JP2005121400A - X-ray detector and fluorescence x-ray analyzer using it - Google Patents

X-ray detector and fluorescence x-ray analyzer using it Download PDF

Info

Publication number
JP2005121400A
JP2005121400A JP2003354581A JP2003354581A JP2005121400A JP 2005121400 A JP2005121400 A JP 2005121400A JP 2003354581 A JP2003354581 A JP 2003354581A JP 2003354581 A JP2003354581 A JP 2003354581A JP 2005121400 A JP2005121400 A JP 2005121400A
Authority
JP
Japan
Prior art keywords
gas
scintillation counter
storage container
ray
ray detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003354581A
Other languages
Japanese (ja)
Other versions
JP4303080B2 (en
Inventor
Yukio Sako
幸雄 迫
Takashi Shoji
孝 庄司
Akira Arake
彰 荒毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP2003354581A priority Critical patent/JP4303080B2/en
Publication of JP2005121400A publication Critical patent/JP2005121400A/en
Application granted granted Critical
Publication of JP4303080B2 publication Critical patent/JP4303080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray detector consisting of a scintillation counter which is a simple constitution and can prolong the life under Helium atmosphere and to provide a fluorescence X-ray analyzer using it. <P>SOLUTION: By a gas flow from inside to outside of a container vessel 24 of a scintillation counter 17, He gas permeating into a photomultiplier 23 is expelled out and as the results, permeation of He gas into the photomultiplier 23 is disturbed and rise of He gas concentration is prevented. Also high vacuum inside the photomultiplier 23 can be maintained and multiplying function of the photomultiplier 23 can be maintained even under the He atmosphere and thus, life of the X-ray detector consisting of the scintillation counter 17 can be prolonged with a simple constitution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、He(ヘリウム)雰囲気下において、シンチレータおよび光電子増倍管を有するシンチレーション計数管からなるX線検出器の長寿命化に関するものである。   The present invention relates to extending the life of an X-ray detector comprising a scintillation counter having a scintillator and a photomultiplier tube in a He (helium) atmosphere.

従来から、X線が照射された試料から発生する蛍光X線を測定して試料を分析する蛍光X線分析装置が知られており、この蛍光X線分析装置に使用されるX線検出器には、重元素分析用のシンチレーション計数管や軽元素分析用のガスフロー型比例計数管などが用いられる(例えば、特許文献1)。また、液体試料等を蛍光X線分析する場合、予め試料室や分光室内がHeガスで置換されたHe雰囲気下で行われる。   Conventionally, a fluorescent X-ray analyzer for measuring a fluorescent X-ray generated from a sample irradiated with X-rays to analyze the sample is known, and an X-ray detector used in this fluorescent X-ray analyzer is known. A scintillation counter for heavy element analysis, a gas flow type proportional counter for light element analysis, or the like is used (for example, Patent Document 1). Further, when fluorescent X-ray analysis is performed on a liquid sample or the like, it is performed in a He atmosphere in which the sample chamber and the spectroscopic chamber are previously replaced with He gas.

前記シンチレーション計数管は、入射X線を蛍光(紫外線)に変換するシンチレータ(蛍光体)、および入射した紫外線から発生させた光電子を増倍する光電子増倍管を備えている。
特開2002−98658号公報
The scintillation counter includes a scintillator (phosphor) that converts incident X-rays into fluorescence (ultraviolet light), and a photomultiplier that multiplies photoelectrons generated from the incident ultraviolet light.
JP 2002-98658 A

ところが、従来装置によりHe雰囲気下で試料を蛍光X線分析すると、シンチレーション計数管の増倍機能が短い期間で発揮できなくなり、シンチレーション計数管からなるX線検出器の寿命が短くなるという問題があった。   However, when a sample is subjected to fluorescent X-ray analysis in a He atmosphere using a conventional apparatus, the multiplication function of the scintillation counter cannot be demonstrated in a short period of time, and the life of the X-ray detector comprising the scintillation counter is shortened. It was.

本発明は、前記の問題点を解決して、簡単な構成により、He雰囲気下で寿命を長くできるシンチレーション計数管からなるX線検出器およびこれを備えたX線分析装置を提供することを目的としている。   An object of the present invention is to solve the above-mentioned problems and to provide an X-ray detector composed of a scintillation counter capable of extending the life under a He atmosphere with a simple configuration and an X-ray analyzer equipped with the X-ray detector. It is said.

前記目的を達成するために、本発明に係るX線検出器は、He雰囲気下に置かれ、シンチレータ、光電子増倍管およびこれらを収納する収納容器を有するシンチレーション計数管からなるものであって、収納容器内部に空気、Nガス、PRガス、COガス、およびキセノンガスのうちのいずれか1つの気体の流れを生じさせ、この気体の流れにより光電子増倍管内に浸透しようとするHeガスを収納容器内部から外部へ押し出して、光電子増倍管内へのHeガス浸透を阻止するものである。ここで、PRガスとは、Ar90%+CH10%の混合ガスを意味する。 In order to achieve the above object, an X-ray detector according to the present invention comprises a scintillation counter placed in a He atmosphere and having a scintillator, a photomultiplier tube, and a storage container for storing these, A gas flow of any one of air, N 2 gas, PR gas, CO 2 gas, and xenon gas is generated inside the storage container, and this gas flow causes He gas to penetrate into the photomultiplier tube. Is pushed out from the inside of the storage container to prevent He gas permeation into the photomultiplier tube. Here, the PR gas means a mixed gas of Ar 90% + CH 4 10%.

この構成によれば、収納容器内部から外部への気体の流れによって、光電子増倍管内へ浸透してくるHeガスを外部へ押し出す結果、光電子増倍管内へのHeガスの浸透を阻止して収納容器内部のHeガス濃度が高くなるのを防ぐとともに、光電子増倍管内部の高真空を保持できるので、He雰囲気下でも、光電子増倍管の増倍機能を保持できるから、簡単な構成により、シンチレーション計数管からなるX線検出器の寿命を長くすることができる。   According to this configuration, the He gas penetrating into the photomultiplier tube is pushed out by the gas flow from the inside of the housing container to the outside, so that the penetration of the He gas into the photomultiplier tube is prevented and stored. While preventing the He gas concentration inside the container from becoming high and maintaining a high vacuum inside the photomultiplier tube, the multiplication function of the photomultiplier tube can be maintained even in a He atmosphere. The lifetime of the X-ray detector comprising a scintillation counter can be extended.

本発明に係るX線検出器を用いた蛍光X線分析装置は、He雰囲気下に置かれ、シンチレータ、光電子増倍管およびこれらを収納する収納容器を有するシンチレーション計数管と、PRガスまたはキセノンガスを使用するガスフロー型比例計数管とからなるX線検出器を備えたものであって、前記X線検出器は、シンチレーション計数管の収納容器内部にガスフロー型比例計数管からのPRガスまたはキセノンガスの気体の流れを生じさせ、この気体の流れにより光電子増倍管内に浸透しようとするHeガスを収納容器内部から外部へ押し出して、光電子増倍管内へのHeガス浸透を阻止するものである。   An X-ray fluorescence analyzer using an X-ray detector according to the present invention is a scintillation counter having a scintillator, a photomultiplier tube, and a storage container for storing these, PR gas, or xenon gas. An X-ray detector comprising a gas flow type proportional counter using a gas flow type proportional counter, and the X-ray detector has a PR gas from the gas flow type proportional counter inside the storage container of the scintillation counter A gas flow of xenon gas is generated, and the He gas to be penetrated into the photomultiplier tube is pushed out from the inside of the storage container by this gas flow to prevent the He gas permeation into the photomultiplier tube. is there.

この構成によれば、収納容器内部から外部への、ガスフロー型比例計数管からのPRガスまたはキセノンガスの気体の流れによって、光電子増倍管内へ浸透してくるHeガスを外部へ押し出す結果、光電子増倍管内へのHeガスの浸透を阻止して収納容器内部のHeガス濃度が高くなるのを防ぐとともに、光電子増倍管内部の高真空を保持できるので、He雰囲気下でも、光電子増倍管の増倍機能を保持できるから、また既設のガスフロー型比例計数管からのPRガスまたはキセノンガスを用いることから、簡単な構成により、シンチレーション計数管からなるX線検出器の寿命を低コストで長くすることができる。   According to this configuration, the He gas penetrating into the photomultiplier tube is pushed out by the gas flow of the PR gas or the xenon gas from the gas flow type proportional counter tube from the inside to the outside, While preventing the He gas from penetrating into the photomultiplier tube to prevent the He gas concentration inside the storage container from increasing, it is possible to maintain a high vacuum inside the photomultiplier tube. Since the multiplication function of the tube can be maintained, and PR gas or xenon gas from the existing gas flow type proportional counter is used, the life of the X-ray detector consisting of the scintillation counter can be reduced by a simple configuration. Can be long.

好ましくは、シンチレーション計数管は、可とう性の高分子パイプ内に給電および信号出力用の電線を収納してなるものであり、シンチレーション計数管の収納容器内部から前記高分子パイプ内を介して外部へ前記気体の流れを生じさせるものである。したがって、既設の部品である高分子パイプを用いて、光電子増倍管内へのHeガス浸透を阻止するので、より低コストでX線検出器の寿命を長くすることができる。   Preferably, the scintillation counter tube is a flexible polymer pipe containing power supply and signal output wires, and the scintillation counter tube is externally connected to the outside through the polymer pipe. The gas flow is generated. Therefore, since the polymer pipe, which is an existing component, is used to prevent He gas permeation into the photomultiplier tube, the lifetime of the X-ray detector can be extended at a lower cost.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の一実施形態に係るX線検出器を備えた蛍光X線分析装置を示す概略構成図である。この蛍光X線分析装置は例えば波長分散型であり、試料SにX線B1を照射するX線管2、試料Sから発生する蛍光X線B2を平行化するスリット3、蛍光X線B2を分光する分光結晶4、分光された蛍光X線B2を検出するX線検出器5、および分光結晶4とX線検出器5とを一定の角度関係を保って回動させる図示しないゴニオメータを備えている。試料Sは例えば液体や粉体などの試料であり、壁8、9により形成された装置内部、つまりX線管室12、試料室13および分光室14内はHe雰囲気に置換されている。分光結晶4は例えば回転機構を有する結晶交換機16により蛍光X線B2の波長に応じて交換される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a fluorescent X-ray analyzer equipped with an X-ray detector according to an embodiment of the present invention. This fluorescent X-ray analyzer is, for example, a wavelength dispersion type, and an X-ray tube 2 that irradiates the sample S with the X-ray B1, a slit 3 that collimates the fluorescent X-ray B2 generated from the sample S, and the fluorescent X-ray B2 are spectrally separated. And a goniometer (not shown) that rotates the spectroscopic crystal 4 and the X-ray detector 5 while maintaining a fixed angular relationship. . The sample S is a sample such as a liquid or powder, and the inside of the apparatus formed by the walls 8 and 9, that is, the X-ray tube chamber 12, the sample chamber 13, and the spectroscopic chamber 14 is replaced with a He atmosphere. The spectral crystal 4 is exchanged according to the wavelength of the fluorescent X-ray B2 by a crystal exchange 16 having a rotation mechanism, for example.

X線検出器5は、重元素分析用のシンチレーション計数管(シンチレータカウンタ)17と、軽元素分析用のガスフロー型比例計数管18とを備えている。シンチレーション計数管17は、入射X線を蛍光(紫外線)に変換するシンチレータ(蛍光体)22と、このシンチレータ22に隣接して配置されて、入射した紫外線から発生させた光電子を増倍する光電子増倍管23と、これらを収納する例えば金属製の収納容器24とを備え、収納容器24に取り付けられた可とう性の高分子パイプ内26に電源供給用および信号出力用の電線を収納して構成されている。収納容器24内は通常大気状態にある。光電子増倍管23は、図示しない光電陰極、複数段のダイノードおよび陽極からなる電子増倍機構を、高真空に保持されたガラス容器25の中に収納してなる。   The X-ray detector 5 includes a scintillation counter (scintillator counter) 17 for heavy element analysis and a gas flow type proportional counter 18 for light element analysis. The scintillation counter 17 is a scintillator (phosphor) 22 that converts incident X-rays into fluorescence (ultraviolet light), and a photoelectron multiplier that is arranged adjacent to the scintillator 22 and that multiplies photoelectrons generated from the incident ultraviolet light. A double tube 23 and, for example, a metal storage container 24 for storing these are provided, and power supply and signal output wires are stored in a flexible polymer pipe 26 attached to the storage container 24. It is configured. The inside of the storage container 24 is normally in the atmospheric state. The photomultiplier tube 23 includes an electron multiplier mechanism (not shown) composed of a photocathode, a plurality of stages of dynodes, and an anode in a glass container 25 held in a high vacuum.

シンチレーション計数管17に入射したX線はシンチレータ22により蛍光(紫外線)に変換され、これが光電子増倍管23に入射する。そして、光電子増倍管23の電子増倍機構により、まず光電陰極の光電面に紫外線が当ると光電子を放出し、この光電子が第1段のダイノードに当り2次電子を発生し、以後のダイノードで電子流は次々と増倍されて、陽極にパルスを発生する。   X-rays incident on the scintillation counter 17 are converted into fluorescence (ultraviolet rays) by the scintillator 22, and enter the photomultiplier tube 23. Then, by the electron multiplication mechanism of the photomultiplier tube 23, first, when ultraviolet rays hit the photocathode of the photocathode, photoelectrons are emitted. The electron current is then multiplied one after another, generating a pulse at the anode.

一方、PRガス(Ar90%+CH10%の混合ガス)を使用するガスフロー型比例計数管18は、陰極である本体(円筒部)32と、その内部中心にそって設けられた陽極の芯線33と、円筒部32の一部に設けられてポリエステルやポリプロピレンなどのフィルムからなるX線入射窓34と、円筒部32に取り付けられたガスフロー用のチューブ35とを備え、可とう性の高分子パイプ36内に電源供給用および信号出力用の電線を収納して構成されている。PRガスは例えば数ミリリットル/分〜数100ミリリットル/分のガス量で流される。 On the other hand, the gas flow type proportional counter 18 using PR gas (Ar 90% + CH 4 10% mixed gas) has a main body (cylindrical portion) 32 as a cathode and a core wire of an anode provided along the inner center thereof. 33, an X-ray incident window 34 provided on a part of the cylindrical portion 32 and made of a film such as polyester or polypropylene, and a gas flow tube 35 attached to the cylindrical portion 32, and having high flexibility. The molecular pipe 36 is configured to house power supply and signal output wires. For example, the PR gas is flowed at a gas amount of several milliliters / minute to several hundred milliliters / minute.

シンチレーション計数管17およびガスフロー型比例計数管18に用いられている高分子パイプ26、36は、X線検出器5がゴニオメータにより回動するので、例えばポリウレタンのような可とう性を有する材料からなる。   Since the X-ray detector 5 is rotated by a goniometer, the polymer pipes 26 and 36 used in the scintillation counter 17 and the gas flow proportional counter 18 are made of a material having flexibility such as polyurethane. Become.

ここで、He雰囲気下で試料Sを蛍光X線分析する場合、分光室14内部もHe雰囲気に置換されているので、シンチレーション計数管17の高分子パイプ26の外側周囲にHeガスが充満していることとなる。この高分子パイプ26に用いられる高分子材料は一般にHeガスを透過させやすく、パイプ26内に浸透したHeガスはやがて収納容器24の内部に侵入して、徐々に収納容器24内部のHeガス濃度が高くなる。所定濃度以上になるとHeガスはガラスを透過するため、光電子増倍管23のガラス容器25をHeガスが透過して、その内部に浸透する。   Here, in the case where the sample S is subjected to fluorescent X-ray analysis in the He atmosphere, the inside of the spectroscopic chamber 14 is also replaced with the He atmosphere, so that the outer periphery of the polymer pipe 26 of the scintillation counter tube 17 is filled with He gas. Will be. The polymer material used for the polymer pipe 26 is generally easy to permeate He gas, and the He gas that has penetrated into the pipe 26 eventually enters the inside of the storage container 24 and gradually the He gas concentration inside the storage container 24. Becomes higher. Since the He gas passes through the glass when the concentration exceeds a predetermined concentration, the He gas passes through the glass container 25 of the photomultiplier tube 23 and permeates into the inside.

そうすると、前記電子増倍機構の電子流の増倍過程において、電子流が浸透したHeガスに衝突して、イオン化しノイズとなって、増倍効果が減少し、光電子増倍管23の増倍機能が破壊されることとなる。このように、He雰囲気下では、シンチレーション計数管17の寿命、つまり使用開始から時間経過に伴って破壊するまでの時間が短くなる。なお、空気中にも微量のHeガスが含まれているがその濃度は低いため、該Heガスはガラスを透過せず、大気中に光電子増倍管が置かれても、その増倍機構は損なわれない。   Then, in the multiplication process of the electron flow of the electron multiplication mechanism, the electron flow collides with the permeated He gas, becomes ionized noise, reduces the multiplication effect, and the multiplication of the photomultiplier tube 23. The function will be destroyed. As described above, in the He atmosphere, the life of the scintillation counter tube 17, that is, the time from the start of use to the destruction thereof with the passage of time is shortened. Although a small amount of He gas is also contained in the air, its concentration is low. Therefore, even if a photomultiplier tube is placed in the atmosphere, the He gas does not pass through the glass. Not damaged.

これに対して、本実施形態では、シンチレーション計数管17の高分子パイプ26の中にさらに細い高分子パイプ27を設けて、この高分子パイプ27から収納容器24内部へ例えばガスフロー型比例計数管18のチューブ35からのPRガスを送り込んで、該内部から高分子パイプ26と高分子パイプ27間の通路を介して外部へ流れるPRガスの流れを生じさせ、このPRガスの流れにより光電子増倍管23内に浸透しようとするHeガスを収納容器24内部から外部へ押し出して、光電子増倍管23内へのHeガス浸透を阻止する。また、PRガスは、ガラスに対する透過性の少ない気体であるので、これをシンチレーション計数管17の収納容器24内で流しても、光電子増倍管23内部における高真空は保持される。   On the other hand, in the present embodiment, a thinner polymer pipe 27 is provided in the polymer pipe 26 of the scintillation counter tube 17, and the gas flow type proportional counter tube is supplied from the polymer pipe 27 into the storage container 24. The PR gas from the 18 tubes 35 is fed to generate a PR gas flow that flows from the inside through a passage between the polymer pipe 26 and the polymer pipe 27 to the outside. He gas to be permeated into the tube 23 is pushed out from the inside of the storage container 24 to the outside, and the He gas permeation into the photomultiplier tube 23 is prevented. Further, since the PR gas is a gas with low permeability to glass, even if it is flowed in the storage container 24 of the scintillation counter tube 17, the high vacuum inside the photomultiplier tube 23 is maintained.

これにより、シンチレーション計数管17の収納容器24内部から外部へのPRガスの流れによって、光電子増倍管23内へ浸透してくるHeガスを外部へ押し出す結果、光電子増倍管23内へのHeガスの浸透を阻止して収納容器24内部のHeガス濃度が高くなるのを防ぐとともに、光電子増倍管23内部の高真空を保持できるので、He雰囲気下でも、光電子増倍管23の増倍機能を保持できるから、簡単な構成により、シンチレーション計数管17からなるX線検出器5の寿命を長くすることができる。また、既設のガスフロー型比例計数管18からのPRガスを用いるとともに、収納容器24内部から既設の部品である高分子パイプ26内を介して外部へ空気の流れを生じさせるものであるので、低コストでX線検出器5の寿命を長くすることができる。   As a result, the He gas penetrating into the photomultiplier tube 23 is pushed out by the flow of the PR gas from the inside of the storage container 24 of the scintillation counter tube 17 to the outside. As a result, the He into the photomultiplier tube 23 is pushed out. Since the penetration of gas is prevented to prevent the He gas concentration inside the storage container 24 from becoming high, and a high vacuum inside the photomultiplier tube 23 can be maintained, the multiplication of the photomultiplier tube 23 can be performed even in a He atmosphere. Since the function can be maintained, the life of the X-ray detector 5 including the scintillation counter 17 can be extended with a simple configuration. In addition, the PR gas from the existing gas flow type proportional counter 18 is used, and the flow of air is generated from the inside of the storage container 24 to the outside through the polymer pipe 26 which is an existing component. The lifetime of the X-ray detector 5 can be extended at low cost.

なお、この実施形態では、収納容器24内部にPRガスの流れを生じさせているが、PRガスに代えて、キセノンガスを用いてもよい。   In this embodiment, the flow of the PR gas is generated inside the storage container 24, but xenon gas may be used instead of the PR gas.

また、この実施形態では、分光室14外部でガスフロー型比例計数管18のチューブ35から高分子パイプ26を介して収納容器24内部にPRガスの流れを生じさせているが、分光室14内で破線で示すように、ガスフロー型比例計数管18とシンチレーション計数管17間にバイパス通路40を設けて、このバイパス通路40を介してガスフロー型比例計数管18からのPRガスの流れを生じさせてもよい。   In this embodiment, the PR gas flows outside the spectroscopic chamber 14 from the tube 35 of the gas flow type proportional counter 18 through the polymer pipe 26 into the storage container 24. As shown by a broken line, a bypass passage 40 is provided between the gas flow type proportional counter 18 and the scintillation counter 17, and the PR gas flows from the gas flow type proportional counter 18 through the bypass passage 40. You may let them.

なお、この実施形態では、シンチレーション計数管17の収納容器24内部にガスフロー型比例計数管18からのPRガスの流れを生じさせているが、このPRガスに代えて、別個に高分子パイプ27から収納容器24へエアーポンプなどで空気、Nガス、またはCOガスを送り込んで、各気体の流れを生じさせるようにしてもよい。前記した空気、Nガス、COガス、およびキセノンガスは、PRガスと同様に、いずれもガラスに対する透過性の少ない気体であるので、これらの気体をシンチレーション計数管17の収納容器24内で流しても、光電子増倍管23における高真空は保持される。 In this embodiment, the flow of PR gas from the gas flow type proportional counter 18 is generated inside the storage container 24 of the scintillation counter 17, but instead of this PR gas, the polymer pipe 27 is separately provided. Alternatively, air, N 2 gas, or CO 2 gas may be fed into the storage container 24 by an air pump or the like to generate the flow of each gas. The above-mentioned air, N 2 gas, CO 2 gas, and xenon gas are all gases having low permeability to glass, like the PR gas, and therefore these gases are contained in the storage container 24 of the scintillation counter tube 17. Even if it flows, the high vacuum in the photomultiplier tube 23 is maintained.

なお、この実施形態では、X線検出器5として、シンチレーション計数管17およびガスフロー型比例計数管18の両方を用いているが、シンチレーション計数管17を単独で用いてもよい。   In this embodiment, both the scintillation counter 17 and the gas flow proportional counter 18 are used as the X-ray detector 5, but the scintillation counter 17 may be used alone.

本発明の一実施形態に係るX線検出器およびこれを備えた蛍光X線分析装置を示す概略構成図である。It is a schematic block diagram which shows the X-ray detector which concerns on one Embodiment of this invention, and the fluorescent X-ray-analysis apparatus provided with the same.

符号の説明Explanation of symbols

5:X線検出器
14:分光室
17:シンチレーション計数管
18:ガスフロー型比例計数管
22:シンチレータ
23:光電子増倍管
26:高分子パイプ
S:試料
5: X-ray detector 14: Spectroscopic chamber 17: Scintillation counter 18: Gas flow type proportional counter 22: Scintillator 23: Photomultiplier 26: Polymer pipe S: Sample

Claims (4)

He雰囲気下に置かれ、シンチレータ、光電子増倍管およびこれらを収納する収納容器を有するシンチレーション計数管からなるX線検出器であって、
収納容器内部に空気、Nガス、PRガス、COガス、およびキセノンガスのうちのいずれか1つの気体の流れを生じさせ、この気体の流れにより光電子増倍管内に浸透しようとするHeガスを収納容器内部から外部へ押し出して、光電子増倍管内へのHeガス浸透を阻止するものであるX線検出器。
An X-ray detector placed in a He atmosphere and comprising a scintillator, a photomultiplier tube, and a scintillation counter having a storage container for storing them,
A gas flow of any one of air, N 2 gas, PR gas, CO 2 gas, and xenon gas is generated inside the storage container, and this gas flow causes He gas to penetrate into the photomultiplier tube. An X-ray detector that extrudes He from the inside of the storage container to the outside and prevents He gas permeation into the photomultiplier tube.
請求項1において、シンチレーション計数管は、可とう性の高分子パイプ内に給電および信号出力用の電線を収納してなるものであり、収納容器内部から前記高分子パイプ内を介して外部へ前記気体の流れを生じさせるものであるX線検出器。   2. The scintillation counter according to claim 1, wherein the scintillation counter tube is a flexible polymer pipe containing power supply and signal output wires, and the inside of the storage container to the outside through the polymer pipe. An X-ray detector that produces a flow of gas. He雰囲気下に置かれ、シンチレータ、光電子増倍管およびこれらを収納する収納容器を有するシンチレーション計数管と、PRガスまたはキセノンガスを使用するガスフロー型比例計数管とからなるX線検出器を備えた蛍光X線分析装置であって、
前記X線検出器は、シンチレーション計数管の収納容器内部にガスフロー型比例計数管からのPRガスまたはキセノンガスの気体の流れを生じさせ、この気体の流れにより光電子増倍管内に浸透しようとするHeガスを収納容器内部から外部へ押し出して、光電子増倍管内へのHeガス浸透を阻止するものである蛍光X線分析装置。
An X-ray detector placed under a He atmosphere and comprising a scintillator, a photomultiplier tube and a scintillation counter having a storage container for storing these, and a gas flow type proportional counter using PR gas or xenon gas X-ray fluorescence analyzer,
The X-ray detector generates a gas flow of PR gas or xenon gas from the gas flow type proportional counter inside the storage container of the scintillation counter tube, and tries to penetrate into the photomultiplier tube by this gas flow. A fluorescent X-ray analyzer that extrudes He gas from the inside of the storage container to the outside and prevents He gas from penetrating into the photomultiplier tube.
請求項3において、前記X線検出器は、シンチレーション計数管が可とう性の高分子パイプ内に給電および信号出力用の電線を収納してなるものであり、シンチレーション計数管の収納容器内部から前記高分子パイプ内を介して外部へ前記気体の流れを生じさせるものである蛍光X線分析装置。   4. The X-ray detector according to claim 3, wherein the scintillation counter tube is a flexible polymer pipe that houses power supply and signal output wires. A fluorescent X-ray analysis apparatus for generating the gas flow to the outside through a polymer pipe.
JP2003354581A 2003-10-15 2003-10-15 X-ray fluorescence analyzer Expired - Fee Related JP4303080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003354581A JP4303080B2 (en) 2003-10-15 2003-10-15 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003354581A JP4303080B2 (en) 2003-10-15 2003-10-15 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JP2005121400A true JP2005121400A (en) 2005-05-12
JP4303080B2 JP4303080B2 (en) 2009-07-29

Family

ID=34612444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003354581A Expired - Fee Related JP4303080B2 (en) 2003-10-15 2003-10-15 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP4303080B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931999A (en) * 2015-03-27 2015-09-23 安徽养和医疗器械设备有限公司 Solid scintillation vial
CN105247354A (en) * 2013-05-27 2016-01-13 株式会社岛津制作所 X-ray fluorescence analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247354A (en) * 2013-05-27 2016-01-13 株式会社岛津制作所 X-ray fluorescence analyzer
CN104931999A (en) * 2015-03-27 2015-09-23 安徽养和医疗器械设备有限公司 Solid scintillation vial

Also Published As

Publication number Publication date
JP4303080B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
Blasse et al. A general introduction to luminescent materials
Irwin et al. Observation of electromagnetic radiation from deexcitation of the 229 Th isomer
US9063160B2 (en) Method for liberating and detecting nitric oxide from nitrosothiols and iron nitrosyls in blood
Lawrence Quenching and radiation rates of CO (a 3Π)
JP5981834B2 (en) Apparatus and method for detecting deterioration of ultraviolet lamp
JP4303080B2 (en) X-ray fluorescence analyzer
CN109342482B (en) Scintillation detection device and method and application thereof
Bickel Mean lives of some excited states in multiply ionized oxygen and neon
Carver et al. Ionization chambers for the vacuum ultra-violet
WO2012032816A1 (en) Radiological image detector
US5783828A (en) Apparatus and method for tritium measurement by gas scintillation
JPWO2008059966A1 (en) Proportional counter
Dandl et al. Fluorescence of nitrogen and air
US3126479A (en) X-ray analyzer system with ionization
US4983844A (en) Fast atomic line filter
Fraga et al. Study of scintillation light from microstructure based detectors
Brown et al. α-Ray induced luminescence of gases
US2649554A (en) Radiation indicator
Khalid et al. Economical and Efficient Detector for Fluorescent X-Ray Absorption Spectroscopy
Ledingham et al. Wavelength dependence of laser induced ionisation in proportional counters
Imhof et al. Lifetime measurements by an electron photon coincidence method
US4871915A (en) Detector for bremsstrahlung-isochromatic-spectroscopy (BIS)
EP4201879A1 (en) Inspection device
Podkopaev et al. Experimental research of XeBr excimer molecule luminescence in Ar-Xe-C2HBrClF3 gas mixture with high energy particles excitation
Smith et al. Measurement of the Metastable Lifetime for the 2s22p2 1S0 Level in O2+

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees