JP2005120860A - Optimal ignition timing setting method and optimal ignition timing setting device for internal combustion engine - Google Patents

Optimal ignition timing setting method and optimal ignition timing setting device for internal combustion engine Download PDF

Info

Publication number
JP2005120860A
JP2005120860A JP2003354695A JP2003354695A JP2005120860A JP 2005120860 A JP2005120860 A JP 2005120860A JP 2003354695 A JP2003354695 A JP 2003354695A JP 2003354695 A JP2003354695 A JP 2003354695A JP 2005120860 A JP2005120860 A JP 2005120860A
Authority
JP
Japan
Prior art keywords
ignition timing
combustion
mbt
delay period
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003354695A
Other languages
Japanese (ja)
Other versions
JP4224697B2 (en
Inventor
Yuji Konishi
祐二 古西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003354695A priority Critical patent/JP4224697B2/en
Publication of JP2005120860A publication Critical patent/JP2005120860A/en
Application granted granted Critical
Publication of JP4224697B2 publication Critical patent/JP4224697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce measurement steps of data necessary for setting an optimal ignition timing (MBT) of an engine to efficiently set the MBT at a low temperature. <P>SOLUTION: After warming-up the engine, a starting position of a main combustion period (period when the combustion mass percentage is 10 through 90%) in the MBT under all operation conditions is measured in advance. Then, after forcibly cooling the engine, operation conditions are changed in each temperature range and a combustion delay period (period when the combustion mass percentage is 0 through 10%) in a predetermined ignition timing at a low temperature for each operation condition is measured in the course while the cooling water temperature rises during the warm-up operation. A position returning by a length of the combustion delay period in the predetermined ignition timing measured at the low temperature from the starting position of the main combustion period in the measured MBT after the warming-up for each operation condition is calculated, and the position is set as an MBT at the low temperature. In this case, the MBT can be set only by measuring a combustion delay period in one ignition timing for one operation condition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の発生トルクが最大となる最適点火時期を設定する内燃機関の最適点火時期設定方法及び最適点火時期設定装置に関するものである。   The present invention relates to an optimal ignition timing setting method and an optimal ignition timing setting device for an internal combustion engine that sets an optimal ignition timing at which the generated torque of the internal combustion engine is maximized.

一般に、図13に示すように、内燃機関の発生トルクは点火時期によって変化し、発生トルクが最大となる最適点火時期をMBT(Minimum spark advance for Best Torque )と言う。このMBTは、図14A〜図14Eに示すように、回転速度、負荷(シリンダ充填空気量)、空燃比(A/F)、吸気バルブタイミング進角量(吸気VVT進角量)、冷却水温等の運転条件パラメータによって変化する。これは筒内に充填された混合気の燃焼速度が各運転条件パラメータによって変化するためである。このように、MBTは運転条件によって変化するため、内燃機関の点火時期をMBTに制御して効率良く運転するには、内燃機関の開発過程で、全ての運転条件(運転条件パラメータの全ての組み合わせ)について点火時期と発生トルクとの関係を計測してMBTを求めておく必要がある。   In general, as shown in FIG. 13, the generated torque of the internal combustion engine varies depending on the ignition timing, and the optimum ignition timing at which the generated torque becomes maximum is called MBT (Minimum spark advance for Best Torque). As shown in FIGS. 14A to 14E, the MBT includes a rotation speed, a load (cylinder filling air amount), an air-fuel ratio (A / F), an intake valve timing advance amount (intake VVT advance amount), a cooling water temperature, and the like. Varies depending on the operating condition parameters. This is because the combustion speed of the air-fuel mixture filled in the cylinder changes depending on each operating condition parameter. As described above, since MBT varies depending on operating conditions, in order to efficiently operate by controlling the ignition timing of the internal combustion engine to MBT, all operating conditions (all combinations of operating condition parameters) are developed during the development process of the internal combustion engine. ) For the MBT by measuring the relationship between the ignition timing and the generated torque.

しかし、近年の内燃機関は、今後、益々厳しくなる排ガス規制や燃費規制に対応するために、可変バルブタイミング機構、可変バルブリフト機構、排気還流システム等の様々な機能を搭載しているため、運転条件パラメータの組み合わせの数が非常に多くなる傾向にあり、全ての運転条件について点火時期と発生トルクとの関係を計測してMBTを求める作業が非常に面倒なものとなってきている。   However, recent internal combustion engines are equipped with various functions such as a variable valve timing mechanism, a variable valve lift mechanism, and an exhaust gas recirculation system in order to meet exhaust gas regulations and fuel efficiency regulations that will become increasingly severe in the future. There is a tendency for the number of condition parameter combinations to be very large, and the task of determining the MBT by measuring the relationship between the ignition timing and the generated torque for all operating conditions has become very troublesome.

そこで、例えば、特許文献1(特開平11−190681号公報)の技術を利用して、測定プログラムによる自動処理によって点火時期と発生トルクとの関係を計測する処理と、それらの計測データに基づいてMBTを決定する処理とを自動的に行うようにしたものがある。   Therefore, for example, using the technique of Patent Document 1 (Japanese Patent Laid-Open No. 11-190681), based on the measurement data and the process of measuring the relationship between the ignition timing and the generated torque by the automatic processing by the measurement program There is one that automatically performs the process of determining the MBT.

また、内燃機関の低温時のMBTを求める場合には、例えば、内燃機関を停止した状態で、内燃機関に冷却風を当てたり、冷却装置で冷却した冷却水や潤滑油を内燃機関の冷却水路や潤滑油路に循環させてたりして、内燃機関全体を所定温度(例えば−20℃)まで強制的に冷却する。この後、図15に示すように、内燃機関を所定の運転条件で運転し、この暖機運転中に冷却水温が上昇する過程で、各温度領域内で点火時期を所定範囲で変更して点火時期と発生トルクとの関係を計測する処理を繰り返して、それらの計測データに基づいてMBTを求めることで、所定の運転条件における低温時のMBTを求める。以上の処理を全ての運転条件について実施することで、全ての運転条件における低温時のMBTを求めるようにしている。
特開平11−190681号公報(第2頁等)
Further, when obtaining the MBT at a low temperature of the internal combustion engine, for example, with the internal combustion engine stopped, cooling air is applied to the internal combustion engine, or cooling water or lubricating oil cooled by the cooling device is supplied to the cooling water passage of the internal combustion engine. Or by circulating through the lubricating oil passage, the entire internal combustion engine is forcibly cooled to a predetermined temperature (for example, −20 ° C.). Thereafter, as shown in FIG. 15, the internal combustion engine is operated under predetermined operating conditions, and the ignition timing is changed within a predetermined range within each temperature region in the process of increasing the coolant temperature during the warm-up operation. The process of measuring the relationship between the timing and the generated torque is repeated, and the MBT is obtained based on the measurement data, thereby obtaining the MBT at a low temperature under predetermined operating conditions. By carrying out the above processing for all operating conditions, MBT at low temperatures under all operating conditions is obtained.
Japanese Patent Laid-Open No. 11-190681 (second page, etc.)

しかしながら、上記従来のMBT算出方法では、1つの運転条件におけるMBTを算出する際に、その運転条件において点火時期を変更して多数点(例えば10点)で点火時期とトルクのデータを計測する必要がある。このため、前述したように、測定プログラムによって点火時期と発生トルクを計測してMBTを決定する処理を自動化しても、全ての運転条件について点火時期を変更して多数点で点火時期とトルクのデータを計測するという事情は変わらず、データの計測工数が非常に多くなってしまう。   However, in the above-described conventional MBT calculation method, when calculating the MBT under one operating condition, it is necessary to change the ignition timing under the operating condition and measure the ignition timing and torque data at multiple points (for example, 10 points). There is. For this reason, as described above, even if the process of determining the MBT by measuring the ignition timing and the generated torque by the measurement program is automated, the ignition timing is changed at all points by changing the ignition timing for all operating conditions. The situation of measuring data remains the same, and the measurement man-hours of data are extremely increased.

また、前述したように、低温時のMBTを求める場合には、例えば、図15に示すように、暖機運転中に冷却水温が上昇する過程で、各温度領域内で点火時期を所定範囲で変更して多数点で点火時期と発生トルクとの関係を計測する必要があるため、運転条件を変更する余裕がなく、運転条件を固定したまま各温度領域内で点火時期と発生トルクとの関係を計測して、所定の運転条件における低温時のMBTを求めるようにしている。このため、1回の暖機運転中に1つの運転条件における低温時のMBTしか求めることができず、全ての運転条件における低温時のMBTを求めるには、内燃機関の強制冷却と暖機運転とを運転条件パラメータの全ての組み合わせの数だけ繰り返す必要がある。通常、内燃機関を冷却するのには2時間程度の冷却時間が必要となるため、全ての運転条件における低温時のMBTを求めるには膨大な時間が必要となる。   Further, as described above, when obtaining the MBT at a low temperature, for example, as shown in FIG. 15, the ignition timing is set within a predetermined range within each temperature region in the process of increasing the coolant temperature during the warm-up operation. Since it is necessary to change and measure the relationship between ignition timing and generated torque at multiple points, there is no room for changing operating conditions, and the relationship between ignition timing and generated torque within each temperature range with the operating conditions fixed Is measured to obtain MBT at a low temperature under predetermined operating conditions. For this reason, only one MBT at a low temperature under one operating condition can be obtained during one warm-up operation. To obtain the MBT at a low temperature under all operating conditions, forced cooling of the internal combustion engine and warm-up operation are performed. Must be repeated for the number of all combinations of the operating condition parameters. Usually, since cooling time of about 2 hours is required to cool the internal combustion engine, enormous time is required to obtain MBT at low temperature under all operating conditions.

本発明は、このような事情を考慮してなされたものであり、従って本発明の第1の目的は、最適点火時期(MBT)の設定に必要なデータの計測工数を低減できるようにすることであり、第2の目的は、全ての運転条件における低温時の最適点火時期を能率良く設定できるようにすることである。   The present invention has been made in consideration of such circumstances. Accordingly, a first object of the present invention is to reduce the man-hours for measuring data necessary for setting the optimum ignition timing (MBT). The second object is to make it possible to efficiently set the optimum ignition timing at low temperatures under all operating conditions.

一般に、内燃機関の筒内混合気の燃焼過程には、燃焼遅れ期間と主燃焼期間がある。燃焼遅れ期間は、燃焼質量割合が例えば0〜10%の期間であり、主燃焼期間は、燃焼質量割合が例えば10〜90%の期間である。最近の本発明者らの研究によると、第1の特徴として、最適点火時期(MBT)における主燃焼期間の開始位置は、温度よってほとんど変化せずにほぼ一定となり、第2の特徴として、燃焼遅れ期間の長さは、温度によって変化するが、燃焼位置(燃焼遅れ期間の中間位置)が所定範囲の場合、同一温度であれば点火時期(又は燃焼位置)によってほとんど変化せずにほぼ一定となることが判明した。   Generally, a combustion process of an in-cylinder mixture of an internal combustion engine has a combustion delay period and a main combustion period. The combustion delay period is a period in which the combustion mass ratio is, for example, 0 to 10%, and the main combustion period is a period in which the combustion mass ratio is, for example, 10 to 90%. According to recent studies by the present inventors, the first feature is that the start position of the main combustion period at the optimal ignition timing (MBT) is substantially constant with little change depending on the temperature. The length of the delay period varies depending on the temperature, but when the combustion position (intermediate position of the combustion delay period) is within a predetermined range, it is almost constant with little change depending on the ignition timing (or combustion position) at the same temperature. Turned out to be.

これらの特徴に着目して、本発明の請求項1、5に係る発明は、所定温度で所定点火時期における燃焼遅れ期間又はそれに相関するデータ(以下「燃焼遅れ期間データ」と総称する)を計測し、この燃焼遅れ期間データと、適当な温度で計測した最適点火時期における主燃焼期間の開始位置又はそれに相関するデータ(以下「主燃焼期間開始位置データ」と総称する)とに基づいて前記所定温度における最適点火時期を設定するようにしたものである。   Paying attention to these characteristics, the inventions according to claims 1 and 5 of the present invention measure the combustion delay period at the predetermined ignition timing at the predetermined temperature or data related thereto (hereinafter collectively referred to as “combustion delay period data”). On the basis of the combustion delay period data and the start position of the main combustion period at the optimum ignition timing measured at an appropriate temperature or data correlated therewith (hereinafter collectively referred to as “main combustion period start position data”). The optimum ignition timing at temperature is set.

前記第1の特徴から、適当な温度で計測した最適点火時期における主燃焼期間開始位置データは、所定温度で最適点火時期における主燃焼期間の開始位置の代用情報となり、前記第2の特徴から、所定温度で所定点火時期における燃焼遅れ期間データは、所定温度で最適点火時期における燃焼遅れ期間の長さの代用情報となる。従って、これらのデータを用いれば、所定温度で最適点火時期における主燃焼期間の開始位置と燃焼遅れ期間の長さとを把握することができるため、所定温度における最適点火時期(つまり、主燃焼期間の開始位置から燃焼遅れ期間の長さ分だけ溯った位置)を算出することができる。このようにすれば、1つの運転条件における最適点火時期を設定する際に、その運転条件において1点の点火時期で燃焼遅れ期間データを計測するだけで、最適点火時期を設定することが可能となり、最適点火時期の設定に必要なデータの計測工数を低減することができる。   From the first feature, the main combustion period start position data at the optimum ignition timing measured at an appropriate temperature becomes substitute information of the start position of the main combustion period at the optimum ignition timing at a predetermined temperature, and from the second feature, Combustion delay period data at a predetermined temperature and a predetermined ignition timing is substitute information for the length of the combustion delay period at the optimal ignition timing at a predetermined temperature. Therefore, by using these data, it is possible to grasp the start position of the main combustion period and the length of the combustion delay period at the optimal ignition timing at the predetermined temperature, so that the optimal ignition timing at the predetermined temperature (that is, the main combustion period of the main combustion period). It is possible to calculate a position obtained from the start position by the length of the combustion delay period. In this way, when setting the optimal ignition timing under one operating condition, it is possible to set the optimal ignition timing simply by measuring the combustion delay period data at one ignition timing under that operating condition. Thus, it is possible to reduce the man-hours for measuring data necessary for setting the optimum ignition timing.

この場合、請求項2のように、内燃機関の低温時に所定点火時期における燃焼遅れ期間データを計測し、この燃焼遅れ期間データと、内燃機関の暖機後に計測した最適点火時期における主燃焼期間開始位置データとに基づいて低温時における最適点火時期を設定するようにしても良い。本発明は、1点の点火時期で燃焼遅れ期間データを計測するだけで、最適点火時期を設定することができるので、請求項2のように、低温時の最適点火時期を設定する場合に適用すれば、暖機運転中に冷却水温が上昇する過程で、各温度領域内で複数の運転条件について燃焼遅れ期間データを計測することが可能となり、1回の暖機運転中に複数の運転条件における低温時の最適点火時期を設定することができる。このため、全ての運転条件における低温時の最適点火時期を求める際に、内燃機関の強制冷却と暖機運転の繰り返し回数を、従来よりも少なくすることができて、全ての運転条件における低温時の最適点火時期を設定するのに必要な時間を大幅に短縮化することができる。   In this case, as in claim 2, combustion delay period data at a predetermined ignition timing is measured at a low temperature of the internal combustion engine, and the combustion delay period data and the start of the main combustion period at the optimal ignition timing measured after the internal combustion engine is warmed up. The optimum ignition timing at low temperatures may be set based on the position data. The present invention can be set only by measuring combustion delay period data at one ignition timing, so that the optimum ignition timing can be set. In this way, it is possible to measure the combustion delay period data for a plurality of operating conditions in each temperature region in the process of increasing the coolant temperature during the warm-up operation, and it is possible to measure a plurality of operating conditions during one warm-up operation. It is possible to set an optimal ignition timing at a low temperature. For this reason, when determining the optimal ignition timing at low temperatures under all operating conditions, the number of repeated forced cooling and warm-up operations of the internal combustion engine can be reduced compared to the conventional case, and at low temperatures under all operating conditions. The time required for setting the optimal ignition timing can be greatly shortened.

ところで、前記第2の特徴として、燃焼遅れ期間の長さは、燃焼位置(燃焼遅れ期間の中間位置)が所定範囲の場合、同一温度であれば点火時期(又は燃焼位置)によってほとんど変化せずにほぼ一定となるとみなしたが、厳密に見ると、燃焼遅れ期間の長さは燃焼位置によって多少変化し、特に、燃焼位置がTDC(上死点)から進角側へ離れるほど燃焼遅れ期間の長さの変化量が大きくなる傾向がある。   By the way, as the second feature, the length of the combustion delay period hardly changes depending on the ignition timing (or the combustion position) at the same temperature when the combustion position (intermediate position of the combustion delay period) is within a predetermined range. However, strictly speaking, the length of the combustion delay period varies slightly depending on the combustion position, and in particular, the combustion delay period increases as the combustion position moves away from TDC (top dead center). The amount of change in length tends to increase.

そこで、請求項3のように、最適点火時期を設定する際に、所定点火時期における燃焼遅れ期間データを燃焼位置に応じて補正するようにしても良い。このようにすれば、燃焼位置に応じて燃焼遅れ期間の長さが変化するのに対応して燃焼遅れ期間データを補正することができ、最適点火時期の算出精度を向上させることができる。   Therefore, as described in claim 3, when setting the optimal ignition timing, the combustion delay period data at the predetermined ignition timing may be corrected according to the combustion position. In this way, the combustion delay period data can be corrected in response to the change in the length of the combustion delay period depending on the combustion position, and the calculation accuracy of the optimum ignition timing can be improved.

また、請求項4のように、所定点火時期における燃焼遅れ期間データを計測する際に、内燃機関の運転条件を連続的に変更しながら各運転条件毎に所定点火時期における燃焼遅れ期間データを計測するようにしても良い。このようにすれば、複数の運転条件について所定点火時期における燃焼遅れ期間データを連続的に計測して、複数の運転条件について最適点火時期を連続的に設定することができる。   Further, as in claim 4, when measuring the combustion delay period data at the predetermined ignition timing, the combustion delay period data at the predetermined ignition timing is measured for each operating condition while continuously changing the operating conditions of the internal combustion engine. You may make it do. In this way, it is possible to continuously measure the combustion delay period data at a predetermined ignition timing for a plurality of operating conditions, and continuously set the optimum ignition timing for the plurality of operating conditions.

以下、本発明を実施するための最良の形態を次の2つの実施例1、2を用いて説明する。   Hereinafter, the best mode for carrying out the present invention will be described using the following two Examples 1 and 2.

本発明の実施例1を図1乃至図9に基づいて説明する。
まず、図1に基づいて最適点火時期(以下「MBT」という)設定システムの構成を説明する。MBT設定用のエンジン11(内燃機関)の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、DCモータ等によって開度調節されるスロットルバルブ14が設けられている。
A first embodiment of the present invention will be described with reference to FIGS.
First, the configuration of an optimum ignition timing (hereinafter referred to as “MBT”) setting system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the MBT setting engine 11 (internal combustion engine), and a throttle valve 14 whose opening degree is adjusted by a DC motor or the like is provided downstream of the air cleaner 13. ing.

更に、スロットルバルブ14の下流側には、サージタンク15が設けられ、このサージタンク15には、エンジン11の各気筒に空気を導入する吸気マニホールド16が設けられ、各気筒の吸気マニホールド16の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁17が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ18が取り付けられ、各点火プラグ18の火花放電によって筒内の混合気に着火される。一方、エンジン11の排気管19には、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ20(空燃比センサ、酸素センサ等)が設けられている。   Further, a surge tank 15 is provided on the downstream side of the throttle valve 14, and an intake manifold 16 for introducing air into each cylinder of the engine 11 is provided in the surge tank 15, and intake air of the intake manifold 16 of each cylinder is provided. A fuel injection valve 17 for injecting fuel is attached in the vicinity of the port. A spark plug 18 is attached to each cylinder of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by the spark discharge of each spark plug 18. On the other hand, the exhaust pipe 19 of the engine 11 is provided with an exhaust gas sensor 20 (air-fuel ratio sensor, oxygen sensor, etc.) for detecting the air-fuel ratio or rich / lean of the exhaust gas.

また、エンジン11のシリンダブロックには、筒内圧力を検出する筒内圧力センサ21と、冷却水温を検出する冷却水温センサ(図示せず)と、エンジン11のクランク軸が一定クランク角(例えば30℃A)回転する毎にパルス信号を出力するクランク角センサ22が取り付けられている。このクランク角センサ22の出力信号に基づいてクランク角やエンジン回転速度が検出される。尚、筒内圧力センサ21は、点火プラグ18に内蔵したタイプであっても良いし、点火プラグ18とは別に設けたタイプであっても良い。   The cylinder block of the engine 11 includes an in-cylinder pressure sensor 21 that detects an in-cylinder pressure, a cooling water temperature sensor (not shown) that detects a cooling water temperature, and a crankshaft of the engine 11 that has a constant crank angle (for example, 30). C) A crank angle sensor 22 that outputs a pulse signal every rotation is attached. Based on the output signal of the crank angle sensor 22, the crank angle and the engine speed are detected. The in-cylinder pressure sensor 21 may be a type built in the spark plug 18 or may be a type provided separately from the spark plug 18.

筒内圧センサ21の出力は、出力変換アンプ23を介してMBT設定用コンピュータ24に入力される。このMBT設定用コンピュータ24は、後述する図9の低温時MBT算出プログラムを実行することで、最適点火時期設定手段として機能し、全ての運転条件(シリンダ充填空気量、吸気バルブタイミング等の運転条件パラメータの全ての組み合わせ)について低温時のMBTを算出する。   The output of the in-cylinder pressure sensor 21 is input to the MBT setting computer 24 via the output conversion amplifier 23. The MBT setting computer 24 functions as optimum ignition timing setting means by executing a low temperature MBT calculation program shown in FIG. 9 to be described later, and all operating conditions (operating conditions such as cylinder charge air amount, intake valve timing, etc.). MBT at low temperature is calculated for all combinations of parameters.

以下、MBT設定用コンピュータ24によるMBTの算出方法について具体的に説明する。図2に示すように、まず、筒内圧センサ21で検出した筒内圧データに基づいて燃焼質量割合X[%]を次式により分解能ごと算出する。
X(n) =Q(n) /Qmax ×100 0≦n<datenum
ここで、Qは熱発生量、Qmax は最大熱発生量、datenum はサイクル当りのデータ数である。
Hereinafter, the MBT calculation method by the MBT setting computer 24 will be described in detail. As shown in FIG. 2, first, the combustion mass ratio X [%] is calculated for each resolution by the following equation based on the in-cylinder pressure data detected by the in-cylinder pressure sensor 21.
X (n) = Q (n) / Qmax × 100 0 ≦ n <datenum
Here, Q is the heat generation amount, Qmax is the maximum heat generation amount, and datenum is the number of data per cycle.

熱発生量Qは、次のようにして分解能ごとに算出する。
燃焼質量割合開始点の前のとき(0≦n<Cstart )の熱発生量Qは次式により算出する。ここで、Cstart は燃焼質量割合開始点データ番号である。
Q(n) =Q(n-1)
The heat generation amount Q is calculated for each resolution as follows.
The heat generation amount Q before the combustion mass ratio start point (0 ≦ n <Cstart) is calculated by the following equation. Here, Cstart is the combustion mass ratio start point data number.
Q (n) = Q (n-1)

燃焼質量割合範囲内のとき(Cstart ≦n≦Cend )の熱発生量Qは次のようにして算出する。ここで、Cend は燃焼質量割合終了点データ番号である。
dQ(n) >0のときには次式により算出する。
The heat generation amount Q when the combustion mass ratio is within the range (Cstart ≦ n ≦ Cend) is calculated as follows. Here, Cend is the combustion mass ratio end point data number.
When dQ (n)> 0, the following formula is used.

Q(n) =Q(n-1) +dQ(n) ×D
dQ(n) =1/{K(n) −1}
×{V(n) ×dP(n) +K(n) ×P(n) ×dV(n) }
Q (n) = Q (n-1) + dQ (n) × D
dQ (n) = 1 / {K (n) -1}
× {V (n) × dP (n) + K (n) × P (n) × dV (n)}

ここで、Dは角度分解能[deg ]、K(n) はnステップでの比熱比、V(n) はnステップでの燃焼室容積、dP(n) はnステップでの筒内圧力上昇率、P(n) はnステップでの筒内圧力、dV(n) はnステップでの燃焼室容積変化率である。
dQ(n) ≦0のときには次式により算出する。
Q(n) =Q(n-1)
Here, D is the angular resolution [deg], K (n) is the specific heat ratio at n steps, V (n) is the combustion chamber volume at n steps, and dP (n) is the in-cylinder pressure rise rate at n steps. , P (n) is the in-cylinder pressure at n steps, and dV (n) is the combustion chamber volume change rate at n steps.
When dQ (n) ≦ 0, the following formula is used.
Q (n) = Q (n-1)

燃焼質量割合終了点の後のとき(n>Cend )の熱発生量Qは次式により算出する。
Q(n) =Q(Cend)
The heat generation amount Q after the end point of the combustion mass ratio (n> Cend) is calculated by the following equation.
Q (n) = Q (Cend)

以上のようにして、筒内圧データに基づいて燃焼質量割合を算出した後、この燃焼質量割合に基づいて燃焼遅れ期間と主燃焼期間とを算出する。ここで、燃焼遅れ期間は、点火プラグ18の周りに火炎が形成されて徐々に成長する期間であり、燃焼質量割合が例えば0〜10%の期間に相当する。一方、主燃焼期間は、混合気の温度が上昇して火炎が一気に伝播して本格的に燃焼する期間であり、燃焼質量割合が例えば10〜90%の期間に相当する。トルクが発生するのは、主に、この主燃焼期間である。   As described above, after calculating the combustion mass ratio based on the in-cylinder pressure data, the combustion delay period and the main combustion period are calculated based on the combustion mass ratio. Here, the combustion delay period is a period in which a flame is formed around the spark plug 18 and gradually grows, and corresponds to a period in which the combustion mass ratio is, for example, 0 to 10%. On the other hand, the main combustion period is a period in which the temperature of the air-fuel mixture rises and the flame propagates at once and burns in earnest, and corresponds to a period in which the combustion mass ratio is, for example, 10 to 90%. It is during this main combustion period that torque is generated.

本発明者らは、図3乃至図6に示すように、所定の運転条件で冷却水温(エンジン温度の代用情報)が−10℃付近のときと85℃付近のときについて、それぞれ点火時期を変更して各点火時期における燃焼遅れ期間と主燃焼期間とを計測し、それらの計測データに基づいて燃焼遅れ期間と主燃焼期間について考察した。   As shown in FIGS. 3 to 6, the inventors changed the ignition timing when the cooling water temperature (engine temperature substitute information) is around −10 ° C. and around 85 ° C. under predetermined operating conditions. Then, the combustion delay period and the main combustion period at each ignition timing were measured, and the combustion delay period and the main combustion period were considered based on the measured data.

その結果、図3及び図4に示すように、第1の特徴として、MBTにおける主燃焼期間の開始位置及び長さは、冷却水温よってほとんど変化せずにほぼ一定となることが判明した。更に、図3、図5及び図6に示すように、第2の特徴として、燃焼遅れ期間の長さは、冷却水温によって変化するが、燃焼位置(燃焼遅れ期間の中間位置)が所定範囲(例えばMBTの±10℃Aの範囲)の場合、同一温度であれば点火時期(又は燃焼位置)によってほとんど変化せずにほぼ一定(例えば変化量が2℃A以内)となることが判明した。   As a result, as shown in FIGS. 3 and 4, as a first feature, it has been found that the start position and the length of the main combustion period in the MBT are substantially constant with almost no change depending on the cooling water temperature. Furthermore, as shown in FIGS. 3, 5, and 6, as a second feature, the length of the combustion delay period varies depending on the coolant temperature, but the combustion position (intermediate position of the combustion delay period) is within a predetermined range ( For example, in the case of MBT range of ± 10 ° C., it has been found that the same temperature hardly changes depending on the ignition timing (or combustion position) and is almost constant (for example, the amount of change is within 2 ° A).

本実施例1では、これらの特徴に着目して、図7に示すように、予め、暖機後(例えば冷却水温が85℃のとき)に、所定の運転条件でMBTにおける主燃焼期間の開始位置を計測しておき、エンジン11を強制冷却した後、低温時(例えば冷却水温が85℃よりも低い所定温度のとき)に、所定の運転条件で所定点火時期における燃焼遅れ期間を計測し、暖機後に計測したMBTにおける主燃焼期間の開始位置から低温時に計測した所定点火時期における燃焼遅れ期間の長さ分だけ溯った位置を算出し、その位置を低温時におけるMBTとする。これにより、1つの運転条件におけるMBTを設定する際に、その運転条件において1点の点火時期で燃焼遅れ期間を計測するだけで、MBTを設定することができる。   In the first embodiment, paying attention to these characteristics, as shown in FIG. 7, after the warm-up (for example, when the cooling water temperature is 85 ° C.), the start of the main combustion period in MBT under predetermined operating conditions. After the position is measured and the engine 11 is forcibly cooled, the combustion delay period at the predetermined ignition timing is measured under predetermined operating conditions at a low temperature (for example, when the cooling water temperature is a predetermined temperature lower than 85 ° C.) A position which is obtained by the length of the combustion delay period at the predetermined ignition timing measured at the low temperature from the start position of the main combustion period in the MBT measured after the warm-up is calculated, and the position is defined as the MBT at the low temperature. Thereby, when setting MBT in one driving condition, MBT can be set only by measuring a combustion delay period at one ignition timing in the driving condition.

全ての運転条件(シリンダ充填空気量、吸気バルブタイミング等の運転条件パラメータの全ての組み合わせ)について低温時のMBTを設定する場合には、予め、例えば、暖機後(冷却水温が例えば85℃に昇温したとき)に、全ての運転条件について点火時期と発生トルクとの関係を計測してMBTを決定する際に、全ての運転条件についてMBTにおける主燃焼期間の開始位置を計測しておく。   When setting the MBT at low temperatures for all operating conditions (all combinations of operating condition parameters such as cylinder charge air amount and intake valve timing), for example, after warming up (cooling water temperature is set to 85 ° C., for example). When the MBT is determined by measuring the relationship between the ignition timing and the generated torque for all operating conditions when the temperature is raised), the start position of the main combustion period in the MBT is measured for all operating conditions.

この後、エンジン11を停止した状態で、エンジン11に冷却風を当てたり、冷却装置で冷却した冷却水や潤滑油をエンジン11の冷却水路や潤滑油路に循環させてたりして、エンジン11全体を所定温度(例えば−20℃)まで強制的に冷却する。この後、図8に示すように、エンジン11を始動し、暖機運転中に冷却水温が上昇する過程で、各温度領域内で運転条件(例えばシリンダ充填空気量と吸気バルブタイミングの組み合わせ)を連続的に変更しながら各運転条件毎に低温時の所定点火時期における燃焼遅れ期間を計測する処理を繰り返す。   Thereafter, with the engine 11 stopped, cooling air is applied to the engine 11 or cooling water or lubricating oil cooled by the cooling device is circulated through the cooling water passage or lubricating oil passage of the engine 11. The whole is forcibly cooled to a predetermined temperature (for example, −20 ° C.). Thereafter, as shown in FIG. 8, the engine 11 is started, and the operating conditions (for example, the combination of the cylinder charge air amount and the intake valve timing) are set in each temperature region in the process of increasing the coolant temperature during the warm-up operation. While continuously changing, the process of measuring the combustion delay period at the predetermined ignition timing at low temperature is repeated for each operating condition.

このようにして各運転条件について低温時に計測した所定点火時期における燃焼遅れ期間と、同じ運転条件で暖機後に計測したMBTにおける主燃焼期間の開始位置とを用いて、各運転条件について低温時におけるMBT(つまり、暖機後に計測したMBTにおける主燃焼期間の開始位置から低温時に計測した所定点火時期における燃焼遅れ期間の長さ分だけ溯った位置)を求めることで、1回の暖機運転中に複数の運転条件における低温時のMBTを求める。これらの処理を繰り返して全ての運転条件における低温時のMBTを求める。   In this way, the combustion delay period at the predetermined ignition timing measured at low temperatures for each operating condition and the start position of the main combustion period in MBT measured after warming up under the same operating conditions are used. By calculating MBT (that is, the position obtained by the length of the combustion delay period at the predetermined ignition timing measured at low temperature from the start position of the main combustion period in MBT measured after warm-up), during one warm-up operation The MBT at low temperature under a plurality of operating conditions is obtained. These processes are repeated to obtain MBT at low temperatures under all operating conditions.

以上説明したMBT設定用コンピュータ24によるMBTの算出は、図9に示す低温時MBT算出プログラムに従って実行される。本プログラムが起動されると、まず、ステップ101で、エンジン11の暖機後に、全ての運転条件について点火時期と発生トルクとの関係を計測してMBTを決定する。その際、全ての運転条件についてMBTにおける主燃焼期間の開始位置を計測しておく。この後、ステップ102に進み、全ての運転条件について暖機後に計測したMBTにおける主燃焼期間の開始点Msを記憶する。   The MBT calculation by the MBT setting computer 24 described above is executed according to the low temperature MBT calculation program shown in FIG. When this program is started, first, in step 101, after the engine 11 is warmed up, MBT is determined by measuring the relationship between ignition timing and generated torque for all operating conditions. At that time, the start position of the main combustion period in MBT is measured for all operating conditions. Thereafter, the process proceeds to step 102, and the start point Ms of the main combustion period in the MBT measured after warm-up is stored for all operating conditions.

この後、ステップ103に進み、エンジン11を強制冷却した後の暖機運転中に冷却水温が上昇する過程で、各温度領域内で運転条件を連続的に変更して、各運転条件について所定点火時期における燃焼遅れ期間の長さNを計測する。   Thereafter, the process proceeds to step 103, where the cooling water temperature rises during the warm-up operation after the engine 11 is forcibly cooled, and the operating conditions are continuously changed within each temperature region, and predetermined ignition is performed for each operating condition. The length N of the combustion delay period at the time is measured.

この後、ステップ104に進み、各運転条件についてMBTにおける主燃焼期間の開始点MSから所定点火時期における燃焼遅れ期間の長さNだけ溯った位置を算出し、その位置を低温時におけるMBTとする。
MBT=Ms+N
これらのステップ103、104の処理を繰り返して全ての運転条件における低温時のMBTを求める。
Thereafter, the routine proceeds to step 104, where a position is obtained that is obtained from the start point MS of the main combustion period in MBT by the length N of the combustion delay period at the predetermined ignition timing for each operating condition, and that position is defined as MBT at low temperature. .
MBT = Ms + N
These steps 103 and 104 are repeated to obtain MBTs at low temperatures under all operating conditions.

以上説明した本実施例1によれば、1つの運転条件におけるMBTを設定する際に、その運転条件において1点の点火時期で燃焼遅れ期間データを計測するだけで、MBTを設定することができ、MBTの設定に必要なデータの計測工数を低減することができる。しかも、低温時のMBTを設定する場合に、暖機運転中に冷却水温が上昇する過程で、各温度領域内で運転条件を連続的に変更して各運転条件について所定点火時期における燃焼遅れ期間を計測するようにしたので、各温度領域内で複数の運転条件について燃焼遅れ期間を計測することが可能となり、1回の暖機運転中に複数の運転条件(例えば9通りの運転条件)における低温時のMBTを設定することができる。このため、全ての運転条件における低温時のMBTを求める際に、エンジン11の強制冷却と暖機運転の繰り返し回数を、従来よりも低減することができて、全ての運転条件における低温時のMBTを設定するのに必要な時間を大幅に短縮化することができ、低温時のMBTを能率良く設定することができる。   According to the first embodiment described above, when setting the MBT under one operating condition, the MBT can be set only by measuring the combustion delay period data at one ignition timing under the operating condition. In addition, it is possible to reduce the man-hours for measuring data necessary for setting the MBT. In addition, when setting the MBT at low temperature, in the process in which the coolant temperature rises during the warm-up operation, the operating conditions are continuously changed within each temperature region, and the combustion delay period at a predetermined ignition timing for each operating condition Therefore, it is possible to measure the combustion delay period for a plurality of operating conditions in each temperature region, and in a plurality of operating conditions (for example, nine operating conditions) during one warm-up operation. MBT at low temperature can be set. For this reason, when determining the MBT at low temperatures under all operating conditions, the number of repeated forced cooling and warm-up operations of the engine 11 can be reduced as compared with the conventional case, and the MBT at low temperatures under all operating conditions. The time required for setting can be greatly shortened, and the MBT at low temperature can be set efficiently.

次に、図10乃至図12を用いて本発明の実施例2を説明する。前述した第2の特徴として、燃焼遅れ期間の長さは、燃焼位置(燃焼遅れ期間の中間位置)が所定範囲の場合、同一温度であれば点火時期(又は燃焼位置)によってほとんど変化せずにほぼ一定となるとみなしたが、厳密に見ると、図10に示すように燃焼遅れ期間の長さは燃焼位置によって多少変化し、特に、燃焼位置がTDC(上死点)から進角側へ離れるほど燃焼遅れ期間の長さの変化量が大きくなる傾向がある。   Next, Embodiment 2 of the present invention will be described with reference to FIGS. As the second feature described above, the length of the combustion delay period hardly changes depending on the ignition timing (or combustion position) at the same temperature when the combustion position (intermediate position of the combustion delay period) is within a predetermined range. Although considered to be almost constant, strictly speaking, as shown in FIG. 10, the length of the combustion delay period varies slightly depending on the combustion position, and in particular, the combustion position moves away from TDC (top dead center) toward the advance side. There is a tendency for the amount of change in the length of the combustion delay period to increase.

そこで、本実施例2では、最適点火時期を設定する際に、次のようにして所定点火時期における燃焼遅れ期間の長さを燃焼位置に応じて補正するようにしている。   Therefore, in the second embodiment, when setting the optimal ignition timing, the length of the combustion delay period at the predetermined ignition timing is corrected according to the combustion position as follows.

図11に示すように、基準点(例えば−5℃A ATDC)に対する燃焼遅れ期間の変化量Yと燃焼位置Xとの関係は、次のような関係式で表すことができる。
Y=aX2 +bX
As shown in FIG. 11, the relationship between the combustion delay period change amount Y with respect to a reference point (for example, −5 ° C. A ATDC) and the combustion position X can be expressed by the following relational expression.
Y = aX 2 + bX

上記関係式を用いて、例えば、燃焼位置に基づいてMBTにおける燃焼遅れ期間の変化量と所定点火時期における燃焼遅れ期間の変化量とを求め、この変化量の差を所定点火時期における燃焼遅れ期間の長さに加算することで、所定点火時期における燃焼遅れ期間の長さを補正する(つまり、MBTにおける燃焼遅れ期間の長さに変換する)。   Using the above relational expression, for example, the amount of change in the combustion delay period in MBT and the amount of change in the combustion delay period in the predetermined ignition timing are obtained based on the combustion position, and the difference in the amount of change is calculated as the combustion delay period in the predetermined ignition timing. The length of the combustion delay period at the predetermined ignition timing is corrected (that is, converted into the length of the combustion delay period in MBT).

本実施例2の低温時のMBTの設定は、図12に示す低温時MBT算出プログラムに従って実行される。本プログラムでは、エンジン11の暖機後に、全ての運転条件についてMBTを決定し、その際に計測したMBTにおける主燃焼期間の開始点Msを記憶する(ステップ201、202)。   The setting of MBT at low temperature in the second embodiment is executed according to the low temperature MBT calculation program shown in FIG. In this program, after the engine 11 is warmed up, the MBT is determined for all the operating conditions, and the start point Ms of the main combustion period in the MBT measured at that time is stored (steps 201 and 202).

この後、ステップ203に進み、低温時に各運転条件について所定点火時期における燃焼遅れ期間の長さNを計測した後、ステップ204に進み、上記関係式を用いて、燃焼遅れ期間の長さNを燃焼位置に応じて補正する。
Nc ←N
Thereafter, the process proceeds to step 203, and after measuring the length N of the combustion delay period at the predetermined ignition timing for each operating condition at low temperatures, the process proceeds to step 204, and the length N of the combustion delay period is calculated using the above relational expression. Correct according to the combustion position.
Nc ← N

この後、ステップ205に進み、各運転条件についてMBTにおける主燃焼期間の開始点MSから補正後の所定点火時期における燃焼遅れ期間の長さNc だけ溯った位置を算出し、その位置を低温時におけるMBTとする。
MBT=Ms+Nc
これらのステップ203〜205の処理を繰り返して全ての運転条件における低温時のMBTを求める。
Thereafter, the routine proceeds to step 205, where for each operating condition, a position calculated by the length Nc of the combustion delay period at the corrected predetermined ignition timing is calculated from the start point MS of the main combustion period in MBT, and the position is calculated at a low temperature. MBT.
MBT = Ms + Nc
These steps 203 to 205 are repeated to obtain the MBT at low temperatures under all operating conditions.

以上説明した本実施例2では、MBTを設定する際に、所定点火時期における燃焼遅れ期間の長さ燃焼位置に応じて補正するようにしたので、燃焼位置に応じて燃焼遅れ期間の長さが変化するのに対応して燃焼遅れ期間の長さを補正することができ、MBTの算出精度を向上させることができる。   In the second embodiment described above, when the MBT is set, the length of the combustion delay period at the predetermined ignition timing is corrected according to the combustion position, so that the length of the combustion delay period depends on the combustion position. Corresponding to the change, the length of the combustion delay period can be corrected, and the calculation accuracy of MBT can be improved.

尚、上記各実施例1、2では、1つの運転条件におけるMBTを設定する際に、その運転条件において1点の点火時期で燃焼遅れ期間データを計測するようにしたが、2点以上の点火時期で燃焼遅れ期間を計測して、それらの平均値等を用いるようにしても良く、この場合でも、点火時期の計測点の数を従来よりも少なくすれば、計測工数を低減することができる。   In each of the first and second embodiments, when setting the MBT in one operating condition, the combustion delay period data is measured at one ignition timing in the operating condition. The combustion delay period may be measured at the timing and the average value thereof may be used. Even in this case, the number of measurement steps can be reduced if the number of ignition timing measurement points is made smaller than before. .

また、上記各実施例1、2では、暖機後に計測したMBTにおける主燃焼期間の開始位置を用いるようにしたが、これに限定されず、低温時に計測したMBTにおける主燃焼期間の開始位置を用いるようにしても良い。   In each of the first and second embodiments, the start position of the main combustion period in MBT measured after warm-up is used. However, the present invention is not limited to this, and the start position of the main combustion period in MBT measured at low temperatures is used. It may be used.

また、上記各実施例1、2では、MBTを設定する際に、主燃焼期間の開始位置と燃焼遅れ期間を用いたが、これに限定されず、主燃焼期間の開始位置に相関するデータ(筒内圧データ、燃焼質量割合データ等)や燃焼遅れ期間に相関するデータ(筒内圧データ、燃焼質量割合データ等)を用いるようにしても良い。   In each of the first and second embodiments, when the MBT is set, the start position of the main combustion period and the combustion delay period are used. However, the present invention is not limited to this, and data correlating with the start position of the main combustion period ( In-cylinder pressure data, combustion mass ratio data, etc.) and data correlated with the combustion delay period (in-cylinder pressure data, combustion mass ratio data, etc.) may be used.

また、上記各実施例1、2では、MBTを設定する際に、主燃焼期間の開始位置を用いたが、これに限定されず、主燃焼期間の開始相当位置(例えば主燃焼期間の開始位置から約50%位置までの間の所定位置)を用いるようにしても良い(図7参照)。これは、MBTにおける主燃焼期間の開始位置から約50%位置までは、温度よってほとんど変化せずにほぼ一定となるからである。   Further, in each of the first and second embodiments, when the MBT is set, the start position of the main combustion period is used. However, the present invention is not limited to this, and the start equivalent position of the main combustion period (for example, the start position of the main combustion period) May be used (predetermined position between approximately 50% and approximately 50% position) (see FIG. 7). This is because, from the start position of the main combustion period in MBT to the position of about 50%, it is almost constant with almost no change depending on the temperature.

また、上記各実施例1、2では、本発明を低温時のMBTの設定に適用したが、本発明は、暖機後の異なる温度についてMBTを設定する場合に適用しても良い。   Further, in each of the first and second embodiments, the present invention is applied to the setting of MBT at a low temperature. However, the present invention may be applied to the case where MBT is set for different temperatures after warm-up.

本発明の実施例1におけるMBT設定システムの概略構成図である。It is a schematic block diagram of the MBT setting system in Example 1 of this invention. 燃焼遅れ期間と主燃焼期間を説明するための図である。It is a figure for demonstrating a combustion delay period and the main combustion period. 異なる冷却水温において点火時期と燃焼遅れ期間と主燃焼期間との関係を示すタイムチャートである。It is a time chart which shows the relationship between ignition timing, a combustion delay period, and the main combustion period in different cooling water temperature. 異なる冷却水温において燃焼位置と主燃焼期間の長さとの関係を示す図である。It is a figure which shows the relationship between a combustion position and the length of the main combustion period in different cooling water temperature. 異なる冷却水温において燃焼位置と燃焼遅れ期間の長さとの関係を示す図である。It is a figure which shows the relationship between a combustion position and the length of a combustion delay period in different cooling water temperature. 燃焼位置と燃焼遅れ期間の長さとの関係を示す図である。It is a figure which shows the relationship between a combustion position and the length of a combustion delay period. MBTの設定方法を説明するためのタイムチャートである。It is a time chart for demonstrating the setting method of MBT. 運転条件を変更しながら燃焼遅れ期間を計測する方法を説明するためのタイムチャートである。It is a time chart for demonstrating the method to measure a combustion delay period, changing an operating condition. 実施例1の低温時MBT算出プログラムの処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of processing of a low temperature MBT calculation program according to the first embodiment. 燃焼位置と燃焼遅れ期間の長さとの関係を示す図である。It is a figure which shows the relationship between a combustion position and the length of a combustion delay period. 燃焼遅れ期間の補正方法を説明するための図である。It is a figure for demonstrating the correction method of a combustion delay period. 実施例2の低温時MBT算出プログラムの処理の流れを示すフローチャートである。12 is a flowchart illustrating a flow of processing of a low temperature MBT calculation program according to the second embodiment. 点火時期とトルクとの関係を示す図である。It is a figure which shows the relationship between ignition timing and torque. 回転速度とMBTとの関係を示す図である。It is a figure which shows the relationship between a rotational speed and MBT. シリンダ充填空気量とMBTとの関係を示す図である。It is a figure which shows the relationship between cylinder filling air amount and MBT. A/FとMBTとの関係を示す図である。It is a figure which shows the relationship between A / F and MBT. 吸気VVT進角量とMBTとの関係を示す図である。It is a figure which shows the relationship between intake VVT advance amount and MBT. 冷却水温とMBTとの関係を示す図である。It is a figure which shows the relationship between cooling water temperature and MBT. 従来の低温時のMBTの設定方法を説明するためのタイムチャートである。It is a time chart for demonstrating the setting method of the MBT at the time of the conventional low temperature.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、14…スロットルバルブ、17…燃料噴射弁、18…点火プラグ、19…排気管、20…排出ガスセンサ、21…筒内圧力センサ、22…クランク角センサ、24…MBT設定用コンピュータ(最適点火時期設定手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Throttle valve, 17 ... Fuel injection valve, 18 ... Spark plug, 19 ... Exhaust pipe, 20 ... Exhaust gas sensor, 21 ... In-cylinder pressure sensor, 22 ... Crank angle Sensor, 24 ... MBT setting computer (optimum ignition timing setting means)

Claims (5)

内燃機関の発生トルクが最大となる最適点火時期を設定する内燃機関の最適点火時期設定方法において、
所定温度で所定点火時期における燃焼遅れ期間又はそれに相関するデータ(以下「燃焼遅れ期間データ」と総称する)を計測し、この燃焼遅れ期間データと、適当な温度で計測した最適点火時期における主燃焼期間の開始位置又はそれに相関するデータ(以下「主燃焼期間開始位置データ」と総称する)とに基づいて前記所定温度における最適点火時期を設定することを特徴とする内燃機関の最適点火時期設定方法。
In an optimal ignition timing setting method for an internal combustion engine that sets an optimal ignition timing at which the generated torque of the internal combustion engine is maximized,
The combustion delay period at the predetermined ignition timing at the predetermined temperature or the data correlated therewith (hereinafter referred to as “combustion delay period data”) is measured, and this combustion delay period data and the main combustion at the optimal ignition timing measured at an appropriate temperature An optimal ignition timing setting method for an internal combustion engine, wherein the optimal ignition timing at the predetermined temperature is set based on a start position of a period or data correlated therewith (hereinafter collectively referred to as “main combustion period start position data”) .
内燃機関の低温時に前記所定点火時期における燃焼遅れ期間データを計測し、この燃焼遅れ期間データと、内燃機関の暖機後に計測した前記最適点火時期における主燃焼期間開始位置データとに基づいて低温時における最適点火時期を設定することを特徴とする請求項1に記載の内燃機関の最適点火時期設定方法。   Combustion delay period data at the predetermined ignition timing is measured at a low temperature of the internal combustion engine, and based on the combustion delay period data and the main combustion period start position data at the optimal ignition timing measured after the internal combustion engine is warmed up. The optimal ignition timing setting method for an internal combustion engine according to claim 1, wherein the optimal ignition timing is set. 前記最適点火時期を設定する際に、前記所定点火時期における燃焼遅れ期間データを燃焼位置に応じて補正することを特徴とする請求項1又は2に記載の内燃機関の最適点火時期設定方法。   3. The method for setting an optimal ignition timing for an internal combustion engine according to claim 1, wherein when setting the optimal ignition timing, the combustion delay period data at the predetermined ignition timing is corrected according to a combustion position. 前記所定点火時期における燃焼遅れ期間データを計測する際に、内燃機関の運転条件を連続的に変更しながら各運転条件毎に前記所定点火時期における燃焼遅れ期間データを計測することを特徴とする請求項1乃至3のいずれかに記載の内燃機関の最適点火時期設定方法。   The combustion delay period data at the predetermined ignition timing is measured for each operating condition while continuously changing the operating conditions of the internal combustion engine when measuring the combustion delay period data at the predetermined ignition timing. Item 5. An optimal ignition timing setting method for an internal combustion engine according to any one of Items 1 to 3. 内燃機関の発生トルクが最大となる最適点火時期を設定する最適点火時期設定手段を備えた内燃機関の最適点火時期設定装置において、
前記最適点火時期設定手段は、所定温度で所定点火時期における燃焼遅れ期間又はそれに相関するデータ(以下「燃焼遅れ期間データ」と総称する)を計測し、この燃焼遅れ期間データと、適当な温度で計測した最適点火時期における主燃焼期間の開始位置又はそれに相関するデータ(以下「主燃焼期間開始位置データ」と総称する)とに基づいて前記所定温度における最適点火時期を設定することを特徴とする内燃機関の最適点火時期設定装置。
In an optimal ignition timing setting device for an internal combustion engine comprising optimal ignition timing setting means for setting an optimal ignition timing at which the generated torque of the internal combustion engine is maximized,
The optimum ignition timing setting means measures a combustion delay period at a predetermined temperature at a predetermined temperature or data related thereto (hereinafter referred to as “combustion delay period data”), and sets the combustion delay period data at an appropriate temperature. The optimum ignition timing at the predetermined temperature is set based on the start position of the main combustion period at the measured optimum ignition timing or data correlated therewith (hereinafter collectively referred to as “main combustion period start position data”). An optimal ignition timing setting device for an internal combustion engine.
JP2003354695A 2003-10-15 2003-10-15 Optimal ignition timing setting method and optimal ignition timing setting device for internal combustion engine Expired - Fee Related JP4224697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003354695A JP4224697B2 (en) 2003-10-15 2003-10-15 Optimal ignition timing setting method and optimal ignition timing setting device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003354695A JP4224697B2 (en) 2003-10-15 2003-10-15 Optimal ignition timing setting method and optimal ignition timing setting device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005120860A true JP2005120860A (en) 2005-05-12
JP4224697B2 JP4224697B2 (en) 2009-02-18

Family

ID=34612527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003354695A Expired - Fee Related JP4224697B2 (en) 2003-10-15 2003-10-15 Optimal ignition timing setting method and optimal ignition timing setting device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4224697B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674800B1 (en) 2005-04-07 2007-01-26 매그나칩 반도체 유한회사 Method for manufacturing semiconductor device
JP2018003749A (en) * 2016-07-05 2018-01-11 トヨタ自動車株式会社 Control device of internal combustion engine
WO2018180385A1 (en) * 2017-03-27 2018-10-04 本田技研工業株式会社 Internal combustion engine
CN115013219A (en) * 2022-06-15 2022-09-06 东风汽车集团股份有限公司 Minimum ignition efficiency control method for gasoline engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674800B1 (en) 2005-04-07 2007-01-26 매그나칩 반도체 유한회사 Method for manufacturing semiconductor device
JP2018003749A (en) * 2016-07-05 2018-01-11 トヨタ自動車株式会社 Control device of internal combustion engine
WO2018180385A1 (en) * 2017-03-27 2018-10-04 本田技研工業株式会社 Internal combustion engine
CN115013219A (en) * 2022-06-15 2022-09-06 东风汽车集团股份有限公司 Minimum ignition efficiency control method for gasoline engine
CN115013219B (en) * 2022-06-15 2023-11-03 东风汽车集团股份有限公司 Minimum ignition efficiency control method for gasoline engine

Also Published As

Publication number Publication date
JP4224697B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
CN102439280B (en) Control device for internal combustion engine
JP2009024677A (en) Control device for internal combustion engine
JP2010236534A (en) Controller for internal combustion engine
JP2009007966A (en) Control device for internal combustion engine
JP5331613B2 (en) In-cylinder gas amount estimation device for internal combustion engine
JP5514601B2 (en) Control device for internal combustion engine
JPWO2011036743A1 (en) Control device for internal combustion engine
JP4475207B2 (en) Control device for internal combustion engine
JP2019148185A (en) Controller of internal combustion engine and method for controlling internal combustion engine
JP4224697B2 (en) Optimal ignition timing setting method and optimal ignition timing setting device for internal combustion engine
JP4615501B2 (en) Control device for internal combustion engine
WO2022264513A1 (en) Internal combustion engine control device
JP5925641B2 (en) Intake control device for internal combustion engine
JP2011157852A (en) Control device of internal combustion engine
JP2008064045A (en) Control device for internal combustion engine
JP2012219757A (en) Internal combustion engine control device
JP4254395B2 (en) Control device for internal combustion engine
JP2010144584A (en) Control device for internal combustion engine
JP2017020417A (en) Control device of internal combustion engine
JP2021067223A (en) Internal combustion engine controller
JP6594825B2 (en) Internal combustion engine control device
JP2007002685A (en) Ignition timing control device for internal combustion engine
JP6684680B2 (en) Internal combustion engine controller
JP2006037921A (en) Exhaust system part temperature estimating device of internal combustion engine
JP5594218B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees