JP2005121607A - Current/voltage converting circuit for infrared ray detector - Google Patents

Current/voltage converting circuit for infrared ray detector Download PDF

Info

Publication number
JP2005121607A
JP2005121607A JP2003359694A JP2003359694A JP2005121607A JP 2005121607 A JP2005121607 A JP 2005121607A JP 2003359694 A JP2003359694 A JP 2003359694A JP 2003359694 A JP2003359694 A JP 2003359694A JP 2005121607 A JP2005121607 A JP 2005121607A
Authority
JP
Japan
Prior art keywords
switch
circuit
input terminal
operational amplifier
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003359694A
Other languages
Japanese (ja)
Other versions
JP4269882B2 (en
Inventor
Taku Fukui
卓 福井
Mitsuteru Hataya
光輝 畑谷
Yuji Takada
裕司 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003359694A priority Critical patent/JP4269882B2/en
Publication of JP2005121607A publication Critical patent/JP2005121607A/en
Application granted granted Critical
Publication of JP4269882B2 publication Critical patent/JP4269882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current/voltage converting circuit for an infrared ray detector shortening the inspection time of a leak current performed before shipment. <P>SOLUTION: This converting circuit comprises: an operation amplifier 2 in which a pyroelectric element 1 is connected to a reversal input terminal; a capacitor Cf connected between the reversal input terminal and output terminal of the operation amplifier 2; a series circuit comprising a resistance Ri, a switch SW1 and a DC feedback circuit DF connected in parallel with the capacitor Cf; a series circuit comprising a switch SW2 of which the one end is connected to the reversal input terminal of the operation amplifier 2, and the other end is grounded, and a reference voltage source E3; and a control circuit 4 controlling the turn-on/turn-off of the switch SW2. The control circuit 4 turns on the switch SW2, and turns off the switch SW2 after predetermined time in the state where the switch SW1 is turned off by a control signal from a TEST terminal at the time of leak current inspection. When the amount of change of the potential of a So terminal during Time T is set to ΔV and the leak current is set to I1, the leak current can be calculated by the formula I1=Cf×ΔV/T. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、赤外線検出装置用電流電圧変換回路に関するものである。   The present invention relates to a current-voltage conversion circuit for an infrared detector.

焦電素子を用いて人体から輻射される赤外線エネルギーを検出し、人体の存在や移動の検知を行う赤外線検出装置において、焦電素子の出力信号は非常に微弱な電流出力であるが、一般にはこの出力電流を抵抗素子を用いて電流電圧変換している。こうして変換された信号は増幅された後に、コンパレータ部で予め設定された閾値と比較され、人体の存在や移動を判定する。しかし、抵抗素子による熱雑音が赤外線検出装置のS/N比を悪化させる主要因となっている。   In an infrared detector that detects the infrared energy radiated from the human body using a pyroelectric element and detects the presence and movement of the human body, the output signal of the pyroelectric element is a very weak current output. This output current is converted into a current voltage using a resistance element. The signal thus converted is amplified and then compared with a preset threshold value in the comparator unit to determine the presence or movement of the human body. However, thermal noise due to the resistance element is a main factor that deteriorates the S / N ratio of the infrared detection device.

そこで、コンデンサのインピーダンス成分を用いた電流電圧変換回路が提案されており、その回路構成例を図4に示す。焦電素子1は直流電圧源E1を介して一端を接地し、他端はSi端子を介して演算増幅器2の反転入力端子に接続しており、演算増幅器2の出力端子と反転入力端子との間には、帰還容量を形成するコンデンサCfを接続している。また、コンデンサCfには、直流帰還回路DFと抵抗Riとの直列回路が並列接続している。演算増幅器2の非反転入力端子には動作点を所定レベルに設定するための基準電圧源E2が接続され、出力端子はSo端子に接続される。   Therefore, a current-voltage conversion circuit using the impedance component of the capacitor has been proposed, and an example of the circuit configuration is shown in FIG. The pyroelectric element 1 has one end grounded via a DC voltage source E1, and the other end connected to the inverting input terminal of the operational amplifier 2 via the Si terminal. A capacitor Cf that forms a feedback capacitance is connected between them. In addition, a series circuit of a DC feedback circuit DF and a resistor Ri is connected in parallel to the capacitor Cf. A reference voltage source E2 for setting the operating point to a predetermined level is connected to the non-inverting input terminal of the operational amplifier 2, and an output terminal is connected to the So terminal.

直流帰還回路DFは、反転入力端子に抵抗R1の一端を接続し、出力端子と反転入力端子との間にコンデンサC1を接続した演算増幅器3からなる積分回路で構成され、演算増幅器3の非反転入力端子には演算増幅器2の出力が接続され、抵抗R1の他端には基準電圧源E2が接続されている。   The DC feedback circuit DF is composed of an integrating circuit composed of an operational amplifier 3 in which one end of a resistor R1 is connected to the inverting input terminal and a capacitor C1 is connected between the output terminal and the inverting input terminal. The output of the operational amplifier 2 is connected to the input terminal, and the reference voltage source E2 is connected to the other end of the resistor R1.

このような電流電圧変換回路はバンドパスフィルタとして動作し、図4の回路において焦電素子1からみたインピーダンスZ(S)、及びその中心周波数ω0は[数1]で表される。   Such a current-voltage conversion circuit operates as a band-pass filter, and the impedance Z (S) viewed from the pyroelectric element 1 and its center frequency ω0 in the circuit of FIG. 4 are expressed by [Equation 1].

Figure 2005121607
Figure 2005121607

図5はこのインピーダンス(変換インピーダンス)の周波数特性を示しており、中心周波数f0(=ω0/2π)より高い周波数領域AではコンデンサCfのインピーダンス特性を反映して、Z(ω)=1/(ω×Cf)で表され、周波数が低くなるにつれてインピーダンスは上昇するが、中心周波数f0より低い領域では直流帰還回路DFが動作しているため、逆にインピーダンスは低下していく。 FIG. 5 shows the frequency characteristic of this impedance (conversion impedance). In the frequency region A higher than the center frequency f0 (= ω0 / 2π), the impedance characteristic of the capacitor Cf is reflected and Z (ω) = 1 / ( The impedance increases as the frequency decreases. However, since the DC feedback circuit DF operates in a region lower than the center frequency f0, the impedance decreases conversely.

ここで、人体検知における検出周波数は1Hz中心であるので、後段の電圧増幅部(図示無し)において1Hzを中心とした0.1〜10Hz付近の周波数帯が選択的に増幅される。したがってS/N比を向上させるためにこの周波数帯は、コンデンサCfのインピーダンス特性で電流電圧変換する必要がある。すなわち、中心周波数ω0<2π×0.1Hzでなければならない。また、焦電素子1からの出力電流は非常に微弱であるため、変換インピーダンス値も非常に高い値となり、抵抗Ri,R1は数T(テラ)Ωという非常に高い抵抗値である必要があるが、一般にこのような高抵抗を実現すると抵抗値のばらつきや温度特性が非常に悪くなってしまう。例えば回路の集積化のために不純物不拡散ポリシリ抵抗素子を用いた場合、ばらつき、及び25〜60℃の変化時における温度特性の各最小値は、ばらつきが約0.5倍、温度特性が約0.1倍となる。この場合でも、中心周波数ω0<2π×0.1Hzとするためには、中心周波数f0=数mHz(ω0=2π×f0)とする必要がある。したがって、この電流電圧変換回路は、数mHzを中心周波数とする周波数特性を有することになる。(例えば、特許文献1参照)
特開平10−281866号公報
Here, since the detection frequency in human body detection is centered at 1 Hz, a frequency band in the vicinity of 0.1 to 10 Hz centered on 1 Hz is selectively amplified in a subsequent voltage amplification unit (not shown). Therefore, in order to improve the S / N ratio, it is necessary to perform current-voltage conversion in this frequency band with the impedance characteristics of the capacitor Cf. That is, the center frequency ω0 <2π × 0.1 Hz must be satisfied. Further, since the output current from the pyroelectric element 1 is very weak, the conversion impedance value is also very high, and the resistors Ri and R1 need to have very high resistance values of several T (tera) Ω. However, in general, when such a high resistance is realized, variations in resistance values and temperature characteristics become very poor. For example, when an impurity non-diffusing polysilicon resistor element is used for circuit integration, the variation and the minimum value of the temperature characteristic at the time of change of 25 to 60 ° C. are about 0.5 times the variation and the temperature characteristic is about 0.1 times. Even in this case, in order to set the center frequency ω0 <2π × 0.1 Hz, it is necessary to set the center frequency f0 = several mHz (ω0 = 2π × f0). Therefore, this current-voltage conversion circuit has frequency characteristics with a central frequency of several mHz. (For example, see Patent Document 1)
Japanese Patent Laid-Open No. 10-281866

赤外線検出装置において、入力部の高抵抗の熱雑音以外に問題となる雑音源として入力部のリーク電流によるショット雑音がある。また、一般に演算増幅器2をCMOS回路で構成することにより演算増幅器2への入力リーク電流は無視できるレベルまで小さくできるが、例えば回路を集積化した場合、図4に示すように演算増幅器2の入力端子−接地レベル間に静電気対策用の保護ダイオードD1を接続する必要がある。しかし、このダイオードD1を介してのリーク電流Idが無視できない値となり、出荷検査時にはこのリーク電流値を検査し、管理する必要がある。ところが、これらの電流値は数f(フェムト)アンペアレベルの微弱なレベルであるため、一般の測定機器で電流値を直接測定することは困難であった。   In the infrared detection device, there is a shot noise due to a leakage current of the input unit as a noise source which becomes a problem in addition to the high resistance thermal noise of the input unit. In general, the operational amplifier 2 is constituted by a CMOS circuit, so that the input leakage current to the operational amplifier 2 can be reduced to a negligible level. For example, when the circuit is integrated, the input of the operational amplifier 2 as shown in FIG. It is necessary to connect a protective diode D1 for preventing static electricity between the terminal and the ground level. However, the leakage current Id through the diode D1 is a value that cannot be ignored, and it is necessary to inspect and manage the leakage current value at the time of shipping inspection. However, since these current values are weak levels of several f (femto) ampere level, it is difficult to directly measure the current values with a general measuring instrument.

そこでこのようなリーク電流を測定するために、回路動作の安定時に演算増幅器2の出力端子に接続したSo端子の電位と、演算増幅器3の出力端子に接続したSf端子の電位とを測定し、この電位差を抵抗Riの抵抗値で割ることによって、等価的にリーク電流値を測定していた(So端子の電位とSi端子の電位とは等しいとする)。   Therefore, in order to measure such a leakage current, the potential of the So terminal connected to the output terminal of the operational amplifier 2 and the potential of the Sf terminal connected to the output terminal of the operational amplifier 3 are measured when the circuit operation is stable. By dividing this potential difference by the resistance value of the resistor Ri, the leakage current value was measured equivalently (assuming that the potential at the So terminal is equal to the potential at the Si terminal).

しかし、上記のような方法でリーク電流値を測定するためには、回路に電源を与えて動作が安定した後に測定を行う必要があるが、上述のようにこの回路は数mHzの時定数を有するため回路動作が安定するまでに数百秒の時間を要することになり、回路の検査時間が非常に長くなるという問題があった。   However, in order to measure the leakage current value by the above method, it is necessary to perform measurement after supplying power to the circuit and the operation is stabilized. As described above, this circuit has a time constant of several mHz. Therefore, it takes several hundred seconds to stabilize the circuit operation, and there is a problem that the inspection time of the circuit becomes very long.

本発明は、上記事由に鑑みてなされたものであり、その目的は、出荷時に行うリーク電流の検査時間を短縮した赤外線検出装置用電流電圧変換回路を提供することにある。   The present invention has been made in view of the above reasons, and an object of the present invention is to provide a current-voltage conversion circuit for an infrared detection device that shortens the inspection time of leakage current performed at the time of shipment.

請求項1の発明は、反転入力端子に焦電素子が接続され非反転入力端子に第1の基準電圧源が接続された演算増幅器と、演算増幅器の反転入力端子と出力端子との間に接続したコンデンサと、演算増幅器の反転入力端子に一端を接続した抵抗と第1のスイッチとの直列回路と、該直列回路の他端に一端を接続し演算増幅器の出力端子に他端を接続した直流帰還回路と、演算増幅器の反転入力端子の電位を非反転入力端子と同電位に充電するとともに充電経路を導通・遮断する第2のスイッチを具備する充電手段と、演算増幅器のリーク電流検査時に第1のスイッチをオフさせる手段と、演算増幅器のリーク電流検査時に第2のスイッチをオンさせてから所定時間後にオフさせる手段とを備えることを特徴とする。   According to a first aspect of the present invention, there is provided an operational amplifier having a pyroelectric element connected to the inverting input terminal and a first reference voltage source connected to the non-inverting input terminal, and connected between the inverting input terminal and the output terminal of the operational amplifier. A series circuit of a capacitor, a resistor having one end connected to the inverting input terminal of the operational amplifier and the first switch, a DC circuit having one end connected to the other end of the series circuit and the other end connected to the output terminal of the operational amplifier A charging circuit including a feedback circuit, a second switch for charging the potential of the inverting input terminal of the operational amplifier to the same potential as that of the non-inverting input terminal, and conducting / cutting off the charging path; Means for turning off the first switch and means for turning off the second switch after turning on the second switch at the time of leak current inspection of the operational amplifier.

この発明によれば、リーク電流とコンデンサの帰還容量のみによって決まる演算増幅器の出力電圧の変化の傾きから、リーク電流の検査を短時間で行うことができる。   According to the present invention, the leakage current can be inspected in a short time from the slope of the change in the output voltage of the operational amplifier determined only by the leakage current and the feedback capacity of the capacitor.

請求項2の発明は、請求項1において、前記充電手段は、第1の基準電圧源と同電圧を発生する第2の基準電圧源と第2のスイッチとの直列回路で構成され、該直列回路の一端を演算増幅器の反転入力端子に接続し、他端を接地したことを特徴とする。   According to a second aspect of the present invention, in the first aspect, the charging unit includes a series circuit of a second reference voltage source that generates the same voltage as the first reference voltage source and a second switch, and the series circuit One end of the circuit is connected to the inverting input terminal of the operational amplifier, and the other end is grounded.

この発明によれば、充電手段の具体回路を構成することができる。   According to this invention, the specific circuit of a charging means can be comprised.

請求項3の発明は、請求項1において、前記充電手段は、第2のスイッチが一端を演算増幅器の反転入力端子に接続し、他端を前記直流帰還回路の出力に接続して構成されることを特徴とする。   According to a third aspect of the present invention, in the first aspect, the charging unit is configured such that the second switch has one end connected to the inverting input terminal of the operational amplifier and the other end connected to the output of the DC feedback circuit. It is characterized by that.

この発明によれば、電源投入時の回路安定時間短縮回路をリーク電流検査時間の短縮にも兼用することによって、小規模回路で電源投入時の回路安定時間とリーク電流検査時間との両方を短縮することが可能となる。   According to the present invention, the circuit stabilization time shortening circuit at the time of power-on is also used for shortening the leakage current inspection time, thereby reducing both the circuit stabilization time and the leakage current inspection time at the time of power-on in a small circuit. It becomes possible to do.

請求項4の発明は、請求項1乃至3いずれかにおいて、演算増幅器のリーク電流検査時に第1のスイッチをオフさせるとともに第2のスイッチをオンさせてから所定時間後にオフさせる制御回路を備えることを特徴とする。   According to a fourth aspect of the present invention, there is provided the control circuit according to any one of the first to third aspects, wherein the first switch is turned off and the second switch is turned on a predetermined time after turning on the leak current of the operational amplifier. It is characterized by.

この発明によれば、制御回路によって自動的にスイッチのオン・オフを制御するので、リーク電流検査時に特別な設定を施すことなく短時間で検査を行うことができる。   According to the present invention, since the on / off of the switch is automatically controlled by the control circuit, the inspection can be performed in a short time without special setting at the time of the leakage current inspection.

以上説明したように、本発明では、出荷時に行うリーク電流の検査時間を短縮できるという効果がある。   As described above, according to the present invention, there is an effect that it is possible to shorten the inspection time for leakage current performed at the time of shipment.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図1は本実施形態の赤外線検出装置用電流電圧変換回路の回路図である。焦電素子1は直流電圧源E1を介して一端を接地し、他端はSi端子を介して演算増幅器2の反転入力端子に接続しており、演算増幅器2の出力端子と反転入力端子との間には、帰還容量を形成するコンデンサCfを接続している。また、演算増幅器2の反転入力端子−出力端子間には、抵抗RiとスイッチSW1(第1のスイッチ)と直流帰還回路DFとの直列回路が並列接続しており、抵抗Riは反転入力端子側、直流帰還回路DFは出力端子側に接続され、スイッチSW1は抵抗Riと直流帰還回路DFとの間に接続されてTEST端子からの制御信号によってオン/オフ制御される。演算増幅器2の非反転入力端子には動作点を所定レベルに設定するための基準電圧源E2が接続され、出力端子はSo端子に接続される。
(Embodiment 1)
FIG. 1 is a circuit diagram of a current-voltage conversion circuit for an infrared detector according to this embodiment. The pyroelectric element 1 has one end grounded via a DC voltage source E1, and the other end connected to the inverting input terminal of the operational amplifier 2 via the Si terminal. A capacitor Cf that forms a feedback capacitance is connected between them. Further, a series circuit of a resistor Ri, a switch SW1 (first switch) and a DC feedback circuit DF is connected in parallel between the inverting input terminal and the output terminal of the operational amplifier 2, and the resistor Ri is connected to the inverting input terminal side. The DC feedback circuit DF is connected to the output terminal side, and the switch SW1 is connected between the resistor Ri and the DC feedback circuit DF and is on / off controlled by a control signal from the TEST terminal. A reference voltage source E2 for setting the operating point to a predetermined level is connected to the non-inverting input terminal of the operational amplifier 2, and an output terminal is connected to the So terminal.

直流帰還回路DFは、反転入力端子に抵抗R1の一端を接続し、出力端子と反転入力端子との間にコンデンサC1を接続した演算増幅器3からなる積分回路で構成され、演算増幅器3の非反転入力端子には演算増幅器2の出力が接続され、抵抗R1の他端には基準電圧源E2(第1の基準電圧源)が接続されている。   The DC feedback circuit DF is composed of an integrating circuit including an operational amplifier 3 in which one end of a resistor R1 is connected to an inverting input terminal and a capacitor C1 is connected between the output terminal and the inverting input terminal. The output of the operational amplifier 2 is connected to the input terminal, and the reference voltage source E2 (first reference voltage source) is connected to the other end of the resistor R1.

また、演算増幅器2の反転入力端子はスイッチSW2(第2のスイッチ)と基準電圧源E3(第2の基準電圧源)との直列回路を介して接地され、スイッチSW2は制御回路4によってオン/オフを制御される。ここで基準電圧源E2,E3の各電源電圧は同じ電圧Vrに設定されている。   The inverting input terminal of the operational amplifier 2 is grounded through a series circuit of a switch SW2 (second switch) and a reference voltage source E3 (second reference voltage source). The switch SW2 is turned on / off by the control circuit 4. Controlled off. Here, the power supply voltages of the reference voltage sources E2 and E3 are set to the same voltage Vr.

次にリーク電流の測定動作について説明する。リーク電流測定時には、まずTEST端子からの制御信号によってスイッチSW1をオフにするとともに、制御回路4によってスイッチSW2をオンとする。この状態で電源を投入すると、基準電圧源E3によってSi端子の電位は瞬時に電圧Vrにまで充電される。その後、スイッチSW2をオフさせるが、このスイッチSW2のオンからオフまでの時間は10msec程度で十分である。スイッチSW2がオフすると、Si端子に電流を供給する経路が全て断たれるため、リーク電流のみによってSi端子の電位は放電される。このとき、演算増幅器2の作用によってSi端子は電位Vrに保たれ、コンデンサCfに電荷Qが蓄積されるとともにSo端子の電位が上昇する。ここで時間T間のSo端子の電位の変化量をΔV、リーク電流をI1とすると、この電圧がコンデンサCfの両端にかかるので、Q=Cf×ΔV=I1×Tとなる。すなわち、I1=Cf×ΔV/Tよりリーク電流I1を算出することができる。この時間Tは100msec程度あれば十分であるので、スイッチSW2のオン時間を加えても計110msec程度でリーク電流の測定が可能となる。   Next, the leak current measurement operation will be described. When measuring the leakage current, first, the switch SW1 is turned off by a control signal from the TEST terminal, and the switch SW2 is turned on by the control circuit 4. When the power is turned on in this state, the potential of the Si terminal is instantaneously charged to the voltage Vr by the reference voltage source E3. Thereafter, the switch SW2 is turned off, and it is sufficient that the switch SW2 is turned on and off for about 10 msec. When the switch SW2 is turned off, all the paths for supplying current to the Si terminal are cut off, so that the potential of the Si terminal is discharged only by the leakage current. At this time, the Si terminal is kept at the potential Vr by the operation of the operational amplifier 2, the charge Q is accumulated in the capacitor Cf, and the potential of the So terminal rises. Here, if the amount of change in the potential of the So terminal during time T is ΔV and the leakage current is I1, this voltage is applied to both ends of the capacitor Cf, so that Q = Cf × ΔV = I1 × T. That is, the leakage current I1 can be calculated from I1 = Cf × ΔV / T. Since it is sufficient if the time T is about 100 msec, the leakage current can be measured in about 110 msec even if the on time of the switch SW2 is added.

なお、回路を集積化した場合でも、スイッチSW1をオン/オフする制御信号を入力するためのTEST端子を設けているので、リーク電流の検査時にはTEST端子を介してスイッチSW1を容易に制御することができる。   Even when the circuit is integrated, since a TEST terminal for inputting a control signal for turning on / off the switch SW1 is provided, the switch SW1 can be easily controlled via the TEST terminal when inspecting a leakage current. Can do.

(実施形態2)
図2は本実施形態の赤外線検出装置用電流電圧変換回路の回路図であり、実施形態1の回路においてスイッチSW2が演算増幅器2の反転入力端子と演算増幅器3の出力端子との間に接続され(すなわち抵抗RiとスイッチSW1との直列回路に並列接続され)、基準電圧源E3が除去されている。なお実施形態1と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 2)
FIG. 2 is a circuit diagram of the current-voltage conversion circuit for the infrared detection device of the present embodiment. In the circuit of the first embodiment, the switch SW2 is connected between the inverting input terminal of the operational amplifier 2 and the output terminal of the operational amplifier 3. The reference voltage source E3 is removed (that is, connected in parallel to the series circuit of the resistor Ri and the switch SW1). In addition, the same code | symbol is attached | subjected to the structure similar to Embodiment 1, and description is abbreviate | omitted.

図4に示す従来例の回路では上述のように、電源投入時に回路動作が安定するまでに非常に時間がかかるため、図2のスイッチSW2と制御回路4とを設けた構成として、電源投入直後の一定時間のみスイッチSW2をオンさせることにより、電源投入時の回路安定時間の短縮化が提案されている。そこで本実施形態では、電源投入時の回路安定時間の短縮回路をリーク電流検査時間の短縮にも兼用している。すなわち、リーク電流検査時にはTEST端子からの制御信号によってスイッチSW1をオフとして電源を投入すると、制御回路4によってスイッチSW2が一定時間オンされ、Si端子は電位Vrに充電される。そして一定時間後にスイッチSW2がオフしてからの動作は実施形態1と同様であり、短時間でのリーク電流の測定が可能となる。   Since the circuit of the conventional example shown in FIG. 4 takes a very long time to stabilize the circuit operation when the power is turned on as described above, the switch SW2 and the control circuit 4 shown in FIG. It has been proposed to shorten the circuit stabilization time when the power is turned on by turning on the switch SW2 only for a certain period of time. Therefore, in the present embodiment, the circuit stabilization time shortening circuit at the time of power-on is also used for shortening the leakage current inspection time. That is, at the time of leak current inspection, when the switch SW1 is turned off by the control signal from the TEST terminal and the power is turned on, the control circuit 4 turns on the switch SW2 for a certain period of time and charges the Si terminal to the potential Vr. The operation after the switch SW2 is turned off after a certain time is the same as that in the first embodiment, and the leakage current can be measured in a short time.

このように電源投入時の回路安定時間短縮回路をリーク電流検査時間の短縮にも兼用することによって、小規模回路で電源投入時の回路安定時間とリーク電流検査時間との両方を短縮することが可能となる。   In this way, the circuit stabilization time reduction circuit at power-on can also be used to reduce the leakage current inspection time, thereby reducing both the circuit stabilization time and leakage current inspection time at power-on in a small circuit. It becomes possible.

(実施形態3)
図3は本実施形態の赤外線検出装置用電流電圧変換回路の回路図であり、実施形態2の回路において制御回路4によってスイッチSW1とスイッチSW2との両方を制御するもので、実施形態2と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 3)
FIG. 3 is a circuit diagram of the current-voltage conversion circuit for an infrared detection device of the present embodiment. In the circuit of the second embodiment, both the switch SW1 and the switch SW2 are controlled by the control circuit 4, and the same as in the second embodiment. The same reference numerals are given to the configurations of and the description is omitted.

本実施形態では、電源投入時に制御回路4によって自動的に、スイッチSW1がオフするとともにスイッチSW2がオンし、一定時間(例えば10msec)後にスイッチSW2がオフして、その後一定時間(例えば200msec)後にスイッチSW1がオンするように制御される。したがってリーク電流測定時には特別な設定を施すことなく、電源投入時の特定の時間帯(例えば10msec〜200msecの間)を用いてリーク電流の測定を行うことができる。   In the present embodiment, the switch SW1 is automatically turned off and the switch SW2 is turned on automatically by the control circuit 4 when the power is turned on. The switch SW1 is controlled to turn on. Therefore, the leakage current can be measured using a specific time zone (for example, between 10 msec and 200 msec) when the power is turned on without performing any special setting at the time of measuring the leakage current.

また、実施形態1の回路においても制御回路4によってスイッチSW1とスイッチSW2との両方を制御すれば、上記同様の効果を奏し得る。   Also in the circuit of the first embodiment, if both the switch SW1 and the switch SW2 are controlled by the control circuit 4, the same effect as described above can be obtained.

実施形態1の構成を示す図である。1 is a diagram illustrating a configuration of a first embodiment. 実施形態2の構成を示す図である。6 is a diagram illustrating a configuration of a second embodiment. FIG. 実施形態3の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of a third embodiment. 従来例の構成を示す図である。It is a figure which shows the structure of a prior art example. 同上の変換インピーダンスの周波数特性を示す図である。It is a figure which shows the frequency characteristic of conversion impedance same as the above.

符号の説明Explanation of symbols

1 焦電素子
2,3 演算増幅器
4 制御回路
DF 直流帰還回路
Cf,C1 コンデンサ
Ri,R1 抵抗
SW1,SW2 スイッチ
E1 直流電圧源
E2,E3 基準電圧源
DESCRIPTION OF SYMBOLS 1 Pyroelectric element 2, 3 Operational amplifier 4 Control circuit DF DC feedback circuit Cf, C1 Capacitor Ri, R1 Resistance SW1, SW2 Switch E1 DC voltage source E2, E3 Reference voltage source

Claims (4)

反転入力端子に焦電素子が接続され非反転入力端子に第1の基準電圧源が接続された演算増幅器と、演算増幅器の反転入力端子と出力端子との間に接続したコンデンサと、演算増幅器の反転入力端子に一端を接続した抵抗と第1のスイッチとの直列回路と、該直列回路の他端に一端を接続し演算増幅器の出力端子に他端を接続した直流帰還回路と、演算増幅器の反転入力端子の電位を非反転入力端子と同電位に充電するとともに充電経路を導通・遮断する第2のスイッチを具備する充電手段と、演算増幅器のリーク電流検査時に第1のスイッチをオフさせる手段と、演算増幅器のリーク電流検査時に第2のスイッチをオンさせてから所定時間後にオフさせる手段とを備えることを特徴とする赤外線検出装置用電流電圧変換回路。 An operational amplifier in which a pyroelectric element is connected to the inverting input terminal and a first reference voltage source is connected to the non-inverting input terminal; a capacitor connected between the inverting input terminal and the output terminal of the operational amplifier; A series circuit of a resistor and one end connected to the inverting input terminal, a DC feedback circuit having one end connected to the other end of the series circuit and the other end connected to the output terminal of the operational amplifier, Charging means comprising a second switch for charging the potential of the inverting input terminal to the same potential as that of the non-inverting input terminal and conducting / cutting off the charging path, and means for turning off the first switch when checking the leakage current of the operational amplifier And a means for turning off the second switch after a predetermined time from turning on the second switch at the time of leak current inspection of the operational amplifier. 前記充電手段は、第1の基準電圧源と同電圧を発生する第2の基準電圧源と第2のスイッチとの直列回路で構成され、該直列回路の一端を演算増幅器の反転入力端子に接続し、他端を接地したことを特徴とする請求項1記載の赤外線検出装置用電流電圧変換回路。 The charging means comprises a series circuit of a second reference voltage source that generates the same voltage as the first reference voltage source and a second switch, and one end of the series circuit is connected to the inverting input terminal of the operational amplifier. The current-voltage conversion circuit for an infrared detecting device according to claim 1, wherein the other end is grounded. 前記充電手段は、第2のスイッチが一端を演算増幅器の反転入力端子に接続し、他端を前記直流帰還回路の出力に接続して構成されることを特徴とする請求項1記載の赤外線検出装置用電流電圧変換回路。 2. The infrared detection according to claim 1, wherein the charging means is configured such that the second switch has one end connected to the inverting input terminal of the operational amplifier and the other end connected to the output of the DC feedback circuit. Current-voltage conversion circuit for equipment. 演算増幅器のリーク電流検査時に第1のスイッチをオフさせるとともに第2のスイッチをオンさせてから所定時間後にオフさせる制御回路を備えることを特徴とする請求項1乃至3いずれか記載の赤外線検出装置用電流電圧変換回路。 4. An infrared detection apparatus according to claim 1, further comprising a control circuit that turns off the first switch and turns off the second switch after a predetermined time from turning on the second switch when checking the leakage current of the operational amplifier. Current voltage converter circuit.
JP2003359694A 2003-10-20 2003-10-20 Current-voltage conversion circuit for infrared detector Expired - Fee Related JP4269882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359694A JP4269882B2 (en) 2003-10-20 2003-10-20 Current-voltage conversion circuit for infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359694A JP4269882B2 (en) 2003-10-20 2003-10-20 Current-voltage conversion circuit for infrared detector

Publications (2)

Publication Number Publication Date
JP2005121607A true JP2005121607A (en) 2005-05-12
JP4269882B2 JP4269882B2 (en) 2009-05-27

Family

ID=34615837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359694A Expired - Fee Related JP4269882B2 (en) 2003-10-20 2003-10-20 Current-voltage conversion circuit for infrared detector

Country Status (1)

Country Link
JP (1) JP4269882B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217655A (en) * 2012-04-04 2013-10-24 Panasonic Corp Sensor device
JP2016515217A (en) * 2014-03-17 2016-05-26 エイエヌアイ・カンパニー・リミテッドANI.Co.Ltd Color difference meter module capable of real-time zero adjustment and hue measuring instrument using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217655A (en) * 2012-04-04 2013-10-24 Panasonic Corp Sensor device
JP2016515217A (en) * 2014-03-17 2016-05-26 エイエヌアイ・カンパニー・リミテッドANI.Co.Ltd Color difference meter module capable of real-time zero adjustment and hue measuring instrument using the same

Also Published As

Publication number Publication date
JP4269882B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
US7071677B2 (en) Accurate and efficient sensing method for bi-directional signals
US8508217B2 (en) Output circuit of charge mode sensor
EP2843383B1 (en) Temperature measurement apparatus using negative temperature coefficient thermistor
US5959463A (en) Semiconductor test apparatus for measuring power supply current of semiconductor device
CN100587505C (en) System for diagnosing impedances and having accurate current source and accurate voltage level-shift
US6313462B1 (en) Infrared-rays detector
JP4269882B2 (en) Current-voltage conversion circuit for infrared detector
JP2008064700A (en) Internal resistance measuring device for electric double layer capacitor
US11079432B2 (en) Integrated laser voltage probe pad for measuring DC or low frequency AC electrical parameters with laser based optical probing techniques
WO2020039881A1 (en) Internal resistance detection device and power supply device
JP5320929B2 (en) Current measuring device
US20170363481A1 (en) Fault Detection Apparatus
JPS60169740A (en) Smoke detector
KR940007922B1 (en) Insulation resistance detecting apparatus
JPH10300571A (en) Current-to-voltage conversion circuit in pyroelectric infrared detecting apparatus
US20170288439A1 (en) Signal processing circuit, coulomb counter circuit, and electronic device
JP5144292B2 (en) Switching power supply circuit and vehicle equipped with the same
JPH07151820A (en) Testing apparatus for withstand voltage
EP1642142B1 (en) Method and circuit arrangement for the self-testing of a reference voltage in electronic components
US20140239970A1 (en) Thermocouple open-circuit detection circuit and method
JP6662033B2 (en) Method and apparatus for measuring resistance of storage element
US11774517B2 (en) Leakage and loading detector circuit
JP3807168B2 (en) Infrared detector
CN110661425B (en) Power supply circuit and protocol control circuit therein
JPH11281688A (en) Constant-current source and resistancemeasuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees