の硫化水素濃度を10mg/L以下、好ましくは1mg/L以下、より好ましくは0.1mg/L以下に脱硫する。   In the present invention, the gas purification step for purifying the gas obtained from the step of producing the gaseous fuel can be any type of device as long as it is a device for purifying the gas supplied to the power generation device, When supplying to a power generation device that generates power using a heat engine such as a gas engine or a gas turbine, it is preferable to use a device suitable for the power generation device. In general, a desulfurization apparatus for removing hydrogen sulfide in the gas is used. As the desulfurization apparatus, a dry desulfurization apparatus using a pellet or powder desulfurization agent mainly composed of iron hydroxide or magnesium, a microbial desulfurization apparatus that performs wet desulfurization using a microbial reaction, or the like is used. By the desulfurization apparatus, the hydrogen sulfide concentration in the gaseous fuel is desulfurized to 10 mg / L or less, preferably 1 mg / L or less, more preferably 0.1 mg / L or less.

本発明において、有機性廃棄物から微生物によって気体燃料を生産する工程から排出される残渣を含む廃液の全量又は一部を経由させる水熱電気分解方法においては、水熱反応と電気分解とを同時に行うことにより、有機物、アンモニア等の還元性物質を効果的に酸化分解することができるが、酸化剤の添加を極めて少量あるいは酸化剤無添加で水熱電気分解反応を行った場合の反応は、有機性汚泥が対象であるとき、例えば式(1)のように表すことができる。   In the present invention, in the hydrothermal electrolysis method that passes through all or part of the waste liquid containing residues discharged from the process of producing gaseous fuel by microorganisms from organic waste, hydrothermal reaction and electrolysis are performed simultaneously. By doing so, reducing substances such as organic substances and ammonia can be effectively oxidatively decomposed. However, when a hydrothermal electrolysis reaction is performed with very little or no oxidant added, When organic sludge is a target, it can be expressed as, for example, Equation (1).

NO+8HO → 11.5H+5CO+0.5N・・・(1)
また、アンモニアが対象であると、式(2)に示すように、
2NH → N+3H・・・(2)
となり、水素ガスが発生する。すなわち、還元的な雰囲気で水熱反応と電気分解を同時に行った場合、常温常圧下とは異なり、酸素と水素が同時に発生する反応は起こらず、アンモニアから水素を安全に発生させることができる。
C 5 H 7 NO 2 + 8H 2 O → 11.5H 2 + 5CO 2 + 0.5N 2 (1)
If ammonia is the target, as shown in equation (2),
2NH 3 → N 2 + 3H 2 (2)
Thus, hydrogen gas is generated. That is, when the hydrothermal reaction and electrolysis are simultaneously performed in a reducing atmosphere, unlike the normal temperature and normal pressure, the reaction in which oxygen and hydrogen are generated simultaneously does not occur, and hydrogen can be generated safely from ammonia.

水熱電気分解反応では、有機物あるいはアンモニアの濃度、反応温度、圧力、反応液のpHや酸化剤添加の有無などにより除去率が異なるので、本発明において、微生物を用いて有価物を生産する工程から排出される残渣を含む廃液中に含まれる有機物、あるいはアンモニアの水熱電気分解反応工程での除去率は、水熱電気分解反応工程へ移送する廃液の割合と、水熱電気分解反応の条件によって調整することができる。   In the hydrothermal electrolysis reaction, the removal rate varies depending on the concentration of organic matter or ammonia, the reaction temperature, pressure, pH of the reaction solution, the presence or absence of the addition of an oxidant, and the like in the present invention, a process for producing valuable materials using microorganisms. The removal rate in the hydrothermal electrolysis reaction process of organic matter or ammonia contained in the waste liquid including residues discharged from the wastewater is determined by the ratio of the waste liquid transferred to the hydrothermal electrolysis reaction process and the conditions of the hydrothermal electrolysis reaction. Can be adjusted by.

水熱電気分解の基本反応を説明する。常温常圧で水溶液の電気分解を行うと、陽極で酸素または塩素イオン等のハロゲンが含まれると次亜ハロゲン酸が発生する。アンモニアまたは有機物が含まれていてもこの場合酸化反応の効率が悪くほとんど進行しないかまたは非常に遅い反応となるため基本的には酸素が陽極で多く発生する。この場合陰極では水素が多く発生する。
水熱条件で同じ電気分解反応を行うと酸素、次亜ハロゲン酸が発生せず(または発生してもすぐ消費され)有機物、アンモニアが酸化分解され、CO2、N2と水になる。この場合も陰極で水素が発生する。
The basic reaction of hydrothermal electrolysis will be described. When the aqueous solution is electrolyzed at room temperature and normal pressure, hypohalous acid is generated when halogen such as oxygen or chlorine ions is contained in the anode. Even if ammonia or an organic substance is contained, in this case, the efficiency of the oxidation reaction is poor and the reaction hardly proceeds or becomes very slow, so that basically a large amount of oxygen is generated at the anode. In this case, a large amount of hydrogen is generated at the cathode.
When the same electrolysis reaction is performed under hydrothermal conditions, oxygen and hypohalous acid are not generated (or consumed immediately after generation), and the organic substance and ammonia are oxidatively decomposed into CO 2 , N 2 and water. Again, hydrogen is generated at the cathode.

アンモニア、有機物が含まれている水溶液を水熱電気分解している反応場に外部から酸素等の酸化剤を積極的に挿入すると陰極では水素が発生せず、酸素が活性酸素に変換される。この活性酸素はアンモニア、有機物を酸化させる。陽極では同じくこれらのアンモニア、有機物を酸化させる反応が進行するので水溶液の汚染物質がすべて炭酸ガス、窒素ガスに無機化される。しかし、水素ガスはこの場合発生しないため、酸素を積極的に添加した水熱電気分解の反応はあくまでも浄化反応であり有価物回収反応にはならない。   When an oxidant such as oxygen is positively inserted from the outside into a reaction field in which an aqueous solution containing ammonia and organic substances is hydrothermally electrolyzed, hydrogen is not generated at the cathode, and oxygen is converted into active oxygen. This active oxygen oxidizes ammonia and organic matter. Similarly, at the anode, a reaction for oxidizing these ammonia and organic substances proceeds, so that all contaminants in the aqueous solution are mineralized to carbon dioxide and nitrogen gas. However, since hydrogen gas is not generated in this case, the hydrothermal electrolysis reaction in which oxygen is positively added is merely a purification reaction and not a valuable material recovery reaction.

さらに、アンモニア、有機物等の酸化可能な物質が含まれていないただのNaCl水溶液を水熱電気分解すると、今度は水素、酸素及び次亜塩素酸が発生しない。この条件においては「水素と酸素の発生しない水の電気分解」現象が起こる。より正確には陽極、陰極で酸素及び水素が発生している可能性があるが、陽極で発生した酸化剤が陰極で還元されるまたは陰極で発生した水素が陽極で還元されるなど何らかの中和反応が起り(メカニズムはまだ不明)結果的に反応器の中に爆発性の水素と酸素の混合ガス蓄積が起こらない。このような中和反応が進行する、または水素と酸素が同時に発生しないため、水熱電気分解は安全なプロセスとなる。   Furthermore, when a NaCl aqueous solution that does not contain oxidizable substances such as ammonia and organic substances is hydrothermally electrolyzed, hydrogen, oxygen, and hypochlorous acid are not generated. Under this condition, the phenomenon of “electrolysis of water without hydrogen and oxygen” occurs. More precisely, there is a possibility that oxygen and hydrogen are generated at the anode and the cathode, but some neutralization such that the oxidant generated at the anode is reduced at the cathode or the hydrogen generated at the cathode is reduced at the anode. The reaction takes place (the mechanism is still unknown), and as a result, no explosive hydrogen and oxygen gas mixture accumulates in the reactor. Hydrothermal electrolysis is a safe process because such a neutralization reaction proceeds or hydrogen and oxygen are not generated simultaneously.

水熱電気分解では隔膜は基本的に使用しない。その理由のひとつとしてこの水熱の条件に耐える(耐熱性、耐食性、耐圧性の観点から)膜が世の中に存在しない点にある。Nafion(DuPont社、登録商標)のようなフッ素樹脂系の隔膜は150、160℃が使用可能限界である。固体電解質燃料電池で使用されるセラミックス固体電解質、たとえばイットリウム安定化ジルコニアのようなセラミックス系固体電解質は、温度ショックあるいは圧力バランスがくずれた時に割れるあるいは水熱雰囲気で腐食するなどの問題があり、実質的に隔膜は使えない。もうひとつの理由は前記したように隔膜を入れなくとも爆発性のガスが発生しないため、隔膜が必要無い点にある。酸化剤を入れないでアンモニア、有機物を水熱電気分解させる場合は陰極で水素が発生するが陽極ではCO2とNしか発生せず、酸素が発生しないので安全である。隔膜を使わなくとも反応を進行させることが水熱電気分解の長所でもある。
なお、陰極で還元を受けた液と陽極で酸化を受けた液が混合して対極で逆の反応は起こらない。水熱電気分解では水熱の反応雰囲気が基本的には酸化性であるので、有機物、アンモニアを処理対象とする場合、反応全般としては酸化分解反応となる。
In hydrothermal electrolysis, the diaphragm is basically not used. One of the reasons is that there is no film that can withstand this hydrothermal condition (in terms of heat resistance, corrosion resistance, and pressure resistance). For a fluororesin type diaphragm such as Nafion (DuPont, registered trademark), 150 and 160 ° C. are usable limits. Ceramic solid electrolytes used in solid electrolyte fuel cells, for example, ceramic solid electrolytes such as yttrium-stabilized zirconia, have problems such as cracking when the temperature shock or pressure balance is broken or corrosion in a hydrothermal atmosphere. In fact, the diaphragm cannot be used. Another reason is that no diaphragm is required because explosive gas is not generated without a diaphragm as described above. When ammonia and organic substances are hydrothermally electrolyzed without adding an oxidant, hydrogen is generated at the cathode, but only CO 2 and N 2 are generated at the anode, and oxygen is not generated, which is safe. It is also an advantage of hydrothermal electrolysis that the reaction proceeds without using a diaphragm.
Note that the liquid that has undergone reduction at the cathode and the liquid that has undergone oxidation at the anode are mixed and the reverse reaction does not occur at the counter electrode. In hydrothermal electrolysis, the hydrothermal reaction atmosphere is basically oxidative, so when organic matter and ammonia are treated, the overall reaction is an oxidative decomposition reaction.

水熱電気分解の温度条件としては100℃以上の高温高圧の液体の水、好ましくは150℃以上、さらに好ましくは200℃以上、臨界温度374℃未満が好ましい。圧力条件としては該反応温度の飽和蒸気圧以上、好ましくは飽和蒸気圧〜飽和蒸気圧+10MPa、さらに好ましくは飽和蒸気圧〜飽和蒸気圧+3MPaが好ましい。電気分解条件の電圧は1.0V以上〜500V以下、好ましくは1.5V以上、100V以下、さらに好ましくは2V以上、50V以下が好ましい。電気分解の電流密度条件としては0.1mA/cm2以上2000mA/cm2以下、好ましくは1mA/cm2以上1000mA/cm2以下、さらに好ましくは10mA/cm2以上1000mA/cm2以下が好ましい。 The temperature conditions for hydrothermal electrolysis are preferably high-temperature and high-pressure liquid water of 100 ° C. or higher, preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and a critical temperature of less than 374 ° C. As the pressure condition, the saturated vapor pressure or higher of the reaction temperature is preferable, preferably saturated vapor pressure to saturated vapor pressure + 10 MPa, more preferably saturated vapor pressure to saturated vapor pressure + 3 MPa. The voltage under electrolysis conditions is 1.0 V to 500 V, preferably 1.5 V to 100 V, more preferably 2 V to 50 V. The current density conditions of the electrolysis 0.1 mA / cm 2 or more 2000 mA / cm 2 or less, preferably 1 mA / cm 2 or more 1000 mA / cm 2 or less, still more preferably is 10 mA / cm 2 or more 1000 mA / cm 2 or less.

水熱電気分解の反応は処理する水溶液に与えた電気量が大きく影響する。電気量は電流と通電時間の積であり、その単位はC(1クーロン=1As)またはAhである。1Lの水溶液に10Aを1時間通電させると溶液に与えた電気量は10Ah/Lとなる。溶液に含まれる有機物またはアンモニアの分解率はその溶液の初期COD濃度(化学的酸素消費量)によって異なる。本発明では基本的には酸化剤を添加しないまたは少量の酸化剤のみを添加する。この場合、ファラデー則からは1グラムのCODを完全分解するのには3.3Ah与える必要性があることが算出できる。たとえばCODが1g/Lの残渣廃液1Lに3.3Ahの電気量を与えるとその溶液に含まれている有機物及びアンモニアは完全にCO2及び窒素に無機化可能である。残渣廃液のCOD濃度が10g/Lの場合、33Ah/Lを与えると同じく完全無機化することが可能となる。このように水熱電気分解では有機物分解率を電気量で制御することが可能である。 The hydrothermal electrolysis reaction is greatly influenced by the amount of electricity applied to the aqueous solution to be treated. The quantity of electricity is the product of current and energization time, and its unit is C (1 coulomb = 1 As) or Ah. When 10 A is energized for 1 hour in a 1 L aqueous solution, the amount of electricity applied to the solution becomes 10 Ah / L. The decomposition rate of organic matter or ammonia contained in the solution varies depending on the initial COD concentration (chemical oxygen consumption) of the solution. In the present invention, basically, no oxidizing agent is added or only a small amount of oxidizing agent is added. In this case, it can be calculated from the Faraday rule that 3.3 Ah is necessary to completely decompose 1 gram of COD. For example, when an amount of electricity of 3.3 Ah is applied to 1 L of residual waste liquid having a COD of 1 g / L, organic substances and ammonia contained in the solution can be completely mineralized to CO 2 and nitrogen. When the residual waste liquid has a COD concentration of 10 g / L, if 33 Ah / L is given, it can be completely mineralized. Thus, in hydrothermal electrolysis, the organic matter decomposition rate can be controlled by the amount of electricity.

なお、本発明は上記理論的電気量の何倍を廃液に与えるか制限するものではない。有価物生産工程の残渣廃液の一部のみを水熱電気分解する場合には、この理論電気量の10倍以下を与えて完全分解を行ってもよい。なお、余分に与えると電力の無駄になるので好ましくは理論量の4倍以下である。さらに好ましくは2倍以下である。生物的有価物生産工程から出てくる残渣の全量を水熱電気分解工程に送る場合においては理論的電気量、またはそれ以下を与えてもよい。また後述するが水熱電気分解の後工程にある活性汚泥工程の余剰汚泥を水熱電気分解に工程に戻す場合においては、有価物生産工程から流入する残渣とこの返送した汚泥を合算したCOD量から理論的電気量を計算すればよい。本発明においては、有価物を生産する工程から排出する残渣のCODを全量分解する必要性はない。後工程の生物的水処理またはリン回収工程の有機物、アンモニア負荷を低下させて効率化することができればよい。   The present invention does not limit how many times the theoretical amount of electricity is given to the waste liquid. In the case where only a part of the residual waste liquid in the valuable material production process is hydrothermally electrolyzed, it may be completely decomposed by giving 10 times or less of this theoretical electricity amount. In addition, since it will be a waste of electric power if it gives extra, Preferably it is 4 times or less of theoretical amount. More preferably, it is 2 times or less. In the case where the entire amount of the residue from the biological value production process is sent to the hydrothermal electrolysis process, a theoretical electric quantity or less may be given. As will be described later, when surplus sludge from the activated sludge process that is in the post-hydrothermal electrolysis process is returned to the hydrothermal electrolysis process, the COD amount is the sum of the residue flowing from the valuable production process and the returned sludge. The theoretical amount of electricity can be calculated from In the present invention, there is no need to completely decompose the residual COD discharged from the process of producing valuable materials. What is necessary is just to be able to reduce the organic matter and ammonia load in the post-process biological water treatment or phosphorus recovery process and to improve efficiency.

水熱電気分解では、水素を生成する反応より、酸化剤が還元される式(10)、式(11)等の反応が、優先的に進行する。これに伴って、水熱電気分解では、水素の発生が抑制され、酸素ガスと水素ガスが反応器内に同時に混存する可能性が低くなり、爆発の危険が低減する。また、次亜ハロゲン酸等の酸化剤が陰極で分解するので、処理水中の酸化剤を無害化する二次処理が不要となる。例えば、室温での電気分解では、次亜ハロゲン酸イオンが高濃度に発生する。これに対して、高温での電気分解では、次亜ハロゲン酸イオンの発生がほとんど検出されなかった。
反応機構はともかく、本発明により、有機物、アンモニア等の還元性物質は酸化分解され、水素ガス又は酸素ガスの発生は抑制することができる。
In hydrothermal electrolysis, reactions such as formula (10) and formula (11) in which the oxidant is reduced proceed preferentially over the reaction that generates hydrogen. Accordingly, in hydrothermal electrolysis, the generation of hydrogen is suppressed, and the possibility that oxygen gas and hydrogen gas coexist in the reactor at the same time is reduced, and the risk of explosion is reduced. In addition, since an oxidizing agent such as hypohalous acid is decomposed at the cathode, a secondary treatment for detoxifying the oxidizing agent in the treated water becomes unnecessary. For example, in electrolysis at room temperature, hypohalite ions are generated at a high concentration. On the other hand, generation of hypohalite ions was hardly detected in the electrolysis at high temperature.
Regardless of the reaction mechanism, reducing substances such as organic substances and ammonia are oxidatively decomposed and the generation of hydrogen gas or oxygen gas can be suppressed by the present invention.

本発明において、気体燃料を生産する工程から得られたメタンを主体とするガスは、硫化水素などの酸性ガスをガス精製工程で除去し、さらに水素を主体とするガスに改質するガス改質工程を経た後、水熱電気分解工程で発生した水素ガスと併せて、燃料電池に供給することができる。ガス改質方法としては、天然ガスなどの燃料ガスから固体高分子型燃料電池、またはリン酸型燃料電池へ供給するガスを製造するために用いる改質方法であれば、いずれの方法でも用いることができるが、改質後ガス中のCOを除去する工程を含む方法(例えば特開2001−23677号公報など参照)が好ましい。水熱電気分解工程で発生した水素ガスは、硫化水素やアンモニアなどの酸性ガスの濃度が極めて低いだけでなく、CO濃度も極めて低いため、ガス精製工程を経ずに直接燃料電池に供給することができる。   In the present invention, the gas mainly composed of methane obtained from the step of producing the gaseous fuel is a gas reforming in which acidic gas such as hydrogen sulfide is removed in the gas purification step and further reformed into a gas mainly composed of hydrogen. After the process, it can be supplied to the fuel cell together with the hydrogen gas generated in the hydrothermal electrolysis process. As a gas reforming method, any reforming method used for producing a gas to be supplied to a polymer electrolyte fuel cell or a phosphoric acid fuel cell from a fuel gas such as natural gas may be used. However, a method including a step of removing CO in the gas after reforming (see, for example, JP-A-2001-23677) is preferable. Hydrogen gas generated in the hydrothermal electrolysis process not only has a very low concentration of acidic gases such as hydrogen sulfide and ammonia, but also has a very low CO concentration, so it must be supplied directly to the fuel cell without going through a gas purification process. Can do.

本発明においては、気体燃料を生産する工程から得られたメタンを主体とするガスを、硫化水素などの酸性ガスをガス精製工程で除去した後、ガスエンジン、ガスタービンなどの熱機関を利用して発電する発電装置に供給し、水熱電気分解工程で発生した水素ガスを、ガス精製工程を経ずに直接燃料電池に供給することができる。ガスエンジンやガスタービンなどにおいては、硫化水素などの酸性ガスの許容濃度は燃料電池のそれよりも高いため、ガス精製にスクラバ及び/又は乾式脱硫器などの装置を用いることもできる。   In the present invention, a gas mainly composed of methane obtained from a process of producing gaseous fuel is removed from an acidic gas such as hydrogen sulfide in a gas purification process, and then a heat engine such as a gas engine or a gas turbine is used. The hydrogen gas generated in the hydrothermal electrolysis process can be directly supplied to the fuel cell without going through the gas purification process. In gas engines, gas turbines, and the like, the allowable concentration of acidic gas such as hydrogen sulfide is higher than that of a fuel cell, and thus a device such as a scrubber and / or a dry desulfurizer can be used for gas purification.

一般に、ガスエンジン、ガスタービンなどの熱機関を利用して発電する発電装置は、維持管理にコストがかかるため、大容量の有機性廃棄物を処理する施設が必要である。しかしながら、生ごみなどのような含水率の高い有機性廃棄物を広域で収集することは、輸送エネルギーを多大に消費するので、好ましくない。そのため、生ごみなどのような有機性廃棄物を利用して気体燃料を生産する施設は、比較的中小規模であることが多いが、特に小規模の施設においては、熱機関を利用して発電する発電装置としては、マイクロガスタービンの利用が好ましい。   In general, since a power generation apparatus that generates power using a heat engine such as a gas engine or a gas turbine is expensive to maintain, a facility for processing a large volume of organic waste is required. However, it is not preferable to collect organic waste having a high water content such as garbage in a wide area because it consumes a lot of transportation energy. For this reason, facilities that produce gaseous fuel using organic waste such as garbage are often relatively small and medium-sized, but especially in small-scale facilities, power generation is performed using heat engines. As the power generation device, a micro gas turbine is preferably used.

一方、燃料電池は近年小型化が進み、小規模の施設にも十分対応可能であるため、本発明においては小規模施設の場合、(1)気体燃料を生産する工程から得られたメタンを主体とするガスは、硫化水素などの酸性ガスをガス精製工程で除去し、さらに水素を主体とするガスに改質するガス改質工程を経た後、水熱電気分解工程で発生した水素ガスと併せて、燃料電池に供給する方法、あるいは(2)気体燃料を生産する工程から得られたメタンを主体とするガスを、硫化水素などの酸性ガスをガス精製工程で除去した後、マイクロガスタービンに供給し、水熱電気分解工程で発生した水素ガスを、ガス精製工程を経ずに直接燃料電池に供給する方法とともに、(3)気体燃料を生産する工程から得られたメタンを主体とするガスは、スクラバのような簡易なガス精製工程で除去した後、ボイラーに供給して熱回収に利用し、水熱電気分解工程で発生した水素ガスは、ガス精製工程を経ずに直接燃料電池に供給して発電する方法も採用することができる。   On the other hand, since the fuel cell has been downsized in recent years and can sufficiently cope with a small-scale facility, in the present invention, in the case of a small-scale facility, (1) methane obtained from the process of producing gaseous fuel is mainly used. The gas to be used is combined with the hydrogen gas generated in the hydrothermal electrolysis process after the gas reforming process in which acidic gas such as hydrogen sulfide is removed in the gas purification process and further reformed into a gas mainly composed of hydrogen. Then, after removing the gas mainly composed of methane obtained from the method of supplying to the fuel cell or (2) the process of producing the gaseous fuel, the gas gas purification process removes acidic gas such as hydrogen sulfide, In addition to supplying hydrogen gas generated in the hydrothermal electrolysis process directly to the fuel cell without going through the gas purification process, (3) a gas mainly composed of methane obtained from the process of producing gaseous fuel The After being removed by a simple gas purification process, the hydrogen gas generated in the hydrothermal electrolysis process is supplied directly to the fuel cell without going through the gas purification process. A method of generating electricity can also be employed.

上記の工程(1)の装置を図1に、工程(2)及び(3)の装置を図2にブロック図として示す。
図1では、有機性廃棄物(以下「原料」ともいう)5は、気体燃料生産反応槽1に供給され、この場合嫌気性反応によりメタン13を発生させる。発生したメタン13はガス精製装置14で例えば硫化水素などが除去されて精製され、その後、ガス改質装置15に入って水素16を主としたガスとされる。気体燃料生産反応槽1から出る残渣廃液6の一部は、水熱電気分解反応槽3に入り、水熱電気分解反応が行われ、生成した水素11は水素貯留槽12で貯留され、前記したガス改質装置15からの水素と合わせられて燃料電池17に供給されて電力を発生させる。
The apparatus of the above step (1) is shown in FIG. 1, and the apparatuses of steps (2) and (3) are shown as a block diagram in FIG.
In FIG. 1, an organic waste (hereinafter also referred to as “raw material”) 5 is supplied to a gaseous fuel production reaction tank 1, and in this case, methane 13 is generated by an anaerobic reaction. The generated methane 13 is purified by removing, for example, hydrogen sulfide in the gas purifier 14, and then enters the gas reformer 15 to be a gas mainly composed of hydrogen 16. Part of the residue waste liquid 6 exiting from the gaseous fuel production reaction tank 1 enters the hydrothermal electrolysis reaction tank 3, where hydrothermal electrolysis reaction is performed, and the generated hydrogen 11 is stored in the hydrogen storage tank 12, and is described above. It is combined with hydrogen from the gas reformer 15 and supplied to the fuel cell 17 to generate electric power.

水熱電気分解反応槽3から出る水熱電気分解反応処理液7は、残渣廃液6の残部と併せられて曝気槽2に送られ、そこで好気性処理を行い、処理液は固液分離槽4で汚泥を沈降分離して放流水8として水域に放流する。固液分離槽4での沈降汚泥の大部分は返送汚泥9として曝気槽2に戻し、余分な分を水熱電気分解反応槽3に送って処理する。あるいは余剰汚泥10として取り出し、常法により処理する。
図1は、気体燃料生産反応槽1から生成したメタン13を改質することにより得た水素と、水熱電気分解反応槽3から出る水素を一緒にして使用した場合を示したが、別々の用途に使用してもよく、図2は、その1例として、メタン13をマイクロガスタービン18又はボイラー19に使用し、水熱電気分解反応槽3から出る水素11を燃料電池17に使用した場合を示したものである。
The hydrothermal electrolysis reaction treatment liquid 7 exiting from the hydrothermal electrolysis reaction tank 3 is combined with the remainder of the residual waste liquid 6 and sent to the aeration tank 2 where it is subjected to an aerobic treatment. The treatment liquid is a solid-liquid separation tank 4. The sludge is settled and separated and discharged into the water area as discharge water 8. Most of the settled sludge in the solid-liquid separation tank 4 is returned to the aeration tank 2 as return sludge 9 and the excess is sent to the hydrothermal electrolysis reaction tank 3 for processing. Or it takes out as the excess sludge 10 and processes by a conventional method.
FIG. 1 shows a case where hydrogen obtained by reforming methane 13 generated from the gaseous fuel production reaction tank 1 and hydrogen discharged from the hydrothermal electrolysis reaction tank 3 are used together. FIG. 2 shows an example in which methane 13 is used for a micro gas turbine 18 or a boiler 19, and hydrogen 11 discharged from the hydrothermal electrolysis reactor 3 is used for a fuel cell 17. Is shown.

以下、実施例により本発明を具体的に説明するが、本発明は以下の記述に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following description.

実施例1
し尿、生ごみ、浄化槽汚泥、余剰汚泥の混合原料(VS10%、CODCr140,000mg/Lにプロセス処理水で濃度調整)を連続発酵型の高温メタン発酵(55℃)で有価物生産を行った。有価物生産装置として、完全混合型の高温メタン発酵槽を用いた(円筒型、ポリ塩化ビニル製、総容積30L、有効容積25L、ジャケット温水循環式、55℃、攪拌速度30/min)。原水投入量は1.2〜1.5L/日、HRTは17〜20日で行った。水質およびバイオガスの分析方法は下記の方法で行った。
Example 1
Manufacture of valuable materials by continuous fermentation type high temperature methane fermentation (55 ° C) for mixed raw materials of human waste, food waste, septic tank sludge, surplus sludge (VS 10%, COD Cr 140,000mg / L concentration adjusted with process water) . A fully mixed high-temperature methane fermenter was used as a valuable material production apparatus (cylindrical type, made of polyvinyl chloride, total volume 30 L, effective volume 25 L, jacket hot water circulation type, 55 ° C., stirring speed 30 / min). The raw water input was 1.2 to 1.5 L / day, and HRT was 17 to 20 days. Water quality and biogas were analyzed by the following method.

(分析方法)
・ TS(Total Solids、全蒸発残留物);105℃蒸発残留物重量(JIS K 0102)
・ VS(Volatile Solids、強熱減量);600℃強熱減量(JIS K 0102)
・ CODCr(化学的酸素消費量);重クロム酸カリウム法(JIS K 0102)
・ メタンガス・炭酸ガス;ガスクロマトグラフ(GLサイエンスGC-322、検出器TCD、TCD電流値120mA、分離カラム Active Carbon 30/60、カラム温度 95℃、キャリアガス ヘリウム)
・ 水素ガス;ガスクロマトグラフ(GLサイエンスGC-322、検出器TCD、TCD電流値50mA、分離カラム Unibeads C 60/80、カラム温度 140℃、キャリアガス アルゴン)
・ 硫化水素及びアンモニア;検知管法
(Analysis method)
・ TS (Total Solids, total evaporation residue); 105 ℃ evaporation residue weight (JIS K 0102)
・ VS (Volatile Solids, loss on ignition); 600 ° C loss on ignition (JIS K 0102)
・ COD Cr (chemical oxygen consumption); potassium dichromate method (JIS K 0102)
・ Methane gas / carbon dioxide gas chromatograph (GL Science GC-322, detector TCD, TCD current value 120mA, separation column Active Carbon 30/60, column temperature 95 ℃, carrier gas helium)
・ Hydrogen gas: Gas chromatograph (GL Science GC-322, detector TCD, TCD current value 50mA, separation column Unibeads C 60/80, column temperature 140 ℃, carrier gas argon)
・ Hydrogen sulfide and ammonia; Detector tube method

この嫌気性微生物処理を用いた有価物生産工程からはCH462 vol%、 CO238 vol %の組成を有する原燃料ガス(バイオガス)を原料1kg(湿重量)あたり110〜140L回収できた。また、その他のガス成分としてH2S 400〜700 mg/L が含まれたが、乾式脱硫剤(ペレット状の水酸化鉄)による脱硫装置で常時1mg/L 以下に精製した。このガスを湿式アルカリ吸着塔と活性炭式吸着塔を通した結果、CO、NH3、Cl2、HClのガス成分は検出されず、CH4濃度92%に濃縮でき、メタンガスタンク1m3に貯留後、燃料電池の発電機に供給した。この燃料ガスをS/CH4(Steam/CH4 ratio)条件=3.0、改質器出口温度700℃、変成器出口温度200℃の燃料電池1.2kWによって発電した。改質器出口CO2濃度13%、改質器出口CO濃度10%、改質器メタン転換率85%であった。また、変成器出口CO濃度0.5%以下、変成器CO転換率100%であった。 This anaerobic microbial treatment valuables production processes using was CH 4 62 vol%, CO 2 38 vol% of the raw fuel gas having a composition (biogas) the raw material 1 kg (wet weight) per 110~140L recovery . Furthermore, although H 2 S 400~700 mg / L as another gas component contained was purified in the following always 1 mg / L in the desulfurization apparatus by Dry desulfurization agent (pelletized iron hydroxide). As a result of passing this gas through a wet alkali adsorption tower and an activated carbon adsorption tower, CO, NH 3 , Cl 2 and HCl gas components are not detected and can be concentrated to a CH 4 concentration of 92%, after being stored in a methane gas tank 1m 3 , Supplied to the fuel cell generator. This fuel gas was generated by a 1.2 kW fuel cell with S / CH 4 (Steam / CH 4 ratio) condition = 3.0, reformer outlet temperature 700 ° C., and transformer outlet temperature 200 ° C. The reformer outlet CO 2 concentration was 13%, the reformer outlet CO concentration was 10%, and the reformer methane conversion rate was 85%. The CO concentration at the outlet of the transformer was 0.5% or less, and the CO conversion rate of the transformer was 100%.

さらに、このメタン発酵残渣液(CODCr46,4000mg/L)を連続式の水熱電気分解反応器で10L/hの流量で処理して水素ガスを回収後、その水熱電気分解反応処理液は好気性処理法によって浄化した。発酵残渣の水熱電気分解にはチタン製オートクレーブ(反応器容積300ml、HC276型、最高使用温度320℃、最高使用圧力13MPa)を用い、水熱電気分解反応は250℃、7MPaで運転し、汚泥1Lに対して20Ahの電気量を与えた。定常運転において発生したガス流量は112L/hであり、その組成は水素73.3vol%、炭酸ガス24.0vol%及びN2ガス2.7vol%であった。O2、CO、H2Sは検出されず、燃料電池等に用いる良好な燃料ガスが得られた。これを水洗浄によってH2濃度約90%に濃縮して水素ガスタンクに貯留後、燃料電池用の燃料ガスとして用いて発電した。この場合の燃料電池発電では、メタン発酵で回収したバイオガス利用時と比較して、ガス精製工程及びガス改質工程での薬剤費・動力費を35〜45%削減できた。 Furthermore, this methane fermentation residue liquid (COD Cr 46,4000mg / L) is treated with a continuous hydrothermal electrolysis reactor at a flow rate of 10L / h to recover hydrogen gas, and then the hydrothermal electrolysis reaction treatment liquid Was purified by aerobic treatment. Titanium autoclave (reactor volume 300ml, HC276, maximum operating temperature 320 ° C, maximum operating pressure 13MPa) is used for hydrothermal electrolysis of fermentation residue, hydrothermal electrolysis reaction is operated at 250 ° C and 7MPa, and sludge Electric quantity of 20Ah was given to 1L. The gas flow rate generated in the steady operation was 112 L / h, and the composition was 73.3 vol% hydrogen, 24.0 vol% carbon dioxide, and 2.7 vol% N 2 gas. O 2 , CO, and H 2 S were not detected, and good fuel gas used for fuel cells and the like was obtained. This was concentrated to about 90% H 2 concentration by washing with water, stored in a hydrogen gas tank, and then used as fuel gas for the fuel cell to generate electricity. In the fuel cell power generation in this case, the chemical cost and the power cost in the gas purification process and the gas reforming process can be reduced by 35 to 45% compared to the case of using the biogas recovered by methane fermentation.

本発明は、有価物を生産する工程から排出される残渣量を大幅に低減し、環境負荷低減効果も大きく、環境汚染が特に問題となる地域での、公害防止及び環境保全に有効な火力発電代替技術として有用なものである。   The present invention greatly reduces the amount of residue discharged from the process of producing valuable materials, has a large environmental impact reduction effect, and is a thermal power generation effective for pollution prevention and environmental conservation in an area where environmental pollution is a particular problem. It is useful as an alternative technology.

標準活性汚泥法による廃液処理と組み合わせた、気体燃料生産工程から得られたガスと水熱電気分解工程で回収されたガスを併せて利用する発電方法の工程ブロック図である。It is a process block diagram of the electric power generation method using together the gas obtained from the gaseous fuel production process and the gas collect | recovered by the hydrothermal electrolysis process combined with the waste liquid process by a standard activated sludge method. 気体燃料生産工程から得られるガスと、水熱電気分解工程で回収されたガスをそれぞれ単独に利用する発電方法の工程ブロック図である。It is a process block diagram of the electric power generation method which utilizes separately the gas obtained from a gaseous fuel production process, and the gas collect | recovered at the hydrothermal electrolysis process.

符号の説明Explanation of symbols

1 気体燃料生産反応槽
2 曝気槽
3 水熱電気分解反応槽
4 固液分離槽
5 原料
6 残渣廃液
7 水熱電気分解反応処理液
8 放流水
9 返送汚泥
10 余剰汚泥
11 水素ガス
12 水素貯留槽
13 メタン主体ガス
14 ガス精製装置
15 ガス改質装置
16 水素主体ガス
17 燃料電池
18 マイクロガスタービン
19 ボイラー
DESCRIPTION OF SYMBOLS 1 Gas fuel production reaction tank 2 Aeration tank 3 Hydrothermal electrolysis reaction tank 4 Solid-liquid separation tank 5 Raw material 6 Residue waste liquid 7 Hydrothermal electrolysis reaction processing liquid 8 Discharge water 9 Return sludge 10 Surplus sludge 11 Hydrogen gas 12 Hydrogen storage tank 13 methane-based gas 14 gas refining device 15 gas reformer 16 hydrogen-based gas 17 fuel cell 18 micro gas turbine 19 boiler

Claims (5)

有機性廃棄物から生物反応によって気体燃料を生産する工程と、気体燃料を生産する工程から得られたガスを精製するガス精製工程と、精製したガスを供給して発電する発電工程とを有する有機性廃棄物による発電方法において、生物反応によって気体燃料を生産する工程から排出される残渣を含む廃液の全量又は一部を、100℃以上前記廃液の臨界温度未満の温度において、前記廃液が液相を維持する圧力の下、直流電流を供給する水熱電気分解工程に供給され、該水熱電気分解工程において回収される水素ガスを、気体燃料を生産する工程から得られたガスと併せて、又はそれぞれのガスを単独に両者とも利用することを特徴とする有機性廃棄物による発電方法。   Organic having a process for producing gaseous fuel from organic waste by biological reaction, a gas purification process for purifying gas obtained from the process for producing gaseous fuel, and a power generation process for supplying the purified gas to generate electricity In the power generation method using a volatile waste, the waste liquid is in a liquid phase at a temperature of 100 ° C. or higher and lower than the critical temperature of the waste liquid, including all or part of the waste liquid including residues discharged from the step of producing gaseous fuel by biological reaction. The hydrogen gas supplied to the hydrothermal electrolysis process for supplying a direct current under a pressure to maintain the hydrogen gas recovered in the hydrothermal electrolysis process, together with the gas obtained from the process for producing gaseous fuel, Alternatively, a power generation method using organic waste, characterized in that each gas is used alone. 精製したガスを供給して発電する発電工程が、燃料電池を含むことを特徴とする請求項1に記載の有機性廃棄物による発電方法。   The power generation method using organic waste according to claim 1, wherein the power generation step of generating power by supplying purified gas includes a fuel cell. ガス精製工程がメタンを水素ガスに改質する工程を含むことを特徴とする請求項1又は請求項2に記載の有機性廃棄物による発電方法。   The power generation method using organic waste according to claim 1 or 2, wherein the gas purification step includes a step of reforming methane to hydrogen gas. 精製したガスを供給して発電する発電工程が熱機関を利用して発電する工程であり、且つ前記水熱電気分解工程において回収される水素ガスを供給して発電する発電工程が、燃料電池を利用して発電する工程であることを特徴とする請求項1〜3のいずれか1項に記載の有機性廃棄物による発電方法。   The power generation step of generating power by supplying purified gas is a step of generating power by using a heat engine, and the power generation step of generating power by supplying hydrogen gas recovered in the hydrothermal electrolysis step includes the steps of: The power generation method using organic waste according to any one of claims 1 to 3, wherein the power generation method uses power generation by utilization. 有機性廃棄物から生物反応によって気体燃料を生産する装置と、気体燃料を生産する工程から得られたガスを精製するガス精製装置と、気体燃料を生産する工程から排出される残渣を含む廃液の全量又は一部が供給される、100℃以上前記廃液の臨界温度未満の温度において、前記廃液が液相を維持する圧力の下、直流電流を供給する水熱電気分解装置と、前記精製したガス及び前記水熱電気分解装置において回収される水素ガスを供給して発電する発電装置とを有することを特徴とする有機性廃棄物による発電装置。   A device for producing gaseous fuel from organic waste by biological reaction, a gas purification device for purifying gas obtained from the step of producing gaseous fuel, and a waste liquid containing residues discharged from the step of producing gaseous fuel. A hydrothermal electrolysis apparatus that supplies a direct current under a pressure at which the waste liquid maintains a liquid phase at a temperature of 100 ° C. or higher and lower than the critical temperature of the waste liquid, in which the whole amount or a part is supplied, and the purified gas And a power generation apparatus that generates power by supplying hydrogen gas recovered in the hydrothermal electrolysis apparatus.
JP2004287743A 2003-09-30 2004-09-30 Power generation method and apparatus using organic waste Active JP4461209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287743A JP4461209B2 (en) 2003-09-30 2004-09-30 Power generation method and apparatus using organic waste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003341649 2003-09-30
JP2004287743A JP4461209B2 (en) 2003-09-30 2004-09-30 Power generation method and apparatus using organic waste

Publications (2)

Publication Number Publication Date
JP2005125319A true JP2005125319A (en) 2005-05-19
JP4461209B2 JP4461209B2 (en) 2010-05-12

Family

ID=34655680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287743A Active JP4461209B2 (en) 2003-09-30 2004-09-30 Power generation method and apparatus using organic waste

Country Status (1)

Country Link
JP (1) JP4461209B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223860A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Hydrogen supply system
EP2204396A1 (en) 2005-04-22 2010-07-07 Mitsubishi Chemical Corporation Biomass-resource derived polyester and production process thereof
WO2013111935A1 (en) * 2012-01-27 2013-08-01 Kim Hyun Yong Method for producing bio synthetic gas from food waste by using high temperature reformer
JP2018532924A (en) * 2015-09-10 2018-11-08 サムスン・ヘヴィー・インダストリーズ・カンパニー・リミテッド Pollutant reduction device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102454660B1 (en) * 2020-04-22 2022-10-17 한국지역난방공사 Energy utilization system using food waste

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3925997A2 (en) 2005-04-22 2021-12-22 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof
EP2365017B1 (en) 2005-04-22 2019-07-03 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof
EP2366726A2 (en) 2005-04-22 2011-09-21 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof
EP2402383A2 (en) 2005-04-22 2012-01-04 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof
US10870727B2 (en) 2005-04-22 2020-12-22 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof
US11732087B2 (en) 2005-04-22 2023-08-22 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof
EP2204396A1 (en) 2005-04-22 2010-07-07 Mitsubishi Chemical Corporation Biomass-resource derived polyester and production process thereof
US11560449B2 (en) 2005-04-22 2023-01-24 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof
EP3925996A2 (en) 2005-04-22 2021-12-22 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof
EP3909998A2 (en) 2005-04-22 2021-11-17 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof
EP3919543A2 (en) 2005-04-22 2021-12-08 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof
EP3925998A2 (en) 2005-04-22 2021-12-22 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof
JP2007223860A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Hydrogen supply system
WO2013111935A1 (en) * 2012-01-27 2013-08-01 Kim Hyun Yong Method for producing bio synthetic gas from food waste by using high temperature reformer
US10786591B2 (en) 2015-09-10 2020-09-29 Samsung Heavy Industries Co., Ltd. Contaminant reducing device
JP2018532924A (en) * 2015-09-10 2018-11-08 サムスン・ヘヴィー・インダストリーズ・カンパニー・リミテッド Pollutant reduction device

Also Published As

Publication number Publication date
JP4461209B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
US20120100590A1 (en) Microbially-assisted water electrolysis for improving biomethane production
Beegle et al. An integrated microbial electrolysis-anaerobic digestion process combined with pretreatment of wastewater solids to improve hydrogen production
Rayner et al. Design of an organic waste power plant coupling anaerobic digestion and solid oxide fuel cell technologies
JP2020045430A (en) Renewable energy utilization system
CN103298751A (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
JP4685385B2 (en) Power generation method using surplus sludge
JP4461209B2 (en) Power generation method and apparatus using organic waste
JP7404080B2 (en) Wastewater treatment equipment, wastewater treatment method, and treatment system
JP4572278B2 (en) Fuel supply method and fuel supply apparatus
KR100985374B1 (en) Method and apparatus for the production of hydrogen and methane from organic wastes
Waller et al. Review of microbial fuel cells for wastewater treatment: large-scale applications, future needs and current research gaps
JP2005154503A (en) Method for removing hydrogen sulfide from biogas
JP2006212581A (en) Method for treating organic waste material
JP4480008B2 (en) Organic waste treatment method and apparatus
KR101845499B1 (en) Fuel cell power generating system
JP2006175406A (en) Processing method and processing apparatus of organic waste
KR100710911B1 (en) A electric-power generation equipment use of waste water
JP2022045838A (en) Residual methane removal system and residual methane removal method, and anaerobic treatment system
JP2007021367A (en) Method and apparatus for treating organic sludge
JP4124636B2 (en) Fuel cell / methane fermentation cycle system
Yasui et al. Anaerobic digestion with partial ozonation minimises greenhouse gas emission from sludge treatment and disposal
Oh et al. Loss of thermodynamic spontaneity in methanogenic consortium with ammonia contents
JP2005232527A (en) Hydrogen production method and power generating method using the produced hydrogen
JP2005125320A (en) Treatment method and apparatus for organic waste
CN217964069U (en) Treatment system for reducing carbon emission in kitchen waste treatment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4461209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250