JP2005123850A - High frequency line and resonator - Google Patents

High frequency line and resonator Download PDF

Info

Publication number
JP2005123850A
JP2005123850A JP2003356075A JP2003356075A JP2005123850A JP 2005123850 A JP2005123850 A JP 2005123850A JP 2003356075 A JP2003356075 A JP 2003356075A JP 2003356075 A JP2003356075 A JP 2003356075A JP 2005123850 A JP2005123850 A JP 2005123850A
Authority
JP
Japan
Prior art keywords
transmission
transmission region
conductor wiring
signal conductor
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003356075A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugano
浩 菅野
Kazuyuki Sakiyama
一幸 崎山
Ushio Sagawa
潮 寒川
Takeyasu Fujishima
丈泰 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003356075A priority Critical patent/JP2005123850A/en
Publication of JP2005123850A publication Critical patent/JP2005123850A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small high frequency circuit by remarkably increasing a phase amount change at the time of passing a high frequency line in the high frequency line where high frequency signals of a microwave band and a milliwave band are transmitted, radiated, filtered, selected and amplified and the phase amount is controlled. <P>SOLUTION: Transmission regions 5 where convex-like projections 6 are disposed toward signal conductor wiring and transmission regions 4 where they are not disposed are repetitively set in a ground conductor 3 in a region facing signal conductor wiring 2 along an advancing direction. Thus, a pass phase amount per unit length, which is given to the transmitted high frequency signal, can be increased. Consequently, the high frequency circuit can be miniaturized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マイクロ波帯、およびミリ波帯などの高周波信号を伝送、放射、濾波、選択、振幅及び位相量の制御を行う高周波線路に関するものである。   The present invention relates to a high-frequency line that transmits high-frequency signals such as a microwave band and a millimeter-wave band, and controls radiation, filtering, selection, amplitude, and phase amount.

従来の高周波線路として用いられているマイクロストリップ線路、およびストリップ線路断面構成をそれぞれ図10(a)(b)に示す(例えば、非特許文献1参照)。たとえば図10(a)において、誘電体または半導体の基板1の上に信号導体配線2が形成されており、基板1の裏面には接地導体層3が形成されている。このマイクロストリップ線路に高周波電力が入力されると、信号導体配線2から接地導体3の方向へ電界が生じ、電気力線に垂直に信号導体配線を囲む方向に磁界が生じ、この電磁界が信号導体配線2の幅方向と直交する長さ方向へ伝播する。   A microstrip line and a strip line cross-sectional configuration used as a conventional high-frequency line are shown in FIGS. 10A and 10B, respectively (see, for example, Non-Patent Document 1). For example, in FIG. 10A, a signal conductor wiring 2 is formed on a dielectric or semiconductor substrate 1, and a ground conductor layer 3 is formed on the back surface of the substrate 1. When high frequency power is input to the microstrip line, an electric field is generated in the direction from the signal conductor wiring 2 to the ground conductor 3, and a magnetic field is generated in a direction surrounding the signal conductor wiring perpendicular to the electric field lines. It propagates in the length direction orthogonal to the width direction of the conductor wiring 2.

これらの伝送線路を伝送する際に高周波信号に付加される位相変化量は、基板材料の誘電率ε、線路幅W、線路高さH、などに依存して求めることが可能である。たとえば、εが高いほど位相量は増加するため、一般的に高周波回路においては、小型化を目的として誘電率が高い導体材料が使用されることが多い。また、該高周波線路を空気内に配置して使用する場合、該高周波線路の誘電率εは空気の誘電率1よりも大きな値に相当する。そこで、Wを大きく設定したりHを小さく設定したりすることによって伝送する高周波信号の電磁界を基板材料内に効率的に閉じ込めることが可能となる。すなわち、Wを大きく設定したりHを小さく設定したりすることにより通過信号の位相変化を大きく設定することが可能となる。大きな位相変化は回路サイズの縮小につながる。
Inder Bahl and Prakash Bhartia著、”Microwave Solid State Circuit Design”、2nd edition、Wiley−Interscience 刊、p.33−40
The amount of phase change added to the high-frequency signal when transmitting through these transmission lines can be determined depending on the dielectric constant ε, the line width W, the line height H, etc. of the substrate material. For example, since the phase amount increases as ε increases, generally, a high-frequency circuit often uses a conductor material having a high dielectric constant for the purpose of downsizing. When the high-frequency line is used in the air, the dielectric constant ε of the high-frequency line corresponds to a value larger than the dielectric constant 1 of air. Therefore, it is possible to efficiently confine the electromagnetic field of the high-frequency signal to be transmitted in the substrate material by setting W large or H small. In other words, the phase change of the passing signal can be set large by setting W large or H small. A large phase change leads to a reduction in circuit size.
By Inder Bahl and Prakash Bhartia, “Microwave Solid State Circuit Design”, 2nd edition, published by Wiley-Interscience, p. 33-40

しかし、通常のマイクロストリップ線路やストリップ線路においては、位相量を効果的に増大させ回路面積の縮小を図ることには限界があった。たとえばマイクロストリップ線路においていくら線路幅、基板厚、などの条件を調整しても線路の実効誘電率は基板材料の誘電率を超えられない。また、ストリップ線路においては、線路条件を変更しても実効誘電率には変化を生じさせることが不可能であり、いずれの線路においても、通過位相量を増大せしめることには限界がある。   However, in a normal microstrip line or strip line, there is a limit to effectively increasing the phase amount and reducing the circuit area. For example, in a microstrip line, the effective dielectric constant of the line cannot exceed the dielectric constant of the substrate material, no matter how much conditions such as line width and substrate thickness are adjusted. Further, in the strip line, it is impossible to change the effective dielectric constant even if the line condition is changed, and there is a limit in increasing the passing phase amount in any line.

本発明は、前記従来の課題を解決するもので、高周波線路通過時の位相量変化を、極めて増大させることにより、小型高周波回路の提供を目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a small high-frequency circuit by greatly increasing a change in phase amount when passing through a high-frequency line.

前記従来の課題を解決するために、本発明の高周波線路は、信号導体配線に対向して、基板裏面に形成される接地導体の一部が、所定の高さよりも凸形状に信号導体配線に近接する追加接地導体構造を少なくとも複数配置した構成をとる。本構成によって、本発明の高周波線路を進行する高周波信号の通過位相を効果的に増大せしめることが可能となる。   In order to solve the above-described conventional problems, the high-frequency line of the present invention is configured such that a part of the ground conductor formed on the back surface of the substrate faces the signal conductor wiring so that the signal conductor wiring has a convex shape with respect to a predetermined height. At least a plurality of adjacent additional ground conductor structures are arranged. With this configuration, it is possible to effectively increase the passing phase of the high-frequency signal traveling through the high-frequency line of the present invention.

本発明の高周波線路によれば、従来の高周波線路よりも極めて高い通過位相量を得ることが可能となるため、極めて小型、省面積な高周波回路の提供が可能となる。   According to the high-frequency line of the present invention, it is possible to obtain an extremely high passing phase amount compared with the conventional high-frequency line, and therefore it is possible to provide a very small and area-saving high-frequency circuit.

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1(a)は、本発明の実施の形態1における高周波線路の上面図であり、図中の線分B1−B2、線分C1−C2、線分D1−D2における断面図を図1(b)、(c)、(d)、にそれぞれ加えた。図1において、図10と同じ構成要素については同じ符号を用いて説明する。
(Embodiment 1)
FIG. 1A is a top view of the high-frequency line according to Embodiment 1 of the present invention, and cross-sectional views taken along line B1-B2, line C1-C2, and line D1-D2 in FIG. added to b), (c), and (d), respectively. In FIG. 1, the same components as those in FIG. 10 will be described using the same reference numerals.

図1において、基板1を介して表面には信号導体配線2が、裏面には接地導体3が形成されている。ここで、接地導体3と信号導体配線2の最近接距離は、線分C1−C2で切断された第一の伝送領域4と、線分D1−D2’で切断された第二の伝送領域5とでは、異なって設定される。すなわち、第一の伝送領域4における伝送線路断面構造は通常のマイクロストリップ線路に他ならないが、第二の伝送領域における伝送線路断面構造は、信号導体配線2に対向する箇所を含む少なくとも一部の領域において追加接地導体6が基板内に加えられ接地構造が凸形状の断面を有し、信号導体配線2と接地構造との最近接間隔が一部で低減されている。   In FIG. 1, a signal conductor wiring 2 is formed on the front surface through a substrate 1, and a ground conductor 3 is formed on the back surface. Here, the closest distance between the ground conductor 3 and the signal conductor wiring 2 is the first transmission area 4 cut by the line segment C1-C2 and the second transmission area 5 cut by the line segment D1-D2 ′. And are set differently. That is, the transmission line cross-sectional structure in the first transmission region 4 is nothing but a normal microstrip line, but the transmission line cross-sectional structure in the second transmission region 4 includes at least a part including a portion facing the signal conductor wiring 2. In the region, the additional ground conductor 6 is added in the substrate, the ground structure has a convex cross section, and the closest distance between the signal conductor wiring 2 and the ground structure is partially reduced.

図1(b)に示した信号伝送方向の伝送線路断面構造より明らかなように、第一の伝送領域4と第二の伝送領域5が進行方向に交互に設定された本発明の高周波線路においては、接地構造の表面高さに凹凸が存在するため、従来の高周波線路よりも伝送信号の通過位相量を多く設定せしめることが可能となるものである。   As is clear from the transmission line cross-sectional structure in the signal transmission direction shown in FIG. 1B, in the high-frequency line of the present invention in which the first transmission region 4 and the second transmission region 5 are alternately set in the traveling direction. Since there are irregularities in the surface height of the grounding structure, it is possible to set a larger amount of transmission signal passing phase than conventional high-frequency lines.

なお、図2に本発明の比較例1における第二の伝送領域の断面構造を示すように、第二の伝送領域5において、接地導体3から一部の空間9を減じることにより、接地構造を信号導体配線より遠ざける構造を作成することも同様に可能である。しかし、図2において明らかなように、信号導体配線2と最近接となる接地構造は空間9の最下部ではなく、接地導体3より空間9を減じていない領域10の表面となり、第一の伝送領域と第二の伝送領域の間に接地構造の不連続は生じにくくなる。このため、本発明の高周波線路において所望とする位相量増大の効果を得るためには、図2の第二の伝送領域の伝送線路断面構造においては、空間9の幅を増やさなければならなくなる。空間9の幅増加は回路占有面積の増大を招き実用上好ましくない。以上の点から図2に示した比較例1とは本発明の高周波線路は別構造である。   2 shows a cross-sectional structure of the second transmission region in the first comparative example of the present invention, in the second transmission region 5, by reducing a part of the space 9 from the ground conductor 3, It is also possible to create a structure away from the signal conductor wiring. However, as apparent from FIG. 2, the grounding structure closest to the signal conductor wiring 2 is not the lowermost part of the space 9 but the surface of the region 10 where the space 9 is not reduced from the grounding conductor 3, and the first transmission The discontinuity of the ground structure is less likely to occur between the area and the second transmission area. Therefore, in order to obtain the desired effect of increasing the phase amount in the high-frequency line of the present invention, the width of the space 9 must be increased in the transmission line cross-sectional structure of the second transmission region in FIG. An increase in the width of the space 9 causes an increase in the area occupied by the circuit, which is not preferable in practice. From the above points, the high-frequency line of the present invention is different from the comparative example 1 shown in FIG.

また、本発明の比較例2として、本発明の実施の形態1から第一の伝送領域を削除し、全伝送領域を本発明の高周波回路における第二の伝送領域により形成した場合においては、接地導体層の凹凸がなくなるため、本発明の目的とする伝送信号の位相回転増大の効果が得られない。以上の点から比較例2は本発明の高周波線路は別構造である。   As Comparative Example 2 of the present invention, when the first transmission region is deleted from Embodiment 1 of the present invention and the entire transmission region is formed by the second transmission region in the high-frequency circuit of the present invention, grounding is performed. Since there are no irregularities on the conductor layer, the effect of increasing the phase rotation of the transmission signal, which is the object of the present invention, cannot be obtained. From the above points, Comparative Example 2 has a different structure from the high-frequency line of the present invention.

なお、本発明の高周波回路においては、図3に第二の伝送領域5の伝送線路断面構造を示したように、信号導体配線幅の両縁7には対向しない幅で追加接地導体6の幅を設定することが好ましい。具体的には追加接地導体6の幅は、信号導体配線の50%以下であることが好ましい。信号導体配線の両縁7に対向しない領域において追加接地導体6を信号導体配線2に近接させると、信号導体配線を流れる高周波電流が、最近接した追加接地導体6と対向する領域8においても流れるようになるため、通常のマイクロストリップ線路において伝送損失増大を招く信号導体配線2の両縁7への高周波電流の集中を回避することが可能となる。すなわち、本発明の高周波線路の好ましい例においては、回路の小型化と低損失化の両立が可能となるものである。   In the high-frequency circuit of the present invention, as shown in FIG. 3 which shows the transmission line cross-sectional structure of the second transmission region 5, the width of the additional ground conductor 6 is a width that does not oppose both edges 7 of the signal conductor wiring width. Is preferably set. Specifically, the width of the additional ground conductor 6 is preferably 50% or less of the signal conductor wiring. When the additional ground conductor 6 is brought close to the signal conductor wiring 2 in a region not facing both edges 7 of the signal conductor wiring, the high-frequency current flowing through the signal conductor wiring also flows in the region 8 facing the nearest additional ground conductor 6. Therefore, it is possible to avoid the concentration of high-frequency currents on both edges 7 of the signal conductor wiring 2 that causes an increase in transmission loss in a normal microstrip line. That is, in a preferred example of the high-frequency line of the present invention, it is possible to achieve both a reduction in circuit size and a reduction in loss.

また、追加接地導体6の幅の下限値は、伝送する周波数帯域における導体表皮深さにより制限され、例として1GHzにおいては1ミクロン程度の幅が下限値となる。また、本発明の高周波線路においては、追加接地導体6の追加によるインピーダンス不整合の問題を回避するために、第一の伝送領域4と第二の伝送領域5でのそれぞれの伝送線路部位の特性インピーダンス設定を最適化することが可能である。たとえば、第一の伝送領域4での伝送線路断面構造から導出される伝送線路の特性インピーダンスZ4と、第二の伝送領域5での伝送線路断面構造から導出される伝送線路の特性インピーダンスZ5と、伝送線路に要求される伝送線路の特性インピーダンスZとの間に、Z5<Z<Z4 の条件に設定することにより、通過損失の増大を軽減することが可能となるものである。また、所定の特性インピーダンスに設定する手段として、第一の伝送領域における信号導体配線の配線幅を、第二の伝送領域における信号導体配線の配線幅と比較して大きく設定して、常に伝送線路断面構造から導かれる伝送線路の特性インピーダンスを所定インピーダンスに設定することも可能である。   Further, the lower limit value of the width of the additional ground conductor 6 is limited by the conductor skin depth in the transmission frequency band. For example, a width of about 1 micron is the lower limit value at 1 GHz. Further, in the high frequency line of the present invention, the characteristics of the respective transmission line parts in the first transmission region 4 and the second transmission region 5 are avoided in order to avoid the problem of impedance mismatch due to the addition of the additional ground conductor 6. It is possible to optimize the impedance setting. For example, the transmission line characteristic impedance Z4 derived from the transmission line cross-sectional structure in the first transmission region 4, the transmission line characteristic impedance Z5 derived from the transmission line cross-sectional structure in the second transmission region 5, By setting the condition of Z5 <Z <Z4 between the characteristic impedance Z of the transmission line required for the transmission line, it is possible to reduce the increase of the passage loss. In addition, as a means for setting the predetermined characteristic impedance, the wiring width of the signal conductor wiring in the first transmission region is set larger than the wiring width of the signal conductor wiring in the second transmission region, and the transmission line is always set. It is also possible to set the characteristic impedance of the transmission line led from the cross-sectional structure to a predetermined impedance.

また、本発明の実施の形態1においては、複数の追加接地導体の高さが同一である必要は無く、所望の設計値に設定することが可能である。   In the first embodiment of the present invention, the plurality of additional ground conductors need not have the same height, and can be set to a desired design value.

また、図4(a)、(b)にそれぞれ、第一の伝送領域と第二の伝送領域の断面構造を示したように、本発明の別の実施の形態においては、両追加接地導体が信号進行方向において接続しないよう、第一の伝送領域と第二の伝送領域の両方に追加接地導体を設けつつも、形成位置を幅方向にずらし、接地導体の凸形状部が信号導体配線において最近接となる箇所において両追加接地導体を接続しない構造の採用により、接地導体により多くの凹凸を設定できるため、さらに有利な効果を得ることができる。また、本発明の高周波線路の効果は、追加接地導体の高さ部分においてどれだけの量の位相が回転するかに大きく依存する。すなわち、高周波になるほどその影響は顕著となる。このため、本発明の高周波線路は、見かけ上誘電率の周波数分散が異なる回路基板を用いて作成した高周波線路と同等の特性を得ることができる。つまり、高周波における誘電率が高く、低周波での誘電率が低い材料を回路基板として用いたマイクロストリップ線路と同じ効果を発現しうるものである。   In addition, as shown in FIGS. 4A and 4B, the cross-sectional structures of the first transmission region and the second transmission region, respectively, in another embodiment of the present invention, both additional ground conductors are In order to prevent connection in the signal traveling direction, an additional ground conductor is provided in both the first transmission region and the second transmission region, but the formation position is shifted in the width direction, and the convex portion of the ground conductor is By adopting a structure in which the two additional ground conductors are not connected at the contact points, more unevenness can be set in the ground conductor, and thus a further advantageous effect can be obtained. The effect of the high-frequency line of the present invention greatly depends on how much phase is rotated in the height portion of the additional ground conductor. That is, the effect becomes more prominent as the frequency becomes higher. For this reason, the high-frequency line of the present invention can obtain the same characteristics as a high-frequency line created using a circuit board that apparently has different frequency dispersion of dielectric constant. That is, the same effect as that of a microstrip line using a material having a high dielectric constant at a high frequency and a low dielectric constant at a low frequency as a circuit board can be exhibited.

なお、本発明の高周波線路における追加接地導体については、導電率が高い金属として知られる銅、や金等の一般的に使用される材料を使用することが好ましい。また、位相量増大を得るために、可能な限り細かい周期で隣接させて、追加接地導体を配置することが好ましい。たとえば、10ミクロン間隔で、10ミクロンの領域長の追加接地導体を形成することが可能である。しかし、伝送損失が問題となる用途については、領域長について制限が生じ、目安として使用周波数における表皮深さ程度の値を最小値とすることが好ましい。例えば、1GHzの周波数においては、追加接地導体の幅は1ミクロン程度の値を下限とすることが好ましい。   For the additional ground conductor in the high-frequency line of the present invention, it is preferable to use a commonly used material such as copper or gold known as a metal having high conductivity. Further, in order to obtain an increase in the amount of phase, it is preferable to arrange the additional ground conductors adjacent to each other at the smallest possible cycle. For example, additional ground conductors with a region length of 10 microns can be formed at 10 micron intervals. However, for applications where transmission loss is a problem, the region length is limited, and as a guideline, it is preferable to set the value of the skin depth at the operating frequency to the minimum value. For example, at a frequency of 1 GHz, it is preferable that the additional ground conductor has a lower limit of about 1 micron.

また、本発明の高周波線路における追加接地導体の形状については、信号導体配線に対向する追加接地導体の形状を矩形よりも、角に任意の曲率を持たせた形状に加工することが、導体損失低減の点から好ましい。マイクロストリップ線路やストリップ線路の伝送損失は信号導体配線の両縁の電流集中に起因するものであって、接地導体における導体の損失はほぼ無視しうるが、本発明の高周波線路においては追加接地導体の幅が狭くなったり、追加接地導体の凸形状部の角部分が矩形形状であったりすると接地導体での電流集中が無視できなくなり回避の必要が出てくるからである。   In addition, regarding the shape of the additional ground conductor in the high-frequency line of the present invention, it is possible to process the shape of the additional ground conductor facing the signal conductor wiring into a shape having an arbitrary curvature at a corner rather than a rectangle. It is preferable from the viewpoint of reduction. The transmission loss of the microstrip line or strip line is caused by the current concentration at both edges of the signal conductor wiring, and the conductor loss in the ground conductor can be almost ignored, but in the high-frequency line of the present invention, the additional ground conductor This is because the current concentration in the ground conductor cannot be ignored and needs to be avoided if the width of the conductor is narrow or the corner portion of the convex portion of the additional ground conductor is rectangular.

本発明の第一の高周波線路の実施例として、誘電率10.2、厚さ250ミクロンの樹脂を基板として使用し、高周波線路1Aを作成した。基板の表面に幅250ミクロン、長さ1500ミクロンの信号導体配線を形成した。基板裏面には接地導体を施した。いずれの導体も金で作成し、導体厚は2ミクロンとした。高周波線路は領域長8ミクロンの第一の伝送領域と領域長2ミクロンの第二の伝送領域を直列に接続した構造とした。すなわち、信号伝送方向に沿って、10ミクロン周期で、2ミクロン長ずつ、信号導体配線直下で接地構造が近接する構造となる。第一の伝送領域において伝送線路断面構造は通常のマイクロストリップ線路であるが、第二の伝送領域における伝送線路断面構造では、基板裏面の接地導体にその下部分が接続された凸形状に加工された追加接地導体を基板内に設定した。各追加接地導体のサイズは幅2ミクロン、高さ150ミクロンの直方体であり、信号導体配線と接地構造の最近接距離は第二の伝送領域では100ミクロン設定となる。第一の伝送領域と第二の伝送領域の繰り返し回数は150回に設定した。60GHzでの高周波線路1Aの通過位相量は402度であった。   As an example of the first high-frequency line of the present invention, a high-frequency line 1A was prepared using a resin having a dielectric constant of 10.2 and a thickness of 250 microns as a substrate. A signal conductor wiring having a width of 250 microns and a length of 1500 microns was formed on the surface of the substrate. A ground conductor was provided on the back side of the substrate. All conductors were made of gold and the conductor thickness was 2 microns. The high-frequency line has a structure in which a first transmission region having a region length of 8 microns and a second transmission region having a region length of 2 microns are connected in series. That is, along the signal transmission direction, the ground structure is close to the signal conductor wiring immediately by a length of 10 microns and 2 microns long. The transmission line cross-sectional structure in the first transmission region is an ordinary microstrip line, but the transmission line cross-sectional structure in the second transmission region is processed into a convex shape in which the lower part is connected to the ground conductor on the back of the substrate. An additional ground conductor was set in the substrate. The size of each additional ground conductor is a rectangular parallelepiped having a width of 2 microns and a height of 150 microns, and the closest distance between the signal conductor wiring and the ground structure is set to 100 microns in the second transmission region. The number of repetitions of the first transmission area and the second transmission area was set to 150 times. The passing phase amount of the high-frequency line 1A at 60 GHz was 402 degrees.

一方、比較例として、高周波線路1Aから第二の伝送領域を減じた構造の通常のマイクロストリップ線路1Bを作成した。通常のマイクロストリップ線路1Bの60GHzでの通過位相量は330度であった。実施の形態より、高周波線路1Aは通常のマイクロストリップ線路1Bと比較して、22%の通過位相量の増大を得られたことが分かった。   On the other hand, as a comparative example, a normal microstrip line 1B having a structure in which the second transmission region is subtracted from the high-frequency line 1A was prepared. The passing phase amount at 60 GHz of the normal microstrip line 1B was 330 degrees. From the embodiment, it was found that the high-frequency line 1A was able to obtain a 22% increase in passing phase amount compared to the normal microstrip line 1B.

また、高周波線路1Aにおける第二の伝送領域の凸形状部位の幅設定を2ミクロンから100ミクロンへと再設定した高周波線路1Cにおいては、60GHzでの通過位相量は432度となり、通常のマイクロストリップ線路1Bと比較して31%の通過位相量の増大が得られた。   Further, in the high frequency line 1C in which the width setting of the convex portion of the second transmission region in the high frequency line 1A is reset from 2 microns to 100 microns, the passing phase amount at 60 GHz is 432 degrees, which is a normal microstrip. An increase in the passing phase amount of 31% was obtained compared to the line 1B.

なお、実施の形態1では、第一の伝送領域と第二の伝送領域の繰り返し回数を150回に設定した。この繰り返し回数は少なくとも2回以上、より望ましくは10回以上、さらに望ましくは100回以上がよい。すなわち、一回の「繰り返し」を設定する際のポスト部分の厚さが導体損失の著しい増大を招かない程度の範囲でpost部分は微細であることが好ましいし、当条件が満たされる範囲内で、できる限り多くの繰り返し回数が設定されることが好ましい。   In the first embodiment, the number of repetitions of the first transmission area and the second transmission area is set to 150 times. The number of repetitions is at least 2 times, more preferably 10 times or more, and even more preferably 100 times or more. That is, it is preferable that the post portion is fine within a range in which the thickness of the post portion when setting one "repetition" does not cause a significant increase in conductor loss, and within the range where this condition is satisfied. It is preferable to set as many repetitions as possible.

(実施の形態2)
図5(a)は、本発明の実施の形態2における高周波線路の上面透視図であり、図中の線分B1−B2、線分C1−C2、線分D1−D2における断面図を図5(b)、(c)、(d)、にそれぞれ加えた。図5において、図1と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 2)
FIG. 5A is a top perspective view of the high-frequency line according to Embodiment 2 of the present invention. FIG. 5 is a cross-sectional view taken along line segment B1-B2, line segment C1-C2, and line segment D1-D2. It added to (b), (c), (d), respectively. In FIG. 5, the same components as those in FIG.

図5において、基板1の表面、裏面にはそれぞれ接地導体3が形成されており、基板内部には信号導体配線2が形成されておりいわゆるストリップ線路構造が形成されている。ここで、接地導体3と信号導体配線2の最近接距離は、線分C1−C2で切断された第一の伝送領域4と、線分D1−D2で切断された第二の伝送領域5とでは、異なって設定される。すなわち、第一の伝送領域4における伝送線路断面構造は通常のストリップ線路に他ならないが、第二の伝送領域における伝送線路断面構造は、信号導体配線2に対向する箇所を含む少なくとも一部の領域において追加接地導体6が基板内に加えられ、接地導体3と追加接地導体6の足し合わせからなる高周波接地構造が信号導体配線2に向かって凸形状となる断面を有し、信号導体配線2と高周波接地構造との最近接間隔が一部で低減されている。   In FIG. 5, a ground conductor 3 is formed on each of the front and back surfaces of a substrate 1, and a signal conductor wiring 2 is formed inside the substrate to form a so-called strip line structure. Here, the closest distance between the ground conductor 3 and the signal conductor wiring 2 is that the first transmission region 4 cut along the line segment C1-C2 and the second transmission region 5 cut off at the line segment D1-D2. Then, it is set differently. That is, the transmission line cross-sectional structure in the first transmission region 4 is nothing but a normal strip line, but the transmission line cross-sectional structure in the second transmission region is at least a part of the region including a portion facing the signal conductor wiring 2. The additional ground conductor 6 is added to the inside of the substrate, and the high-frequency ground structure formed by adding the ground conductor 3 and the additional ground conductor 6 has a cross section that is convex toward the signal conductor wiring 2. The closest distance from the high-frequency grounding structure is partially reduced.

図5(b)に示した信号伝送方向の伝送線路断面構造より明らかなように、第一の伝送領域4と第二の伝送領域5が進行方向に交互に設定された本発明の高周波線路においては、接地構造の表面高さに凹凸が存在するため、従来の高周波線路よりも伝送信号の通過位相量を多く設定せしめることが可能となるものである。   As is clear from the transmission line cross-sectional structure in the signal transmission direction shown in FIG. 5B, in the high-frequency line of the present invention in which the first transmission region 4 and the second transmission region 5 are alternately set in the traveling direction. Since there are irregularities in the surface height of the grounding structure, it is possible to set a larger amount of transmission signal passing phase than conventional high-frequency lines.

ストリップ線路はマイクロストリップ線路やコプレーナ線路と異なり、信号導体配線の上下が誘電体によって挟まれた構造なので、線路の実効誘電率を制御することが原理的に不可能である。すなわち、従来のストリップ線路では高誘電率基板の採用以外に通過位相量を増大せしめる手段は存在しなかったが、本発明の高周波線路構造においては、高誘電率基板の採用をすることなく、ストリップ線路においても効果的に通過位相量を増大せしめることが可能となるものである。   Unlike a microstrip line or a coplanar line, the strip line has a structure in which the upper and lower sides of the signal conductor wiring are sandwiched between dielectrics, so that it is impossible in principle to control the effective dielectric constant of the line. That is, in the conventional strip line, there was no means for increasing the passing phase amount other than the use of the high dielectric constant substrate, but in the high frequency line structure of the present invention, the strip without using the high dielectric constant substrate. Even in the case of a line, it is possible to effectively increase the passing phase amount.

ここで、図中では基板1の裏面の接地導体のみに追加接地導体6が付加される例について示しているが、第二の伝送領域において、表裏の両接地導体に追加接地導体を加える構造の方がより大きな効果を得ることができる。また、表側の接地導体に追加接地導体が付加される第一の伝送領域と、裏側の接地導体に追加接地導体が付加される第二の伝送領域が、進行方向に沿って交互に形成される構造の高周波線路であっても、本発明の有利な効果を得ることが可能である。   Here, in the figure, an example in which the additional ground conductor 6 is added only to the ground conductor on the back surface of the substrate 1 is shown. However, in the second transmission region, the additional ground conductor is added to both the front and back ground conductors. It is possible to obtain a greater effect. In addition, a first transmission region in which an additional ground conductor is added to the ground conductor on the front side and a second transmission region in which the additional ground conductor is added to the ground conductor on the back side are alternately formed along the traveling direction. Even with a high-frequency line having a structure, the advantageous effects of the present invention can be obtained.

なお、本発明の高周波回路においては、図6に本発明の好ましい例における、第二の伝送領域5の伝送線路断面構造を示したように、信号導体配線幅の両縁7には対向しない幅で追加接地導体6の幅を設定することが好ましい。信号導体配線の両縁7に対向しない領域において追加接地導体6を信号導体配線2に近接させると、信号導体配線を流れる高周波電流が、最近接した追加接地導体6と対向する領域8においても流れるようになるため、通常のマイクロストリップ線路において伝送損失増大を招く信号導体配線2の両縁7への高周波電流の集中を回避することが可能となる。すなわち、本発明の高周波線路の好ましい例においては、回路の小型化と低損失化の両立が可能となるものである。   In the high-frequency circuit of the present invention, as shown in FIG. 6 which shows the transmission line cross-sectional structure of the second transmission region 5 in the preferred example of the present invention, the width that does not oppose both edges 7 of the signal conductor wiring width. Preferably, the width of the additional ground conductor 6 is set. When the additional ground conductor 6 is brought close to the signal conductor wiring 2 in a region not facing both edges 7 of the signal conductor wiring, the high-frequency current flowing through the signal conductor wiring also flows in the region 8 facing the nearest additional ground conductor 6. Therefore, it is possible to avoid the concentration of high-frequency currents on both edges 7 of the signal conductor wiring 2 that causes an increase in transmission loss in a normal microstrip line. That is, in a preferred example of the high-frequency line of the present invention, it is possible to achieve both a reduction in circuit size and a reduction in loss.

本発明の第二の高周波線路の実施例として、誘電率10.2、厚さ500ミクロンの樹脂を基板として使用し、高周波線路2Aを作成した。基板の中央部に幅90ミクロン、長さ1500ミクロンの信号導体配線を形成し、表面および裏面には接地導体を施した。いずれの導体も金で作成し、導体厚は2ミクロンとした。高周波線路には領域長8ミクロンの第一の伝送領域と領域長2ミクロンの第二の伝送領域を進行方向に沿って線路の全面に配置した。すなわち、信号伝送方向に沿って、10ミクロン周期で、2ミクロン長ずつ、信号導体配線直下で接地構造が近接する構造となる。第一の伝送領域において伝送線路断面構造は通常のストリップ線路であるが、第二の伝送領域における伝送線路断面構造では、基板裏面の接地導体にその下部分が接続された凸形状に加工された追加接地導体を基板内に設定した。各追加接地導体のサイズは幅2ミクロン、高さ150ミクロンの直方体であり、信号導体配線と接地構造の最近接距離は第二の伝送領域では100ミクロン設定となる。第一の伝送領域と第二の伝送領域の繰り返し回数は150回に設定した。60GHzでの高周波線路2Aの通過位相量は426度であった。   As an example of the second high-frequency line of the present invention, a high-frequency line 2A was prepared using a resin having a dielectric constant of 10.2 and a thickness of 500 microns as a substrate. A signal conductor wiring having a width of 90 microns and a length of 1500 microns was formed at the center of the substrate, and ground conductors were provided on the front and back surfaces. All conductors were made of gold and the conductor thickness was 2 microns. In the high-frequency line, a first transmission region having a region length of 8 microns and a second transmission region having a region length of 2 microns were disposed on the entire surface of the line along the traveling direction. That is, along the signal transmission direction, the ground structure is close to the signal conductor wiring immediately by a length of 10 microns and 2 microns long. In the first transmission region, the transmission line cross-sectional structure is a normal strip line, but in the transmission line cross-sectional structure in the second transmission region, it was processed into a convex shape with its lower part connected to the ground conductor on the back of the substrate An additional ground conductor was set in the substrate. The size of each additional ground conductor is a rectangular parallelepiped having a width of 2 microns and a height of 150 microns, and the closest distance between the signal conductor wiring and the ground structure is set to 100 microns in the second transmission region. The number of repetitions of the first transmission area and the second transmission area was set to 150 times. The passing phase amount of the high-frequency line 2A at 60 GHz was 426 degrees.

一方、比較例として、高周波線路2Aから第二の伝送領域の追加接地導体を減じた構造の通常のストリップ線路2Bを作成した。通常のストリップ線路の60GHzでの通過位相量は366度であった。実施の形態より、通常のマイクロストリップ線路と比較して、高周波線路1は16%の通過位相量の増大を得られたことが分かった。   On the other hand, as a comparative example, a normal strip line 2B having a structure in which the additional ground conductor in the second transmission region is subtracted from the high-frequency line 2A was prepared. The passing phase amount at 60 GHz of a normal strip line was 366 degrees. From the embodiment, it was found that the high-frequency line 1 was able to obtain a 16% increase in the passing phase amount as compared with a normal microstrip line.

(実施の形態3)
図7(a)は、本発明の実施の形態3における共振器の上面図であり、図中の線分B1−B2、線分C1−C2、線分D1−D2における断面図を図7(b)、(c)、(d)、にそれぞれ加えた。図7において、図1から図6と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 3)
FIG. 7A is a top view of the resonator according to the third embodiment of the present invention. FIG. 7A is a cross-sectional view taken along line B1-B2, line C1-C2, and line D1-D2 in FIG. added to b), (c), and (d), respectively. In FIG. 7, the same components as those in FIGS.

図7において、基板1を介して表面には信号導体配線2が、裏面には接地導体3が形成されマイクロストリップ線路構造が形成されている。線路の進行方向の両端11,12は開放終端されており、2分の1波長共振器として機能する。ここで、接地導体3と信号導体配線2の最近接距離は、線分C1−C2で切断された第一の伝送領域4と、線分D1−D2で切断された第二の伝送領域5とでは、異なって設定される。すなわち、第一の伝送領域4における共振器断面構造は通常のマイクロストリップ線路に他ならないが、第二の伝送領域における共振器断面構造は、信号導体配線2に対向する箇所を含む少なくとも一部の領域において追加接地導体6が基板内に加えられ接地構造が凸形状の断面を有し、信号導体配線2と接地構造との最近接間隔が一部で低減されている。   In FIG. 7, a signal conductor wiring 2 is formed on the front surface via a substrate 1 and a ground conductor 3 is formed on the back surface, thereby forming a microstrip line structure. Both ends 11 and 12 in the traveling direction of the line are open-terminated and function as a half-wave resonator. Here, the closest distance between the ground conductor 3 and the signal conductor wiring 2 is that the first transmission region 4 cut along the line segment C1-C2 and the second transmission region 5 cut off at the line segment D1-D2. Then, it is set differently. That is, the resonator cross-sectional structure in the first transmission region 4 is nothing but a normal microstrip line, but the resonator cross-sectional structure in the second transmission region includes at least a part including a portion facing the signal conductor wiring 2. In the region, the additional ground conductor 6 is added in the substrate, the ground structure has a convex cross section, and the closest distance between the signal conductor wiring 2 and the ground structure is partially reduced.

図7(b)に示した信号伝送方向の共振器断面構造より明らかなように、第一の伝送領域4と第二の伝送領域5が進行方向に交互に設定された本発明の共振器においては、接地構造の表面高さに凹凸が存在するため、通常のマイクロストリップ線路構造を利用した共振器と比較して、共振器内での位相回転量を多くし実効的な共振器長を増大できるので、共振周波数を効果的に低減せしめることが可能となるものである。   As is clear from the resonator cross-sectional structure in the signal transmission direction shown in FIG. 7B, in the resonator of the present invention in which the first transmission region 4 and the second transmission region 5 are alternately set in the traveling direction. Since there is unevenness in the surface height of the grounding structure, the amount of phase rotation in the resonator is increased and the effective resonator length is increased compared to a resonator using a normal microstrip line structure Therefore, the resonance frequency can be effectively reduced.

なお、上述の例では、マイクロストリップ線路的な伝送線路を用いた実施の形態3について示したが、ストリップ線路的な伝送線路構造を用いることによっても、本発明の有利な効果を伴う共振器が提供されうる。   In the above example, the third embodiment using a microstrip line-like transmission line has been described. However, the resonator having the advantageous effects of the present invention can also be obtained by using a stripline-like transmission line structure. Can be provided.

また、第一の伝送領域と第二の伝送領域の両方に追加接地導体を設けても良い。この場合には、隣接した追加接地導体が信号進行方向において接続しないよう、両領域での追加接地導体の形成位置を幅方向にずらし、接地導体の凸形状部が信号導体配線において最近接となる箇所において両追加接地導体を接続しない構造の採用により、接地導体により多くの凹凸を設定できるため、さらに有利な効果を得ることができる。   Further, an additional ground conductor may be provided in both the first transmission region and the second transmission region. In this case, the formation position of the additional ground conductor in both regions is shifted in the width direction so that adjacent additional ground conductors are not connected in the signal traveling direction, and the convex portion of the ground conductor is closest to the signal conductor wiring. By adopting a structure in which the two additional ground conductors are not connected at the locations, more unevenness can be set in the ground conductor, so that a more advantageous effect can be obtained.

なお、上述の例では、両端を開放した2分の1波長共振器について本実施の形態3の共振器の例を示したが、両端が開放、接地、接続されたり、主回路から分岐されたりすることによって、4分の1波長、2分の1波長、1波長などのさまざまな共振を示す平面型の共振器、あるいは高周波回路内において整合回路として用いられる開放スタブや短絡スタブなどに本形態を適用することによっても、本発明の有利な効果を伴う共振器が提供されうる。   In the above-described example, the example of the resonator according to the third embodiment is shown for the half-wave resonator with both ends open, but both ends are open, grounded, connected, or branched from the main circuit. By doing so, the present embodiment is applied to a planar resonator exhibiting various resonances such as a quarter wavelength, a half wavelength, and one wavelength, or an open stub or a short stub used as a matching circuit in a high frequency circuit. The resonator with the advantageous effects of the present invention can also be provided by applying.

また、本発明の実施の形態3の共振器において、図8に第二の伝送領域5の共振器断面構造を示したように、信号導体配線幅の両縁7には対向しない幅で追加接地導体6の幅を設定することが好ましい。信号導体配線の両縁7に対向しない領域において追加接地導体6を信号導体配線2に近接させると、信号導体配線を流れる高周波電流が、最近接した追加接地導体6と対向する領域8においても流れるようになるため、通常のマイクロストリップ線路において伝送損失増大を招く信号導体配線2の両縁7への高周波電流の集中を回避することが可能となる。すなわち、本発明の実施の形態3の共振器の好ましい例においては、回路の小型化と低損失化、すなわち高いQ値の獲得の両立が可能となるものである。なお、具体的には追加接地導体6の幅は、信号導体配線の50%以下であることが好ましい。   Further, in the resonator according to the third embodiment of the present invention, as shown in FIG. 8, the cross-sectional structure of the resonator in the second transmission region 5 is additionally grounded with a width that does not face both edges 7 of the signal conductor wiring width. It is preferable to set the width of the conductor 6. When the additional ground conductor 6 is brought close to the signal conductor wiring 2 in a region not facing both edges 7 of the signal conductor wiring, the high-frequency current flowing through the signal conductor wiring also flows in the region 8 facing the nearest additional ground conductor 6. Therefore, it is possible to avoid the concentration of high-frequency currents on both edges 7 of the signal conductor wiring 2 that causes an increase in transmission loss in a normal microstrip line. That is, in the preferred example of the resonator according to the third embodiment of the present invention, it is possible to achieve both reduction in circuit size and reduction in loss, that is, acquisition of a high Q value. Specifically, the width of the additional ground conductor 6 is preferably 50% or less of the signal conductor wiring.

また、上述のQ値向上の効果を得ることを優先して、図9に示すように、第二の伝送領域の周期的な設定を行う箇所は共振器の全長にわたってではなく、ほぼ中央部のみに限定してもよい。2分の1波長共振器においては電流が集中するのは、共振器のほぼ中央部の信号導体配線の両縁のみであり、Q値の向上を目的とする場合には、電流集中箇所である共振器の中央部への追加接地導体配置だけでも、高いQ値の獲得と、回路小型化という本発明の目的を達することができるからである。   In addition, in order to obtain the above-described effect of improving the Q value, as shown in FIG. 9, the location where the second transmission region is periodically set is not over the entire length of the resonator, but only in the central portion. You may limit to. In the half-wavelength resonator, the current concentrates only at both edges of the signal conductor wiring at the substantially central portion of the resonator. When the purpose is to improve the Q value, it is a current concentration portion. This is because the purpose of the present invention, that is, acquisition of a high Q value and circuit miniaturization can be achieved only by arranging an additional grounding conductor at the center of the resonator.

本発明の実施の形態3の共振器の実施例として、誘電率10.2、厚さ250ミクロンの樹脂を基板として使用し、共振器3Aを作成した。基板の表面に幅250ミクロン、長さ1500ミクロンの信号導体配線を形成した。基板裏面には接地導体を施した。いずれの導体も金で作成し、導体厚は2ミクロンとした。共振器は領域長8ミクロンの第一の伝送領域と領域長2ミクロンの第二の伝送領域を直列に接続した構造とした。すなわち、信号伝送方向に沿って、10ミクロン周期で、2ミクロン長ずつ、信号導体配線直下で接地構造が近接する構造となる。第一の伝送領域において共振器断面構造は通常のマイクロストリップ線路であるが、第二の伝送領域における共振器断面構造では、基板裏面の接地導体にその下部分が接続された凸形状に加工された追加接地導体を基板内に設定した。各追加接地導体のサイズは幅2ミクロン、高さ150ミクロンの直方体であり、信号導体配線と接地構造の最近接距離は第二の伝送領域では100ミクロン設定となる。第二の伝送領域は長さ方向に150回設定した。共振器3Aは45.7GHzで2分の1波長の共振を発現し、共振器のQ値として202が得られた。   As an example of the resonator according to the third embodiment of the present invention, a resonator 3A was prepared using a resin having a dielectric constant of 10.2 and a thickness of 250 microns as a substrate. A signal conductor wiring having a width of 250 microns and a length of 1500 microns was formed on the surface of the substrate. A ground conductor was provided on the back side of the substrate. All conductors were made of gold and the conductor thickness was 2 microns. The resonator has a structure in which a first transmission region having a region length of 8 microns and a second transmission region having a region length of 2 microns are connected in series. That is, along the signal transmission direction, the ground structure is close to the signal conductor wiring immediately by a length of 10 microns and 2 microns long. In the first transmission region, the resonator cross-sectional structure is an ordinary microstrip line, but in the second transmission region, the resonator cross-sectional structure is processed into a convex shape with the lower part connected to the ground conductor on the back of the substrate. An additional ground conductor was set in the substrate. The size of each additional ground conductor is a rectangular parallelepiped having a width of 2 microns and a height of 150 microns, and the closest distance between the signal conductor wiring and the ground structure is set to 100 microns in the second transmission region. The second transmission region was set 150 times in the length direction. The resonator 3A exhibited a half-wave resonance at 45.7 GHz, and a resonator Q value of 202 was obtained.

一方、比較例3Bとして、共振器3Aから第二の伝送領域を減じた構造の通常のマイクロストリップ共振器を作成した。通常のマイクロストリップ共振器は50.9GHzで2分の1波長の共振を発現し、共振器のQ値として189が得られた。本実施の形態3の実施例より、共振器3Aは通常のマイクロストリップ共振器3Bと比較して、10%の実効共振器長増大の効果を得られたことが分かった。   On the other hand, as Comparative Example 3B, a normal microstrip resonator having a structure in which the second transmission region is subtracted from the resonator 3A was prepared. A normal microstrip resonator exhibited half-wave resonance at 50.9 GHz, and 189 was obtained as the Q value of the resonator. From the example of the third embodiment, it was found that the resonator 3A was able to obtain an effect of increasing the effective resonator length by 10% compared with the normal microstrip resonator 3B.

本発明にかかる高周波線路、および共振器は、伝送する高周波信号に与える単位長さあたりの通過位相量を増大せしめることが可能であり、結果的に高周波回路の小型化に寄与しうる。またフィルタ、アンテナ、移相器、スイッチ、発振器等の通信分野の用途に広く応用でき、電力伝送やIDタグなどの無線技術を使用する各分野においても使用されうる。   The high-frequency line and resonator according to the present invention can increase the amount of passing phase per unit length given to a high-frequency signal to be transmitted, and as a result can contribute to miniaturization of the high-frequency circuit. Further, it can be widely applied to applications in the communication field such as filters, antennas, phase shifters, switches, and oscillators, and can also be used in various fields that use wireless technologies such as power transmission and ID tags.

(a)本発明の実施の形態1における高周波線路の上面図(b)本発明の実施の形態1における高周波線路の上面図中線分B1−B2での断面図(c)本発明の実施の形態1における高周波線路の上面図中線分C1−C2での断面図(d)本発明の実施の形態1における高周波線路の上面図中線分D1−D2での断面図(A) Top view of the high-frequency line in the first embodiment of the present invention (b) Cross-sectional view taken along line B1-B2 in the top view of the high-frequency line in the first embodiment of the present invention (c) Implementation of the present invention Sectional view taken along line C1-C2 in the top view of the high-frequency line in the first embodiment (d) Section view taken along line D1-D2 in the top view of the high-frequency line in the first embodiment of the present invention 本発明の比較例1における第二の伝送領域での伝送線路構造断面図Transmission line structure sectional view in the second transmission region in Comparative Example 1 of the present invention 本発明の実施の形態1の高周波線路の好ましい例における第二の伝送領域の断面図Sectional drawing of the 2nd transmission area | region in the preferable example of the high frequency line of Embodiment 1 of this invention 本発明の実施の形態1の高周波線路の好ましい例を示す図(a)第一の伝送領域の伝送線路構造断面図(b)第二の伝送領域の伝送線路構造断面図The figure which shows the preferable example of the high frequency line of Embodiment 1 of this invention (a) Transmission line structure sectional drawing of the 1st transmission area (b) Transmission line structure sectional drawing of the 2nd transmission area (a)本発明の実施の形態2における高周波線路の上面透視図(b)本発明の実施の形態2における高周波線路の上面透視図中線分B1−B2での断面図(c)本発明の実施の形態2における高周波線路の上面透視図中線分C1−C2での断面図(d)本発明の実施の形態2における高周波線路の上面透視図中線分D1−D2での断面図(A) Top perspective view of the high-frequency line according to the second embodiment of the present invention (b) Cross-sectional view taken along the line B1-B2 in the top perspective view of the high-frequency line according to the second embodiment of the present invention (c) Sectional view taken along line C1-C2 in the top perspective view of the high-frequency line in the second embodiment (d) Sectional view taken along line D1-D2 in the top perspective view of the high-frequency line in the second embodiment of the present invention 本発明の実施の形態2の高周波線路の好ましい例における第二の伝送領域の断面図Sectional drawing of the 2nd transmission area | region in the preferable example of the high frequency line of Embodiment 2 of this invention (a)本発明の実施の形態3における共振器の上面図(b)本発明の実施の形態3における共振器の上面図中線分B1−B2での断面図(c)本発明の実施の形態3における共振器の上面図中線分C1−C2での断面図(d)本発明の実施の形態3における共振器の上面図中線分D1−D2での断面図(A) Top view of the resonator according to the third embodiment of the present invention (b) Cross section along line B1-B2 in the top view of the resonator according to the third embodiment of the present invention (c) Implementation of the present invention Sectional view at line segment C1-C2 in the top view of the resonator in the third embodiment (d) Sectional view at line segment D1-D2 in the top view of the resonator in the third embodiment of the present invention 本発明の実施の形態3の共振器の好ましい例における第二の伝送領域の断面図Sectional drawing of the 2nd transmission area | region in the preferable example of the resonator of Embodiment 3 of this invention 本発明の実施の形態3の共振器の好ましい例の上面図Top view of a preferable example of the resonator according to the third embodiment of the present invention. 従来の高周波線路の伝送線路断面構造(a)マイクロストリップ線路の図(b)ストリップ線路の図Transmission line cross-sectional structure of conventional high-frequency line (a) Microstrip line diagram (b) Stripline diagram

符号の説明Explanation of symbols

1 基板
2 信号導体配線
3 接地導体
4 第一の伝送領域
5 第二の伝送領域
6 追加接地導体
7 信号導体配線の両縁
8 通常の伝送線路において電流が集中しない信号導体配線の両縁以外の領域
9 空間
10 接地導体
11,12 共振器の両端
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Signal conductor wiring 3 Ground conductor 4 1st transmission area 5 2nd transmission area 6 Additional ground conductor 7 Both edges of signal conductor wiring 8 Other than both edges of signal conductor wiring in which current does not concentrate in a normal transmission line Area 9 Space 10 Ground conductor 11, 12 Both ends of resonator

Claims (7)

誘電体または半導体からなる基板の表面に信号導体配線が配置され、該基板の裏面の、該信号導体配線と対向する箇所において設けられる接地導体が均一に基板裏面に設定される第一の伝送領域と、該接地導体が該信号導体配線に向かって凸形状となる断面を有しており、該信号導体配線と該接地導体間の最近接間隔が該第一の伝送領域と比べて短く設定される第二の伝送領域、とが、信号の伝送方向にわたり交互に設定されることを特徴とする伝送線路。 A first transmission region in which a signal conductor wiring is arranged on the surface of a substrate made of a dielectric or a semiconductor, and a ground conductor provided at a position facing the signal conductor wiring on the back surface of the substrate is uniformly set on the back surface of the substrate And the ground conductor has a cross section that is convex toward the signal conductor wiring, and the closest distance between the signal conductor wiring and the ground conductor is set shorter than the first transmission region. And a second transmission region, wherein the second transmission region is alternately set over a signal transmission direction. 該第二の伝送領域内において、該凸形状部の幅が該信号導体配線の幅全域よりも狭いことを特徴とする請求項1に記載の伝送線路。 2. The transmission line according to claim 1, wherein the width of the convex portion is narrower than the entire width of the signal conductor wiring in the second transmission region. 該第一の伝送領域における伝送線路構造の断面構造より決定される第一の特性インピーダンスが設計特性インピーダンスより高く、該第二の伝送領域における伝送線路構造の断面構造より決定される第二の特性インピーダンスが該設計特性インピーダンスよりも低く設定されてなる請求項1に記載の伝送線路。 The first characteristic impedance determined from the cross-sectional structure of the transmission line structure in the first transmission region is higher than the design characteristic impedance, and the second characteristic determined from the cross-sectional structure of the transmission line structure in the second transmission region The transmission line according to claim 1, wherein the impedance is set lower than the design characteristic impedance. 該第一の伝送領域における第一の信号導体配線幅を、該第二の伝送領域における第二の信号導体配線幅よりも広く設定されてなる請求項1に記載の伝送線路。 The transmission line according to claim 1, wherein the first signal conductor wiring width in the first transmission region is set wider than the second signal conductor wiring width in the second transmission region. 誘電体または半導体からなる基板の表面に信号導体配線が配置され、該基板の裏面の、該信号導体配線と対向する箇所において設けられる接地導体が該信号導体配線に向かって凸形状となる断面を有している第一の伝送領域と、該接地導体が該信号導体配線に向かって凸形状となる断面を有している第二の伝送領域とが、信号の伝送方向にわたり交互に設定され、該第一の伝送領域の凸形状部と該第二の伝送領域の凸形状部が、最も信号導体配線に近接する箇所において接続されていないことを特徴とする伝送線路。 A cross section in which the signal conductor wiring is disposed on the front surface of the substrate made of a dielectric or semiconductor, and the ground conductor provided at the position facing the signal conductor wiring on the back surface of the substrate is convex toward the signal conductor wiring. The first transmission region having and the second transmission region having a cross section in which the ground conductor is convex toward the signal conductor wiring are alternately set over the signal transmission direction, A transmission line, wherein the convex shape portion of the first transmission region and the convex shape portion of the second transmission region are not connected at a position closest to the signal conductor wiring. 表面に形成された第一の接地導体と裏面に形成された第二の接地導体とで挟まれた誘電体または半導体からなる基板の内部に信号導体配線が配置され、該信号導体配線と対向する箇所において設けられる、該第一、もしくは第二の接地導体が均一に基板面に設定される第一の伝送領域と、該第一、もしくは第二の接地導体のいずれかが該信号導体配線に向かって凸形状となる断面を有しており、該信号導体配線と該接地導体間の最近接間隔が該第一の伝送領域と比べて短く設定される第二の伝送領域、とが、信号の伝送方向にわたり交互に設定されることを特徴とする伝送線路。 A signal conductor wiring is disposed inside a substrate made of a dielectric or semiconductor sandwiched between a first ground conductor formed on the front surface and a second ground conductor formed on the back surface, and faces the signal conductor wiring. A first transmission region provided at a location where the first or second ground conductor is uniformly set on the substrate surface, and either the first or second ground conductor is connected to the signal conductor wiring. A second transmission region having a cross section that is convex toward the signal transmission line, wherein a closest distance between the signal conductor wiring and the ground conductor is set shorter than the first transmission region. A transmission line characterized by being alternately set over the transmission direction. 誘電体または半導体からなる基板の表面に信号導体配線が配置され、該基板の裏面の、該信号導体配線と対向する箇所において設けられる接地導体が均一に基板裏面に設定される第一の伝送領域と、該接地導体が該信号導体配線に向かって凸形状となる断面を有しており、該信号導体配線と該接地導体間の最近接間隔が該第一の伝送領域と比べて短く設定される第二の伝送領域、とが、信号の伝送方向にわたり交互に設定されており、該伝送方向の両端が接地、もしくは開放により終端され、所定の周波数において共振現象を発現する共振器。 A first transmission region in which a signal conductor wiring is arranged on the surface of a substrate made of a dielectric or a semiconductor, and a ground conductor provided at a position facing the signal conductor wiring on the back surface of the substrate is uniformly set on the back surface of the substrate And the ground conductor has a cross section that is convex toward the signal conductor wiring, and the closest distance between the signal conductor wiring and the ground conductor is set shorter than the first transmission region. The second transmission region is alternately set over the signal transmission direction, and both ends of the transmission direction are terminated by grounding or opening, and a resonator exhibits a resonance phenomenon at a predetermined frequency.
JP2003356075A 2003-10-16 2003-10-16 High frequency line and resonator Pending JP2005123850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003356075A JP2005123850A (en) 2003-10-16 2003-10-16 High frequency line and resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003356075A JP2005123850A (en) 2003-10-16 2003-10-16 High frequency line and resonator

Publications (1)

Publication Number Publication Date
JP2005123850A true JP2005123850A (en) 2005-05-12

Family

ID=34613436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356075A Pending JP2005123850A (en) 2003-10-16 2003-10-16 High frequency line and resonator

Country Status (1)

Country Link
JP (1) JP2005123850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142977A (en) * 2005-11-21 2007-06-07 National Institute Of Information & Communication Technology Tunable antenna and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142977A (en) * 2005-11-21 2007-06-07 National Institute Of Information & Communication Technology Tunable antenna and its control method

Similar Documents

Publication Publication Date Title
JP4224081B2 (en) Circularly polarized antenna device
US10418708B2 (en) Wideband antenna
US9972900B2 (en) Distributor and planar antenna
US6452552B1 (en) Microstrip antenna
US6686808B1 (en) Coplanar stripline with corrugated structure
JPH07307612A (en) Plane antenna
CN109346834A (en) SIGW circular polarisation slot antenna
JP2007081825A (en) Leakage-wave antenna
US7642981B2 (en) Wide-band slot antenna apparatus with constant beam width
JP2005167966A (en) Antenna device
JP2005312062A (en) Small antenna
CN109616764A (en) Substrate integrates gap waveguide circular polarized antenna
KR101154091B1 (en) Meta-material mimo antenna
US11387534B2 (en) Converter and antenna device
CN109860989A (en) Circular polarisation slot antenna based on integral substrate gap waveguide
JP2014183355A (en) Small-sized antenna
JP2006115182A (en) Pattern antenna
JP2005123850A (en) High frequency line and resonator
JP5429459B2 (en) Mm-wave antenna
JP2001320225A (en) Antenna device
JP2011182039A (en) Transmission line board for high frequency
JP4601573B2 (en) Waveguide converter
CN110416722B (en) Equilateral triangle ring structure gap broadband antenna
JP2001196816A (en) Power distribution circuit
JP2006157845A (en) Antenna device