JP2005120702A - Composite concrete member - Google Patents

Composite concrete member Download PDF

Info

Publication number
JP2005120702A
JP2005120702A JP2003356718A JP2003356718A JP2005120702A JP 2005120702 A JP2005120702 A JP 2005120702A JP 2003356718 A JP2003356718 A JP 2003356718A JP 2003356718 A JP2003356718 A JP 2003356718A JP 2005120702 A JP2005120702 A JP 2005120702A
Authority
JP
Japan
Prior art keywords
concrete
precast
cast
joint
formwork
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003356718A
Other languages
Japanese (ja)
Other versions
JP4380286B2 (en
Inventor
Yoshihiro Sugimura
義広 杉村
Kenichi Sasaki
建一 佐々木
Naoki Maeda
直己 前田
Masaaki Tada
正明 夛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeta Concrete Industry Ltd
Original Assignee
Maeta Concrete Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeta Concrete Industry Ltd filed Critical Maeta Concrete Industry Ltd
Priority to JP2003356718A priority Critical patent/JP4380286B2/en
Publication of JP2005120702A publication Critical patent/JP2005120702A/en
Application granted granted Critical
Publication of JP4380286B2 publication Critical patent/JP4380286B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a half precast member provided with bending proof stress and deformation property substantially equal to those of a completely integral cast-in-place concrete member for vertical load. <P>SOLUTION: A pair of precast concrete form members 2, 2 constituted by burying a plurality of steps of assembly bars 6 extending in parallel along the longitudinal direction are arranged by separating them to the left and right, and a plurality of sets of form members having the same configuration as that of them are arranged in the longitudinal direction through a join part 5 to connect and integrate them by a main bar 3 arranged over the whole length and cast-in-place concrete 4 in this half precast member. The join part is provided at substantially center in the direcion of its span length in left and right shearing regions formed in cross section of the member by bending stress of the member. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は複合コンクリート部材に関し、詳しくは、複数のプレキャストコンクリート型
枠材とこの型枠材内に打設した現場打ちコンクリートにより一体化してなるハーフプレキ
ャスト部材であって、曲げ耐力を改善した複合コンクリート部材に関する。
The present invention relates to a composite concrete member. More specifically, the present invention is a half precast member formed by integrating a plurality of precast concrete formwork materials and cast-in-place concrete cast in the formwork material, and has improved bending strength. It relates to members.

近年、現場打ちコンクリートとプレキャストコンクリート部材の長所を取り入れた工法
としてハーフプレキャスト工法が注目されている。このハーフプレキャスト工法は、部材
の一部分をプレキャストコンクリートによって予め製造し、現場でこれを組み立てた後、
このプレキャストコンクリート型枠材内に現場打ちコンクリートを打ち込んで最終部材を
完成させつつ一体化する工法である。
In recent years, the half precast method has attracted attention as a method that incorporates the advantages of cast-in-place concrete and precast concrete members. In this half precast method, a part of the member is pre-manufactured with precast concrete and assembled on site,
This is a construction method in which cast-in-place concrete is driven into the precast concrete formwork and the final member is completed while being integrated.

このようなハーフプレキャスト工法によれば、熟練工を要しない,作業者が少人数で済
む,生産性が向上するといった利点がある工法として確立されてきている。また、型枠の
生産から廃棄に至る過程で、建築物のライフサイクル全体を通じたエネルギー削減を可能
とする工法の一つとも考えられる。
According to such a half precast method, it has been established as a method that does not require skilled workers, requires a small number of workers, and improves productivity. In addition, it can be considered as one of the construction methods that enables energy reduction throughout the entire building life cycle in the process from production to disposal of formwork.

しかし、このハーフプレキャスト工法により形成される最終部材は、プレキャストコン
クリート型枠材と現場打ちコンクリートとからなる複合構造体であるため、両者の構造的
な一体性が確保される必要があると同時に、プレキャストコンクリート型枠材同士の接合
部における連続性が確保されなければならない。特に、プレキャストコンクリート型枠材
の長さには限度があるので、梁などの長尺物にあっては型枠材間に接合部が生じることに
なる。したがって、この接合部の影響によって曲げ耐力・変形性状等が損なわれることの
ないもの、すなわち、現場打ちコンクリートによって形成した現場打ち一体部材と同等以
上の曲げ耐力・変形性状を有する連続性を備えたものとなるよう設計する必要がある。
However, since the final member formed by this half precast method is a composite structure composed of precast concrete formwork and cast-in-place concrete, it is necessary to ensure the structural integrity of both, Continuity must be ensured at the joint between the precast concrete formwork materials. In particular, since there is a limit to the length of the precast concrete formwork material, in the case of a long object such as a beam, a joint portion is generated between the formwork materials. Therefore, the bending strength / deformation properties, etc. are not impaired by the influence of this joint, that is, it has continuity with bending strength / deformation properties equal to or better than the cast-in-place integrated member formed by cast-in-place concrete. It needs to be designed to be something.

従来、中間に材軸直交方向の接合部を有するハーフプレキャスト工法により形成する複
合コンクリート部材にあって、前記接合部における曲げ耐力の向上を図ったものとして、
例えば特開平5ー321324号に係る発明では、上面開口の樋状をなすプレキャストコ
ンクリート部材の一端又は両端の底壁を切り欠いて下端主筋を露出させ、部材の一端又は
両端から突出する前記下端主筋同士を前記切欠部内でオーバーラップさせ、又は前記切欠
部内に露出した前記両下端主筋に跨がるように連結筋を配筋し、樋状部内にコンクリート
を打設して連結するようにしたハーフプレキャスト製の梁が開示している。
Conventionally, in a composite concrete member formed by a half precast method having a joint in the direction perpendicular to the material axis in the middle, and as an improvement in bending strength at the joint,
For example, in the invention according to Japanese Patent Application Laid-Open No. 5-321324, the bottom main bar protrudes from one end or both ends of the member by notching the bottom wall of one end or both ends of the precast concrete member having a bowl shape of the top opening to expose the bottom main bar. Half that overlaps each other in the notch part, or arranges connecting bars so as to straddle both lower end main bars exposed in the notch part, and places concrete in the hook-like part to connect A precast beam is disclosed.

また、特開平11−61979号に係る発明では、プレキャスト埋設型枠部材同士のジ
ョイント位置と現場打ちコンクリートの打継目を10cm以上離れるように施工するプレ
キャスト型枠工法による鉄筋コンクリート構造物の構築方法が提案され、更に、特開20
00ー141328号に係る発明では、プレキャスト型枠部材の端部打継ぎ部分に透水性
の土砂流出防止シートを接着してコンクリートを打設し、付着力向上のための凹凸を付け
るようにするしたプレキャストコンクリート部材継目用の型枠工法が提案されている。
In addition, in the invention according to Japanese Patent Laid-Open No. 11-61979, a method for constructing a reinforced concrete structure by a precast formwork method in which the joint position between the precast embedded formwork members and the joint of the cast-in-place concrete is separated by 10 cm or more is proposed. Furthermore, JP-A-20
In the invention according to No. 00-141328, a permeable earth and sand spill prevention sheet is bonded to the end joint portion of the precast formwork member, and concrete is placed thereon, so that unevenness for improving adhesion is provided. A formwork method for jointing precast concrete members has been proposed.

特開平5ー321324号公報JP-A-5-321324 特開平11−61979号公報Japanese Patent Laid-Open No. 11-61979 特開2000−141328号公報JP 2000-141328 A

しかし、これらの各提案は接合部の構造あるいは接合面の構造に工夫を加えることによ
って、前記接合部に補強を講じたものにすぎず、広くいろいろな用途に使えるようにする
ための曲げ耐力・変形性状改善に関する提案は何ら開示されていない。すなわち、中間に
接合部を有するハーフプレキャスト工法で形成する複合コンクリート部材にあって、該部
材の曲げ耐力を向上せしめるためには、鉛直荷重に対する複合部材の一体性を検証しなが
ら、この一体性を確保するための接合部の位置,接合部の間隔,接合面直交鉄筋などに関
する汎用的な曲げ耐力改善手段の開発が要求されるが、上記従来の提案にはこれらの点に
ついては何ら開示されていない。
However, each of these proposals is merely a reinforced part of the joint by adding a device to the structure of the joint or the surface of the joint. No proposals for improving deformation properties are disclosed. That is, in a composite concrete member formed by a half precast method having a joint in the middle, in order to improve the bending strength of the member, this integrity is verified while verifying the integrity of the composite member with respect to a vertical load. Development of general-purpose bending strength improvement means related to the position of the joints to secure, the distance between the joints, the joint surface orthogonal reinforcing bars, etc. is required, but the above-mentioned conventional proposals do not disclose any of these points. Absent.

一般に、プレキャストコンクリート部材の材軸直交接合部における設計では、接合部の
各状態における曲げ強度Mまたはせん断強度Qが、設計用曲げモーメントMdまたは設計
用せん断力Qdを上回ることを確認しなければならない。設計用曲げモーメントMdまた
は設計用せん断力Qdは、作用する応力と許容される変形に応じて接合要素の応力伝達の
種類を決定し、鉄筋に作用する軸力の伝達は直接継手もしくは間接継手から選択すること
が必要である(日本建築学会「現場打ち同等型プレキャスト鉄筋コンクリート構造設計指
針(案)・同解説2002」)。
In general, in designing a precast concrete member at a material axis orthogonal joint, it is necessary to confirm that the bending strength M or shear strength Q in each state of the joint exceeds the design bending moment Md or the design shear force Qd. . The design bending moment Md or the design shearing force Qd determines the type of stress transmission of the joining element according to the applied stress and the allowable deformation, and the transmission of the axial force acting on the reinforcing bar is from a direct joint or an indirect joint. It is necessary to make a selection (The Architectural Institute of Japan “In-Situ Equivalent Precast Reinforced Concrete Structural Design Guidelines (Draft) / Comment 2002”)

本発明は、ハーフプレキャスト製の複合コンクリート部材にあって、鉛直荷重に対する
一体性を確保するための接合部の位置,接合部の間隔,接合面直交鉄筋の大きさなどにつ
いて種々実験を重ね、この実験から知得した結果に基づいてなされたものであり、現場打
ち一体部材とほゞ同等の曲げ耐力,変形性状を有する複合コンクリート部材を提供するこ
とを目的としたものである。
The present invention is a half-precast composite concrete member, and has been subjected to various experiments on the position of the joint, the spacing of the joint, the size of the joint surface orthogonal reinforcement, etc. to ensure the integrity to the vertical load. The purpose of the present invention is to provide a composite concrete member having bending strength and deformation properties almost equal to those of the in-situ integrated member.

上記の目的を達成するため、本願の請求項1に係る発明は、長手方向に沿って平行に延
びる組立筋を複数段埋設してなる一対のプレキャストコンクリート型枠材を左右に離間し
て配設するとゝもに、これらと同一構成の型枠材を接合部を介して長手方向に複数組配設
し、全長にわたって配設した主筋と現場打ちコンクリートにより連結して一体化するハー
フプレキャスト部材であって、該部材の曲げ応力によって部材断面に形成される左右のせ
ん断領域において、そのスパン長さ方向のほゞ中央に前記接合部を設けたことを特徴とす
る複合コンクリート部材である。
In order to achieve the above object, the invention according to claim 1 of the present application is arranged with a pair of precast concrete formwork members separated from each other in the left and right directions, each of which is formed by embedding a plurality of assembly bars extending in parallel along the longitudinal direction. This is a half precast member in which a plurality of mold materials having the same structure as these are arranged in the longitudinal direction via joints and are connected and integrated with the main bars arranged over the entire length by cast-in-place concrete. Thus, in the left and right shear regions formed in the member cross section by the bending stress of the member, the joint portion is provided at the center of the span length direction.

また、本願の請求項2に係る発明は、長手方向に沿って平行に延びる組立筋を複数段埋
設してなる一対のプレキャストコンクリート型枠材を左右に離間して配設するとゝもに、
これらと同一構成の型枠材を接合部を介して長手方向に複数組配設し、全長にわたって配
設した主筋と現場打ちコンクリートにより連結して一体化するハーフプレキャスト部材で
あって、前記組立筋の圧縮縁に対する断面一次モーメントの合計に対しこれと同等以上と
なるように径を定めた補強筋を前記接合部を跨いで引張主筋位置に配設して連結したこと
を特徴とする複合コンクリート部材である。
In addition, the invention according to claim 2 of the present application is that when a pair of precast concrete formwork members formed by embedding a plurality of assembly bars extending in parallel along the longitudinal direction are arranged apart from each other on the left and right sides,
A half precast member in which a plurality of sets of mold materials having the same configuration are arranged in the longitudinal direction via joints, and are connected and integrated with main bars arranged over the entire length by using cast-in-place concrete. A composite concrete member characterized in that a reinforcing bar whose diameter is set to be equal to or greater than a total of the moments of section with respect to the compression edge is disposed and connected at a tensile main bar position across the joint. It is.

更に、本願の請求項3に係る発明は、前記請求項1又は2記載の複合コンクリート部材
にあって、前記接合部の間隔が、前記現場打ちコンクリートに使用する粗骨材の最大寸法
の1.3倍以上2.5倍以下または30mm以上50mm以下としたことを特徴とするも
のである。
Furthermore, the invention according to claim 3 of the present application is the composite concrete member according to claim 1 or 2, wherein the interval between the joints is 1. which is the maximum dimension of the coarse aggregate used for the cast-in-place concrete. 3 to 2.5 times or less, or 30 mm to 50 mm or less.

また、本願の請求項4に係る発明は、前記請求項1〜3に係る発明において、前記複合
コンクリート部材が梁又は基礎梁であることを特徴とするものである。
The invention according to claim 4 of the present application is the invention according to claims 1 to 3, wherein the composite concrete member is a beam or a foundation beam.

本発明に係る複合コンクリート部材は、ハーフプレキャスト工法により形成することが
できるので、熟練工を要しない,作業者が少人数で済む,生産性が向上するといった利点
があるとゝもに、請求項1に係る発明によれば、ハーフプレキャスト型枠材同士の接続が
容易であり、しかも現場打ち一体部材とほゞ同等の曲げ耐力を有する複合コンクリート部
材を得ることができる。
Since the composite concrete member according to the present invention can be formed by a half precast method, there is an advantage in that it does not require a skilled worker, requires a small number of workers, and improves productivity. According to the invention according to the above, it is possible to obtain a composite concrete member that is easy to connect between the half precast mold materials and that has a bending strength almost equivalent to that of the in-situ integrated member.

また、請求項2に係る発明によれば、ハーフプレキャスト型枠材同士を連結する接合部
が部材のどの位置にあっても、現場打ち一体部材とほゞ同等の曲げ耐力・変形性状を有す
る複合コンクリート部材を得ることができるとゝもに、請求項1に係る複合コンクリート
部材と比較してより一層大きな曲げ耐力を有する複合コンクリート部材を得ることができ
る。
Further, according to the invention according to claim 2, the composite having bending strength / deformation properties almost equal to those of the in-situ integrated member, regardless of the position of the joining portion connecting the half precast mold materials to each other. When a concrete member can be obtained, it is possible to obtain a composite concrete member having even greater bending strength than the composite concrete member according to claim 1.

さらに、請求項3に係る発明によれば、ハーフプレキャスト型枠材間の接合部における
端面間にも現場打ちコンクリートが十分に充填されることになる。したがって、型枠材端
面の表面性状の影響を直接受けることがなく、この接合部分が断面欠損になるといった虞
がないとゝもに、接合部に設置する型枠の小型化が図られ作業能率が向上する。また、接
合部の間隔を容易に決めることができるので、ハーフプレキャスト型枠材同士の接続が容
易に行え、複合コンクリート部材の製造が容易である。
Furthermore, according to the invention which concerns on Claim 3, on-site concrete is fully filled also between the end surfaces in the junction part between half precast formwork materials. Therefore, it is not directly affected by the surface properties of the end face of the mold material, and there is no risk that this joint will become a cross-sectional defect. Will improve. Moreover, since the space | interval of a junction part can be determined easily, connection of half precast mold materials can be performed easily, and manufacture of a composite concrete member is easy.

また、請求項4に係る発明によれば、現場打ち一体部材とほゞ同等の曲げ耐力および変
形性状を備えた梁又は基礎梁を得ることができる。
Moreover, according to the invention which concerns on Claim 4, the beam or foundation beam provided with bending strength and a deformation | transformation property substantially equivalent to an in-situ integrated member can be obtained.

以下、本発明を図面に示す実施形態に基づいて詳細に説明する。図において、1はハー
フプレキャスト構造体からなる複合コンクリート部材で、図1,図2に示すように、所定
間隔をおいて対向して立設した左右一対の横長方形状の版状体からなるプレキャストコン
クリート型枠材2,2と、その一端にこれらと同一構成としたプレキャストコンクリート
型枠材2,2を所定の間隔Dをおいて長手方向に配設するとゝもに、その内部に全長にわ
たって配設した上端主筋3a及び下端主筋3bと、この上・下端両主筋3a,3bを内部
にそれぞれ配筋した場打ちコンクリート4とにより、接合部5を介して一体化した構成の
もの(以下、ハーフプレキャスト部材と言う)である。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. In the figure, reference numeral 1 denotes a composite concrete member made of a half precast structure. As shown in FIGS. 1 and 2, a precast made of a pair of left and right horizontal rectangular plates facing each other at a predetermined interval. When the concrete mold materials 2 and 2 and the precast concrete mold materials 2 and 2 having the same structure as those at one end are arranged in the longitudinal direction with a predetermined distance D, they are arranged over the entire length inside. An upper end main bar 3a and a lower end main bar 3b, and a cast-in-place concrete 4 in which the upper and lower main bars 3a and 3b are respectively arranged inside, are integrated via a joint portion 5 (hereinafter referred to as a half). A precast member).

前記プレキャストコンクリート型枠材2の内部には、水平方向に平行に延び且つ多段に
配設した複数本の組立筋6,6と、該組立筋6,6に溶接または結束して固定した垂直方
向に延びる複数本の肋筋7,7がそれぞれ埋設されている。この各肋筋7は略C字形状と
したもので、前記左右一対のプレキャストコンクリート型枠材2,2を対向して配置した
ときに、各型枠材2,2の内側面にあってその上・下端近傍から互いに相手方の型枠材2
に向かって突出する上・下の水平折曲部8a,8bと、相手方の型枠材2の内側面と対峙
する上・下の垂直折曲部9a,9bとを夫々備えている。
Inside the precast concrete formwork 2, a plurality of assembly bars 6, 6 extending in parallel in the horizontal direction and arranged in multiple stages, and a vertical direction fixed by welding or binding to the assembly bars 6, 6. A plurality of gluteal muscles 7, 7 extending in the direction are embedded. Each of the barbs 7 has a substantially C shape, and when the pair of left and right precast concrete formwork materials 2 and 2 are arranged to face each other, Form material 2 on the other side from the upper and lower ends
The upper and lower horizontal bent portions 8a and 8b projecting toward the upper side and the upper and lower vertical bent portions 9a and 9b facing the inner side surface of the counterpart mold material 2 are provided.

また、前記現場打ちコンクリート4の内部には、上記のように、前記ハーフプレキャス
ト部材1の全長にわたって水平方向に延びる複数本の上端主筋(圧縮側主筋)3a,3a
と、これと同数の下端主筋(引張側主筋)3b,3bがそれぞれ埋設されており、前記上
端主筋3aは前記肋筋7の上方の水平折曲部8aと、また下端主筋3bは下方の水平折曲
部8bとそれぞれ溶接または結束によって固定されている。
In addition, as described above, a plurality of upper main bars (compression side main bars) 3a, 3a extending in the horizontal direction over the entire length of the half precast member 1 are provided inside the cast-in-place concrete 4 as described above.
The same number of lower main bars (tensile side main bars) 3b and 3b are embedded, the upper main bar 3a is a horizontal bent portion 8a above the gluteal barb 7, and the lower main bar 3b is a lower horizontal bar. The bent portion 8b is fixed to each other by welding or binding.

ここで、前記接合部5の間隔Dは、前記現場打ちコンクリート4に使用する粗骨材の最
大寸法の1.3倍以上2.5倍以下、または30mm以上50mm以下とした。その理由
は、前記プレキャスト型枠材2,2の端面が直接接触する状態で突き合わせた場合には、
該プレキャスト型枠材2,2の端面の表面性状の影響を直接受け、この部分が断面欠損に
なるためで、接合部5の前記間隔Dを粗骨材の最大寸法以上とすれば、プレキャスト型枠
材2,2の端面間に十分にコンクリートが充填されることになる。一方、過大な間隔幅を
設けると、図3に示すように、現場打ちコンクリート4を打設する際、前記接合部5に配
される側枠板B1,1自体が大きくなって作業上好ましくない。なお、図3においてB2
は底枠板である。
Here, the interval D of the joint portion 5 was set to 1.3 times to 2.5 times the maximum dimension of the coarse aggregate used for the cast-in-place concrete 4 or 30 mm to 50 mm. The reason is that when the end faces of the precast formwork materials 2 and 2 are in contact with each other,
This is because it is directly affected by the surface properties of the end faces of the precast mold frames 2 and 2, and this portion becomes a cross-sectional defect. The concrete is sufficiently filled between the end surfaces of the frame members 2 and 2. On the other hand, if an excessive interval width is provided, as shown in FIG. 3, when the cast-in-place concrete 4 is placed, the side frame plates B 1 and B 1 arranged on the joint 5 become large and work is performed. It is not preferable. In FIG. 3, B 2
Is a bottom frame plate.

基本的には、現場打ちコンクリート一体部材(以下、現場打ち一体部材と言う)と同等
の接合強度であれば良く、過大な接合手段を施すことはコスト面から望ましいとは云えな
い。そこで、後打ちされるコンクリートがそのままウエットジョイントとして機能するよ
うな間隔を設けることが最も望ましいものとなる。したがって、粗骨材の最大寸法が例え
ば20mmの場合には接合部3の前記間隔Dを30〜50mmとする。実際には、粗骨材
最大寸法に応じてその1.3倍以上から2.5倍以下に設定すれば良い。
Basically, the joining strength is equivalent to that of an in-situ concrete integrated member (hereinafter referred to as an in-situ integrated member), and it is not desirable from the viewpoint of cost to provide an excessive joining means. Therefore, it is most desirable to provide an interval so that the concrete to be placed later functions as a wet joint as it is. Therefore, when the maximum dimension of the coarse aggregate is 20 mm, for example, the distance D of the joint portion 3 is set to 30 to 50 mm. Actually, it may be set from 1.3 times to 2.5 times that of the coarse aggregate maximum dimension.

また、前記接合部5を設ける位置は、図4(a)(b)に示すような載荷荷重が掛かる
場所に使用するハーフプレキャスト部材1にあっては、該ハーフプレキャスト部材1の曲
げ応力によって部材断面に形成されるせん断領域Y、或いは、図4(c)に示すような載
荷荷重が掛かる場所に使用するハーフプレキャスト部材1にあっては、該ハーフプレキャ
スト部材1の曲げ応力によって部材断面に形成される中央の曲げ領域Cの中心から外れた
位置にそれぞれ設けることが必要である。より好ましくは、前記せん断領域Yにあっては
そのスパン長さ方向の中央に、また中央の曲げ領域Cにあっては終極曲げモーメントとな
る中心から外れた位置にそれぞれ設ける。
Moreover, in the half precast member 1 used in a place where a load load is applied as shown in FIGS. 4A and 4B, the position where the joint portion 5 is provided depends on the bending stress of the half precast member 1. In the case of the half precast member 1 used in a shear region Y formed in the cross section or a place where a load is applied as shown in FIG. 4C, the cross section is formed in the member cross section by the bending stress of the half precast member 1. It is necessary to provide each at a position off the center of the central bending region C. More preferably, the shear region Y is provided at the center in the span length direction, and the central bending region C is provided at a position off the center where the ultimate bending moment is obtained.

その理由は、上記せん断領域Yにあってそのスパン長さ方向の中央に接合部5を設けた
ハーフプレキャスト部材1では現場打ち一体部材とほゞ同等の曲げ耐力を示し、また、中
央の曲げ領域Cにあって終極曲げモーメントとなる中心位置から外れた位置に接合部5を
設けたハーフプレキャスト部材1では、現場打ち一体部材と同様の一体的な変形特性を示
すことがその根拠である。また、せん断力が作用する構造形式では接合部による一体性へ
の影響がなく、終局時の破壊強度もそのせん断力比によって若干異なるものの、現場打ち
一体部材とほゞ同じであることもその根拠の一つである。
The reason is that the half precast member 1 provided with the joint 5 in the center in the span length direction in the shear region Y exhibits a bending strength almost equivalent to that of the in-situ integrated member, and the central bending region. The ground is that the half precast member 1 in which the joint 5 is provided at a position deviating from the center position where the final bending moment is present in C exhibits the same integral deformation characteristics as the in-situ integrated member. Also, in the structure type in which shearing force acts, there is no influence on the integrity due to the joint, and the ultimate fracture strength is slightly different depending on the shearing force ratio, but it is also the same as the in-situ integrated member. one of.

上記のように、ハーフプレキャスト部材1において、せん断力に対して接合部の影響は
ないが、曲げに対してはその接合部がどの位置にあるかによりその影響が顕著に現れる。
すなわち、接合部を曲げ領域Cの中心に設けた場合には、欠損断面の曲げ降伏強度に達す
るとたわみ形状がV字形状となる。したがって、ハーフプレキャスト部材にあって、その
曲げ耐力を現場打ち一体部材と同等のものとするためにはその接合部を終極曲げモーメン
トとなる位置から外れた位置に形成する必要がある。
As described above, in the half precast member 1, there is no influence of the joint portion on the shearing force, but the influence appears significantly on the bending depending on the position of the joint portion.
That is, when the joint portion is provided at the center of the bending region C, the bending shape becomes a V shape when the bending yield strength of the defect cross section is reached. Therefore, in the half precast member, in order to make the bending strength equivalent to that of the in-situ cast integrated member, it is necessary to form the joint at a position deviating from the position where the ultimate bending moment is obtained.

しかし、前記接合部5を曲げ領域Cの中心に設けた場合でも、図5,図6に示すような
構造とすることにより、現場打ち一体部材とほゞ同等の曲げ耐力を確保できるハーフプレ
キャスト部材1を得ることができる。すなわち、同図において、10は前記接合部5に埋
設した補強筋で、前記組立筋6,6の圧縮縁に対する断面一次モーメントの合計以上の断
面一次モーメントとなる大きさの径を有していて、前記下端主筋3b,3bに沿い且つ前
記接合部5を跨いで配設されており、下端主筋3bや前記肋筋7の下方の水平折曲部8b
と溶接又は結束などによって固定されている。
However, even when the joint portion 5 is provided at the center of the bending region C, a half precast member that can ensure a bending strength substantially equivalent to that of the on-site integrated member by adopting the structure shown in FIGS. 1 can be obtained. That is, in the figure, reference numeral 10 denotes a reinforcing bar embedded in the joint portion 5, and has a diameter that is a magnitude of a cross-sectional primary moment that is equal to or greater than the sum of the cross-sectional primary moments with respect to the compression edges of the assembly bars 6 and 6. The lower bent main bars 3b are arranged along the lower end main bars 3b and straddling the joint 5, and the horizontal bent parts 8b below the lower main bars 3b and the heel bars 7 are arranged.
It is fixed by welding or binding.

ここで、前記補強筋10は、前記接合部5の中心の軸長両側に所定の定着長で設けるこ
とが望ましい。すなわち、「鉄筋コンクリート構造計算規準・同解説」(日本建築学会、
1999)の第16条で規定される付着定着長さの算定式から、断面一次モーメントが一致す
るよう設定されたものである。したがって、断面や鉄筋径が異なればこれに従って定着長
を計算すれば良い。また、前記補強筋10はプレキャスト型枠材2を互いに突き合わせ、
現場打ちコンクリート4を打設する前であれば容易に設置可能である。
Here, it is desirable that the reinforcing bars 10 are provided with a predetermined fixing length on both sides of the axial length at the center of the joint portion 5. In other words, “Reinforced Concrete Structural Calculation Standards and Explanation” (Architectural Institute of Japan,
1999), the primary moment of section is set to coincide with the calculation formula of the adhesion fixing length defined in Article 16. Therefore, if the cross section and the reinforcing bar diameter are different, the fixing length may be calculated according to this. Further, the reinforcing bar 10 abuts the precast formwork 2 with each other,
It can be easily installed before the on-site concrete 4 is placed.

つぎに、本発明に係るハーフプレキャスト部材1の前記接合部5の位置,該接合部5の
間隔D,接合面直交補強筋10の大きさに関する上記の限定理由を実験結果に基づいて以
下に説明する。実験に供したハーフプレキャスト部材(hPCa)は、図1及び図2に示すよ
うに、厚さ300 mm,高さ 800mm,長さ7000mmである。また、上端主筋3a及び下端
主筋3bにはSD 295のD 22を、組立筋6及び肋筋7にはそれぞれSD 295のD 10を用い、こ
れを 200mmピッチで配した(以上、鋼材記号はJIS G 3112による)。
Next, the reasons for the above limitation regarding the position of the joint portion 5 of the half precast member 1 according to the present invention, the distance D of the joint portion 5 and the size of the joint surface orthogonal reinforcing bars 10 will be described below based on experimental results. To do. As shown in FIGS. 1 and 2, the half precast member (hPCa) subjected to the experiment has a thickness of 300 mm, a height of 800 mm, and a length of 7000 mm. SD 295 D 22 was used for the upper main bar 3a and lower main bar 3b, and D 295 of SD 295 was used for the assembly bar 6 and the heel bar 7, respectively. G 3112).

主筋比は0.38%,肋筋比は0.24%である。なお、前記肋筋7の上・下の水平折
曲部8a,8bの現場打ちコンクリート4への定着はJASS 5に準拠し、上・下の垂直折曲
部9a,9bの長さを8Dとして定着した。また、前記ハーフプレキャスト部材(hPCa)
の比較対象として、図7に示すように、在来工法による現場打ち一体試験体(RC)を同
材料・同寸法で製作した。
The main muscle ratio is 0.38% and the gluteal muscle ratio is 0.24%. The upper and lower horizontal bent portions 8a and 8b are fixed to the cast-in-place concrete 4 in accordance with JASS 5, and the length of the upper and lower vertical bent portions 9a and 9b is 8D. Established. The half precast member (hPCa)
As a comparison object, as shown in FIG. 7, an in-situ integrated test body (RC) by a conventional method was manufactured with the same material and the same dimensions.

表1にプレキャストコンクリート型枠材2と現場打ちコンクリート4の配合及び強度を
示す。また、表2に各試験体の接合部の位置,接合部の間隔,接合面直交鉄筋(補強筋)
についてその一覧表を示す。
Table 1 shows the composition and strength of the precast concrete formwork material 2 and the cast-in-place concrete 4. In addition, Table 2 shows the position of the joint of each specimen, the distance between the joints, the joint surface orthogonal reinforcing bars (reinforcing bars)
The list is shown.


Figure 2005120702
Figure 2005120702


Figure 2005120702
Figure 2005120702

図4(c)に曲げ試験の載荷方法を示す。載荷は数段階に分け、載荷最大荷重階を増大
させながら載荷と除荷を繰り返し、最終的に試験体が破壊に至るまで継続した。また、ゲ
ージ及び変位計を用いて、試験体表面,鉄筋のひずみ,荷重,ひび割れ幅,曲率(曲げス
パン内の中央位置,材軸方向300mm長さとし、試験体上部と下部の圧縮ひずみと引張
ひずみの絶対量の和を上下変位測定間距離で除したもの)を測定し、試験荷重に対するこ
れら変位量の変化から、現場打ち一体部材(RC)を基礎としたハーフプレキャスト部材
(hPCa)の一体性を評価した。
FIG. 4C shows a loading method for the bending test. Loading was divided into several stages, and loading and unloading were repeated while increasing the maximum loading floor, and finally continued until the specimen was destroyed. In addition, using a gauge and displacement meter, the specimen surface, reinforcing bar strain, load, crack width, curvature (center position in the bending span, 300 mm length in the axial direction of the specimen, compressive strain and tensile strain at the top and bottom of the specimen) Of the absolute amount of the two parts divided by the distance between the vertical displacement measurements), and the change of these displacements with respect to the test load, the integrity of the half precast member (hPCa) based on the in-situ integrated member (RC) Evaluated.

表3は各試験体の試験結果である。この表3から明らかなように、接合部(継ぎ目)を
有しないものは、ハーフプレキャスト部材(hPCa)でも場所打ち一体部材(RC)とほぼ
同等の曲げ耐力を示している。しかし、接合部5を載荷点中央に設けた場合や或いはこの
接合部5をウエッジジョイントとした場合には、ハーフプレキャスト部材(hPCa)は現場
打ち一体部材(RC)の曲げ耐力の60〜70%の曲げ耐力しか示さない。
Table 3 shows the test results for each specimen. As is apparent from Table 3, those having no joint (seam) show a bending strength almost equal to that of the cast-in-place integrated member (RC) even in the half precast member (hPCa). However, when the joint 5 is provided in the center of the loading point, or when the joint 5 is a wedge joint, the half precast member (hPCa) is 60 to 70% of the bending strength of the in-situ integrated member (RC). It shows only the bending strength.

しかし、接合部5が載荷点中央にあっても、組立筋6の圧縮縁に対し断面一次モーメン
トが一致するよう、引張主筋3b位置に補強筋(SD 295のD 16) 10を配置して連結した
場合には、現場打ち一体部材(RC)とほぼ同等の曲げ耐力を示している。また、前記ハ
ーフプレキャスト部材(hPCa)の曲げ応力によって部材断面に形成されるせん断領域にお
いて、そのスパン長さ方向の中央に所定間隔の接合部5を設けた場合にも現場打ち一体部
材(RC)とほぼ同等の曲げ耐力を示している。なお、本試験例では、粗骨材最大寸法が
20mmであるため、接合部の間隔を30〜50mmとした。
However, even if the joint 5 is in the center of the loading point, the reinforcing bar (D16 of SD 295) 10 is arranged and connected at the position of the tension main bar 3b so that the first moment of section coincides with the compression edge of the assembly bar 6. In this case, the bending strength almost equal to that of the in-situ integrated member (RC) is shown. In addition, in the shear region formed in the cross section of the member by the bending stress of the half precast member (hPCa), even when the joint portion 5 having a predetermined interval is provided at the center in the span length direction, the in-situ integrated member (RC) Shows almost the same bending strength. In this test example, since the coarse aggregate maximum dimension was 20 mm, the interval between the joints was set to 30 to 50 mm.


Figure 2005120702
Figure 2005120702

次ぎに、本発明では、ハーフプレキャスト部材(hPCa)の一体性の指標として、「ばら
つき性」と「類似性」を導入する。「ばらつき性」とは試験体の局所的な変形状態のばら
つき比較を評価するもので、次式(1)
(Amax−Amin)/2Aave・・・(1)
但し、Amax,Amin,Aaveは計測対象Aの最大値,最小値,平均値を示す。
で表され、ばらつき係数として評価される。
Next, in the present invention, “variability” and “similarity” are introduced as indicators of the integrity of the half precast member (hPCa). “Variability” is an evaluation of the variation of local deformation state of the test specimen.
(Amax−Amin) / 2Aave (1)
However, Amax, Amin, and Aave indicate the maximum value, minimum value, and average value of the measurement target A.
And is evaluated as a variation coefficient.

また「類似性」とは、ハーフプレキャスト部材(hPCa)の現場打ち一体部材(RC)に
対する一体性を評価するもので、次式(2)
Aave−pca/Aave−rc・・・(2)
但し、Aave-pca,Aave-rcはハーフプレキャスト部材と現場打ち一体部材の
計測対象Aの平均値を示す。
で表され、類似係数として評価される。
ひびわれ,変位,歪み等の各計測対象について、上記式(1)(2)で求められるばら
つき係数と類似係数を導入することにより、強度や変形に係わる現場打ち同等型ハーフプ
レキャスト部材(hPCa)の一体性を評価できる。
“Similarity” is an evaluation of the integrity of a half precast member (hPCa) to an in-situ integrated member (RC).
Aave-pca / Aave-rc (2)
However, Aave-pca and Aave-rc are a half precast member
The average value of the measurement object A is shown.
And is evaluated as a similarity coefficient.
For each measurement object such as crack, displacement, strain, etc., by introducing the variation coefficient and similarity coefficient calculated by the above formulas (1) and (2), Integrity can be evaluated.

図8は曲げ応力下でのハーフプレキャスト部材(hPCa)の一体性を評価するために、荷
重に関する類似係数と、総ひび割れ幅に関するばらつき係数とを導入し評価した結果であ
る。現場打ち一体部材(RC)のばらつき係数は、載荷ステップ都度に10%以内である
一方、ハーフプレキャスト部材(hPCa)では、試験体表面の圧縮歪みが3000μmを超える
第5ステップ以降、顕著に大きくなる。しかしながら、強度特性(荷重とたわみ量)に関
する類似係数はその影響を受けないことが明らかとなった。
FIG. 8 shows the results of evaluation by introducing a similarity coefficient regarding the load and a variation coefficient regarding the total crack width in order to evaluate the integrity of the half precast member (hPCa) under bending stress. The variation coefficient of the cast-in-place integrated member (RC) is within 10% for each loading step, while the half precast member (hPCa) becomes remarkably large after the fifth step in which the compressive strain on the specimen surface exceeds 3000 μm. . However, it has been clarified that the similarity coefficient regarding the strength characteristics (load and deflection) is not affected.

以上のことから、組立鉄筋6の圧縮縁に対し断面一次モーメントが一致するように、引
張側主筋(下端主筋)3b位置に補強筋10を配設して連結した場合のハーフプレキャス
ト部材(hPCa)は、曲げ耐力が現場打ち一体部材(RC)とほぼ同等であることに加え、
鉛直荷重に対する変形特性も現場打ち一体部材とほぼ同等とみなせることが判明した。
From the above, the half precast member (hPCa) when the reinforcing bar 10 is disposed and connected to the position of the tension side main bar (lower bar main bar) 3b so that the primary moment of section coincides with the compression edge of the assembled reinforcing bar 6 In addition to the bending strength being almost equivalent to the cast-in-place integrated member (RC),
It was found that the deformation characteristics with respect to the vertical load can be regarded as almost the same as the in-situ integrated member.

ところで、ハーフプレキャスト部材(hPCa)の曲げ応力によって部材断面に形成される
左右のせん断領域において、そのスパン長さ方向の中央に所定間隔の接合部5を設けた場
合にも、現場打ち一体部材(RC)とほぼ同等の曲げ耐力を示すとした根拠を明らかにす
るため、曲げ試験時の変形特性についてハーフプレキャスト部材(hPCa)の場合と場所打
ち一体部材(RC)の場合で比較を行った。
By the way, even in the case where the joint 5 having a predetermined interval is provided at the center in the span length direction in the left and right shear regions formed in the member cross section by the bending stress of the half precast member (hPCa), In order to clarify the grounds for showing a bending strength almost equal to RC), the deformation characteristics during the bending test were compared between the half precast member (hPCa) and the cast-in-place integrated member (RC).

図9は、試験体圧壊時における試験体表面歪み,鉄筋歪み,総ひび割れ幅および曲率に
関して、ハーフプレキャスト部材(hPCa)と場所打ち一体部材(RC)との関係を、接合
部5の位置についてまとめたものである。この結果によれば、曲げ応力が作用する条件下
で、接合部5の位置を終局曲げモーメントとなる位置(中心)からずらすことで、場所打
ち一体部材(RC)と同様、一体的な変形特性が得られることが分かる。
FIG. 9 summarizes the relationship between the half precast member (hPCa) and the cast-in-place integrated member (RC) with respect to the position of the joint 5 with respect to the specimen surface strain, rebar strain, total crack width and curvature when the specimen is crushed. It is a thing. According to this result, an integral deformation characteristic can be obtained as in the case of the cast-in-place integrated member (RC) by shifting the position of the joint portion 5 from the position (center) where the ultimate bending moment is obtained under the condition where bending stress acts. It can be seen that

また、これとは別に、図4(a)(b)に示すように、せん断スパン比を1.0ないし
0.5としたせん断試験を行った。この結果を表4に示す。この結果によれば、せん断力
が作用する構造形式では接合部5による一体性への影響がなく、終局時の破壊強度もその
せん断比によって若干異なるものの、ほぼ場所打ち一体部材(RC)と同様となることが
分かる。
Separately from this, as shown in FIGS. 4 (a) and 4 (b), a shear test was performed with a shear span ratio of 1.0 to 0.5. The results are shown in Table 4. According to this result, in the structure type in which the shearing force acts, there is no influence on the integrity by the joint portion 5, and the ultimate breaking strength varies slightly depending on the shear ratio, but is almost the same as the cast-in-place integral member (RC). It turns out that it becomes.


Figure 2005120702
Figure 2005120702

つぎに、前記補強筋10の直径について図5を参照しつつ更に詳述すると、本試験体で
補強筋10は引張主筋3b位置にD16のものが2本設けられている。また、組立筋6はD
16のものが左右上下かぶり45mmの間で177.5 mmの間隔をおいて計5本設けてある。し
たがって、曲げ載荷面である圧縮縁からの距離を考え、夫々の断面一次モーメントは、
補強筋10では、
755×AD16× 2= 755×198.6 × 2=299,886mm3
組立筋6では、
(45 +222.5 + 400+577.5 +755)×AD10× 2=2000×71.33 ×2 =285,320 mm3
但し、198.6 及び71.33 はAD16及びAD10の公称断面積を示す。
となる。したがって、補強筋10の断面一次モーメントは各組立筋6の断面一次モーメン
トの合計よりも大きいので、充分な補強効果が得られる。
Next, the diameter of the reinforcing bar 10 will be described in more detail with reference to FIG. 5. In the test specimen, two reinforcing bars 10 of D16 are provided at the position of the tensile main bar 3b. The assembly bar 6 is D
A total of five of the 16 types are provided with a distance of 177.5 mm between 45 mm of left and right top and bottom cover. Therefore, considering the distance from the compression edge, which is the bending load surface,
In the reinforcing bar 10,
755 x AD16 x 2 = 755 x 198.6 x 2 = 299,886mm 3
In the assembly muscle 6,
(45 +222.5 +400 +577.5 +755) x AD10 x 2 = 2000 x 71.33 x2 = 285,320 mm 3
However, 198.6 and 71.33 indicate the nominal cross-sectional areas of AD16 and AD10.
It becomes. Therefore, since the cross-sectional primary moment of the reinforcing bar 10 is larger than the sum of the cross-section primary moments of the assembly bars 6, a sufficient reinforcing effect can be obtained.

本発明に係る複合コンクリート部材の一部切欠き斜視図である。It is a partially cutaway perspective view of a composite concrete member according to the present invention. 同部材における接合部の断面拡大図である。It is a cross-sectional enlarged view of the junction part in the same member. 製造方法を示す要部の平面図(a)と正面図(b)である。It is the top view (a) and front view (b) of the principal part which show a manufacturing method. 載荷試験方法を示す説明図である。It is explanatory drawing which shows a loading test method. 接合部の他実施形態を示す断面拡大図である。It is a cross-sectional enlarged view which shows other embodiment of a junction part. 同接合部における配筋状態を示す一部切欠き斜視図である。It is a partially notched perspective view which shows the bar arrangement state in the junction part. 試験体に用いた現場打ちコンクリート部材の断面拡大図である。It is a cross-sectional enlarged view of the cast-in-place concrete member used for the test body. 試験体に用いたハーフプレキャスト部材の類似係数とばらつき係数の関係を示すグラフである。It is a graph which shows the relationship between the similarity coefficient and variation coefficient of the half precast member used for the test body. 本実施例における曲げ応力に対する接合部の位置と変形特性の関係についての試験結果を示すグラフである。It is a graph which shows the test result about the relationship between the position of a junction part with respect to bending stress and a deformation characteristic in a present Example.

符号の説明Explanation of symbols

1 複合コンクリート部材
2 プレキャストコンクリート型枠材
3a 上端主筋
3b 下端主筋
4 現場打ちコンクリート
5 接合部
6 組立筋
7 肋筋
8a 上方の水平折曲部
8b 下方の水平折曲部
9a 上方の垂直折曲部
9b 下方の垂直折曲部
10 補強筋
Y せん断領域
DESCRIPTION OF SYMBOLS 1 Composite concrete member 2 Precast concrete formwork material 3a Top main reinforcement 3b Lower bottom main reinforcement 4 On-site concrete 5 Joint part 6 Assembly reinforcement 7 Reinforcing bar 8a Upper horizontal bent part 8b Lower horizontal bent part 9a Upper vertical bent part 9b Lower vertical bent portion 10 Reinforcement bar Y Shear region

Claims (4)

長手方向に沿って平行に延びる組立筋を複数段埋設してなる一対のプレキャストコンク
リート型枠材を左右に離間して配設するとゝもに、これらと同一構成の型枠材を接合部を
介して長手方向に複数組配設し、全長にわたって配設した主筋と現場打ちコンクリートに
より連結して一体化するハーフプレキャスト部材であって、該部材の曲げ応力によって部
材断面に形成される左右のせん断領域において、そのスパン長さ方向のほゞ中央に前記接
合部を設けたことを特徴とする複合コンクリート部材。
When a pair of precast concrete formwork members, each of which is formed by embedding a plurality of assembly bars extending in parallel along the longitudinal direction, are spaced apart from each other on the left and right sides, the same formwork formwork material is inserted through the joints. A half precast member that is arranged in a plurality of lengths in the longitudinal direction and is integrated by connecting the main bars arranged over the entire length with cast-in-place concrete, and the left and right shear regions formed in the member cross section by the bending stress of the member The composite concrete member according to claim 1, wherein the joint portion is provided at the center of the span length direction.
長手方向に沿って平行に延びる組立筋を複数段埋設してなる一対のプレキャストコンク
リート型枠材を左右に離間して配設するとゝもに、これらと同一構成の型枠材を接合部を
介して長手方向に複数組配設し、全長にわたって配設した主筋と現場打ちコンクリートに
より連結して一体化するハーフプレキャスト部材であって、前記組立筋の圧縮縁に対する
断面一次モーメントの合計に対しこれと同等以上となるように径を定めた補強筋を前記接
合部を跨いで引張主筋位置に配設して連結したことを特徴とする複合コンクリート部材。
When a pair of precast concrete formwork members, each of which is formed by embedding a plurality of assembly bars extending in parallel along the longitudinal direction, are spaced apart from each other on the left and right sides, the same formwork formwork material is inserted through the joints. A half precast member that is arranged in a plurality in the longitudinal direction and is integrated by connecting the main bars arranged over the entire length with cast-in-place concrete, and with respect to the sum of the cross-sectional primary moments with respect to the compression edges of the assembly bars A composite concrete member characterized in that reinforcing bars whose diameters are equal to or greater than each other are arranged and connected at the position of the tensile main bar across the joint.
前記接合部の間隔が、前記現場打ちコンクリートに使用する粗骨材の最大寸法の1.3
倍以上2.5倍以下または30mm以上50mm以下としたことを特徴とする請求項1又
は2記載の複合コンクリート部材。
The distance between the joints is 1.3 of the maximum size of the coarse aggregate used for the cast-in-place concrete.
The composite concrete member according to claim 1 or 2, wherein the composite concrete member is not less than 2.5 times and not more than 2.5 times or not less than 30 mm and not more than 50 mm.
前記複合コンクリート部材が梁又は基礎梁であることを特徴とする請求項1〜3のうち
いずれか一つに記載の複合コンクリート部材。
The composite concrete member according to claim 1, wherein the composite concrete member is a beam or a foundation beam.
JP2003356718A 2003-10-16 2003-10-16 Composite concrete Expired - Lifetime JP4380286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003356718A JP4380286B2 (en) 2003-10-16 2003-10-16 Composite concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003356718A JP4380286B2 (en) 2003-10-16 2003-10-16 Composite concrete

Publications (2)

Publication Number Publication Date
JP2005120702A true JP2005120702A (en) 2005-05-12
JP4380286B2 JP4380286B2 (en) 2009-12-09

Family

ID=34613869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356718A Expired - Lifetime JP4380286B2 (en) 2003-10-16 2003-10-16 Composite concrete

Country Status (1)

Country Link
JP (1) JP4380286B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089341A (en) * 2014-10-29 2016-05-23 鹿島建設株式会社 Method of manufacturing precast member, and precast member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106149977A (en) * 2016-07-12 2016-11-23 东南大学 A kind of high ductility prefabricated assembled overlapping coupling beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089341A (en) * 2014-10-29 2016-05-23 鹿島建設株式会社 Method of manufacturing precast member, and precast member

Also Published As

Publication number Publication date
JP4380286B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
US20090120025A1 (en) Prefabricated concrete reinforcement system
JP6691880B2 (en) Precast wall balustrade mounting structure and mounting method
KR101780370B1 (en) Composite structure using shear connector made of anchor and socket shoe
JP2007231569A (en) Precast concrete floor slab and its joint structure
JP2006283292A (en) Retaining wall structure and retaining wall construction method
JP2017128891A (en) Joining structure between shear wall of rc structure and slab
JP4278149B2 (en) Shaped steel and wall body using the shaped steel
JP2011038262A (en) Reinforced concrete structure
KR101083762B1 (en) Connection Structure of Concrete Filled Steel Tube Column and Flat Plate Slab
KR102276624B1 (en) the CFT column structure with diagonal line type internal diaphragm
JP4380286B2 (en) Composite concrete
KR20190081117A (en) Composite Precast Wall Systems for Easy Lifting and Installation
WO2017061413A1 (en) Rc member joining structure
JP2012026088A (en) Connection method and connection structure of precast floor slab with loop-like joint
JP5750246B2 (en) Composite beam, building, and composite beam construction method
JPH07317087A (en) Connecting structure of wall made of steel and reinforced concrete floor slab
JP6978901B2 (en) Joining structure and joining method of precast concrete beam members
JP6590571B2 (en) Precast concrete beam end joint structure and precast concrete beam column frame
KR102035495B1 (en) Double Wall Structure with Resisting Shear Force Member
JP6553855B2 (en) Building foundation structure and building foundation construction method
JP2007023712A (en) Columnar structure using shape steel, pier or foundation pile and its manufacturing method
JP6836853B2 (en) Brace joint structure
KR20170036949A (en) Connecting sturcture between column and beam
KR101908700B1 (en) Hybrid Beam Consisted Of Compressive U-Shaped Flange And H-Type End Blocks
JP3644981B2 (en) Precast joint groove construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term